TWI711263B - Inductive load drive circuit - Google Patents
Inductive load drive circuit Download PDFInfo
- Publication number
- TWI711263B TWI711263B TW106130269A TW106130269A TWI711263B TW I711263 B TWI711263 B TW I711263B TW 106130269 A TW106130269 A TW 106130269A TW 106130269 A TW106130269 A TW 106130269A TW I711263 B TWI711263 B TW I711263B
- Authority
- TW
- Taiwan
- Prior art keywords
- recovery
- inductive load
- current
- circuit
- coil
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/12—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/06—Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
- F16K31/0675—Electromagnet aspects, e.g. electric supply therefor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0038—Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mechanical Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
[課題] 提供一種不會發生發熱,可在感應負載停止時的電流減少實現高響應性,且可進行比以往更高響應且有效率的電流控制的感應負載驅動電路。 [解決手段] 在具有切換電源電路的感應負載驅動電路中,以在感應負載的電流減少時,一邊使該感應負載的反電動勢發生一邊回收的能量回收電路而言,形成為包含:在同一鐵心具有以串聯且彼此相反極性連接在感應負載之電阻值不同的二個一次側線圈、及連接在切換變壓器的一次側的一個二次側線圈的回收用變壓器;及與二個一次側線圈之中相對電阻值小的小電阻一次側線圈串聯配置而按照根據來自控制電路的回收指令訊號之藉由第2脈衝訊號發生裝置所得之脈衝訊號進行動作,來控制流至小電阻一次側線圈的電流的回收控制元件者,控制電路係在感應負載的電流減少時使藉由相對回收控制元件之第2脈衝訊號發生裝置所得之脈衝訊號的脈衝寬度調整,將回收控制元件進行OFF控制一定時間,藉此一邊使感應負載的反電動勢發生一邊對回收用變壓器的相對電阻值大的大電阻一次側線圈流通電流,藉此使鐵芯磁通量改變而使能量傳達至相對應的二次側線圈者。[Question] To provide an inductive load drive circuit that does not generate heat, can reduce the current when the inductive load stops, realizes high responsiveness, and can perform current control with higher response and efficiency than before. [Solution] In an inductive load drive circuit with a switching power supply circuit, when the current of the inductive load decreases, the energy recovery circuit that generates the back electromotive force of the inductive load while recovering is formed to include: A recovery transformer having two primary coils connected in series and opposite polarity to the inductive load with different resistance values, and a secondary coil connected to the primary side of the switching transformer; and among the two primary coils The relatively small resistance primary side coil is arranged in series and operates according to the pulse signal obtained by the second pulse signal generator according to the recovery command signal from the control circuit to control the current flowing to the small resistance primary side coil For the recovery control element, the control circuit adjusts the pulse width of the pulse signal obtained by the second pulse signal generating device relative to the recovery control element when the current of the inductive load decreases, and the recovery control element is turned off for a certain period of time, thereby While generating the back electromotive force of the inductive load, a current flows through the large-resistance primary coil of the recovery transformer with a large relative resistance value, thereby changing the magnetic flux of the iron core to transfer energy to the corresponding secondary coil.
Description
[0001] 本發明係關於用以使例如電磁線圈(solenoid)或馬達等感應負載驅動的電路,詳言之係關於在藉由PWM控制方式所得之切換電源的電路構成組合能量回收電路來進行電流控制的感應負載驅動電路者。[0001] The present invention relates to a circuit used to drive an inductive load such as a solenoid (solenoid) or a motor, and more specifically, it relates to a combined energy recovery circuit that forms a switching power supply circuit obtained by a PWM control method to conduct current Controlled inductive load drive circuit.
[0002] 馬達或電磁線圈等具有線圈成分且將電能透過電磁力而轉換成機械式運動的感應負載係作為致動器而被利用在各種裝置。在感應負載的驅動控制方式大致區分有:脈衝寬度調變,所謂PWM(pulse width modulation)控制與比例控制。前者係當將負荷進行ON/OFF控制時,使脈衝寬度的負載比(duty ratio),亦即ON/OFF比率對應輸入訊號的大小而改變者,後者係藉由使與負荷作串聯連接的控制元件的兩端電壓為可變而使其損失來進行控制者。 [0003] 以PWM方式而言,例如有使用專利文獻1所見之切換電源的電路構成,藉由將商用的高交流電壓形成為低直流電壓而安定地供給至感應負載的驅動電路,進行電流控制者。 [0004] 具體而言,如圖5(a)中顯示基本構成,為一種使用切換電源電路的感應負載驅動電路100,其係將來自供給電源112的交流先藉由橋式二極體113進行整流且另外以平滑電容器114予以平滑化的直流,根據指令訊號121,藉由切換由FET(Field Effect Transistor:場效電晶體)等半導體元件所成之切換元件115而轉換成脈衝波的交流之後,送入至切換變壓器116,且將交流電壓進行降壓轉換成預定的交流電壓。 [0005] 若在該感應負載驅動電路100進行電流控制,當在切換變壓器116的一次側將輸入側直流進行交流轉換時,在控制電路中根據指令訊號121,以成為預定的脈衝波寬(切換的ON/OFF循環的ON時間)的方式,例如由PWM控制器(PWM-IC)等脈衝訊號發生裝置124發生脈衝訊號。接著,可藉由根據利用指令訊號與輸出側的電流感測器125所得之檢測結果的反饋控制,調整脈衝波寬來進行切換,因此即使電源及負荷變動,輸出電流亦保持為一定,可得安定化的直流。 [0006] 在該方式中,係以切換變壓器116,一次側的能量藉由使將切換元件115進行ON/OFF切換而形成為高頻交流的電流由一次側線圈Lp電磁感應至二次側線圈Ls而被傳達能量,但是因形成為高頻交流,變壓器本身小型即可,由於發熱少,因此成為高效率。如上所示被傳達的交流電流係在二次側的整流二極體117被整流而流入至感應負載111,但是在二極體被整流的感應電流係成為斷續波形,因此若直接流至感應負載,感應負載的兩端電壓會大幅變動。因此,為了將其平滑化,形成為在二次側配置平滑電容器118,且經平滑化的直流被輸出至感應負載111的構成。 [0007] 該二次側的平滑電容器118係容量愈小,電路響應愈為高速。相反地,以電容器無法完全平滑化而漣波電壓變大,因此電流控制的安定性會惡化。因此,將PWM周期更加高速化,電容器容量即使小,亦可吸收漣波電流,藉此可達成高響應化,但是感應負載電流OFF時的響應性係以下所示成為在構造上為遲緩者。 [0008] 亦即,將感應負載電流形成為OFF時,必須將切換變壓器一次側的切換元件115形成為OFF一定,停止對變壓器二次側的感應,使平滑電容器118完全放電。但是,若平滑電容器的容量相對負荷所發生的反電動勢為充分小時,若平滑電容器放電,如圖5(b)所示,感應負載的轉流電流101係在平滑電容器118反向充電的同時,轉流電流亦透過整流二極體而流至變壓器二次側線圈Ls。此時在一次側線圈Lp,若與感應負載的轉流時間相比較,為可忽略的程度的時間,但是感應電流102透過FET的內置二極體來流通。此外,變壓器二次側線圈的阻抗亦低,因此感應負載OFF時的轉流電流係幾乎透過整流二極體來流通。結果,響應性係與具有二極體轉流電路的驅動電路為等效,耗費響應時間。 [0009] 如上所示,在利用PWM方式的切換電源的電路構成的感應負載驅動電路中,雖然效率優,但是在響應性有問題,無法進行感應負載電流的減少速度的控制。相對於此,比例控制方式係藉由在控制元件的兩端將電壓進行可變調整而使其損失來進行控制者,因此有發熱的問題。 [先前技術文獻] [專利文獻] [0010] [專利文獻1] 日本特開2012-217238號公報 [專利文獻2] 日本特開平07-59397號公報[0002] Inductive loads such as motors and electromagnetic coils that have coil components and convert electrical energy into mechanical motion through electromagnetic force are used as actuators in various devices. The driving control methods of inductive loads are roughly divided into: pulse width modulation, so-called PWM (pulse width modulation) control and proportional control. The former is when the duty ratio of the pulse width (duty ratio), that is, the ON/OFF ratio is changed according to the magnitude of the input signal when the load is ON/OFF control, the latter is controlled by connecting the load in series The voltage at both ends of the element is variable and its loss is controlled. [0003] In the PWM method, for example, there is a circuit configuration using a switching power supply as seen in Patent Document 1. By forming a commercial high AC voltage into a low DC voltage and stably supplying the drive circuit to an inductive load, current control is performed By. [0004] Specifically, as shown in FIG. 5(a), the basic structure is shown as an inductive
(發明所欲解決之課題) [0011] 另一方面,若為電力為100W以下之輸出小的一般電磁線圈等,蓄積在負荷的能量因發熱而被消耗,但是所消耗的能量少至數瓦特,因此作為進行電力回收的成本效益,並不適當,因此並不進行能量的回收。此在馬達驅動裝置中亦同,在低輸出的系統中,回生能量因發熱而被消耗。在無大電力的電磁線圈的現況下,不必須進行能量回收,因此具有供其之用的機構的驅動電路在實質上亦未被建構。 [0012] 但是,若為驅動電壓必須要有一般使用的DC48V以上的電源的負荷時,負荷電力變大,減少感應負載的電流時,係發生突波電壓,該能量會因發熱而消耗,因此有白費的情形。此外,任何驅動方式均必須要有AC-DC電源或DC-DC(升壓)電源,電路規模變大。 [0013] 其中,例如,如專利文獻2所示,在感應負載驅動裝置中,亦有具備有回收轉流能量的手段者,俾以在感應負載停止時可確保負荷電流良好降低。在專利文獻2中,係形成為在感應負載非驅動時,在使負荷電流回流的回流路配置變壓器的二次側繞組,設置將二次側繞組或一次側繞組短路的開關手段,在感應負載停止時,將該開關手段形成為OFF者。藉此,在二次側繞組以使負荷電流收歛的方向發生高壓,降低負荷電流,將在變壓器的一次側發生電流而蓄積在感應負載的能量在電源回生。 [0014] 但是,即使當將感應負載進行OFF時將電流流至變壓器二次側,該電壓變化亦僅為1次,因此無法有效地使能量恢復至一次側。即使將並聯連接在二次側繞組的開關手段進行ON/OFF,變壓器繞組的電流電路亦未被遮斷,因此並無法將二次側變壓器的線圈電流瞬時遮斷,感應負載的能量消耗不充分,因此感應負載的響應性不充分。 [0015] 本發明之目的係鑑於上述問題點,提供一種即使在感應負載為大型的情形下,亦不會有發生發熱的情形,而可在感應負載停止時的電流減少實現高響應性,可進行比以往更高響應且有效率的電流控制的感應負載驅動電路。 (解決課題之手段) [0016] 為達成上述目的,請求項1所記載之發明之感應負載驅動電路係具有:切換電源電路、及控制電路, 該切換電源電路係具備有:將來自電源的交流進行整流的整流橋式二極體;將經整流的直流平滑化的一次側平滑電容器;將藉由前述一次側平滑電容器被平滑化的直流,藉由以根據來自脈衝訊號發生手段的脈衝訊號的周期的切換元件的ON/OFF切換,被轉換成脈衝波的交流者,變壓成預先設定的交流電壓而傳達至二次側的切換變壓器;將被傳達至二次側的交流進行整流的二次側二極體;及將經整流的直流更加平滑化而進行輸出的二次側平滑電容器, 該控制電路係根據指令訊號與前述切換電源電路的輸出側的檢測結果,調整藉由前述脈衝訊號發生裝置所得之脈衝訊號的脈衝寬度,來控制前述切換元件的ON/OFF切換, 該感應負載驅動電路係: 另外具備有:能量回收電路,其係在前述感應負載的電流減少時,一邊使該感應負載的反電動勢發生一邊回收, 前述能量回收電路係包含: 在同一鐵心具有以串聯且彼此相反極性連接在前述感應負載之電阻值不同的二個一次側線圈、及連接在前述切換變壓器的一次側的一個二次側線圈的回收用變壓器;及 與前述二個一次側線圈之中相對電阻值小的小電阻一次側線圈串聯配置而按照根據來自前述控制電路的回收指令訊號之藉由第2脈衝訊號發生裝置所得之脈衝訊號進行動作,來控制流至前述小電阻一次側線圈的電流的回收控制元件, 前述控制電路係在前述感應負載的電流減少時使藉由相對前述回收控制元件之前述第2脈衝訊號發生裝置所得之脈衝訊號的脈衝寬度調整,將前述回收控制元件進行OFF控制一定時間,藉此一邊使前述感應負載的反電動勢發生一邊對前述回收用變壓器的相對電阻值大的大電阻一次側線圈流通電流,藉此使鐵芯磁通量改變而使能量傳達至相對應的二次側線圈者。 [0017] 請求項2所記載之發明之感應負載驅動電路係在請求項1所記載之感應負載驅動電路中, 另外具備有第2回收控制元件,其係與前述回收用變壓器的前述大電阻一次側線圈串聯配置,以將前述小電阻一次側線圈的前述回收控制元件呈OFF時的電壓成為一定的方式,限制流至前述大電阻一次側線圈的電流。 (發明之效果) [0018] 藉由本發明之感應負載驅動電路,在切換電源電路構成另外具備有藉由一次側線圈與感應負載作串聯連接的回收用變壓器所得之能量回收電路,藉此可在與電源側絕緣之感應負載的電流減少時,一邊使該感應負載的反電動勢發生一邊良好地回收,因此既無發熱損失亦有效率地實現感應負載電流停止時的高響應。 尤其,形成為藉由以彼此相反極性的大電阻與小電阻的二個線圈構成能量回收電路的回收用變壓器的一次側,在定常狀態下,係無感應化,防止負荷電流增加時的電流上升速度的遲緩,同時透過予以PWM驅動控制的回收控制元件來控制小電阻一次側線圈的電流的構成,藉此,可高速控制感應負載停止時的負荷電流減少速度,因此具有可比以往更有效率的且高響應進行感應負載的電流控制的效果。(Problem to be solved by the invention) [0011] On the other hand, if it is a general electromagnetic coil with a power of 100W or less and a small output, the energy stored in the load is consumed by heat, but the energy consumed is as little as a few watts Therefore, it is not appropriate as the cost-effectiveness of power recovery, so energy recovery is not performed. This is the same in motor drive devices. In low-output systems, the regenerative energy is consumed due to heat. In the current situation where there is no electromagnetic coil with large power, energy recovery is not necessary. Therefore, a drive circuit with a mechanism for it has not been constructed substantially. [0012] However, if a load of a generally used power supply of DC48V or higher is necessary for the driving voltage, the load power increases and when the current of the inductive load is reduced, a surge voltage occurs, and the energy is consumed by heat. There is a waste of money. In addition, any driving method must have an AC-DC power supply or a DC-DC (boost) power supply, and the circuit scale becomes larger. [0013] Among them, for example, as shown in Patent Document 2, in the inductive load driving device, there are also those equipped with a means for recovering the commutation energy so as to ensure a good reduction in the load current when the inductive load stops. In Patent Document 2, when the inductive load is not driven, the secondary winding of the transformer is placed in the return path that returns the load current, and switching means is provided to short-circuit the secondary winding or the primary winding. When stopping, turn off the switch means. As a result, a high voltage is generated in the secondary winding in a direction in which the load current is converged, the load current is reduced, and the energy generated in the primary side of the transformer and stored in the inductive load is regenerated in the power supply. [0014] However, even if the current flows to the secondary side of the transformer when the inductive load is turned off, the voltage change is only once, so energy cannot be effectively restored to the primary side. Even if the switching means connected in parallel to the secondary winding is turned on/off, the current circuit of the transformer winding is not interrupted. Therefore, the coil current of the secondary transformer cannot be interrupted instantaneously, and the energy consumption of the inductive load is insufficient , So the responsiveness of the inductive load is insufficient. [0015] In view of the above-mentioned problems, the purpose of the present invention is to provide a method that does not generate heat even when the inductive load is large, and can reduce the current when the inductive load is stopped to achieve high responsiveness. An inductive load drive circuit with higher response and more efficient current control than before. (Means for Solving the Problem) [0016] In order to achieve the above object, the inductive load drive circuit of the invention described in claim 1 has: a switching power supply circuit and a control circuit, the switching power supply circuit is provided with: A rectifier bridge diode for rectification; a primary-side smoothing capacitor that smoothes the rectified DC; and the DC that is smoothed by the aforementioned primary-side smoothing capacitor is based on the pulse signal from the pulse signal generating means The periodic ON/OFF switching of the switching element is converted into a pulse wave of the AC, which is transformed into a preset AC voltage and transmitted to the switching transformer on the secondary side; the AC that is transmitted to the secondary side is rectified. Secondary side diode; and a secondary side smoothing capacitor that smoothes the rectified DC and outputs it. The control circuit is based on the command signal and the detection result on the output side of the switching power supply circuit, and adjusts the pulse signal The pulse width of the pulse signal obtained by the generator is used to control the ON/OFF switching of the aforementioned switching element. The inductive load drive circuit is: In addition, it has: an energy recovery circuit, which makes the inductive load current when the current decreases. The back electromotive force of the inductive load is recovered while it is generated, and the aforementioned energy recovery circuit includes: in the same iron core, there are two primary side coils connected in series and opposite polarity to the inductive load with different resistance values, and a primary coil connected to the switching transformer A transformer for recovery of a secondary coil on the secondary side; and a primary side coil with a relatively small resistance value among the two primary coils, arranged in series with the secondary coil based on the recovery command signal from the control circuit. The pulse signal generated by the pulse signal generator operates to control the recovery control element of the current flowing to the primary side coil of the aforementioned low resistance. The aforementioned control circuit makes the recovery control element relative to the aforementioned recovery control element when the current of the inductive load decreases. By adjusting the pulse width of the pulse signal obtained by the second pulse signal generating device, the recovery control element is turned off for a certain period of time, thereby generating the back electromotive force of the inductive load while increasing the relative resistance of the recovery transformer. Current flows through the primary coil of the resistor, thereby changing the magnetic flux of the iron core and transferring energy to the corresponding secondary coil. [0017] The inductive load drive circuit of the invention described in claim 2 is in the inductive load drive circuit described in claim 1, is additionally provided with a second recovery control element, which is the same as the aforementioned large resistance of the recovery transformer The side coils are arranged in series to limit the current flowing to the high-resistance primary-side coil so that the voltage when the recovery control element of the small-resistance primary-side coil is turned off becomes constant. (Effects of the Invention) [0018] The inductive load drive circuit of the present invention is configured to switch the power supply circuit and additionally includes an energy recovery circuit obtained by a recovery transformer connected in series with the primary coil and the inductive load, thereby enabling When the current of the inductive load insulated from the power supply side decreases, the back electromotive force of the inductive load is generated and recovered well. Therefore, there is no heat loss and high response when the inductive load current stops is efficiently realized. In particular, the primary side of the recovery transformer is formed to form an energy recovery circuit with two coils of opposite polarities, a large resistance and a small resistance. In a steady state, it is non-inductive and prevents current rise when the load current increases. At the same time, the speed is slow, and the current of the small-resistance primary coil is controlled by the recovery control element controlled by the PWM drive. This allows high-speed control of the load current reduction rate when the inductive load stops, so it has a more efficient It also has the effect of high-response current control of inductive loads.
[0020] 本發明中之感應負載驅動電路係具有:切換電源電路、及控制電路,該切換電源電路係具備有:將來自電源的交流進行整流的整流橋式二極體;將經整流的直流平滑化的一次側平滑電容器;將藉由前述一次側平滑電容器被平滑化的直流,藉由以根據來自脈衝訊號發生手段的脈衝訊號的周期的切換元件的ON/OFF切換,被轉換成脈衝波的交流者,變壓成預先設定的交流電壓而傳達至二次側的切換變壓器;將被傳達至二次側的交流進行整流的二次側二極體;及將經整流的直流更加平滑化而進行輸出的二次側平滑電容器,該控制電路係根據指令訊號與前述切換電源電路的輸出側的檢測結果,調整藉由前述脈衝訊號發生裝置所得之脈衝訊號的脈衝寬度,來控制前述切換元件的ON/OFF切換,另外具備有:能量回收電路,其係在感應負載的電流減少時,一邊使該感應負載的反電動勢發生一邊回收。 [0021] 藉由以上構成,本發明係藉由能量回收電路,在感應負載的電流減少時,可將該感應負載的反電動勢,在無伴隨因消耗所致之發熱的情形下,良好地回收,實現感應負載停止時的高響應性者。 [0022] 亦即,本發明之能量回收電路係包含:在同一鐵心具有以串聯且彼此相反極性連接在前述感應負載之電阻值不同的二個一次側線圈、及連接在前述切換變壓器的一次側的一個二次側線圈的回收用變壓器;及與前述二個一次側線圈之中相對電阻值小的小電阻一次側線圈串聯配置而按照根據來自前述控制電路的回收指令訊號之藉由第2脈衝訊號發生裝置所得之脈衝訊號進行動作,來控制流至前述小電阻一次側線圈的電流的回收控制元件,前述控制電路係在前述感應負載的電流減少時使藉由相對前述回收控制元件之前述第2脈衝訊號發生裝置所得之脈衝訊號的脈衝寬度調整,將前述回收控制元件進行OFF控制一定時間,藉此一邊使前述感應負載的反電動勢發生一邊對前述回收用變壓器的相對電阻值大的大電阻一次側線圈流通電流,藉此使鐵芯磁通量改變而使能量傳達至相對應的二次側線圈者。 [0023] 在以上之能量回收電路中,小電阻一次側線圈係若減小繞組電阻至可忽略電阻損失的程度即可。在對感應負載的電流為一定時,基於線圈電阻值的平衡,電流幾乎流至小電阻一次側線圈來將變壓器/鐵芯進行激磁,但是若相對於小電阻一次側線圈的電感,電流的增加速度較大時,因電流流至反向捲繞的大電阻一次側線圈而無感應化,防止電流響應遲緩。 [0024] 接著,若增加感應負載電流的減少速度,將回收控制元件形成為OFF一定時間,藉此,全部電流欲流至大電阻一次側線圈,因此在大電阻一次側線圈的兩端發生高電壓,且改變變壓器/鐵芯的激磁,因此在回收用變壓器的二次側線圈流通感應電流而回收能量。此時,感應負載電流的減少速度係可藉由使以控制電路予以PWM驅動控制的回收控制元件的負載比進行可變而高速控制。 [0025] 此外,在本發明中,另外具備有與前述回收用變壓器的前述大電阻一次側線圈串聯配置的第2回收控制元件,可以將前述小電阻一次側線圈的前述回收控制元件呈OFF時的電壓成為一定的方式,限制流至前述大電阻一次側線圈的電流。藉此,電流變少,即使大電阻一次側線圈的兩端電壓減少,亦抑制對二次側線圈的傳達量的減少,而且因第2回收控制元件的損失份,可達成感應負載電流的減少速度的高速化。 [實施例] [0026] 將本發明之一實施例之感應負載驅動電路的概略構成圖顯示於圖1。本實施例之感應負載驅動電路1係具備有切換電源電路10作為基本構成。亦即,具備有:將來自供給電源12的交流進行整流的橋式二極體13;將經整流的直流平滑化的一次側平滑電容器14;將藉由一次側平滑電容器14被平滑化的直流,以根據在控制電路20藉由脈衝訊號發生裝置24所發生的脈衝訊號的周期進行ON/OFF切換而轉換成脈衝波的交流的切換元件(FET)15;將脈衝波交流,由一次側線圈LP對二次側線圈LS變壓成預先設定的電壓來進行傳達的切換變壓器16;將被傳達至二次側的交流進行整流的二次側整流二極體17;及將經整流的直流更加平滑化而送至感應負載(電磁線圈)11的二次側平滑電容器18。 [0027] 此外,在切換電源電路10的輸出側係配置有電流感測器25,在控制電路20中,係根據藉由指令訊號21與電流感測器25所得之檢測結果,進行電流的反饋控制。 [0028] 接著,在本實施例中,在具備有以上構成的切換電源電路10另外設有回收電磁線圈電流減少時的反電動勢的能量回收電路30。該能量回收電路30係具備有一次側被串聯連接在電磁線圈11的回收用變壓器31,藉由該一次側線圈被進行PWM控制,能量被傳達至二次側者。 [0029] 具體而言,回收用變壓器31係在同一鐵心具有以串聯且彼此相反極性連接在電磁線圈11之相對電阻值大的大電阻一次側線圈LP1與相對電阻值小的小電阻一次側線圈LP2的二個一次側線圈;及連接在切換變壓器16的一次側的一個回收用二次側線圈RLS者。接著,具備有:與二個一次側線圈之中的小電阻一次側線圈LP2串聯配置而按照根據來自控制電路20的回收指令訊號之藉由第2脈衝訊號發生裝置33所得之脈衝訊號進行動作,來控制流至小電阻一次側線圈LP2的電流的回收控制元件32。 [0030] 在該能量回收電路30中,由於大電阻一次側線圈LP1與小電阻一次側線圈LP2為相反極性,因此電流增加時,因該等大電阻一次側線圈LP1與小電阻一次側線圈LP2被激磁而無感應化,防止電磁線圈電流的上升速度遲緩。 [0031] 此外,在本實施例中,在電磁線圈11的電流減少時,控制電路20係由相對回收控制元件32之第2脈衝訊號發生裝置33使脈衝訊號的脈衝寬度改變,而將回收控制元件32進行OFF控制一定時間,藉此一邊使電磁線圈11的反電動勢發生一邊對大電阻一次側線圈LP1流通電流,藉此使鐵芯磁通量改變而使能量傳達至回收用二次側線圈RLS。 [0032] 伴隨此,由於全部電流欲流至大電阻一次側線圈LP1,因此在大電阻一次側線圈LP1的兩端發生高電壓,且改變變壓器/鐵芯的激磁,因此在回收用二次側線圈RLS流通感應電流,能量被回收。此時,電磁線圈電流的減少速度係可藉由使予以PWM驅動控制的回收控制元件32的負載比進行可變而高速控制。 [0033] 在此顯示藉由與不具能量回收電路30的感應負載驅動電路的比較試驗,確認藉由能量回收電路30所得之效果的結果。在本比較試驗中,將由圖5(a)所示之習知之切換電源電路構成所成之感應負載驅動電路100作為對照,在該感應負載驅動電路100的構成組合能量回收電路30的構成而成之圖1所示之感應負載驅動電路1中,測定電磁線圈停止時的電磁線圈電流的減少,比較其降低特性。將結果顯示於圖2的圖表。 [0034] 圖2係在作為時間軸的橫軸中,將由電磁線圈電流一定狀態為電磁線圈停止時(電流供給停止時)設為0(msec),將隨著時間經過的電流值(A)顯示於縱軸者。 [0035] 由圖2清楚可知,相對於無能量回收電路30且未進行電磁線圈的電動勢回收之作為對照的感應負載驅動電路之情形下的電流值的變化曲線X,在藉由能量回收電路30回收電磁線圈的電動勢的圖1的感應負載驅動電路1中的電流值的變化曲線Y中,電磁線圈電流的減少(降低)速度大,且其響應性非常高。 [0036] 此外,經時性測定圖2中所測定出的反電動勢的回收中的電磁線圈電流減少時的回收電力,相對於時間:橫軸(msec),在縱軸取回收電力(W),將其變化曲線Z顯示於圖3的圖表。由該圖3可知,回收電力係在電磁線圈電流減少開始瞬後急遽增大,藉由能量回收電路30所為之電動勢的回收有助於電磁線圈電流減少時的高響應。 [0037] 其中,在圖1的能量回收電路30中,若反電動勢的回收進展而電流變小時,大電阻一次側線圈LP1的兩端電壓減少,且回收亦減低。因此,以圖1所示之能量回收電路30的構成為基本,如圖4所示,藉由形成為另外具備有與大電阻一次側線圈LP1作串聯配置的第2回收控制元件(FET)41的能量回收電路40的構成,可解決該問題。 [0038] 亦即,在能量回收電路40中,可以將小電阻一次側線圈LP2的回收控制元件32成為OFF狀態時的電壓成為一定的方式,以第2回收控制元件41限制流至大電阻一次側線圈LP1的電流,因此藉此即使大電阻一次側線圈LP1的兩端電壓減少,亦可抑制對回收用二次側線圈RLS的傳達量的減少,而且因第2回收控制元件41的損失份,可達成電磁線圈電流的減少速度的高速化。[0020] The inductive load driving circuit in the present invention has: a switching power supply circuit and a control circuit. The switching power supply circuit is provided with: a rectifier bridge diode that rectifies the AC from the power source; and the rectified DC A smoothed primary side smoothing capacitor; the direct current smoothed by the aforementioned primary side smoothing capacitor is converted into a pulse wave by ON/OFF switching of the switching element according to the period of the pulse signal from the pulse signal generating means The AC, which transforms into a preset AC voltage and transmits it to the secondary side switching transformer; the secondary side diode that rectifies the AC transmitted to the secondary side; and smoothes the rectified DC As for the secondary side smoothing capacitor for output, the control circuit adjusts the pulse width of the pulse signal obtained by the pulse signal generator according to the command signal and the detection result of the output side of the switching power circuit to control the switching element The ON/OFF switching of the inductive load is additionally equipped with: an energy recovery circuit, which recovers the back electromotive force of the inductive load when the current of the inductive load decreases. [0021] With the above constitution, the present invention uses an energy recovery circuit, when the current of the inductive load is reduced, the back electromotive force of the inductive load can be recovered well without the heat caused by consumption. , To achieve high responsiveness when the inductive load stops. [0022] That is, the energy recovery circuit of the present invention includes two primary side coils connected in series with opposite polarities to the aforementioned inductive load in the same iron core, and the primary side of the switching transformer connected to the primary side. A transformer for the recovery of a secondary side coil; and the primary side coil with a relatively small resistance value among the two primary side coils is arranged in series with the second pulse according to the recovery command signal from the control circuit The pulse signal obtained by the signal generating device operates to control the recovery control element of the current flowing to the primary side coil of the small resistance. The control circuit makes the recovery control element relative to the recovery control element when the current of the inductive load decreases. 2. Adjust the pulse width of the pulse signal obtained by the pulse signal generator, and turn off the aforementioned recovery control element for a certain period of time, thereby generating the back electromotive force of the aforementioned inductive load and resisting the large resistance of the aforementioned recovery transformer. The primary side coil flows current, thereby changing the magnetic flux of the iron core to transfer energy to the corresponding secondary side coil. [0023] In the above energy recovery circuit, the small-resistance primary side coil can be reduced to a negligible resistance loss. When the current to the inductive load is constant, based on the balance of the coil resistance, the current almost flows to the low-resistance primary coil to excite the transformer/iron core, but if compared to the inductance of the low-resistance primary coil, the current increases When the speed is high, the current flows to the reverse-wound high-resistance primary coil without induction, preventing the current response from being slow. [0024] Next, if the reduction speed of the inductive load current is increased, the recovery control element is turned OFF for a certain period of time, whereby all the current is going to flow to the high resistance primary coil, so high resistance occurs at both ends of the high resistance primary coil. The voltage changes the excitation of the transformer/iron core, so the induced current flows through the secondary coil of the recovery transformer to recover energy. At this time, the reduction speed of the inductive load current can be controlled at high speed by changing the duty ratio of the recovery control element that is PWM-driven by the control circuit. [0025] In addition, in the present invention, a second recovery control element arranged in series with the large resistance primary coil of the recovery transformer is additionally provided, and the recovery control element of the low resistance primary coil can be turned off. The voltage becomes a constant way to limit the current flowing to the aforementioned high-resistance primary coil. As a result, the current is reduced, and even if the voltage across the primary coil with large resistance decreases, the reduction in the amount of transmission to the secondary coil is suppressed, and the inductive load current can be reduced due to the loss of the second recovery control element. Increased speed. [Embodiment] [0026] A schematic configuration diagram of an inductive load driving circuit according to an embodiment of the present invention is shown in FIG. 1. The inductive load driving circuit 1 of this embodiment includes a switching
[0039]1、100‧‧‧感應負載驅動電路10‧‧‧切換電源電路11、111‧‧‧電磁線圈(感應負載)12、112‧‧‧供給電源13、113‧‧‧橋式二極體14、114‧‧‧平滑電容器(一次側)15、115‧‧‧切換元件16、116‧‧‧切換變壓器LP、Lp‧‧‧一次側線圈LS、Ls‧‧‧二次側線圈17、35、117‧‧‧整流二極體18、118‧‧‧平滑電容器(二次側)20‧‧‧控制電路21、121‧‧‧指令訊號24、124‧‧‧脈衝訊號發生裝置25、125‧‧‧電流感測器30、40‧‧‧能量回收電路31‧‧‧回收用變壓器LP1‧‧‧大電阻一次側線圈LP2‧‧‧小電阻一次側線圈RLS‧‧‧回收用二次側線圈32‧‧‧回收控制元件33‧‧‧第2脈衝訊號發生裝置41‧‧‧第2回收控制元件[0039]1, 100‧‧‧Inductive
[0019] 圖1係本發明之一實施例之感應負載驅動電路的概略構成圖。 圖2係顯示能量回收電路之有無中的電磁線圈降低特性的圖表(橫軸:時間[msec],縱軸:電流[A])。 圖3係顯示圖2之能量回收時之電力回收特性的圖表(橫軸:時間[msec],縱軸:回收電力[W]與電磁線圈電流[A])。 圖4係顯示改良圖1之能量回收電路者的部分電路圖。 圖5係顯示具有切換電源電路之習知之感應負載驅動電路之例的概略構成圖,(a)係電流控制電路圖,(b)係顯示感應負載電流OFF時的動作的部分電路圖。[0019] "Figure 1" is a schematic configuration diagram of an inductive load drive circuit according to an embodiment of the present invention. Figure 2 is a graph showing the reduction characteristics of the electromagnetic coil in the presence or absence of an energy recovery circuit (horizontal axis: time [msec], vertical axis: current [A]). Figure 3 is a graph showing the power recovery characteristics during energy recovery in Figure 2 (horizontal axis: time [msec], vertical axis: recovered power [W] and solenoid current [A]). Figure 4 is a partial circuit diagram showing the improvement of the energy recovery circuit of Figure 1. Figure 5 is a schematic configuration diagram showing an example of a conventional inductive load driving circuit with a switching power supply circuit, (a) is a current control circuit diagram, (b) is a partial circuit diagram showing the operation when the inductive load current is OFF.
1‧‧‧感應負載驅動電路 1.‧‧Inductive load drive circuit
10‧‧‧切換電源電路 10‧‧‧Switching power circuit
11‧‧‧電磁線圈(感應負載) 11‧‧‧Electromagnetic coil (inductive load)
12‧‧‧供給電源 12‧‧‧Power supply
13‧‧‧橋式二極體 13‧‧‧Bridge Diode
14‧‧‧平滑電容器(一次側) 14‧‧‧Smoothing capacitor (primary side)
15‧‧‧切換元件 15‧‧‧Switching element
16‧‧‧切換變壓器 16‧‧‧Switching transformer
17、35‧‧‧整流二極體 17, 35‧‧‧rectifier diode
18‧‧‧平滑電容器(二次側) 18‧‧‧Smoothing capacitor (secondary side)
20‧‧‧控制電路 20‧‧‧Control circuit
21‧‧‧指令訊號 21‧‧‧Command signal
24‧‧‧脈衝訊號發生裝置 24‧‧‧Pulse signal generator
25‧‧‧電流感測器 25‧‧‧Current Sensor
30‧‧‧能量回收電路 30‧‧‧Energy recovery circuit
31‧‧‧回收用變壓器 31‧‧‧Recycling transformer
32‧‧‧回收控制元件 32‧‧‧Recycling control components
33‧‧‧第2脈衝訊號發生裝置 33‧‧‧The second pulse signal generator
LP‧‧‧一次側線圈 LP‧‧‧ Primary side coil
LS‧‧‧二次側線圈 LS‧‧‧Secondary coil
LP1‧‧‧大電阻一次側線圈 LP1‧‧‧Large resistance primary coil
LP2‧‧‧小電阻一次側線圈 LP2‧‧‧Small resistance primary coil
RLS‧‧‧回收用二次側線圈 RLS‧‧‧Secondary coil for recycling
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016213105A JP6401222B2 (en) | 2016-10-31 | 2016-10-31 | Inductive load drive circuit |
JP2016-213105 | 2016-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201830843A TW201830843A (en) | 2018-08-16 |
TWI711263B true TWI711263B (en) | 2020-11-21 |
Family
ID=62051734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106130269A TWI711263B (en) | 2016-10-31 | 2017-09-05 | Inductive load drive circuit |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6401222B2 (en) |
CN (1) | CN108011533B (en) |
TW (1) | TWI711263B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6502554B1 (en) | 2018-05-18 | 2019-04-17 | 油研工業株式会社 | Electromagnetic switching valve position detection system |
JP6526886B1 (en) * | 2018-07-26 | 2019-06-05 | 油研工業株式会社 | Forward converter type inductive load drive circuit |
JP7334508B2 (en) * | 2019-07-04 | 2023-08-29 | スミダコーポレーション株式会社 | DC/DC converter |
WO2021193456A1 (en) * | 2020-03-26 | 2021-09-30 | 住友重機械工業株式会社 | Drive circuit for inductive load and electromagnetic brake system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09271165A (en) * | 1996-01-31 | 1997-10-14 | Tohoku Ricoh Co Ltd | Switching power unit |
TW200405646A (en) * | 2002-05-24 | 2004-04-01 | Virginia Tech Intell Prop | Method, apparatus, and system for drive control, power conversion, and start-up control in an SRM or PMBDCM drive system |
US20060062027A1 (en) * | 2004-09-21 | 2006-03-23 | Hutchins Peter L | High efficiency switching power converter |
CN102067426A (en) * | 2008-07-24 | 2011-05-18 | 株式会社村田制作所 | Isolated switching power supply device |
CN204794715U (en) * | 2015-05-15 | 2015-11-18 | 浙江工商大学 | A high voltage power supply for getting angry but, energy recuperation device and energy recuperation of bulk plasmon reactor |
TW201633282A (en) * | 2015-03-13 | 2016-09-16 | Univ Lunghwa Sci & Technology | Large area RGB LED lighting driver |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6473318B1 (en) * | 2000-11-20 | 2002-10-29 | Koninklijke Philips Electronics N.V. | Leakage energy recovering system and method for flyback converter |
CN102739084A (en) * | 2011-04-12 | 2012-10-17 | 徐夫子 | Electric-energy converted electric-power energy electricity symbiosis apparatus |
CN204068745U (en) * | 2014-10-07 | 2014-12-31 | 张良华 | A kind of transformer leakage inductance Energy harvesting type flyback sourse system |
-
2016
- 2016-10-31 JP JP2016213105A patent/JP6401222B2/en active Active
-
2017
- 2017-09-05 TW TW106130269A patent/TWI711263B/en active
- 2017-10-19 CN CN201710973706.XA patent/CN108011533B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09271165A (en) * | 1996-01-31 | 1997-10-14 | Tohoku Ricoh Co Ltd | Switching power unit |
TW200405646A (en) * | 2002-05-24 | 2004-04-01 | Virginia Tech Intell Prop | Method, apparatus, and system for drive control, power conversion, and start-up control in an SRM or PMBDCM drive system |
US20060062027A1 (en) * | 2004-09-21 | 2006-03-23 | Hutchins Peter L | High efficiency switching power converter |
CN102067426A (en) * | 2008-07-24 | 2011-05-18 | 株式会社村田制作所 | Isolated switching power supply device |
TW201633282A (en) * | 2015-03-13 | 2016-09-16 | Univ Lunghwa Sci & Technology | Large area RGB LED lighting driver |
CN204794715U (en) * | 2015-05-15 | 2015-11-18 | 浙江工商大学 | A high voltage power supply for getting angry but, energy recuperation device and energy recuperation of bulk plasmon reactor |
Also Published As
Publication number | Publication date |
---|---|
TW201830843A (en) | 2018-08-16 |
JP2018074787A (en) | 2018-05-10 |
JP6401222B2 (en) | 2018-10-10 |
CN108011533A (en) | 2018-05-08 |
CN108011533B (en) | 2019-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI711263B (en) | Inductive load drive circuit | |
JP5768886B2 (en) | Switching power supply | |
CN103296892B (en) | The multimode operation of controlled resonant converter and control | |
JP6103445B2 (en) | Non-contact charging device power supply device | |
CN100525036C (en) | Switching power supply apparatus | |
JP6071051B2 (en) | Switching power supply | |
WO2013136753A1 (en) | Power feed device of inductive charging device | |
TW201924202A (en) | Bridgeless AC-DC converter with power factor correction and method therefor | |
US9160238B2 (en) | Power converter with current feedback loop | |
JP2009014184A (en) | Solenoid valve driving circuit and solenoid valve | |
US20170155325A1 (en) | Resonant power supply device | |
CN101689807A (en) | Multi-output switching power supply device | |
CN115868105A (en) | Soft switching pulse width modulation DC-DC power converter | |
JP6262835B1 (en) | Inductive load drive circuit | |
JP6502554B1 (en) | Electromagnetic switching valve position detection system | |
TWI625035B (en) | Active clamp converter and control method thereof | |
KR102471224B1 (en) | Device for controlling an input signal of phase shift full bridge converter and method thereof | |
JP5322572B2 (en) | Power supply | |
KR101315207B1 (en) | Power supply device using flyback typed ac-dc converter in order to minimize standby power | |
JP2016131464A (en) | DCDC converter | |
JPWO2007123098A1 (en) | Switching power supply circuit and control method thereof | |
KR101260749B1 (en) | Power supply apparatus | |
KR102640341B1 (en) | Isolated switching power supply | |
US20220094269A1 (en) | Dc pulse power supply device | |
KR101288978B1 (en) | Non-Contacting Magnetic Lifter |