JP2018073929A - Manufacturing method of r-t-b based sintered magnet - Google Patents

Manufacturing method of r-t-b based sintered magnet Download PDF

Info

Publication number
JP2018073929A
JP2018073929A JP2016210420A JP2016210420A JP2018073929A JP 2018073929 A JP2018073929 A JP 2018073929A JP 2016210420 A JP2016210420 A JP 2016210420A JP 2016210420 A JP2016210420 A JP 2016210420A JP 2018073929 A JP2018073929 A JP 2018073929A
Authority
JP
Japan
Prior art keywords
sintered magnet
rtb
based sintered
carbonate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016210420A
Other languages
Japanese (ja)
Other versions
JP6743650B2 (en
Inventor
三野 修嗣
Nobutsugu Mino
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016210420A priority Critical patent/JP6743650B2/en
Publication of JP2018073929A publication Critical patent/JP2018073929A/en
Application granted granted Critical
Publication of JP6743650B2 publication Critical patent/JP6743650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture an R-T-B based sintered magnet by using a RH diffusion source, capable of cost reduction and having high Himprovement effect, as diffusion source for diffusing RH to the R-T-B based sintered magnet.SOLUTION: A manufacturing method of R-T-B based sintered magnet includes a step of preparing an R-T-B based sintered magnet, and a step of performing heat treatment of the R-T-B based sintered magnet, in a state where the powder of RLM1M2 alloy (RL is one kind or more selected from Nd, Pr, and M1, M2 are one kind or more selected from Cu, Fe, Ga, Co, Ni, Al, M1=M2 is acceptable), and the powder of RH carbonate (RH is Dy and/or Tb) exist on the surface of the R-T-B based sintered magnet.SELECTED DRAWING: None

Description

本開示は、R−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)の製造方法に関する。   The present disclosure relates to a method for producing an R-T-B based sintered magnet (R is a rare earth element, and T is Fe or Fe and Co).

214B型化合物を主相とするR−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等に使用されている。 R-T-B system sintered magnets mainly composed of R 2 T 14 B-type compounds are known as the most powerful magnets among permanent magnets, and include hard disk drive voice coil motors (VCM), It is used for various motors such as motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 The RTB -based sintered magnet has an irreversible thermal demagnetization because its intrinsic coercive force H cJ (hereinafter simply referred to as “H cJ ”) decreases at high temperatures. In order to avoid irreversible thermal demagnetization, it is required to maintain high H cJ even at high temperatures when used for motors and the like.

R−T−B系焼結磁石は、R214B型化合物相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度Br(以下、単に「Br」と表記する)が低下してしまうという問題がある。 The R-T-B based sintered magnet is known to improve H cJ when a part of R in the R 2 T 14 B-type compound phase is substituted with a heavy rare earth element RH (Dy, Tb). . In order to obtain high H cJ at a high temperature, it is effective to add a large amount of heavy rare earth element RH in the RTB-based sintered magnet. However, when the light rare earth element RL (Nd, Pr) is replaced as R by the heavy rare earth element RH in the RTB-based sintered magnet, H cJ is improved, while the residual magnetic flux density B r (hereinafter simply “ There is a problem that “B r ”) is reduced.

そこで、Brを低下させないように、より少ない重希土類元素RHによってR−T−B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素RHのフッ化物または酸化物や、各種の金属MまたはM合金をそれぞれ単独、または混合して焼結磁石の表面に存在させ、その状態で熱処理することにより、保磁力向上に寄与する重希土類元素RHを磁石内に拡散させることが提案されている。特許文献1は、Rフッ化物、R酸フッ化物、R酸化物の粉末をR−T−B系焼結磁石の表面に接触させて熱処理を行うことによりそれらを磁石内に拡散させる方法を開示している。また、出願人は特許文献2において、RLM合金(MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RHフッ化物の粉末をR−T−B系焼結磁石の表面に存在させて熱処理を行うことにより、RLMによってRHフッ化物を還元し、RHのみを磁石内に拡散させる方法を提案した。 Therefore, so as not to reduce the B r, to improve the H cJ of the R-T-B based sintered magnets have been studied with less heavy rare-earth element RH. For example, fluoride or oxide of heavy rare earth element RH, various metals M or M alloys, either alone or mixed, are present on the surface of a sintered magnet, and heat treatment is performed in that state, thereby improving coercive force. It has been proposed to diffuse the contributing heavy rare earth element RH into the magnet. Patent Document 1 discloses a method in which powders of R fluoride, R oxyfluoride, and R oxide are brought into contact with the surface of an R-T-B system sintered magnet and subjected to heat treatment to diffuse them into the magnet. doing. In addition, the applicant described in Patent Document 2 that a powder of an RLM alloy (M is one or more selected from Cu, Fe, Ga, Co, and Ni) and an RH fluoride powder are R-T-B based sintered magnets. A method has been proposed in which the RH fluoride is reduced by RLM and only RH is diffused into the magnet by performing heat treatment in the presence of the surface.

国際公開第2006/043348号International Publication No. 2006/043348 国際公開第2015/163397号International Publication No. 2015/163397

近年、R−T−B系焼結磁石のコストダウンの要求に伴い、RH拡散源もコストダウン可能でHcJ向上効果の高いものが望まれている。しかしながら、特許文献1や特許文献2で拡散源として使用されるRHフッ化物は、その製造過程で有毒なフッ酸やフッ化水素アンモニウムを使用し、生産性に問題がありコストダウンが困難である。さらに、RHフッ化物中のフッ素自身は磁石中に拡散しないか拡散しても磁気特性向上の役割を果たすことが無く、RHフッ化物以外のRH化合物で、コストダウン可能でHcJ向上効果の高いRH拡散源が望まれている。 In recent years, along with the demand for cost reduction of RTB -based sintered magnets, RH diffusion sources that can reduce costs and have a high HcJ improvement effect are desired. However, the RH fluoride used as a diffusion source in Patent Document 1 and Patent Document 2 uses toxic hydrofluoric acid and ammonium hydrogen fluoride in the production process, and there is a problem in productivity, and cost reduction is difficult. . Furthermore, the fluorine itself in the RH fluoride does not diffuse into the magnet or plays a role in improving the magnetic properties even if diffused. The RH compound other than the RH fluoride can reduce the cost and has a high effect of improving HcJ. An RH diffusion source is desired.

本開示は、R−T−B系焼結磁石にRHを拡散させるための拡散源として、コストダウン可能でHcJ向上効果の高いRH拡散源を用いてR−T−B系焼結磁石を製造する方法を提供する。 The present disclosure relates to an RTB -based sintered magnet by using an RH diffusion source that can reduce costs and has a high effect of improving HcJ as a diffusion source for diffusing RH in the RTB -based sintered magnet. A method of manufacturing is provided.

本開示によるR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R−T−B系焼結磁石を用意する工程と、前記R−T−B系焼結磁石の表面にRLM1M2合金(RLは、Nd、Prから選ばれる1種以上、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)の粉末と、RH炭酸塩(RHはDyおよび/またはTb)の粉末とを存在させた状態において、前記R−T−B系焼結磁石の焼結温度以下で熱処理を行う工程とを含む。   In an exemplary embodiment, a method for manufacturing an RTB-based sintered magnet according to the present disclosure includes the steps of preparing an RTB-based sintered magnet, and the RTB-based sintered magnet. Powder of RLM1M2 alloy on the surface (RL is one or more selected from Nd and Pr, M1 and M2 are one or more selected from Cu, Fe, Ga, Co, Ni, and Al, and M1 = M2); And a step of performing a heat treatment at a temperature equal to or lower than the sintering temperature of the RTB-based sintered magnet in the presence of RH carbonate (RH is Dy and / or Tb) powder.

ある実施形態において、前記RLM1M2合金はRLを50原子%以上含み、かつ、前記RLM1M2合金の融点は前記熱処理の温度以下である。   In one embodiment, the RLM1M2 alloy contains 50 atomic% or more of RL, and the melting point of the RLM1M2 alloy is equal to or lower than the temperature of the heat treatment.

ある実施形態において、前記熱処理は、前記RLM1M2合金の粉末と前記RH炭酸塩の粉末とが、RLM1M2合金:RH炭酸塩=40:60〜96:4の質量比率で前記R−T−B系焼結磁石の表面に存在する状態で行われる。   In one embodiment, the heat treatment is performed such that the RLM1M2 alloy powder and the RH carbonate powder are in the mass ratio of RLM1M2 alloy: RH carbonate = 40: 60 to 96: 4. It is performed in a state where it exists on the surface of the magnet.

ある実施形態では、前記R−T−B系焼結磁石の表面において、前記RH炭酸塩の粉末に含まれるRH元素の質量は、R−T−B系焼結磁石に対して0.2〜1.5質量%である。   In one embodiment, the mass of the RH element contained in the RH carbonate powder on the surface of the RTB-based sintered magnet is 0.2 to 0.2 relative to the RTB-based sintered magnet. 1.5% by mass.

ある実施形態において、前記RH炭酸塩は、R−T−B系磁石のリサイクル工程によって製造されたRH炭酸塩である。   In one embodiment, the RH carbonate is RH carbonate manufactured by a recycling process of an R-T-B magnet.

本開示の実施形態によると、還元作用のあるRLM1M2合金の粉末とともに、RH拡散源としてリサイクル工程によって生成され得るRH炭酸塩の粉末を用いるため、希少資源を効率的に利用してコストダウンが可能であり、高温下でも高いHcJを維持することができるR−T−B系焼結磁石を製造することができる。 According to the embodiment of the present disclosure, the RH carbonate powder that can be generated by the recycling process is used as the RH diffusion source together with the reducing RLM1M2 alloy powder, so that the cost can be reduced by efficiently using rare resources. Thus, an RTB -based sintered magnet capable of maintaining high H cJ even at high temperatures can be produced.

希土類元素R、特に重希土類元素RHは資源存在量が少ない上、産出地が限定されているなどの理由から、供給が安定しておらず、価格が大きく変動するなどの問題を有している。そのため、近年、使用済みの廃磁石や、生産工程中に不良物として排出される磁石スクラップ、切削屑や研削屑として排出される磁石加工屑などから希土類元素Rを分離・回収して磁石原料として再利用するリサイクル技術が発展している。発明者は、拡散源として、リサイクル工程内で生成するRH化合物を用いれば、希少なRHを有効活用でき、かつ、拡散源においてコストダウンが可能となると考えた。そこで、リサイクル工程内で生成するRH化合物としてRH炭酸塩を選択し、これを拡散源として使用する方法を検討したところ、還元能力に優れるRLM1M2合金をともに磁石表面に存在させて熱処理することにより、RH炭酸塩が還元され、RHを磁石内に拡散させることができることを見出して本発明を完成した。なお、本明細書において、RHを含有する物質を「拡散剤」、拡散剤のRHを還元して拡散し得る状態にする物質を「拡散助剤」と称する。   Rare earth elements R, particularly heavy rare earth elements RH, have a problem that their supply is not stable and their prices fluctuate greatly due to their low resource abundance and limited production areas. . Therefore, in recent years, rare earth elements R are separated and recovered from used waste magnets, magnet scraps that are discharged as defectives during the production process, magnet processing scraps that are discharged as cutting scraps and grinding scraps, etc. Recycling technology to be reused is developing. The inventor considered that if a RH compound generated in the recycling process is used as the diffusion source, the rare RH can be effectively utilized and the cost can be reduced in the diffusion source. Therefore, when RH carbonate was selected as the RH compound generated in the recycling process and a method of using this as a diffusion source was examined, by heat-treating the RLM1M2 alloy having excellent reducing ability together on the magnet surface, The present invention was completed by finding that RH carbonate was reduced and RH could diffuse into the magnet. In the present specification, a substance containing RH is referred to as a “diffusing agent”, and a substance that reduces the RH of the diffusing agent so that it can diffuse is referred to as a “diffusion aid”.

[R−T−B系焼結磁石母材の準備]
重希土類元素RHの拡散の対象とするR−T−B系焼結磁石母材を準備する。本明細書では、わかりやすさのため、重希土類元素RHの拡散の対象とするR−T−B系焼結磁石をR−T−B系焼結磁石母材と厳密に称することがあるが、「R−T−B系焼結磁石」の用語はそのような「R−T−B系焼結磁石母材」を含むものとする。このR−T−B系焼結磁石母材は公知のものが使用でき、例えば以下の組成を有する。
希土類元素R:12〜17原子%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):5〜8原子%
添加元素M´(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0〜2原子%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)および不可避不純物:残部
[Preparation of RTB-based sintered magnet base material]
An RTB-based sintered magnet base material to be diffused of the heavy rare earth element RH is prepared. In this specification, for the sake of easy understanding, an RTB-based sintered magnet that is an object of diffusion of the heavy rare earth element RH may be strictly referred to as an RTB-based sintered magnet base material. The term “RTB-based sintered magnet” includes such an “RTB-based sintered magnet base material”. As this RTB-based sintered magnet base material, a known material can be used, for example, having the following composition.
Rare earth element R: 12-17 atom%
B (a part of B (boron) may be substituted with C (carbon)): 5 to 8 atomic%
Additive element M ′ (selected from the group consisting of Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one): 0 to 2 atomic%
T (a transition metal element mainly composed of Fe and may contain Co) and inevitable impurities: balance

ここで、希土類元素Rは、主として軽希土類元素RL(Nd、Prから選択される少なくとも1種の元素)であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。   Here, the rare earth element R is mainly a light rare earth element RL (at least one element selected from Nd and Pr), but may contain a heavy rare earth element. In addition, when a heavy rare earth element is contained, it is preferable that at least one of Dy and Tb is included.

上記組成のR−T−B系焼結磁石母材は、任意の製造方法によって製造される。R−T−B系焼結磁石母材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。   The RTB-based sintered magnet base material having the above composition is manufactured by an arbitrary manufacturing method. The RTB-based sintered magnet base material may be sintered, or may be subjected to cutting or polishing.

[拡散剤]
拡散剤としては、RH炭酸塩(RHはDyおよび/又はTb)の粉末を用いる。RH炭酸塩の粉末の粒度は、例えば20μm以下であり、小さいものは数μm程度である。RH炭酸塩は、R−T−B系磁石のリサイクル工程内で生成したものを用いることができる。具体的には、例えば、R−T−B系磁石の廃磁石、磁石スクラップ、磁石加工屑等から、希土類元素Rを回収する技術が開発されている(国際公開第2013/018710号)。
[Diffusion agent]
As the diffusing agent, powder of RH carbonate (RH is Dy and / or Tb) is used. The particle size of the RH carbonate powder is, for example, 20 μm or less, and a small one is about several μm. What was produced | generated within the recycle process of a R-T-B type magnet can be used for RH carbonate. Specifically, for example, a technique for recovering rare earth elements R from waste magnets, magnet scraps, magnet processing scraps, and the like of R-T-B magnets has been developed (International Publication No. 2013/018710).

このような回収技術によれば、上記のR−T−B系磁石の廃磁石等に種々の処理を行うことにより、FeおよびCoから分離された希土類酸化物を得ることができる。こうして得た希土類酸化物を酸に溶解して溶媒抽出を行うと、重希土類RHの溶液(RH溶液)を他の希土類元素Rから分離して得ることができる。RH溶液に沈殿剤として炭酸ナトリウム、重炭酸ナトリウム、炭酸アンモニウム、または重炭酸アンモニウムなどを添加すると、RH炭酸塩が沈殿する。こうして得られたRH炭酸塩の粉末は、本開示におけるRH拡散源として好適に用いられる。   According to such a recovery technique, a rare earth oxide separated from Fe and Co can be obtained by performing various treatments on the waste magnet of the above R-T-B magnet. When the rare earth oxide thus obtained is dissolved in an acid and subjected to solvent extraction, a heavy rare earth RH solution (RH solution) can be obtained by separating it from other rare earth elements R. When sodium carbonate, sodium bicarbonate, ammonium carbonate, ammonium bicarbonate, or the like is added to the RH solution as a precipitant, RH carbonate precipitates. The RH carbonate powder thus obtained is suitably used as an RH diffusion source in the present disclosure.

なお、R−T−B系磁石に対して重希土類元素を外部から拡散させるために使用されたDy−Fe合金またはTb−Fe合金は、拡散工程中にR−T−B系磁石と接触して磁石中のNdなどの軽希土類元素Rを含有した状態で廃棄されることがある。このような使用済みのRH拡散用合金からも、重希土類元素RHを回収する技術が開発されている(国際公開第2014/115876号)。したがって、使用済みのRH拡散用合金からも、同様にしてRH炭酸塩を得ることができる。   The Dy-Fe alloy or the Tb-Fe alloy used for diffusing heavy rare earth elements from the outside to the R-T-B system magnet contacts the R-T-B system magnet during the diffusion process. In some cases, the magnet is discarded in a state containing a light rare earth element R such as Nd in the magnet. A technique for recovering heavy rare earth elements RH from such used RH diffusion alloys has also been developed (International Publication No. 2014/115876). Therefore, RH carbonate can be obtained in the same manner from a used RH diffusion alloy.

リサイクルに供されるR−T−B系磁石は焼結磁石に限らず、ボンド磁石や熱間加工磁石、それらに使用される磁石粉末などでもよい。もちろん、RH炭酸塩の製法はR−T−B系磁石のリサイクル工程に限らず、一般的な製法によってもよい。R−T−B系磁石のリサイクル工程内で生成したものを用いれば希少なRHを有効活用でき、かつ、拡散源においてコストダウンが可能である。   The R-T-B system magnets used for recycling are not limited to sintered magnets, but may be bonded magnets, hot-worked magnets, magnet powders used for them, or the like. Of course, the manufacturing method of the RH carbonate is not limited to the recycling process of the R-T-B magnet, and may be a general manufacturing method. By using the one generated in the recycling process of the R-T-B magnet, it is possible to effectively use rare RH and to reduce the cost at the diffusion source.

[拡散助剤]
拡散助剤としては、RLM1M2合金の粉末を用いる。RLは、Nd、Prから選ばれる1種以上、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上であり、M1=M2でもよい。RLM1M2合金の典型例は、NdCu合金、NdFe合金、NdCuAl合金、NdCuCo合金、NdCoGa合金、NdPrCu合金、NdPrFe合金などである。これらの合金の粉末は、上述のRH炭酸塩粉末と混合して用いられる。複数種のRLM1M2合金粉末とRH炭酸塩粉末を混合して用いてもよい。RLM1M2合金の粉末の作製方法は特に限定されない。急冷法または鋳造法で作製される場合、粉砕性を良くするために、M1≠M2とし、例えば、NdCuAl合金、NdCuCo合金、NdCoGa合金などの3元系以上の合金を採用することが好ましい。RLM1M2合金粉末の粒度は、例えば500μm以下であり、小さいものは10μm程度である。
[Diffusion aid]
As a diffusion aid, RLM1M2 alloy powder is used. RL is one or more selected from Nd and Pr, M1 and M2 are one or more selected from Cu, Fe, Ga, Co, Ni, and Al, and M1 = M2. Typical examples of the RLM1M2 alloy are NdCu alloy, NdFe alloy, NdCuAl alloy, NdCuCo alloy, NdCoGa alloy, NdPrCu alloy, NdPrFe alloy and the like. These alloy powders are used by mixing with the above-mentioned RH carbonate powder. A plurality of types of RLM1M2 alloy powder and RH carbonate powder may be mixed and used. The method for producing the RLM1M2 alloy powder is not particularly limited. When manufactured by a rapid cooling method or a casting method, in order to improve pulverizability, it is preferable to set M1 ≠ M2, and employ, for example, a ternary or higher alloy such as an NdCuAl alloy, an NdCuCo alloy, or an NdCoGa alloy. The particle size of the RLM1M2 alloy powder is, for example, 500 μm or less, and the smaller one is about 10 μm.

[塗布]
RLM1M2合金の粉末とRH炭酸塩の粉末とをR−T−B系焼結磁石の表面に存在させる方法はどのようなものであってもよい。例えば、RLM1M2合金の粉末とRH炭酸塩の粉末をR−T−B系焼結磁石の表面に散布する方法や、RLM1M2合金の粉末とRH炭酸塩の粉末とを純水や有機溶剤などの溶媒に分散させ、これにR−T−B系焼結磁石を浸漬して引き上げる方法、RLM1M2合金の粉末とRH炭酸塩の粉末とをバインダーや溶媒と混合してスラリーを作製し、このスラリーをR−T−B系焼結磁石の表面に塗布する方法、RLM1M2合金の粉末とRH炭酸塩の粉末をバインダーと共に造粒して造粒粉末を作製し、この造粒粉末をR−T−B系焼結磁石の表面に付着させる方法、等が挙げられる。バインダーや溶媒は、その後の熱処理の昇温過程において、拡散助剤の融点以下の温度で熱分解や蒸発などでR−T−B系焼結磁石の表面から実質的に除去されるものであればよく、特に限定されるものではない。バインダーの例としては、ポリビニルアルコール、エチルセルロース、ポリエステルなどがあげられる。またRLM1M2合金の粉末とRH炭酸塩の粉末は、それらが混合した状態でR−T−B系焼結磁石の表面に存在させてもよいし、別々に存在させてもよい。なお、本開示の方法においては、RLM1M2合金はその融点が熱処理温度以下であるため熱処理の際に溶融し、R−T−B系焼結磁石の表面は還元されたRHがR−T−B系焼結磁石内部に拡散しやすい状態になる。したがって、RLM1M2合金の粉末とRH炭酸塩の粉末とをR−T−B系焼結磁石の表面に存在させる前にR−T−B系焼結磁石の表面に対して酸洗などの特段の清浄化処理を行う必要はない。もちろん、そのような清浄化処理を行うことを排除するものではない。また、RLM1M2合金粉末粒子の表面が多少酸化されていてもRH炭酸塩を還元する効果にほとんど影響はない。
[Application]
Any method may be used in which the RLM1M2 alloy powder and the RH carbonate powder are present on the surface of the R-T-B system sintered magnet. For example, a method of spraying RLM1M2 alloy powder and RH carbonate powder on the surface of an R-T-B system sintered magnet, or a solvent such as pure water or an organic solvent using RLM1M2 alloy powder and RH carbonate powder. A method in which an RTB-based sintered magnet is immersed and pulled up in this, a powder of RLM1M2 alloy and a powder of RH carbonate are mixed with a binder or a solvent to prepare a slurry. A method of applying to the surface of a TB sintered magnet, granulating a powder of RLM1M2 alloy and RH carbonate together with a binder to produce a granulated powder, and this granulated powder is converted to an RTB system. The method of adhering to the surface of a sintered magnet, etc. are mentioned. The binder or solvent should be substantially removed from the surface of the RTB-based sintered magnet by thermal decomposition or evaporation at a temperature lower than the melting point of the diffusion aid in the subsequent heating process. There is no particular limitation. Examples of the binder include polyvinyl alcohol, ethyl cellulose, polyester and the like. The RLM1M2 alloy powder and the RH carbonate powder may be present on the surface of the RTB-based sintered magnet in a state where they are mixed, or may be present separately. In the method of the present disclosure, since the melting point of the RLM1M2 alloy is equal to or lower than the heat treatment temperature, the RLM1M2 alloy is melted during the heat treatment, and the reduced RH is R-T-B It becomes easy to diffuse inside the sintered magnet. Therefore, before the RLM1M2 alloy powder and the RH carbonate powder are present on the surface of the R-T-B type sintered magnet, the surface of the R-T-B type sintered magnet is subjected to special washing such as pickling. It is not necessary to perform a cleaning process. Of course, it does not exclude performing such a cleaning process. Further, even if the surface of the RLM1M2 alloy powder particles is somewhat oxidized, the effect of reducing the RH carbonate is hardly affected.

粉末状態にあるRLM1M2合金およびRH炭酸塩のR−T−B系焼結磁石の表面における存在比率(熱処理前)は、質量比率でRLM1M2合金:RH炭酸塩=40:60〜96:4であることが好ましく、存在比率はRLM1M2合金:RH炭酸塩=60:40〜90:10であることがより好ましい。本開示の製造方法は、RLM1M2合金およびRH炭酸塩の粉末以外の粉末(第三の粉末)がR−T−B系焼結磁石の表面に存在することを必ずしも排除しないが、第三の粉末がRH炭酸塩中のRHをR−T−B系焼結磁石の内部に拡散することを阻害しないように留意する必要がある。R−T−B系焼結磁石の表面に存在する粉末の全体に占める「RLM1M2合金およびRH炭酸塩」の粉末の質量比率は、70%以上であることが望ましい。   The abundance ratio (before heat treatment) of the RLM1M2 alloy and RH carbonate in the powder state on the surface of the R-T-B system sintered magnet is RLM1M2 alloy: RH carbonate = 40: 60 to 96: 4 in mass ratio. It is preferable that the abundance ratio is RLM1M2 alloy: RH carbonate = 60: 40 to 90:10. Although the manufacturing method of the present disclosure does not necessarily exclude the presence of powders (third powder) other than RLM1M2 alloy and RH carbonate powder on the surface of the R-T-B sintered magnet, However, it is necessary to take care not to inhibit diffusion of RH in the RH carbonate into the inside of the R-T-B system sintered magnet. The mass ratio of the “RLM1M2 alloy and RH carbonate” powder in the entire powder existing on the surface of the RTB-based sintered magnet is desirably 70% or more.

本開示の製造方法によれば、少ない量のRHで、効率的にR−T−B系焼結磁石のHcJを向上させることが可能である。R−T−B系焼結磁石の表面に存在させる粉末中のRH元素の量は、R−T−B系焼結磁石に対して0.2〜1.5質量%であることが好ましい。 According to the manufacturing method of the present disclosure, it is possible to efficiently improve the H cJ of the RTB -based sintered magnet with a small amount of RH. The amount of RH element in the powder present on the surface of the RTB-based sintered magnet is preferably 0.2 to 1.5 mass% with respect to the RTB-based sintered magnet.

なお、RH炭酸塩の粉末に含有される重希土類元素RHの質量比率は、一般に、RH酸化物またはRHフッ化物の粉末に含有される重希土類元素RHの質量比率よりも低い。このため、同一量の重希土類元素RHをR−T−B系焼結磁石内に拡散させるためには、RH酸化物またはRHフッ化物の粉末よりも多くRH炭酸塩粉末を使用する必要がある。また、RH拡散源としてRH炭酸塩を用いると、RH酸化物またはRHフッ化物を使用する場合に比べると、相対的に多くの拡散助剤を用いることが好ましいこともわかった。このため、RH拡散源としてRH炭酸塩を使用する本開示の実施形態によれば、RH酸化物またはRHフッ化物を使用する場合よりも相対的に厚く粉末塗布層を形成することができる。このことは、粉末塗布層の厚さを調整する上で利点をもたらす。   The mass ratio of the heavy rare earth element RH contained in the RH carbonate powder is generally lower than the mass ratio of the heavy rare earth element RH contained in the RH oxide or RH fluoride powder. For this reason, in order to diffuse the same amount of heavy rare earth element RH into the RTB-based sintered magnet, it is necessary to use more RH carbonate powder than RH oxide or RH fluoride powder. . It has also been found that when RH carbonate is used as the RH diffusion source, it is preferable to use a relatively large amount of diffusion aid as compared to the case of using RH oxide or RH fluoride. For this reason, according to the embodiment of the present disclosure using RH carbonate as the RH diffusion source, the powder coating layer can be formed relatively thicker than in the case of using RH oxide or RH fluoride. This provides an advantage in adjusting the thickness of the powder coating layer.

[拡散熱処理]
熱処理温度はR−T−B系焼結磁石の焼結温度以下(具体的には例えば1000℃以下)であり、かつ、RLM1M2合金の粉末の融点よりも高い温度であるが、具体的には、500℃以上が好ましい。熱処理時間は例えば10分〜72時間である。また前記熱処理の後必要に応じてさらに400〜700℃で10分〜72時間の熱処理を行ってもよい。
[Diffusion heat treatment]
The heat treatment temperature is equal to or lower than the sintering temperature of the RTB-based sintered magnet (specifically, for example, 1000 ° C. or lower) and higher than the melting point of the powder of the RLM1M2 alloy. 500 ° C. or higher is preferable. The heat treatment time is, for example, 10 minutes to 72 hours. Moreover, you may perform the heat processing for 10 minutes-72 hours at 400-700 degreeC further as needed after the said heat processing.

まず、公知の方法で、組成比Nd=13.4、B=5.8、Al=0.5、Cu=0.1、Co=1.1、残部=Fe(原子%)のR−T−B系焼結磁石を作製した。これを機械加工することにより、6.5mm×7.4mm×7.4mmのR−T−B系焼結磁石母材を得た。得られたR−T−B系焼結磁石母材の磁気特性をB−Hトレーサーによって測定したところ、HcJは1035kA/m、Brは1.45Tであった。なお、後述の通り、熱処理後のR−T−B系焼結磁石の磁気特性は、R−T−B系焼結磁石の表面を機械加工によって除去してから測定するので、R−T−B系焼結磁石母材もそれに合わせて、表面をさらに機械加工によって除去し、大きさ6.3mm×7.0mm×7.0mmとしてから測定した。拡散剤として炭酸Tbを用意した。具体的には、リサイクル工程において、Tbを含有するR−T−B系磁石やRH拡散源をTと分離して得たTb酸化物から得られる炭酸Tbを想定し、Tb47試薬から模擬的に作製した。10vol%塩酸にTb47試薬を添加して60℃で溶解後濾過した。こうして得た濾液に炭酸ナトリウムを添加し、60℃で2時間放置した後、濾過して沈殿物を得た。この沈殿物を60℃で6時間真空乾燥して炭酸Tb粉末を得た。炭酸Tb粉末の粒度は数μmであった。また、得られた炭酸TbをICP分析により分析したところ、Tbの含有率は58.3mass%であった。次に組成がNd70Cu30(原子%)の拡散助剤を用意した(融点520℃:Nd−Cuの二元系状態図で示される値)。拡散助剤は遠心アトマイズ法で作製し、粒度106μm以下とした。得られた拡散剤の粉末と拡散助剤の粉末を表1に示す混合比でポリビニルアルコールおよび純水と混合してスラリーを得た。このスラリーを、R−T−B系焼結磁石母材の7.4mm×7.4mmの1面に、RH量がR−T−B系焼結磁石母材に対する質量比で0.25%となるように塗布した。なお、本実施例は前記スラリーをR−T−B系焼結磁石母材の1つの拡散面のみに塗布してHcJの向上効果を確認した実験である。実際には、1面でもよいし、2面〜全面の複数面でもよい。このR−T−B系焼結磁石母材を処理容器に収容して蓋をした。(この蓋は容器内外のガスの出入りを妨げるものではない。)これを熱処理炉に収容し、100PaのAr雰囲気中、900℃で10時間の熱処理を行った。熱処理は、室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからR−T−B系焼結磁石を回収した。回収したR−T−B系焼結磁石を処理容器に戻して再び熱処理炉に収容し、10Pa以下の真空中、490℃で3時間の熱処理を行った。この熱処理も室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからR−T−B系焼結磁石を回収した。 First, by a known method, the composition ratio Nd = 13.4, B = 5.8, Al = 0.5, Cu = 0.1, Co = 1.1, and the balance = Fe (atomic%) RT -B system sintered magnet was produced. By machining this, an RTB-based sintered magnet base material of 6.5 mm × 7.4 mm × 7.4 mm was obtained. Magnetic properties of the obtained R-T-B based sintered magnet base material where a measured by B-H tracer, H cJ is 1035kA / m, B r was 1.45 T. As will be described later, the magnetic properties of the RTB-based sintered magnet after heat treatment are measured after removing the surface of the RTB-based sintered magnet by machining. In accordance with the B-based sintered magnet base material, the surface was further removed by machining, and the size was measured after measuring 6.3 mm × 7.0 mm × 7.0 mm. Carbonic acid Tb was prepared as a diffusing agent. Specifically, Tb carbonate obtained from Tb oxide obtained by separating Tb-containing R-T-B magnet and RH diffusion source from T in the recycling process is assumed, and from Tb 4 O 7 reagent Simulated. Tb 4 O 7 reagent was added to 10 vol% hydrochloric acid and dissolved at 60 ° C., followed by filtration. Sodium carbonate was added to the filtrate thus obtained and allowed to stand at 60 ° C. for 2 hours, followed by filtration to obtain a precipitate. This precipitate was vacuum-dried at 60 ° C. for 6 hours to obtain Tb carbonate powder. The particle size of the Tb carbonate powder was several μm. Moreover, when the obtained carbonic acid Tb was analyzed by ICP analysis, the content rate of Tb was 58.3 mass%. Next, a diffusion aid having a composition of Nd 70 Cu 30 (atomic%) was prepared (melting point 520 ° C .: value shown in Nd—Cu binary phase diagram). The diffusion aid was prepared by a centrifugal atomization method and had a particle size of 106 μm or less. The obtained diffusion agent powder and diffusion aid powder were mixed with polyvinyl alcohol and pure water at a mixing ratio shown in Table 1 to obtain a slurry. This slurry is placed on one surface of a 7.4 mm × 7.4 mm R-T-B system sintered magnet base material, and the amount of RH is 0.25% by mass ratio to the R-T-B system sintered magnet base material. It applied so that it might become. In addition, a present Example is the experiment which apply | coated the said slurry only to one diffusion surface of a RTB system sintered magnet base material, and confirmed the improvement effect of HcJ . Actually, it may be one surface or a plurality of surfaces from the second surface to the entire surface. The RTB-based sintered magnet base material was accommodated in a processing container and covered. (This lid does not hinder the entry and exit of the gas inside and outside the container.) This was accommodated in a heat treatment furnace and subjected to heat treatment at 900 ° C. for 10 hours in an Ar atmosphere of 100 Pa. The heat treatment was carried out under the above conditions after the temperature was raised while evacuating from room temperature and the atmospheric pressure and temperature reached the above conditions. Thereafter, the temperature was lowered to room temperature, and then the R-T-B sintered magnet was collected. The recovered RTB-based sintered magnet was returned to the processing vessel and accommodated again in a heat treatment furnace, and heat treatment was performed at 490 ° C. for 3 hours in a vacuum of 10 Pa or less. This heat treatment was also performed under the above conditions after the temperature was raised while evacuating from room temperature and the atmospheric pressure and temperature reached the above conditions. Thereafter, the temperature was lowered to room temperature, and then the R-T-B sintered magnet was collected.

得られたR−T−B系焼結磁石の表面を機械加工にて除去し、6.3mm×7.0mm×7.0mmのサンプル1〜4を得た。得られたサンプル1〜4の磁気特性をB−Hトレーサーによって測定し、HcJの変化量を求めた。結果を表1に示す。 The surface of the obtained RTB-based sintered magnet was removed by machining to obtain Samples 1 to 4 of 6.3 mm × 7.0 mm × 7.0 mm. The magnetic properties of the obtained samples 1 to 4 were measured with a BH tracer, and the amount of change in H cJ was determined. The results are shown in Table 1.

Figure 2018073929
Figure 2018073929

表1からわかるように、本開示の製造方法によるR−T−B系焼結磁石はBrが低下することなくHcJが大きく向上している。すなわち、RLM1M2合金とRH炭酸塩を混合して使用すれば、RLM1M2合金がRH炭酸塩を効率よく還元し、十分に還元されたRHがR−T−B系焼結磁石母材中に拡散することにより、少ないRH量でHcJを大きく向上させることができたことがわかった。 As can be seen from Table 1, R-T-B based sintered magnet according to the manufacturing method of the present disclosure H cJ is greatly improved without the B r drops. That is, if the RLM1M2 alloy and the RH carbonate are mixed and used, the RLM1M2 alloy efficiently reduces the RH carbonate, and the fully reduced RH diffuses into the RTB-based sintered magnet base material. Thus , it was found that HcJ could be greatly improved with a small amount of RH.

本開示の製造方法は、希少資源を効率的に利用して、高温下でも高いHcJを維持することができるR−T−B系焼結磁石を製造できるため、当該製造方法によって得られる磁石を電気自動車(EV、HV、PHVなど)のモータなどに好適に用いることが可能になる。 Since the manufacturing method of the present disclosure can manufacture an RTB -based sintered magnet capable of maintaining high H cJ even at high temperatures by efficiently using rare resources, a magnet obtained by the manufacturing method Can be suitably used for a motor of an electric vehicle (EV, HV, PHV, etc.).

Claims (5)

R−T−B系焼結磁石を用意する工程と、
前記R−T−B系焼結磁石の表面にRLM1M2合金(RLは、Nd、Prから選ばれる1種以上、M1、M2はCu、Fe、Ga、Co、Ni、Alから選ばれる1種以上、M1=M2でもよい)の粉末と、RH炭酸塩(RHはDyおよび/またはTb)の粉末とを存在させた状態において、前記R−T−B系焼結磁石の焼結温度以下で熱処理を行う工程と、
を含むR−T−B系焼結磁石の製造方法。
A step of preparing an R-T-B sintered magnet;
RLM1M2 alloy (RL is one or more selected from Nd and Pr, M1 and M2 are one or more selected from Cu, Fe, Ga, Co, Ni, and Al on the surface of the RTB-based sintered magnet. , M1 = M2) and RH carbonate powder (RH is Dy and / or Tb) in the presence of heat treatment at a temperature lower than the sintering temperature of the RTB-based sintered magnet. A process of performing
The manufacturing method of the RTB type | system | group sintered magnet containing this.
前記RLM1M2合金はRLを50原子%以上含み、かつ、前記RLM1M2合金の融点は前記熱処理の温度以下である、請求項1に記載のR−T−B系焼結磁石の製造方法。   2. The method for producing an RTB-based sintered magnet according to claim 1, wherein the RLM1M2 alloy contains 50 atomic% or more of RL, and the melting point of the RLM1M2 alloy is equal to or lower than the temperature of the heat treatment. 前記熱処理は、前記RLM1M2合金の粉末と前記RH炭酸塩の粉末とが、RLM1M2合金:RH炭酸塩=40:60〜96:4の質量比率で前記R−T−B系焼結磁石の表面に存在する状態で行われる、請求項1または2に記載のR−T−B系焼結磁石の製造方法。   In the heat treatment, the RLM1M2 alloy powder and the RH carbonate powder are placed on the surface of the RTB-based sintered magnet at a mass ratio of RLM1M2 alloy: RH carbonate = 40: 60 to 96: 4. The manufacturing method of the RTB type | system | group sintered magnet of Claim 1 or 2 performed in the state which exists. 前記R−T−B系焼結磁石の表面において、前記RH炭酸塩の粉末に含まれるRH元素の質量は、R−T−B系焼結磁石に対して0.2〜1.5質量%である、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。   The mass of the RH element contained in the RH carbonate powder on the surface of the RTB-based sintered magnet is 0.2 to 1.5% by mass relative to the RTB-based sintered magnet. The manufacturing method of the RTB type | system | group sintered magnet in any one of Claim 1 to 3 which is these. 前記RH炭酸塩は、R−T−B系磁石のリサイクル工程によって製造されたRH炭酸塩である、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。   The said RH carbonate is a manufacturing method of the RTB system sintered magnet in any one of Claim 1 to 4 which is RH carbonate manufactured by the recycle process of an RTB system magnet.
JP2016210420A 2016-10-27 2016-10-27 Method for manufacturing RTB-based sintered magnet Active JP6743650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016210420A JP6743650B2 (en) 2016-10-27 2016-10-27 Method for manufacturing RTB-based sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210420A JP6743650B2 (en) 2016-10-27 2016-10-27 Method for manufacturing RTB-based sintered magnet

Publications (2)

Publication Number Publication Date
JP2018073929A true JP2018073929A (en) 2018-05-10
JP6743650B2 JP6743650B2 (en) 2020-08-19

Family

ID=62115535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210420A Active JP6743650B2 (en) 2016-10-27 2016-10-27 Method for manufacturing RTB-based sintered magnet

Country Status (1)

Country Link
JP (1) JP6743650B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111243807A (en) * 2020-02-26 2020-06-05 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application
CN111261352A (en) * 2018-12-03 2020-06-09 Tdk株式会社 Method for manufacturing R-T-B permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261352A (en) * 2018-12-03 2020-06-09 Tdk株式会社 Method for manufacturing R-T-B permanent magnet
CN111243807A (en) * 2020-02-26 2020-06-05 厦门钨业股份有限公司 Neodymium-iron-boron magnet material, raw material composition, preparation method and application

Also Published As

Publication number Publication date
JP6743650B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP4548673B2 (en) Grain boundary modification method for Nd-Fe-B magnet
JP6414597B2 (en) Method for producing RTB-based sintered magnet
JP5884957B1 (en) Method for producing RTB-based sintered magnet
JP6572550B2 (en) R-T-B sintered magnet
JP6414598B2 (en) Method for producing RTB-based sintered magnet
JP6503960B2 (en) Method of manufacturing RTB based sintered magnet
JP4742966B2 (en) Method for producing R-Fe-B rare earth sintered magnet
EP3182423A1 (en) Neodymium iron boron magnet and preparation method thereof
JP5874951B2 (en) Method for producing RTB-based sintered magnet
JP6733533B2 (en) Method for manufacturing RTB-based sintered magnet
WO2012099186A1 (en) Method of producing r-t-b sintered magnet
JP2011114335A (en) Method of manufacturing rare earth permanent magnet material
JP6521391B2 (en) Method of manufacturing RTB based sintered magnet
JP6717230B2 (en) Method for manufacturing sintered RTB magnet
JP4179973B2 (en) Manufacturing method of sintered magnet
JP6743650B2 (en) Method for manufacturing RTB-based sintered magnet
JP6717231B2 (en) Method for manufacturing sintered RTB magnet
JP6743649B2 (en) Method for manufacturing RTB-based sintered magnet
JP6414592B2 (en) Method for producing RTB-based sintered magnet
JP2011082365A (en) R-t-b-based sintered magnet
WO2017068946A1 (en) R-t-b based sintered magnet manufacturing method and r-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R150 Certificate of patent or registration of utility model

Ref document number: 6743650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350