JP2018074787A - Inductive load drive circuit - Google Patents

Inductive load drive circuit Download PDF

Info

Publication number
JP2018074787A
JP2018074787A JP2016213105A JP2016213105A JP2018074787A JP 2018074787 A JP2018074787 A JP 2018074787A JP 2016213105 A JP2016213105 A JP 2016213105A JP 2016213105 A JP2016213105 A JP 2016213105A JP 2018074787 A JP2018074787 A JP 2018074787A
Authority
JP
Japan
Prior art keywords
inductive load
current
recovery
circuit
primary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016213105A
Other languages
Japanese (ja)
Other versions
JP6401222B2 (en
Inventor
卓 永野
Taku Nagano
卓 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Kogyo Co Ltd
Original Assignee
Yuken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Kogyo Co Ltd filed Critical Yuken Kogyo Co Ltd
Priority to JP2016213105A priority Critical patent/JP6401222B2/en
Priority to TW106130269A priority patent/TWI711263B/en
Priority to CN201710973706.XA priority patent/CN108011533B/en
Publication of JP2018074787A publication Critical patent/JP2018074787A/en
Application granted granted Critical
Publication of JP6401222B2 publication Critical patent/JP6401222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0038Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inductive load drive circuit which enables the achievement of high response to the reduction in current when an inductive load is stopped without generating heat.SOLUTION: An inductive load drive circuit 1 comprises: a switching power supply circuit 10; an energy recovery circuit 30 which recovers energy while generating a counter electromotive force of an inductive load 11 when a current of the inductive load decreases; and a control circuit 20. The energy recovery circuit includes: a recovery transformer 31 having, on the same iron core, a couple of primary coils LP1 and LP2 connected in series with the inductive load so that they are opposite to each other in polarity, and a recovery secondary coil RSL connected to the primary LP of a switching transformer 16; and a recovery control element 32 which controls a current passing through the primary coil by pulse signals by a second pulse signal generator circuit 33. When the inductive load current decreases, the control circuit adjusts the pulse width of pulse signals of the second pulse signal generator circuit to the recovery control element to control the recovery control element so as to stay off for a fixed length of time, thereby transmitting an energy to the secondary coil.SELECTED DRAWING: Figure 1

Description

本発明は、例えばソレノイドやモータ等の誘導負荷を駆動させるための回路に関し、詳しくは、PWM制御方式によるスイッチング電源の回路構成にエネルギー回収回路を組み合わせて電流制御を行う誘導負荷駆動回路に関するものである。   The present invention relates to a circuit for driving an inductive load such as a solenoid or a motor, and more particularly, to an inductive load driving circuit that controls current by combining an energy recovery circuit with a circuit configuration of a switching power supply by a PWM control system. is there.

モータやソレノイドなど、コイル成分を有し、電気エネルギーを電磁力を介して機械的運動に変換する誘導負荷は、アクチュエータとして各種装置に利用されている。誘導負荷の駆動制御方式には、大きく分けてパルス幅変調、所謂PWM(pulse width modulation)制御と比例制御とがある。前者は負荷をオン/オフ制御する際にパルス幅のデューティー比、即ちオン/オフ比率を入力信号の大きさに応じて変化させるものであり、後者は負荷と直列に接続された制御素子の両端電圧を可変して損失させることにより制御するものである。   Inductive loads such as motors and solenoids that have coil components and convert electrical energy into mechanical motion via electromagnetic force are used as actuators in various devices. Inductive load drive control systems are broadly divided into pulse width modulation, so-called PWM (pulse width modulation) control and proportional control. In the former, the duty ratio of the pulse width, that is, the on / off ratio is changed according to the magnitude of the input signal when the load is turned on / off, and the latter is applied to both ends of the control element connected in series with the load. Control is performed by varying the voltage and causing loss.

PWM方式としては、例えば特許文献1に見られるようなスイッチング電源の回路構成を用いて、商用の高い交流電圧を低い直流電圧として安定的に誘導負荷へ供給する駆動回路により電流制御を行うものがある。   As a PWM system, for example, a circuit configuration of a switching power supply as shown in Patent Document 1 is used, and current control is performed by a drive circuit that stably supplies a commercial high AC voltage as a low DC voltage to an inductive load. is there.

具体的には、図5(a)に基本構成を示すように、供給電源112からの交流をまずブリッジダイオード113により整流し、さらに平滑コンデンサ114で平滑化された直流を、指令信号121に基づいてFET(Field Effect Transistor:電界効果トランジスタ)等の半導体素子からなるスイッチング素子115のスイッチングによりパルス波の交流に変換してからスイッチングトランス116に送り込み、交流電圧を所定の交流電圧に降圧変換するスイッチング電源回路を用いた誘導負荷駆動回路100である。   Specifically, as shown in FIG. 5A, the alternating current from the power supply 112 is first rectified by the bridge diode 113 and the direct current smoothed by the smoothing capacitor 114 is converted into the direct current based on the command signal 121. Switching is performed by switching the switching element 115 made of a semiconductor element such as an FET (Field Effect Transistor) into a pulse wave alternating current by switching and then sending it to the switching transformer 116 to step down the alternating voltage to a predetermined alternating voltage. This is an inductive load driving circuit 100 using a power supply circuit.

この誘導負荷駆動回路100において電流制御を行う場合、スイッチングトランス116の一次側で入力側直流を交流変換する際に、制御回路において指令信号121に基づいて所定のパルス波幅(スイッチングのオン/オフサイクルのオン時間)となるように、例えばPWMコントローラ(PWM−IC)等のパルス信号発生装置124からパルス信号が発生される。そして、指令信号と出力側の電流センサ125による検出結果に基づくフィードバック制御によってパルス波幅を調整してスイッチングできるため、電源及び負荷が変動しても、出力電流が一定に保たれ、安定化した直流が得られる。   When current control is performed in the inductive load driving circuit 100, when the input side DC is converted into AC on the primary side of the switching transformer 116, a predetermined pulse wave width (switching ON / OFF cycle) is determined based on the command signal 121 in the control circuit. For example, a pulse signal is generated from a pulse signal generator 124 such as a PWM controller (PWM-IC). Since the pulse wave width can be adjusted and switched by feedback control based on the command signal and the detection result by the current sensor 125 on the output side, the output current can be kept constant even when the power source and the load fluctuate, and the stabilized DC Is obtained.

この方式では、スイッチングトランス116にて、一次側のエネルギーが、スイッチング素子115をオン/オフスイッチングして高周波交流とした電流を一次側コイルLpから二次側コイルLsへ電磁誘導させることでエネルギーが伝達されるが、高周波交流にすることでトランス自体が小型で済み、発熱が少ないため高効率となる。このように伝達された交流電流は、二次側の整流ダイオード117で整流されて誘導負荷111へ流されるが、ダイオードで整流された誘導電流は断続波形となるため、そのまま誘導負荷に流すと誘導負荷の両端電圧は大きく変動することになる。従って、これを平滑化するために二次側に平滑コンデンサ118を配置し、平滑化された直流が誘導負荷111へ出力される構成となっている。   In this method, the energy on the primary side is electromagnetically induced by the switching transformer 116 from the primary side coil Lp to the secondary side coil Ls by switching the switching element 115 on / off to generate high-frequency alternating current. Although it is transmitted, the transformer itself can be made small by using high-frequency alternating current, and it is highly efficient because it generates little heat. The alternating current transmitted in this way is rectified by the rectifier diode 117 on the secondary side and flows to the inductive load 111. However, the induced current rectified by the diode has an intermittent waveform. The voltage across the load will vary greatly. Therefore, in order to smooth this, a smoothing capacitor 118 is disposed on the secondary side, and the smoothed direct current is output to the inductive load 111.

この二次側の平滑コンデンサ118は、容量が小さいほど回路応答が高速になる。その反面、コンデンサで平滑しきれずリップル電圧が大きくなるため、電流制御の安定性が悪化してしまう。そこで、PWM周期をより高速化し、コンデンサ容量が小さくてもリップル電流を吸収できるようにすることで高応答化が可能となるが、誘導負荷電流オフ時の応答性は、以下のように構造的に遅いものとなる。   The smoothing capacitor 118 on the secondary side has a faster circuit response as the capacitance is smaller. On the other hand, since the capacitor cannot be completely smoothed and the ripple voltage increases, the stability of current control is deteriorated. Therefore, it is possible to increase the response by making the PWM cycle faster and absorbing the ripple current even if the capacitor capacity is small, but the response when the inductive load current is off is structural as follows: It will be slow.

即ち、誘導負荷電流をオフにするには、スイッチングトランス一次側のスイッチング素子115をオフ一定としてトランス二次側への誘導を停止し、平滑コンデンサ118を完全に放電させる必要がある。しかし、平滑コンデンサの容量が負荷の発生する逆起電力に対して充分小さい場合、平滑コンデンサが放電すると、図5(b)に示すように、誘導負荷の転流電流101が平滑コンデンサ118を逆向きに充電すると同時にトランス二次側コイルLsにも整流ダイオードを介して転流電流が流れる。このとき一次側コイルLpにも、誘導負荷の転流時間と比較すると無視できる程度の時間であるが、誘導電流102がFETの内臓ダイオードを介して流れる。また、トランス二次側コイルのインピーダンスも低いため、誘導負荷オフ時の転流電流は、殆どは整流ダイオードを介して流れる。その結果、応答性はダイオード転流回路を持つ駆動回路と等価となり、応答時間がかかってしまう。   That is, in order to turn off the inductive load current, it is necessary to stop the induction to the transformer secondary side by setting the switching element 115 on the primary side of the switching transformer to be constant OFF and to discharge the smoothing capacitor 118 completely. However, when the capacity of the smoothing capacitor is sufficiently smaller than the counter electromotive force generated by the load, when the smoothing capacitor is discharged, the commutation current 101 of the inductive load reverses the smoothing capacitor 118 as shown in FIG. At the same time as charging in the direction, a commutation current also flows through the rectifier diode in the transformer secondary coil Ls. At this time, the induced current 102 also flows to the primary side coil Lp via the internal diode of the FET, although the time is negligible compared to the commutation time of the inductive load. Further, since the impedance of the transformer secondary side coil is also low, most of the commutation current when the inductive load is off flows through the rectifier diode. As a result, the response is equivalent to a drive circuit having a diode commutation circuit, and a response time is required.

このように、PWM方式のスイッチング電源の回路構成を利用した誘導負荷駆動回路では、効率に優れるが、応答性に問題があり、誘導負荷電流の減少速度の制御ができない。これに対して、比例制御方式は、制御素子の両端で電圧を可変調整して損失させることで制御するものであるため、発熱する問題がある。   As described above, the inductive load drive circuit using the circuit configuration of the PWM type switching power supply is excellent in efficiency, but has a problem in responsiveness and cannot control the rate of decrease of the inductive load current. On the other hand, the proportional control method has a problem that heat is generated because it is controlled by variably adjusting the voltage at both ends of the control element to cause loss.

特開2012−217238号公報JP 2012-217238 A 特開平07−59397号公報Japanese Patent Application Laid-Open No. 07-59397

一方、電力が100W以下という出力が小さい通常のソレノイドなどの場合、負荷に蓄積されたエネルギーは発熱により消費されるが、消費されるエネルギーが数ワットと少ないために、電力回収を行う費用対効果として適当ではないため、エネルギーの回収は行われていない。これは、モータ駆動装置でも同様で、低出力のシステムにおいては、回生エネルギーは発熱により消費されている。大電力のソレノイドが無い現状ではエネルギー回収は必要ないため、そのための機構を有する駆動回路も実質的に構築されていない。   On the other hand, in the case of a normal solenoid or the like with a small output of power of 100 W or less, the energy stored in the load is consumed due to heat generation, but the energy consumed is only a few watts, so the cost effectiveness of collecting power is low. Because it is not suitable, energy recovery is not performed. The same applies to the motor drive device. In a low output system, regenerative energy is consumed by heat generation. Since there is no need for energy recovery in the current situation where there is no high power solenoid, a drive circuit having a mechanism for this purpose has not been substantially constructed.

しかしながら、駆動電圧が一般的に使用されるDC48V以上の電源を必要とする負荷の場合、負荷電力が大きくなり、誘導負荷の電流を減じる際は、サージ電圧が発生し、そのエネルギーは、発熱により消費するため無駄がある。さらに、どのような駆動方式でもAC−DC電源またはDC−DC(昇圧)電源が必要であり、回路規模が大きくなる。   However, in the case of a load that requires a power supply of DC 48V or higher, which is generally used for driving voltage, the load power becomes large, and when the current of the inductive load is reduced, a surge voltage is generated, and the energy is generated by heat generation. There is waste to consume. Furthermore, any driving method requires an AC-DC power supply or a DC-DC (step-up) power supply, which increases the circuit scale.

なお、例えば、特許文献2のように、誘導負荷駆動装置において誘導負荷の停止時に負荷電流の良好な立ち下がりを確保できるように転流エネルギーを回収する手段を備えたものもある。特許文献2では、誘導負荷の非駆動時に負荷電流を還流させる還流路にトランスの二次側巻線を配置し、二次側巻線または一次側巻線を短絡するスイッチ手段が設けられ、誘導負荷の停止時に該スイッチ手段をオフにするものとしている。これにより、二次側巻線に負荷電流を収束させる方向に高圧を発生させ、負荷電流を立ち下げ、トランスの一次側に電流を発生させて誘導負荷に蓄積されたエネルギーを電源に回生している。   For example, as in Patent Document 2, some inductive load driving devices include means for recovering commutation energy so that a good fall of the load current can be secured when the inductive load is stopped. In Patent Document 2, a secondary winding of a transformer is disposed in a return path for returning a load current when an inductive load is not driven, and a switch means for short-circuiting the secondary winding or the primary winding is provided. The switch means is turned off when the load is stopped. As a result, a high voltage is generated in the direction in which the load current converges on the secondary winding, the load current is lowered, a current is generated on the primary side of the transformer, and the energy accumulated in the inductive load is regenerated to the power source. Yes.

しかし、誘導負荷をオフした際にトランス二次側に電流を流したとしても、その電圧変化は1回だけであるため効果的にエネルギーを一次側に戻せない。二次側巻線に並列接続されたスイッチ手段をオン・オフしたとしてもトランス巻線の電流回路が遮断されていないので、二次側トランスのコイル電流を瞬時に遮断することはできず、誘導負荷のエネルギー消費が不十分であるため、誘導負荷の応答性は不十分である。   However, even if a current is passed through the transformer secondary side when the inductive load is turned off, the voltage changes only once, so that the energy cannot be effectively returned to the primary side. Even if the switch means connected in parallel to the secondary winding is turned on / off, the current circuit of the transformer winding is not cut off, so the coil current of the secondary transformer cannot be cut off instantaneously and induction Since the energy consumption of the load is insufficient, the responsiveness of the inductive load is insufficient.

本発明の目的は、上記問題点に鑑み、誘導負荷が大型である場合でも発熱を生じることなく、誘導負荷の停止時の電流減少に高い応答性が実現でき、従来よりも高応答で効率的な電流制御が可能な誘導負荷駆動回路を提供することにある。   In view of the above problems, the object of the present invention is to realize high responsiveness to a decrease in current when an inductive load is stopped without generating heat even when the inductive load is large, and is more responsive and more efficient than before. It is an object of the present invention to provide an inductive load driving circuit capable of performing an accurate current control.

上記目的を達成するため、請求項1に記載の発明に係る誘導負荷駆動回路は、電源からの交流を整流する整流ブリッジダイオードと、整流された直流を平滑化する一次側平滑コンデンサと、前記一次側平滑コンデンサにより平滑化された直流をパルス信号発生装置からのパルス信号に基づいた周期でのスイッチング素子のオン/オフスイッチングによってパルス波の交流に変換されたものを予め定められた交流電圧へ変圧して二次側へ伝達するスイッチングトランスと、二次側に伝達された交流を整流する二次側ダイオードと、整流された直流をさらに平滑化して出力する二次側平滑コンデンサとを備えたスイッチング電源回路と、指令信号と前記スイッチング電源回路の出力側の検出結果に基づいて前記パルス信号発生装置によるパルス信号のパルス幅を調整して前記スイッチング素子のオン/オフスイッチングを制御する制御回路と、を有する誘導負荷駆動回路において、
前記誘導負荷の電流減少時に該誘導負荷の逆起電力を発生させながら回収するエネルギー回収回路を更に備え、
前記エネルギー回収回路は、前記誘導負荷に直列で且つ互いに逆極性で接続されている抵抗値の異なる二個の一次側コイルと前記スイッチングトランスの一次側に接続された一個の二次側コイルとを同一鉄心に有する回収用トランスと、前記二個の一次側コイルのうち相対的に抵抗値の小さい小抵抗一次側コイルと直列に配置されて前記制御回路からの回収指令信号に基づく第2のパルス信号発生装置によるパルス信号に応じて動作して前記小抵抗一次側コイルに流れる電流を制御する回収制御素子とを含み、
前記制御回路は、前記誘導負荷の電流減少時に前記回収制御素子に対する前記第2のパルス信号発生装置によるパルス信号のパルス幅を調整させて、前記回収制御素子を一定時間オフ制御することにより、前記誘導負荷の逆起電力を発生させながら前記回収用トランスの相対的に抵抗値の大きい大抵抗一次側コイルに電流を流すことによりコア磁束を変化させて対応する二次側コイルへエネルギーを伝達させるものである。
In order to achieve the above object, an inductive load driving circuit according to claim 1 includes a rectifying bridge diode that rectifies alternating current from a power source, a primary-side smoothing capacitor that smoothes rectified direct current, and the primary The direct current smoothed by the side smoothing capacitor is converted to a pulse wave alternating current by switching the switching element on / off in a cycle based on the pulse signal from the pulse signal generator to a predetermined alternating voltage. And a switching transformer that transmits to the secondary side, a secondary side diode that rectifies the alternating current transmitted to the secondary side, and a secondary side smoothing capacitor that further smoothes and outputs the rectified direct current A pulse signal generated by the pulse signal generator based on the power circuit, the command signal, and the detection result on the output side of the switching power circuit. In inductive load drive circuit to adjust the pulse width and a control circuit for controlling the on / off switching of the switching element,
An energy recovery circuit for recovering while generating a counter electromotive force of the inductive load when the current of the inductive load is reduced;
The energy recovery circuit includes two primary coils having different resistance values connected in series with the inductive load in opposite polarities and one secondary coil connected to the primary side of the switching transformer. A second pulse based on a recovery command signal from the control circuit, which is arranged in series with a recovery transformer having the same iron core and a small resistance primary side coil having a relatively small resistance value among the two primary side coils. A recovery control element that operates in response to a pulse signal from the signal generator and controls a current flowing through the small-resistance primary coil;
The control circuit adjusts the pulse width of the pulse signal by the second pulse signal generator with respect to the recovery control element when the current of the inductive load is reduced, and controls the recovery control element to be off for a certain period of time. While generating the back electromotive force of the inductive load, the current is passed through the large resistance primary side coil having a relatively large resistance value of the recovery transformer to change the core magnetic flux and transmit the energy to the corresponding secondary side coil. Is.

請求項2に記載の発明に係る誘導負荷駆動回路は、請求項1に記載の誘導負荷駆動回路において、
前記回収用トランスの前記大抵抗一次側コイルと直列に配置され、前記小抵抗一次側コイルの前記回収制御素子がオフした際の電圧を一定にするように前記大抵抗一次側コイルに流れる電流を制限する第2の回収制御素子を更に備えたものである。
An inductive load driving circuit according to a second aspect of the present invention is the inductive load driving circuit according to the first aspect,
A current flowing through the large resistance primary side coil is arranged in series with the large resistance primary side coil of the recovery transformer, and the voltage when the recovery control element of the small resistance primary side coil is turned off is made constant. A second recovery control element for limiting is further provided.

本発明の誘導負荷駆動回路によれば、スイッチング電源回路構成に誘導負荷と一次側コイルが直列接続された回収用トランスによるエネルギー回収回路を更に備えたことによって、電源側と絶縁されている誘導負荷の電流減少時に該誘導負荷の逆起電力を発生させながら良好に回収することができるため、発熱損失もなく効率的に誘導負荷電流の停止時における高応答が実現される。特にエネルギー回収回路の回収用トランスの一次側を互いに逆極性の大抵抗と小抵抗の二個のコイルで構成することによって定常状態には無誘導化で負荷電流増加時の電流上昇速度の遅れが防止されると同時に、小抵抗一次側コイルの電流をPWM駆動制御される回収制御素子を介して制御する構成とすることによって誘導負荷停止時の負荷電流減少速度を高速で制御できるため、従来より効率的且つ高応答で誘導負荷の電流制御を行えるという効果がある。   According to the inductive load driving circuit of the present invention, the switching power supply circuit configuration further includes an energy recovery circuit using a recovery transformer in which an inductive load and a primary side coil are connected in series, so that the inductive load is insulated from the power source side. When the current is reduced, it can be recovered satisfactorily while generating the counter electromotive force of the inductive load, so that a high response can be achieved efficiently when the inductive load current is stopped without heat loss. In particular, the primary side of the recovery transformer of the energy recovery circuit is composed of two coils with a large resistance and a small resistance with opposite polarities, so there is no induction in the steady state and there is a delay in the current rise rate when the load current increases. At the same time, the current of the small resistance primary side coil is controlled via a recovery control element controlled by PWM drive, so that the load current decrease rate at the time of inductive load stop can be controlled at high speed. There is an effect that current control of the inductive load can be performed efficiently and with high response.

本発明の一実施例による誘導負荷駆動回路の概略構成図である。It is a schematic block diagram of the inductive load drive circuit by one Example of this invention. エネルギー回収回路の有無におけるソレノイド立ち下がり特性を示すグラフ(横軸:時間[msec],縦軸:電流[A])である。It is a graph (horizontal axis: time [msec], vertical axis: current [A]) showing the solenoid falling characteristics with and without the energy recovery circuit. 図2のエネルギー回収時における電力回収特性を示すグラフ(横軸:時間[msec],縦軸:回収電力[W]とソレノイド電流[A])である。FIG. 3 is a graph showing power recovery characteristics during energy recovery in FIG. 2 (horizontal axis: time [msec], vertical axis: recovered power [W] and solenoid current [A]). 図1のエネルギー回収回路を改良したものを示す部分回路図である。It is a partial circuit diagram which shows what improved the energy recovery circuit of FIG. スイッチング電源回路を有する従来の誘導負荷駆動回路の例を示す概略構成図であり、(a)は電流制御回路図、(b)は誘導負荷電流オフ時の動作を示す部分回路図である。It is a schematic block diagram which shows the example of the conventional inductive load drive circuit which has a switching power supply circuit, (a) is a current control circuit diagram, (b) is a partial circuit diagram which shows the operation | movement at the time of inductive load current OFF.

本発明における誘導負荷駆動回路は、電源からの交流を整流する整流ブリッジダイオードと、整流された直流を平滑化する一次側平滑コンデンサと、前記一次側平滑コンデンサにより平滑化された直流をパルス信号発生装置からのパルス信号に基づいた周期でのスイッチング素子のオン/オフスイッチングによってパルス波の交流に変換されたものを予め定められた交流電圧へ変圧して二次側へ伝達するスイッチングトランスと、二次側に伝達された交流を整流する二次側ダイオードと、整流された直流をさらに平滑化して出力する二次側平滑コンデンサとを備えたスイッチング電源回路と、指令信号と前記スイッチング電源回路の出力側の検出結果に基づいて前記パルス信号発生装置によるパルス信号のパルス幅を調整して前記スイッチング素子のオン/オフスイッチングを制御する制御回路と、を有し、誘導負荷の電流減少時に該誘導負荷の逆起電力を発生させながら回収するエネルギー回収回路を更に備えたものである。   An inductive load driving circuit according to the present invention includes a rectifier bridge diode that rectifies an alternating current from a power source, a primary side smoothing capacitor that smoothes the rectified direct current, and a pulse signal that generates a direct current smoothed by the primary side smoothing capacitor. A switching transformer for transforming a pulse wave converted to alternating current by on / off switching of the switching element in a cycle based on a pulse signal from the device into a predetermined alternating voltage and transmitting the same to the secondary side; A switching power supply circuit comprising a secondary side diode for rectifying the alternating current transmitted to the secondary side, and a secondary side smoothing capacitor for further smoothing and outputting the rectified direct current, a command signal, and an output of the switching power supply circuit A pulse width of the pulse signal by the pulse signal generator based on the detection result on the side, A control circuit for controlling the on / off switching elements, and in which further comprising an energy recovery circuit for recovering while generating counter electromotive force of the inductive load during a current decrease in the inductive load.

以上の構成により、本発明は、エネルギー回収回路によって、誘導負荷の電流減少時に、該誘導負荷の逆起電力を消費による発熱を伴うことなく良好に回収することを可能とし、誘導負荷の停止時における高い応答性を実現したものである。   With the above configuration, the present invention enables the energy recovery circuit to successfully recover the back electromotive force of the inductive load without heat generation due to consumption when the current of the inductive load is reduced. High responsiveness is realized.

即ち、本発明のエネルギー回収回路は、誘導負荷に直列で且つ互いに逆極性で接続されている抵抗値の異なる二個の一次側コイルと前記スイッチングトランスの一次側に接続された一個の二次側コイルとを同一鉄心に有する回収用トランスと、前記二個の一次側コイルのうち相対的に抵抗値の小さい小抵抗一次側コイルと直列に配置されて前記制御回路からの回収指令信号に基づく第2のパルス信号発生装置によるパルス信号に応じて動作して前記小抵抗一次側コイルに流れる電流を制御する回収制御素子とを含み、前記制御回路が、前記誘導負荷の電流減少時に前記回収制御素子に対する前記第2のパルス信号発生装置によるパルス信号のパルス幅を調整させて、前記回収制御素子を一定時間オフ制御することにより、前記誘導負荷の逆起電力を発生させながら前記回収用トランスの相対的に抵抗値の大きい大抵抗一次側コイルに電流を流すことによりコア磁束を変化させて対応する二次側コイルへエネルギーを伝達させるものである。   That is, the energy recovery circuit of the present invention includes two primary coils connected in series with an inductive load and having opposite resistances and different resistance values, and one secondary connected to the primary side of the switching transformer. A recovery transformer having a coil in the same iron core, and a first resistor based on a recovery command signal from the control circuit, arranged in series with a relatively small resistance primary side coil of the two primary side coils. A recovery control element that operates in response to a pulse signal generated by the pulse signal generator 2 and controls a current flowing through the small resistance primary coil, and the control circuit is configured to reduce the current of the inductive load when the recovery control element is reduced. By adjusting the pulse width of the pulse signal by the second pulse signal generator with respect to the recovery control element, the recovery control element is controlled to be off for a certain period of time. In which by changing the core flux to transfer energy to a corresponding secondary coil by passing a current through the large resistance primary coil greater the recovery transformer relatively resistance while generating power.

以上のエネルギー回収回路においては、小抵抗一次側コイルは、抵抗損失が無視できる程度に巻線抵抗を小さくすれば良い。誘導負荷への電流が一定である時には、コイル抵抗値のバランスから電流はほとんど小抵抗一次側コイルに流れてトランス・コアを励磁するが、小抵抗一次側コイルのインダクタンスに対し電流の増加速度が大きい場合には、逆向きに巻かれた大抵抗一次側コイルに電流が流れることによって無誘導化して電流応答の遅れが防止される。   In the energy recovery circuit described above, the small resistance primary side coil may be reduced in winding resistance to such an extent that resistance loss can be ignored. When the current to the inductive load is constant, the current flows almost to the small resistance primary coil from the balance of the coil resistance value to excite the transformer core. However, the current increase rate is larger than the inductance of the small resistance primary coil. If it is large, the current flows through the large resistance primary coil wound in the opposite direction, so that no current is induced and delay in current response is prevented.

そして誘導負荷電流の減少速度を増加する場合は、回収制御素子を一定時間オフにすることによって、全ての電流が大抵抗一次側コイルに流れようとするため、大抵抗一次側コイルの両端に高電圧が発生し、トランス/コアの励磁を変えるので回収用トランスの二次側コイルに誘導電流が流れてエネルギーが回収される。このとき、誘導負荷電流の減少速度は、制御回路にてPWM駆動制御される回収制御素子のデューティー比を可変することで高速で制御することができる。   When increasing the rate of decrease of the inductive load current, turning off the recovery control element for a certain period of time causes all current to flow to the large resistance primary side coil. Since voltage is generated and the excitation of the transformer / core is changed, the induced current flows through the secondary coil of the recovery transformer, and energy is recovered. At this time, the reduction rate of the inductive load current can be controlled at a high speed by varying the duty ratio of the recovery control element that is PWM-controlled by the control circuit.

また本発明においては、前記回収用トランスの前記大抵抗一次側コイルと直列に配置された第2の回収制御素子を更に備えて、前記小抵抗一次側コイルの前記回収制御素子がオフした際の電圧を一定にするように前記大抵抗一次側コイルに流れる電流を制限することができる。これにより、電流が少なくなって大抵抗一次側コイルの両端電圧が減少しても二次側コイルへの伝達量の減少を抑え、且つ第2の回収制御素子の損失分により誘導負荷電流の減少速度の高速化ができる。   The present invention further includes a second recovery control element arranged in series with the large resistance primary side coil of the recovery transformer, wherein the recovery control element of the small resistance primary side coil is turned off. The current flowing through the large resistance primary coil can be limited so as to keep the voltage constant. As a result, even if the current decreases and the voltage across the large resistance primary side coil decreases, the amount of transmission to the secondary side coil is suppressed, and the inductive load current decreases due to the loss of the second recovery control element. Speed can be increased.

本発明の一実施例による誘導負荷駆動回路の概略構成図を図1に示す。本実施例の誘導負荷駆動回路1は、スイッチング電源回路10を基本構成として備えている。即ち、供給電源12からの交流を整流するブリッジダイオード13と、整流された直流を平滑化する一次側平滑コンデンサ14と、一次側平滑コンデンサ14により平滑化された直流を制御回路20にてパルス信号発生装置24により発生されたパルス信号に基づいた周期でオン/オフスイッチングを行ってパルス波の交流に変換するスイッチング素子(FET)15と、パルス波交流を一次側コイルLPから二次側コイルLSへ予め定められた電圧へ変圧して伝達するスイッチングトランス16と、二次側に伝達された交流を整流する二次側整流ダイオード17と、整流された直流をさらに平滑化して誘導負荷(ソレノイド)11へ送る二次側平滑コンデンサ18とを備えている。   FIG. 1 shows a schematic configuration diagram of an inductive load driving circuit according to an embodiment of the present invention. The inductive load driving circuit 1 of the present embodiment includes a switching power supply circuit 10 as a basic configuration. That is, the bridge diode 13 that rectifies the alternating current from the power supply 12, the primary side smoothing capacitor 14 that smoothes the rectified direct current, and the direct current smoothed by the primary side smoothing capacitor 14 is converted into a pulse signal by the control circuit 20. A switching element (FET) 15 that performs on / off switching in a cycle based on the pulse signal generated by the generator 24 to convert the pulse wave to alternating current, and the pulse wave alternating current from the primary coil LP to the secondary coil LS. A switching transformer 16 that transforms and transmits the voltage to a predetermined voltage, a secondary rectifier diode 17 that rectifies the alternating current transmitted to the secondary side, and an inductive load (solenoid) that further smoothes the rectified direct current 11 is provided with a secondary side smoothing capacitor 18 to be sent to 11.

またスイッチング電源回路10の出力側には電流センサ25が配置されており、制御回路20では、指令信号21と電流センサ25による検出結果とに基づき、電流のフィードバック制御が行われる。   A current sensor 25 is disposed on the output side of the switching power supply circuit 10, and the control circuit 20 performs current feedback control based on the command signal 21 and the detection result of the current sensor 25.

そして、本実施例においては、以上の構成を備えたスイッチング電源回路10に、さらにソレノイド電流減少時の逆起電力を回収するエネルギー回収回路30が設けられている。このエネルギー回収回路30は、一次側がソレノイド11に直列接続された回収用トランス31を備え、その一次側コイルがPWM制御されることによって二次側へエネルギーが伝達されるものである。   In the present embodiment, the switching power supply circuit 10 having the above configuration is further provided with an energy recovery circuit 30 that recovers the back electromotive force when the solenoid current decreases. The energy recovery circuit 30 includes a recovery transformer 31 whose primary side is connected in series to the solenoid 11, and energy is transmitted to the secondary side by PWM control of the primary side coil.

具体的には、回収用トランス31は、ソレノイド11に直列で且つ互いに逆極性で接続されている相対的に抵抗値の大きい大抵抗一次側コイルLP1と相対的に抵抗値の小さい小抵抗一次側コイルLP2との二個の一次側コイルと、スイッチングトランス16の一次側に接続された一個の回収用二次側コイルRLSとを同一鉄心に有するものである。そして二個の一次側コイルのうちの小抵抗一次側コイルLP2と直列に配置されて制御回路20からの回収指令信号に基づく第2のパルス信号発生装置33によるパルス信号に応じて動作して小抵抗一次側コイルLP2に流れる電流を制御する回収制御素子32が備えられている。   Specifically, the recovery transformer 31 is connected to the solenoid 11 in series and opposite in polarity to the large resistance primary coil LP1 having a relatively large resistance value and a small resistance primary side having a relatively small resistance value. Two primary coils with the coil LP2 and one recovery secondary coil RLS connected to the primary side of the switching transformer 16 are provided in the same iron core. And it arrange | positions in series with the small resistance primary side coil LP2 of two primary side coils, operates according to the pulse signal by the 2nd pulse signal generator 33 based on the collection | recovery command signal from the control circuit 20, and is small. A recovery control element 32 that controls the current flowing through the resistance primary coil LP2 is provided.

このエネルギー回収回路30では、大抵抗一次側コイルLP1と小抵抗一次側コイルLP2が逆極性であるため、電流増加時にこれら大抵抗一次側コイルLP1と小抵抗一次側コイルLP2とが励磁されることで無誘導化し、ソレノイド電流の上昇速度の遅れが防止される。   In this energy recovery circuit 30, since the large resistance primary side coil LP1 and the small resistance primary side coil LP2 have opposite polarities, the large resistance primary side coil LP1 and the small resistance primary side coil LP2 are excited when the current increases. The non-induction is prevented, and a delay in the rise speed of the solenoid current is prevented.

また本実施例において、ソレノイド11の電流減少時には、制御回路20は、回収制御素子32に対する第2のパルス信号発生装置33からパルス信号のパルス幅を変化させて、回収制御素子32を一定時間オフ制御することによって、ソレノイド11の逆起電力を発生させながら大抵抗一次側コイルLP1に電流を流すことによりコア磁束を変化させて回収用二次側コイルRLSへエネルギーを伝達させる。   In this embodiment, when the current of the solenoid 11 decreases, the control circuit 20 changes the pulse width of the pulse signal from the second pulse signal generator 33 for the recovery control element 32 to turn off the recovery control element 32 for a certain period of time. By controlling, the core magnetic flux is changed by causing a current to flow through the large resistance primary side coil LP1 while generating a back electromotive force of the solenoid 11, and energy is transmitted to the secondary coil RLS for recovery.

これに伴い、全ての電流が大抵抗一次側コイルLP1に流れようとするため、大抵抗一次側コイルLP1の両端に高電圧が発生し、トランス・コアの励磁を変えるので回収用二次側コイルRLSに誘導電流が流れてエネルギーが回収される。このとき、ソレノイド電流の減少速度は、PWM駆動制御される回収制御素子32のデューティー比を可変することで高速で制御することができる。   Along with this, since all the current tends to flow to the large resistance primary coil LP1, a high voltage is generated at both ends of the large resistance primary coil LP1, and the excitation of the transformer core is changed. An induced current flows through the RLS to recover energy. At this time, the decreasing speed of the solenoid current can be controlled at high speed by changing the duty ratio of the recovery control element 32 that is PWM-driven.

ここで、エネルギー回収回路30による効果をエネルギー回収回路30を持たない誘導負荷駆動回路との比較試験によって確認した結果を示す。本比較試験では、図5(a)に示した従来のスイッチング電源回路構成からなる誘導負荷駆動回路100を対照にし、この誘導負荷駆動回路100の構成にエネルギー回収回路30の構成を組み合わせて成る図1に示した誘導負荷駆動回路1において、ソレノイド停止時のソレノイド電流の減少を測定し、その立ち下がり特性を比較した。結果を図2のグラフに示す。   Here, the result of having confirmed the effect by the energy recovery circuit 30 by the comparison test with the inductive load drive circuit which does not have the energy recovery circuit 30 is shown. In this comparative test, the inductive load driving circuit 100 having the conventional switching power supply circuit configuration shown in FIG. 5A is contrasted, and the configuration of the energy recovery circuit 30 is combined with the configuration of the inductive load driving circuit 100. In the inductive load drive circuit 1 shown in FIG. 1, the decrease in the solenoid current when the solenoid was stopped was measured, and the fall characteristics were compared. The results are shown in the graph of FIG.

図2は、時間軸である横軸において、ソレノイド電流一定状態からソレノイド停止時(電流供給停止時)を0(msec)として、時間経過に沿った電流値(A)を縦軸に示したものである。   Fig. 2 shows the current value (A) along the elapsed time on the vertical axis on the horizontal axis, which is the time axis, when the solenoid is stopped (when the current supply is stopped) from the state where the solenoid current is constant. It is.

図2から明らかなように、エネルギー回収回路30がなくソレノイドの起電力回収がなされない対照としての誘導負荷駆動回路の場合の電流値の変化曲線Xに対して、エネルギー回収回路30によりソレノイドの起電力が回収された図1の誘導負荷駆動回路1における電流値の変化曲線Yでは、ソレノイド電流の減少(立ち下がり)速度が大きく、その応答性が非常に高くなっていることがわかる。   As is clear from FIG. 2, the energy recovery circuit 30 causes the solenoid to start up with respect to the current value change curve X in the case of the inductive load drive circuit as a control that does not have the energy recovery circuit 30 and does not recover the electromotive force of the solenoid. In the current value change curve Y in the inductive load drive circuit 1 of FIG. 1 from which power is recovered, it can be seen that the decrease (falling) speed of the solenoid current is large and the response is very high.

さらに、図2で測定した逆起電力の回収におけるソレノイド電流減少時の回収電力を経時的に測定し、時間:横軸(msec)に対して縦軸に回収電力(W)をとってその変化曲線Zを図3のグラフに示した。この図3から、回収電力は、ソレノイド電流の減少開始直後に急激に増大しており、エネルギー回収回路30による起電力の回収がソレノイド電流の減少時における高応答に寄与していることが明らかである。   Further, the recovery power when the solenoid current decreases in the recovery of the back electromotive force measured in FIG. 2 is measured over time, and the change is obtained by taking the recovery power (W) on the vertical axis with respect to time: horizontal axis (msec). Curve Z is shown in the graph of FIG. From FIG. 3, it is clear that the recovered power increases rapidly immediately after the start of the decrease of the solenoid current, and the recovery of the electromotive force by the energy recovery circuit 30 contributes to the high response when the solenoid current decreases. is there.

なお、図1のエネルギー回収回路30では、逆起電力の回収が進んで電流が小さくなってしまうと、大抵抗一次側コイルLP1の両端電圧が減少し、回収も低減してしまう。そこで、図1に示したエネルギー回収回路30の構成を基本として、図4に示すように、大抵抗一次側コイルLP1と直列に配置された第2の回収制御素子(FET)41を更に備えたエネルギー回収回路40の構成とすることで、この問題を解消できる。   In the energy recovery circuit 30 of FIG. 1, when the back electromotive force recovery progresses and the current decreases, the voltage across the large resistance primary coil LP1 decreases, and the recovery also decreases. Therefore, based on the configuration of the energy recovery circuit 30 shown in FIG. 1, a second recovery control element (FET) 41 arranged in series with the large resistance primary coil LP1 is further provided as shown in FIG. By adopting the configuration of the energy recovery circuit 40, this problem can be solved.

即ち、エネルギー回収回路40においては、小抵抗一次側コイルLP2の回収制御素子32がオフ状態となった際の電圧を一定にするように大抵抗一次側コイルLP1に流れる電流を第2の回収制御素子41で制限することができるため、これによって、大抵抗一次側コイルLP1の両端電圧が減少しても回収用二次側コイルRLSへの伝達量の減少を抑え、且つ第2の回収制御素子41の損失分によりソレノイド電流の減少速度の高速化が可能となる。   That is, in the energy recovery circuit 40, the second recovery control is performed on the current flowing through the large resistance primary coil LP1 so that the voltage when the recovery control element 32 of the small resistance primary coil LP2 is turned off is constant. Since it can be limited by the element 41, this suppresses a decrease in the amount of transmission to the recovery secondary coil RLS even if the voltage across the large resistance primary coil LP1 decreases, and the second recovery control element Due to the loss of 41, the decrease rate of the solenoid current can be increased.

1,100:誘導負荷駆動回路
10:スイッチング電源回路
11,111:ソレノイド(誘導負荷)
12,112:供給電源
13,113:ブリッジダイオード
14,114:平滑コンデンサ(一次側)
15,115:スイッチング素子
16,116:スイッチングトランス
LP,Lp:一次側コイル
LS,Ls:二次側コイル
17,35,117:整流ダイオード
18,118:平滑コンデンサ(二次側)
20:制御回路
21,121:指令信号
24,124:パルス信号発生装置
25,125:電流センサ
30,40:エネルギー回収回路
31:回収用トランス
LP1:大抵抗一次側コイル
LP2:小抵抗一次側コイル
RLS:回収用二次側コイル
32:回収制御素子
33:第2のパルス信号発生装置
41:第2の回収制御素子
1, 100: Inductive load drive circuit 10: Switching power supply circuit 11, 111: Solenoid (inductive load)
12, 112: Supply power supply 13, 113: Bridge diode 14, 114: Smoothing capacitor (primary side)
15, 115: switching element 16, 116: switching transformer LP, Lp: primary coil LS, Ls: secondary coil 17, 35, 117: rectifier diode 18, 118: smoothing capacitor (secondary side)
20: control circuit 21, 121: command signal 24, 124: pulse signal generator 25, 125: current sensor 30, 40: energy recovery circuit 31: recovery transformer LP1: large resistance primary coil LP2: small resistance primary coil RLS: secondary coil for recovery 32: recovery control element 33: second pulse signal generator 41: second recovery control element

Claims (2)

電源からの交流を整流する整流ブリッジダイオードと、整流された直流を平滑化する一次側平滑コンデンサと、前記一次側平滑コンデンサにより平滑化された直流をパルス信号発生手段からのパルス信号に基づいた周期でのスイッチング素子のオン/オフスイッチングによってパルス波の交流に変換されたものを予め定められた交流電圧へ変圧して二次側へ伝達するスイッチングトランスと、二次側に伝達された交流を整流する二次側ダイオードと、整流された直流をさらに平滑化して出力する二次側平滑コンデンサとを備えたスイッチング電源回路と、指令信号と前記スイッチング電源回路の出力側の検出結果とに基づいて前記パルス信号発生装置によるパルス信号のパルス幅を調整して前記スイッチング素子のオン/オフスイッチングを制御する制御回路と、を有する誘導負荷駆動回路において、
前記誘導負荷の電流減少時に該誘導負荷の逆起電力を発生させながら回収するエネルギー回収回路を更に備え、
前記エネルギー回収回路は、前記誘導負荷に直列で且つ互いに逆極性で接続されている抵抗値の異なる二個の一次側コイルと前記スイッチングトランスの一次側に接続された一個の二次側コイルとを同一鉄心に有する回収用トランスと、前記二個の一次側コイルのうち相対的に抵抗値の小さい小抵抗一次側コイルと直列に配置されて前記制御回路からの回収指令信号に基づく第2のパルス信号発生装置によるパルス信号に応じて動作して前記小抵抗一次側コイルに流れる電流を制御する回収制御素子とを含み、
前記制御回路は、前記誘導負荷の電流減少時に前記回収制御素子に対する前記第2のパルス信号発生装置によるパルス信号のパルス幅を調整させて、前記回収制御素子を一定時間オフ制御することにより、前記誘導負荷の逆起電力を発生させながら前記回収用トランスの相対的に抵抗値の大きい大抵抗一次側コイルに電流を流すことによりコア磁束を変化させて対応する二次側コイルへエネルギーを伝達させるものであることを特徴とする誘導負荷駆動回路。
A rectifying bridge diode that rectifies alternating current from a power source, a primary side smoothing capacitor that smoothes the rectified direct current, and a period based on the pulse signal from the pulse signal generating means that smoothes the direct current smoothed by the primary side smoothing capacitor. A switching transformer that transforms the pulse wave converted to alternating current by on / off switching of the switching element into a predetermined alternating voltage and transmits it to the secondary side, and rectifies the alternating current transmitted to the secondary side Based on a switching power supply circuit comprising a secondary side diode to perform, a secondary side smoothing capacitor for further smoothing and outputting the rectified direct current, and a command signal and a detection result on the output side of the switching power supply circuit ON / OFF switching of the switching element by adjusting the pulse width of the pulse signal by the pulse signal generator And Gosuru control circuit, in inductive load driving circuit having,
An energy recovery circuit for recovering while generating a counter electromotive force of the inductive load when the current of the inductive load is reduced;
The energy recovery circuit includes two primary coils having different resistance values connected in series with the inductive load in opposite polarities and one secondary coil connected to the primary side of the switching transformer. A second pulse based on a recovery command signal from the control circuit, which is arranged in series with a recovery transformer having the same iron core and a small resistance primary side coil having a relatively small resistance value among the two primary side coils. A recovery control element that operates in response to a pulse signal from the signal generator and controls a current flowing through the small-resistance primary coil;
The control circuit adjusts the pulse width of the pulse signal by the second pulse signal generator with respect to the recovery control element when the current of the inductive load is reduced, and controls the recovery control element to be off for a certain period of time. While generating the back electromotive force of the inductive load, the current is passed through the large resistance primary side coil having a relatively large resistance value of the recovery transformer to change the core magnetic flux and transmit the energy to the corresponding secondary side coil. An inductive load driving circuit characterized by being a thing.
前記回収用トランスの前記大抵抗一次側コイルと直列に配置され、前記小抵抗一次側コイルの前記回収制御素子がオフした際の電圧を一定にするように前記大抵抗一次側コイルに流れる電流を制限する第2の回収制御素子を更に備えたことを特徴とする請求項1に記載の誘導負荷駆動回路。   A current flowing through the large resistance primary side coil is arranged in series with the large resistance primary side coil of the recovery transformer, and the voltage when the recovery control element of the small resistance primary side coil is turned off is made constant. The inductive load drive circuit according to claim 1, further comprising a second recovery control element for limiting.
JP2016213105A 2016-10-31 2016-10-31 Inductive load drive circuit Active JP6401222B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016213105A JP6401222B2 (en) 2016-10-31 2016-10-31 Inductive load drive circuit
TW106130269A TWI711263B (en) 2016-10-31 2017-09-05 Inductive load drive circuit
CN201710973706.XA CN108011533B (en) 2016-10-31 2017-10-19 inductive load driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213105A JP6401222B2 (en) 2016-10-31 2016-10-31 Inductive load drive circuit

Publications (2)

Publication Number Publication Date
JP2018074787A true JP2018074787A (en) 2018-05-10
JP6401222B2 JP6401222B2 (en) 2018-10-10

Family

ID=62051734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213105A Active JP6401222B2 (en) 2016-10-31 2016-10-31 Inductive load drive circuit

Country Status (3)

Country Link
JP (1) JP6401222B2 (en)
CN (1) CN108011533B (en)
TW (1) TWI711263B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6502554B1 (en) * 2018-05-18 2019-04-17 油研工業株式会社 Electromagnetic switching valve position detection system
JP6526886B1 (en) * 2018-07-26 2019-06-05 油研工業株式会社 Forward converter type inductive load drive circuit
JP7334508B2 (en) * 2019-07-04 2023-08-29 スミダコーポレーション株式会社 DC/DC converter
WO2021193456A1 (en) * 2020-03-26 2021-09-30 住友重機械工業株式会社 Drive circuit for inductive load and electromagnetic brake system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271165A (en) * 1996-01-31 1997-10-14 Tohoku Ricoh Co Ltd Switching power unit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6473318B1 (en) * 2000-11-20 2002-10-29 Koninklijke Philips Electronics N.V. Leakage energy recovering system and method for flyback converter
TW200405646A (en) * 2002-05-24 2004-04-01 Virginia Tech Intell Prop Method, apparatus, and system for drive control, power conversion, and start-up control in an SRM or PMBDCM drive system
US20060062027A1 (en) * 2004-09-21 2006-03-23 Hutchins Peter L High efficiency switching power converter
WO2010010746A1 (en) * 2008-07-24 2010-01-28 株式会社村田製作所 Isolated switching power supply device
CN102739084A (en) * 2011-04-12 2012-10-17 徐夫子 Electric-energy converted electric-power energy electricity symbiosis apparatus
CN204068745U (en) * 2014-10-07 2014-12-31 张良华 A kind of transformer leakage inductance Energy harvesting type flyback sourse system
TWI556215B (en) * 2015-03-13 2016-11-01 Large area RGB LED lighting with a drive
CN204794715U (en) * 2015-05-15 2015-11-18 浙江工商大学 A high voltage power supply for getting angry but, energy recuperation device and energy recuperation of bulk plasmon reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271165A (en) * 1996-01-31 1997-10-14 Tohoku Ricoh Co Ltd Switching power unit

Also Published As

Publication number Publication date
TW201830843A (en) 2018-08-16
CN108011533B (en) 2019-12-06
JP6401222B2 (en) 2018-10-10
CN108011533A (en) 2018-05-08
TWI711263B (en) 2020-11-21

Similar Documents

Publication Publication Date Title
JP6401222B2 (en) Inductive load drive circuit
WO2013018787A1 (en) Switching power supply device
CN101689807B (en) Multi-output switching power supply device
JP4632023B2 (en) Power converter
US20170155325A1 (en) Resonant power supply device
JP6262835B1 (en) Inductive load drive circuit
JP2009273324A (en) Switching power supply
JP6452231B2 (en) Switching power supply
JP2009201242A (en) Power conversion apparatus
JP4891176B2 (en) Capacitor charger
JP2017200294A (en) Power supply device and image forming apparatus
TWI625035B (en) Active clamp converter and control method thereof
JPWO2007123098A1 (en) Switching power supply circuit and control method thereof
JP2007195276A (en) Power unit
JP2012175809A (en) Switching power supply unit
JP3761558B2 (en) Switching power supply circuit and control method used for the switching power supply circuit
JP5713171B2 (en) AC-DC converter
JP2016119776A (en) Switching power supply device
JP2001178126A (en) Switching power supply
JP4859207B2 (en) Switching power supply
JP2011055574A (en) Power supply circuit
JP2007202370A (en) Power supply device
JPH11146645A (en) Power supply equipment
JP2004215417A (en) Dc-dc converter
KR0164788B1 (en) The limiting circuits for inverse currents of the boosting converter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180906

R150 Certificate of patent or registration of utility model

Ref document number: 6401222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150