JP2018072641A - シート照明顕微鏡 - Google Patents

シート照明顕微鏡 Download PDF

Info

Publication number
JP2018072641A
JP2018072641A JP2016213731A JP2016213731A JP2018072641A JP 2018072641 A JP2018072641 A JP 2018072641A JP 2016213731 A JP2016213731 A JP 2016213731A JP 2016213731 A JP2016213731 A JP 2016213731A JP 2018072641 A JP2018072641 A JP 2018072641A
Authority
JP
Japan
Prior art keywords
illumination
sheet
light
condensing position
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016213731A
Other languages
English (en)
Inventor
真市 林
Shinichi Hayashi
林  真市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2016213731A priority Critical patent/JP2018072641A/ja
Publication of JP2018072641A publication Critical patent/JP2018072641A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができるような技術を提供する。
【解決手段】シート照明顕微鏡10は、撮像面8と共役な観察光学面上からの光を取り込む観察光学系6と、観察光学系6の光軸と直交する方向から照明光を照射し、照明光を標本Sに集光する照明光学系11と、を備え、照明光学系11は、観察光学面上で照明光の集光位置を移動させる第1の集光位置移動装置である集光位置移動装置3と、集光位置移動装置3による集光位置の移動速度に応じて照明光の強度を変調する照明光強度変調素子2と、を含むことを特徴とする。
【選択図】図1

Description

本発明は、撮像面と共役な面上で照明光を走査させるシート照明顕微鏡に関する。
蛍光標本を観察する際に、観察光学系の光軸に対して垂直な方向からシート状の照明光(以下、シート光とも記載する)を照射する観察手法である、シート照明観察が知られている。シート照明観察では、標本上における撮像面と共役な面(以下、観察光学面とも記載する)にシート光を照射することで観察光学面からの蛍光を取り込む。
この観察手法によれば、一般的な透過型、反射型の顕微鏡と比較して、標本への照明光の照射領域の少なさから標本の褪色性や光毒性を抑えることができる。また、シート光の厚さを薄くすることで観察光学系の光軸方向の分解能を向上させることができることも特徴である。
シート照明観察に関する先行例として、下記のような技術が開示されている。
特許文献1では、TAGレンズを用いてシート光を走査することで、高速な走査、観察を可能としている。
中国特許出願公開第104407436号明細書
一方、特許文献1のように、シート光を高速に走査する場合、非等速に走査が行われ、照明範囲中で位置毎の積算照度が不均一となることがある。尚、観察光学面中のシート光を走査する範囲を照明範囲とする。また、一度の走査中での照明光の照射位置における累積の照度値を積算照度とする。具体的には、照明範囲の中心と比べて照明範囲の端部において走査速度が遅くなり、端部での積算照度が過剰となってしまう。このような状態では、積算照度が均一となる照明範囲の中心領域しか画像として用いることができない、積算照度が過剰となる標本の領域の褪色を進めてしまう、等の弊害が生じてしまう。
以上の実情を鑑み、本発明では、照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができるような技術を提供することを目的とする。
本発明の一態様におけるシート照明顕微鏡は、撮像面と共役な観察光学面上からの光を取り込む観察光学系と、前記観察光学系の光軸と直交する方向から照明光を照射し、前記照明光を標本に集光する照明光学系と、を備え、前記照明光学系は、前記観察光学面上で前記照明光の集光位置を移動させる第1の集光位置移動装置と、前記第1の集光位置移動装置による前記集光位置の移動速度に応じて前記照明光の強度を変調する照明光強度変調素子と、を含むことを特徴とする。
本発明のシート照明顕微鏡によれば、照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができる。
第1の実施形態におけるシート照明顕微鏡の構成を示す図。 第1の実施形態における計算装置の機能構成を示す図。 第2の実施形態におけるシート照明顕微鏡の構成を示す図。 第2の実施形態におけるシート照明顕微鏡で行われる処理の手順を説明するフローチャート。 撮像処理の手順を説明するフローチャート。 第2の実施形態の変形例におけるシート照明顕微鏡の構成の一部を示す図。 第2の実施形態の別の変形例におけるシート照明顕微鏡の構成の一部を示す図。 第3の実施形態におけるシート照明顕微鏡の構成を示す図。 第4の実施形態における計算装置の機能構成を示す図。 第4の実施形態におけるシート照明顕微鏡で行われる処理の手順を説明するフローチャート。 フィルタ処理の手順を説明するフローチャート。
以下、本発明の第1の実施形態におけるシート照明顕微鏡10について図面を用いて説明する。第1の実施形態は、本発明の大まかな特徴を説明するための実施形態であり、シート照明顕微鏡のより詳細な構成の例は、後述する各実施形態において説明される。
図1は、シート照明顕微鏡10の構成を示す図である。シート照明顕微鏡10は構成として、レーザ光源1と、照明光学系11と、固定装置5と、観察光学系6と、撮像面8を含む撮像素子7と、計算装置9とを備える。
レーザ光源1は、照明光としてレーザ光を射出する光源である。
照明光学系11は、観察光学系6の光軸と直交する方向から照明光を標本Sへ向けて照射し、集光する光学系である。尚、照明光学系11によって照射される標本S上の領域は、撮像面8と共役な面(以下、観察光学面とも記載する)を含むように照明光学系11、及び、観察光学系6、撮像素子7が配置されている。照明光学系11は、照明光強度変調素子2と、集光位置移動装置3と、集光光学系4とを備える。
集光位置移動装置3は、照明光学系11によって照射される照明光の集光位置を観察光学面上で移動させる第1の集光位置移動装置である。集光位置移動装置3は、例えば、照明光学系11の光軸方向へ集光位置を移動させる集光位置縦移動装置、または、照明光学系11の光軸と垂直な方向へ集光位置を移動させる集光位置横移動装置、若しくはその両方を含む装置である。
集光位置縦移動装置には、焦点距離を変更することで集光位置を移動させる可変焦点レンズ等が用いられる。集光位置横移動装置には、照明光学系11の光路中において、照明光の進行方向を変更することで、標本S上での集光位置を移動させるガルバノミラー等が用いられる。例えば、集光位置移動装置3が集光位置縦移動装置であるとき、図1に示すように、集光位置移動装置3によって照明光の集光位置が異なる集光位置(第1の集光位置A、第2の集光位置B、第3の集光位置C)に移動し得る。
照明光強度変調素子2は、集光位置移動装置3による集光位置の移動速度に応じて照明光の強度を変調する。詳細な構成については後述するが、照明光強度変調素子2は、集光位置移動装置3(集光位置縦移動装置、集光位置横移動装置)の駆動と同期して動作する構成であり、集光位置移動装置3による集光位置の移動速度の変更に連動して、照明光強度変調素子2によるレーザ光源1からの照明光の強度変調が行われるように機能する。好ましくは、照明光強度変調素子2は、集光位置移動装置3による集光位置の移動速度に比例させるように照明光の強度を変調する。
集光光学系4は、照明光強度変調素子2、集光位置移動装置3を経た照明光を標本Sへ集光する。集光光学系4は、一枚のレンズから構成されるものであっても、複数のレンズを含むレンズ群であってもよい。
固定装置5は、標本Sを固定する。また、固定装置5は、観察光学系6の光軸方向に移動するような手段を有することで、照明光学系11による照明光の標本S内の集光位置を観察光学系6の光軸方向に相対的に移動させるような第2の集光位置移動装置を含むように構成されていてもよい。固定装置5が第2の集光位置移動装置を含むことで、標本Sの観察光学面の位置が変更され、標本Sの観察光学系6の光軸方向の異なる箇所での観察が可能となる。即ち、第1の集光位置移動装置と第2の集光位置移動装置とにより、標本Sの3次元による観察が可能となる。
観察光学系6は、標本Sの観察光学面上からの光を取り込む光学系である。撮像素子7は、観察光学系6によって取り込まれた光により撮像面8上に結像した、2次元の画像を取得する。撮像素子7としては、CCD等が用いられる。
撮像素子7で取得した画像は、計算装置9へ出力され、計算装置9によってストレージ、画像処理、他媒体への画像出力等が行われる。例えば、計算装置9は、コンピュータである。
図2は、計算装置9の機能構成を示す図である。計算装置9は、その機能構成として、画像信号入出力部12と、記憶部13と、3次元画像構築部14と、を備える。
画像信号入出力部12は、撮像素子7からの画像を受信し、また、計算装置9に記憶されている画像や計算装置9で生成した画像を、表示媒体15へ出力する。記憶部13は、画像信号入出力部12が受信した画像や3次元画像構築部14が生成した3次元画像を保存する。3次元画像構築部14は、記憶部13に記憶されている複数の画像(撮像素子7が取得した複数の2次元画像である)を用いて3次元画像の生成を行う。
以上の構成を有するシート照明顕微鏡10を用いて、照明光を標本Sに照射するときの動作を説明する。尚、以下に記載の制御動作は、例えば、シート照明顕微鏡10を制御するコンピュータにより実行されるものであり、計算装置9がシート照明顕微鏡10を制御するコンピュータの役割を担うように構成されていてもよい。また、外付けの別の制御用のコンピュータを設ける構成としてもよい。
まず、レーザ光源1から照明光の発光を開始させ、集光位置移動装置3により観察光学面上の集光位置を移動させるように、照明光の走査を開始する。そしてこのとき、照明光強度変調素子2は、集光位置移動装置3による集光位置の移動速度に応じて照明光の強度を変調する。好ましくは、照明光強度変調素子2は、集光位置移動装置3による集光位置の移動速度に比例するように照明光の強度を変調する。この動作中に撮像素子7により標本Sからの光を取得することで、観察光学面中の上記走査を行う範囲の画像を取得することができる。そして、このときに取得される画像は、標本S上の照明光による走査を行う範囲である走査範囲内において照明光の積算照度が均一となる。尚、同一の観察光学面上における照明光の一度の走査中での、照明光の照射位置における累積の照度値のことを積算照度として記載する。
一般に、従来普及されているシート照明顕微鏡において、標本の観察光学面上で照明光の走査が高速に実行されるとき、照明光の非等速な走査が実行されることになる。より具体的には、観察光学面の走査範囲の端部において、中心付近よりも走査速度が遅くなる。特にこのような走査が行われるとき、走査速度は、時間の正弦波に依存している。
照明光の非等速な走査が実行されると、走査範囲において積算照度にばらつきが生じることとなる。例えば、走査範囲の中心付近よりも走査速度が遅くなる端部において、より照明光が照射されている時間が長くなることから、中心付近と比べて端部の積算照度が過剰となる。
一方で、シート照明顕微鏡10によれば、照明光強度変調素子2が、集光位置移動装置3による集光位置の移動速度に応じて照明光の強度を変調する。このとき、例えば、照明光強度変調素子2が、集光位置移動装置3による集光位置の移動速度に比例するように照明光の強度を変調することで、走査範囲内において照明光の積算照度が均一となるように強度変調を行うことが可能である。
尚、照明光強度変調素子2は、集光位置移動装置3による集光位置の移動速度に比例するように強度変調を行うような動作に限らず、例えば、走査速度が走査範囲の中心付近に比べて遅い端部の一定領域では、照明光強度を下げ、走査範囲の中心付近では、照明光強度を上げるように動作させてもよい。このような動作によっても、走査範囲内において照明光の積算照度をある程度均一にすることができる。
従って、シート照明顕微鏡10によれば、照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができる。
以下、第2の実施形態におけるシート照明顕微鏡20について、図面を用いて説明する。第2の実施形態は、第1の実施形態で説明した発明の特徴を含む、より詳細なシート照明顕微鏡の構成の例を説明するものである。
図3は、第2の実施形態のシート照明顕微鏡20の構成を示す図である。シート照明顕微鏡20は、レーザ光源21と、照明光学系36と、標本Sを封入した観察容器28を固定するステージ27と、観察光学系37と、撮像素子32と、計算装置35とを備えている。尚、標本Sは、上面と側面に観察窓を有する観察容器28の中に封入されている。また、標本Sは、標本Sと略等しい屈折率の浸液29中に浸されている。
また、図3では、シート照明顕微鏡20をX軸(照明光学系36の光軸)とZ軸(観察光学系37の光軸)とからなる平面であるXZ平面に直交するY軸方向から見た様子と、シート照明顕微鏡20をZ軸方向から見た様子とがそれぞれ示されている。
レーザ光源21は、照明光としてレーザ光を射出する光源である。
照明光学系36は、シート照明顕微鏡10の照明光学系11に相当し、照明光学系11と同様の機能を有するものである。照明光学系36は、音響光学フィルタ(AOTF)22と、ビームエキスパンダ23と、円筒レンズ24と、可変焦点レンズ25と、集光レンズ26とを備えている。また、可変焦点レンズ25は、信号発生器33と電気的に接続されており、AOTF22は、信号変換機34と電気的に接続されている。また、信号発生器33は、信号変換機34と電気的に接続されている。
ここで、ビームエキスパンダ23と、円筒レンズ24と、可変焦点レンズ25と、集光レンズ26は、図3のXZ平面においてX軸方向に収束し、Y軸方向に幅をもつようなシート状の照明光(以下、シート光とも記載する)を形成するための手段である。ビームエキスパンダ23は、レーザ光源21から射出される照明光の外径を適切なサイズとなるように大きくし、コリメートする。円筒レンズ24は、XY平面においてX軸方向に照明光を収束させるような屈折力をもつ。可変焦点レンズ25は、XZ平面においてX軸方向に照明光を収束または発散させるような屈折力をもつ。集光レンズ26は、X軸方向に照明光を収束させるような屈折力をもつ。
また、可変焦点レンズ25は、屈折力を変更することで焦点距離を変更可能である。可変焦点レンズ25として、例えば、屈折力を高速に変更可能である、TAGレンズ(Tunable Acoustic Gradient Lens)が用いられる。可変焦点レンズ25は、屈折力を変更することで照明光を照明光学系36の光軸方向に走査し、集光位置を照明光学系36の光軸方向に移動させる。即ち、可変焦点レンズ25は、集光位置移動装置3(第1の集光位置移動装置)に相当するとともに、照明光学系36の光軸方向へ集光位置を移動させる集光位置縦移動装置として機能するものである。
可変焦点レンズ25が屈折力を変更すると、図3のように、第1の集光位置A、第2の集光位置B、第3の集光位置CのようにX軸方向へ集光位置が変更される。このとき、Y軸方向の照明光の幅には、目立った変化はない。また、可変焦点レンズ25は、信号発生器33が発生する駆動信号により屈折力を変更するように動作する。
TAGレンズ等である可変焦点レンズ25は、照明光を高速に走査することができるため観察時間の短縮に寄与するものの、高速な走査を実行した場合、走査範囲内で非等速に照明光の走査が実行される。
AOTF22は、レーザ光源21から射出された照明光の光強度を変調する。また、AOTF22は、信号変換機34からの制御信号によって制御される。
信号発生装置33は、可変焦点レンズ25における屈折力の変更を制御するための駆動信号を生成する。即ち、駆動信号は、照明光の集光位置の移動に同期した信号であるとともに、集光位置の移動速度の情報を有する信号である。信号発生装置33で発生させた駆動信号は、信号変換装置34へも伝送される。信号発生装置33は、可変焦点レンズ25としてTAGレンズを用いる場合、RF信号発生器を用いることが望ましい。
信号変換機34では、信号発生装置33から伝送された駆動信号をもとに、AOTF22を制御するための信号に変換する。このとき、信号発生装置33から伝送された駆動信号が有する集光位置の移動速度の情報を元に、信号変換機34は、集光位置の移動速度に応じてAOTF22が照明光の強度を変調するような制御信号を生成する。より好ましくは、可変焦点レンズ25による集光位置の移動速度に比例するように照明光の強度を変調するような制御信号を生成する。AOTF22は、信号変換機34による、可変焦点レンズ25の屈折力の変更を制御するための信号発生装置33が発生する駆動信号の変換を介して、シート照明顕微鏡10の照明光強度変調素子2に相当する動作を行うものである。即ち、本実施形態では、AOTF22は照明光強度変調素子である。
従って、AOTF22と、信号発生装置33と、信号変換機34によっても、第1の実施形態と同様に、走査範囲内において照明光の積算照度が均一となるように、換言するならば、走査範囲内の各位置において照明光の積算照度が略一定となるように、集光位置の移動速度に応じて照明光の強度を変調させることが可能である。
特に、可変焦点レンズ25による集光位置の移動速度に比例するようにAOTF22において照明光の強度の変調を行うことで、照明光の非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができる。例えば、集光位置の移動速度が速くなるとき、AOTF22によってその移動速度に比例して照明強度が強くなるように変調される。また、集光位置の移動速度が遅くなるときには、AOTF22によってその移動速度に比例して照明強度が弱まるように変調される。
ステージ27は、標本Sを設置して固定するものであり、第1の実施形態のシート照明顕微鏡10の固定装置5に相当する。ステージ27は、観察光学系37の光軸方向に移動することで、照明光学系36による照明光の標本S上の集光位置を観察光学系37の光軸方向に移動させるような第2の集光位置移動装置としても機能する。即ち、シート照明顕微鏡20では、第1の集光位置移動装置(集光位置縦移動装置である可変焦点レンズ25)と第2の集光位置移動装置(ステージ27)とにより、標本Sの3次元による観察が可能となる。
観察光学系37は、対物レンズ30、光を撮像素子32の撮像面へ結像するレンズ群31を含む。対物レンズ30は、浸液29の屈折率に適合した液浸対物レンズであって長い作動距離を有する。撮像素子32は、計算装置35と接続されている。ここで、撮像素子32は、シート照明顕微鏡10の撮像素子7に相当し、計算装置35は計算装置9に相当するコンピュータである。計算装置35の機能構成についても、計算装置9の機能構成と同様である。また、本実施形態では、計算装置35は、シート照明顕微鏡20の各構成の動作を制御するものとする。
以上の構成を有するシート照明顕微鏡20によって、標本Sを撮像し、観察を行う手順を説明する。図4は、シート照明顕微鏡20で行われる処理の手順を説明するフローチャートである。図5は、シート照明顕微鏡20で行われる撮像処理の手順を説明するフローチャートである。以下では、まず図4を用いて、シート照明顕微鏡20で行われる一連の処理について説明する。
ステップS1では、コンピュータである計算装置35によって各種パラメータが設定される。ここでいうパラメータとは、対物レンズ30の開口数(NA)、レーザ光源21からの照明光の波長、標本Sの屈折率、撮像素子32の画素サイズなどである。
ステップS2では、標本Sの位置の初期化を行う。その後、ステップS3により観察光学面上にある標本Sの撮像を行い、撮像素子32によって標本Sの2次元画像を取得する。ステップS3の撮像処理については、後述する。尚、撮像素子32によって取得された2次元画像は一時的に計算装置35内に格納される。
撮像処理の完了を検知したら(ステップS4)、ステージ27が観察光学系37の光軸方向に移動することにより標本Sの高さ位置を変更する(ステップS5)。ここで変更する高さ位置は、少なくともシート光である照明光の広がりをカバーする範囲で変更されることが望ましい。以降、撮像を行う全ての標本Sの領域での撮像処理を終えるまで、ステップS3からステップS5を繰り返す。ステップS4において、撮像処理の完了を検知すると共に、撮像を行う全ての標本Sの領域での撮像処理の完了が検知されたならば、ステップS6へ移行する。
ステップS6では、ステップS3で取得した複数の2次元画像を用いて3次元画像の生成を行う。ステップS6を完了し、生成された3次元画像はコンピュータ内に表示用の画像データとして格納される(ステップS7)。この3次元画像が、表示媒体15等に表示されることで使用者は標本Sを観察することができる。
以下、図5を参照しつつシート照明顕微鏡20で行われる撮像処理(ステップS3)の手順を説明する。
ステップS11、S12では、レーザ光源21の発光を開始するとともに、可変焦点レンズ25による観察光学面上にある標本S上で照明光の走査、すなわち集光位置の移動を開始する。ステップS13では、ステップS11、S12の処理と同期して、撮像素子32が撮像を開始する。
このとき、可変焦点レンズ25による集光位置の移動に同期して、AOTF22による照明光の強度変調が実行される。例えば、上述したように、AOTF22は、集光位置の移動速度に比例するように照明光の強度を変調する。このような制御により、可変焦点レンズ25として、TAGレンズ等を用い、高速な照明光の走査を行うことで標本S上での集光位置の移動が非等速に行われる場合であっても、走査範囲端部等の移動速度が遅くなる領域で、速度に比例して照明強度が弱まり、積算照度が過剰となるような事態を防ぐことができる。即ち、走査範囲の各位置において積算照度を均一とすることができる。
走査範囲中での撮像が完了したら、レーザ光源21をOFFとして照明光の照射を終了し(ステップS14)、可変焦点レンズ25による集光位置の移動を停止させて(ステップS15)、撮像処理を完了する。
以上のように、シート照明顕微鏡20によれば、照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができる。
また、本実施形態では、照明光学系36の光軸方向へ集光位置を移動させる集光位置縦移動装置として可変焦点レンズ25を含むものとしたが、この構成に限らない。例えば、可変焦点レンズ25の代わりに、レンズと、そのレンズの位置を変更するレンズ位置変更素子を含む構成であってもよい。このような構成によっても、レンズの位置を変更することで照明光学系36の光軸方向へ集光位置を移動させることができるため、レンズ及びレンズ位置変更素子は、集光位置縦移動装置として機能する。尚、レンズ位置変更素子は、例えば、ボイスコイルである。
また、集光位置縦移動装置として可変焦点レンズ25を有する構成の代わりに図6のような構成としてもよい。図6は、第2の実施形態の変形例であるシート照明顕微鏡40の構成の一部を示す図である。
シート照明顕微鏡40は、照明光学系47中において、可変焦点レンズ25の代わりに、ミラー42、43、44、46を含む。また、ミラー43、44を二つ合わせて図6の矢印の方向に移動させるミラー位置変更素子45を含む。尚、ミラー位置変更素子45は、例えば、ボイスコイルやピエゾ素子である。
信号発生装置33は、駆動信号を発生させることでミラー位置変更素子45によるミラー43、44の移動を制御する。また、信号発生装置33は、その駆動信号を信号変換機34へ伝送する。シート照明顕微鏡40のそれ以外の構成については、シート照明顕微鏡10と等しい。
このような構成では、ミラー43、44が図6の矢印の方向に移動することで照明光学系47中の光路長が変更され、標本Sの観察光学面上での集光位置がX軸方向に移動する。即ち、ミラー(ミラー42、43、44、46)及びミラー位置変更素子45は、集光位置縦移動装置として機能する。
このような構成によっても、シート照明顕微鏡20と同様に、照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができる。
また、照明光強度変調素子として、AOTF22を有する構成の代わりに図7のような構成としてもよい。図7は、第2の実施形態の別の変形例であるシート照明顕微鏡50の構成の一部を示す図である。
シート照明顕微鏡50は、AOTF22の代わりに、ハーフミラー51と、ガルバノミラー52と、反射率分布型ミラー53とを含む。ガルバノミラー52は、図7の矢印の方向に回転駆動することで、照明光の反射方向を変更する。反射率分布型ミラー53は、湾曲したミラーであり、反射面の各位置によって反射率が異なるような表面処理がなされている。尚、ガルバノミラー52と反射率分布型ミラー53の反射面との間の光路長は、ガルバノミラー52を回転駆動させた各状態において変わらない。
例えば、ガルバノミラー52が異なるそれぞれの角度で反射率分布型ミラー53に照明光を反射させたとき、反射率分布型ミラー53における照明光の照射位置が位置a、位置bのように切り替わる。従って、例えば、ガルバノミラー52の角度が大きくなるにつれて、反射率分布型ミラー53における反射率が大きくなるように表面処理がなされていることで、ガルバノミラー52の回転駆動に伴い、照明光の強度を変調することができる。即ち、このような構成では、ガルバノミラー52の回転駆動に伴い、照明光の強度が変調されるため、ガルバノミラー52と反射率分布型ミラー53は、照明光強度変調素子として機能する。
また、ガルバノミラー52は、信号変換機34と電気的に接続されており、信号変換機34が変換したガルバノミラー制御用の信号によって制御される。その他のシート照明顕微鏡50の構成については、シート照明顕微鏡20と同様である。
このような構成によっても、シート照明顕微鏡20と同様に、照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができる。
以下、第3の実施形態におけるシート照明顕微鏡60について、図面を用いて説明する。
図8は、シート照明顕微鏡60の構成を示す図である。図8において、図3で示した第2の実施形態のシート照明顕微鏡20の構成と同一の構成については、同じ番号を付している。シート照明顕微鏡60は、シート照明顕微鏡20と異なる構成として、照明光学系63を備えている。
照明光学系63は、信号発生装置33と電気的に接続された偏向素子61と、円筒レンズ62を新たに備えている点において、シート照明顕微鏡20の照明光学系36と異なる。
偏向素子61は、信号発生器33が発生させる可変焦点レンズ25を制御する駆動信号(以降、第1の駆動信号と記す)とは別の駆動信号(以降、第2の駆動信号と記す)により、照明光学系63中の照明光を偏向する。具体的には、偏向素子61は、照明光の進行方向をX軸上からY軸方向に角度を有するように変更する。
即ち、偏向素子61は、集光レンズ26によって集光する照明光の集光位置を、照明光学系63の照明光軸と垂直な方向(Y軸方向)に移動させる集光位置横移動装置として機能する。偏向素子61としては、共振式のガルバノミラー等が用いられる。また、第2の駆動信号は、偏向素子61による集光位置の移動速度の情報を有する情報であるといえる。
信号発生装置33は、第2の実施形態で述べたように第1の駆動信号と同様に、第2の駆動信号についても信号変換機34へ伝送する。信号変換機34は、集光位置の移動速度の情報をもとに、第2の駆動信号を変換し制御信号(第2の制御信号)を生成し、AOTFへ伝送する。AOTF22は、第2の制御信号によって制御を受け、動作する。より具体的には、AOTF22は、偏向素子61の集光位置の移動速度に応じて照明光の強度を変調するように動作する。より好ましくは、AOTF22は、偏向素子61の集光位置の移動速度に比例するように、照明光の強度を変調する。
円筒レンズ62は、XY平面においてX軸方向に照明光を収束させるような屈折力をもつ。即ち、照明光学系63は、円筒レンズ62を有することで、XZ平面においてX軸方向に収束し、XY平面においてもX軸方向に収束するようなシート光を形成する。
以上の構成を有するシート照明顕微鏡60によれば、照明光の集光位置について、照明光学系63の光軸方向であるX軸方向だけでなく、照明光学系63の光軸と直交する方向であるY軸方向についても、移動させることができる。また、偏向素子61によって非等速に集光位置の移動が行われる場合であっても、走査範囲端部等の移動速度が遅くなる領域で、速度に比例して照明強度が弱まり、積算照度が過剰となるような事態を防ぐことができる。即ち、走査範囲の各位置において積算照度を均一とすることができる。
従って、標本Sの観察光学面の走査範囲(本実施形態ではXY平面である)内で均一な積算照度を得ることができる。即ち、シート照明顕微鏡60によれば、走査範囲内で、X軸方向、Y軸方向の照明光の走査(集光位置の移動)が非等速に行われるものであっても、走査範囲内で均一な積算照度を得ることができる。
また、円筒レンズ62がXY平面においてもX軸方向に収束するようなシート光を形成していることで、Y軸方向の照明光の走査に応じて、走査範囲内でシート光を万遍なく照射することができる。例えば、仮にシート照明顕微鏡60が円筒レンズ62のような構成を有さず、XY平面においてX軸方向に収束しない照明光が照射される場合、標本Sの走査範囲内に照明光を吸収または反射するような異物が存在した場合、その異物より後側(X軸方向側)には照明光が当たらない領域が出来てしまう。一方で、シート照明顕微鏡60のように、円筒レンズ62によってXY平面においてX軸方向に収束するようなシート光を形成し、偏向素子61によって照明光のY軸方向の走査を行うことで、走査範囲内に異物が存在する場合であっても異物より後側(X軸方向側)に照明光を照射することができる。
以下、第4の実施形態におけるシート照明顕微鏡80について、図面を用いて説明する。シート照明顕微鏡80は、計算装置9の代わりに計算装置70を備える点で、第1の実施形態におけるシート照明顕微鏡10と異なっているが、それ以外の構成についてはシート照明顕微鏡10と同様である。また、シート照明顕微鏡80は、計算装置70が実行する画像処理のプロセスが他の実施形態と異なるものの、それ以外の顕微鏡の構成や作用については、等しいものである。即ち、撮像素子が画像を取得するまでの構成については、第1の実施形態から第3の実施形態で説明したいずれのシート照明顕微鏡の構成を組み合わせても構わない。以下、計算装置70の機能構成と、計算装置70で実行される処理について詳細に説明する。
図9は、計算装置70の機能構成を示す図である。計算装置70は、その機能構成として、画像信号入出力部12と、記憶部13と、3次元画像構築部14と、フィルタ処理部71と、を備える。画像信号入出力部12と、記憶部13と、3次元画像構築部14については、図2で説明したものと同様の機能構成である。
フィルタ処理部71は、3次元画像構築部14が生成した3次元画像データに対してシート照明顕微鏡80の光学伝達特性に応じて、その3次元画像が有する空間周波数特性を変更する空間周波数フィルタ処理を行う。
光学伝達特性とは、情報が光学的にどの程度伝達されるかを示す特性のことである。光学系の光学伝達特性とは、その光学系の結像特性のことであり、点像分布関数(PSF:Point Spread Function)や光学伝達関数(OTF:Optical Transfer Function)などがその代表例である。顕微鏡装置の光学伝達特性とは、顕微鏡装置で行われる照明を考慮した特性であり、顕微鏡装置が備える観察光学系の光学伝達特性と、照明状態(即ち、撮像素子の露光期間内における照明光量分布)とによって決定される。例えば、ある照明状態における顕微鏡装置の光学伝達特性とは、観察光学系の光学伝達特性とその照明状態とにより決定される光学伝達特性のことである。画像が有する空間周波数特性とは、画像に含まれる空間周波数成分の強度および位相の分布状態のことである。空間周波数特性を変更するとは、空間周波数成分の強度および位相の分布状態を変更することである。
図1に示されるように、本発明の実施形態に係るシート照明顕微鏡は、観察光学系の光軸方向に広がりを有するシート光を標本Sに照射する。例えば、照明光学系からの照明光の集光位置が位置Bである場合、位置Bにおける照明光の強度分布が最も強く、集光位置から離れるほど、強度分布が弱くなるとともに、広がりが大きくなる。従って、シート光の集光位置を固定した照明では、蛍光物質の励起に十分で且つ照明光学系の光軸方向におよそ均質な照明強度を有する領域(以降、照明領域と記す)は、集光位置の近傍に限られることになる。
これに対して、照明光の集光位置が照明方向に移動する場合、観察方向の強度分布は、照明方向に異なる複数の集光位置での強度分布の積算によって得られる。従って、照明方向に平均化されることになるため、観察方向の強度分布は照明方向の位置によらずおよそ同じ形状を有し、その結果、照明方向の広い領域に照明領域が形成される。
一方、そのような照明状態では、非集光位置の照明光が寄与することで、照明光量分布が観察方向に全体的に広がってしまう。即ち、集光位置の照明光が有する高い空間周波数成分の強度が非集光位置の照明光の影響により相対的に低下するため、シート照明顕微鏡80の光学伝達特性(特に観察光学系の光軸方向についての光学伝達特性)が劣化してしまう。
そのため、露光期間中に集光位置を照明光学系の照明方向に移動する照明状態(以降、第1の照明状態と記す)と、露光期間中に集光位置を固定した照明状態(以降、第2の照明状態と記す)とでは、第1の照明状態におけるシート照明顕微鏡80の光学伝達特性(第1の光学伝達特性)が、第2の照明状態におけるシート照明顕微鏡80の光学伝達特性(第2の光学伝達特性)よりも劣化する。即ち、第1の照明状態で取得した画像は、第2の照明状態で取得した画像よりも観察光学系の光軸方向の分解能(以降、z分解能と記す)が低下する。
フィルタ処理部71が実行する空間周波数フィルタ処理は、第2の照明状態で取得される画像のz分解能と比較して劣化した第1の照明状態で取得される画像のz分解能を、第2の照明状態で取得される画像のz分解能程度に回復する処理である。
空間周波数フィルタ処理は、例えば、空間周波数領域で特定のフーリエフィルタを、第1の照明状態におけるシート照明顕微鏡の点像分布関数(第1の光学伝達特性である)に対してかけるような処理である。特定のフーリエフィルタは、第1の光学伝達特性、第2の光学伝達特性に基づいて算出されるものである。より具体的には、特定のフーリエフィルタは、第2の照明状態におけるシート照明顕微鏡の点像分布関数(第2の光学伝達特性である)を第1の照明状態におけるシート照明顕微鏡の点像分布関数(第1の光学伝達特性である)で割ることで得られる。
このような空間周波数フィルタ処理を実行することで、第1の照明状態で画像が取得された場合であっても、その画像のz分解能について、第2の照明状態で取得した画像のz分解能程度の分解能まで補償することができる。
以上の構成を有するシート照明顕微鏡80によって、標本Sを撮像し、観察を行う手順を説明する。図10は、シート照明顕微鏡80で行われる処理の手順を説明するフローチャートである。図11は、シート照明顕微鏡80で行われるフィルタ処理の手順を説明するフローチャートである。以下では、まず図10を用いて、シート照明顕微鏡80で行われる一連の処理について説明する。
図10の処理では、ステップS21、ステップS22以外の処理は、図4で説明した処理と同様である。
ステップS21では、フーリエフィルタを設定する。ここでは、計算装置70は、ステップS1で設定された情報からシート照明顕微鏡80の光学伝達特性を算出し、算出した光学伝達特性に基づいてフーリエフィルタを算出して設定する。具体的には、シート照明顕微鏡80の第1の光学伝達特性と第2の光学伝達特性とに基づいて上述したような特定のフーリエフィルタを算出する。
ステップS6で3次元画像データが構築されると、ステップS22へ移行する。以下、図11を用いてステップS22の処理を説明する。
ステップS22では、計算装置70がステップS6で構築された3次元画像データをフーリエ変換する(ステップS23)。そして、変換後の画像データに対してステップS21で設定したフーリエフィルタを用いてフーリエフィルタ処理を行う(ステップS24)。最後に、計算装置70は逆フーリエ変換を行って(ステップS25)、3次元画像を再生し、フィルタ処理を終了する。
シート照明顕微鏡80によれば、計算装置70がシート照明顕微鏡80の光学伝達特性に基づいて標本Sの3次元画像の画像データに対して空間周波数フィルタ処理を行うことで、照明領域全体にわたって高いz分解能を有する画像を得ることができる。
また、第1の実施形態から第3の実施形態の各シート照明顕微鏡と同様に、照明光による非等速な走査が行われる場合であっても、照明範囲において均一な積算照度を得ることができる。
上述した実施形態は、発明の理解を容易にするために具体例を示したものであり、本発明はこれらの実施形態に限定されるものではない。シート照明顕微鏡は、特許請求の範囲により規定される本発明の思想を逸脱しない範囲において、さまざまな変形、変更が可能である。
10、20、40、50、60、80 シート照明顕微鏡
1、21 レーザ光源
2 照明光強度変調素子
3 集光位置移動装置
4 集光光学系
5 固定装置
6、37 観察光学系
11、36、47、63 照明光学系
7、32 撮像素子
8 撮像面
9、35、70 計算装置
22 AOTF
23 ビームエキスパンダ
24、62 円筒レンズ
25 可変焦点レンズ
26、41 集光レンズ
27 ステージ
28 観察容器
29 浸液
30 対物レンズ
31 レンズ群
33 信号発生装置
34 信号変換機
42、43、44、46 ミラー
45 ミラー位置変更素子
51 ハーフミラー
52 ガルバノミラー
53 反射率分布型ミラー
61 偏向素子
12 画像信号入出力部
13 記憶部
14 3次元画像構築部
15 表示媒体
71 フィルタ処理部
S 標本S
A、B、C、a、b 位置

Claims (14)

  1. 撮像面と共役な観察光学面上からの光を取り込む観察光学系と、
    前記観察光学系の光軸と直交する方向から照明光を照射し、前記照明光を標本に集光する照明光学系と、を備え、
    前記照明光学系は、
    前記観察光学面上で前記照明光の集光位置を移動させる第1の集光位置移動装置と、
    前記第1の集光位置移動装置による前記集光位置の移動速度に応じて前記照明光の強度を変調する照明光強度変調素子と、を含む
    ことを特徴とするシート照明顕微鏡。
  2. 請求項1に記載のシート照明顕微鏡であって、
    前記第1の集光位置移動装置は、前記集光位置を前記照明光学系の照明光軸方向に移動させる集光位置縦移動装置を含む
    ことを特徴とするシート照明顕微鏡。
  3. 請求項2に記載のシート照明顕微鏡であって、
    前記集光位置縦移動装置は、可変焦点レンズを含む
    ことを特徴とするシート照明顕微鏡。
  4. 請求項3に記載のシート照明顕微鏡であって、
    前記可変焦点レンズは、TAGレンズである
    ことを特徴とするシート照明顕微鏡。
  5. 請求項2に記載のシート照明顕微鏡であって、
    前記集光位置縦移動装置は、レンズ及びレンズ位置変更素子を含む
    ことを特徴とするシート照明顕微鏡。
  6. 請求項5に記載のシート照明顕微鏡であって、
    前記レンズ位置変更素子は、ボイスコイルである
    ことを特徴とするシート照明顕微鏡。
  7. 請求項2に記載のシート照明顕微鏡であって、
    前記集光位置縦移動装置は、ミラー及びミラー位置変更素子を含む
    ことを特徴とするシート照明顕微鏡。
  8. 請求項7に記載のシート照明顕微鏡であって、
    前記ミラー位置変更素子は、ボイスコイルである
    ことを特徴とするシート照明顕微鏡。
  9. 請求項7に記載のシート照明顕微鏡であって、
    前記ミラー位置変更素子は、ピエゾ素子である
    ことを特徴とするシート照明顕微鏡。
  10. 請求項1乃至請求項9のいずれかに記載のシート照明顕微鏡であって、
    前記第1の集光位置移動装置は、前記集光位置を前記照明光軸と垂直な方向に移動させる集光位置横移動装置を含む
    ことを特徴とするシート照明顕微鏡。
  11. 請求項10に記載のシート照明顕微鏡であって、
    前記集光位置横移動装置は、共振式ガルバノミラーである
    ことを特徴とするシート照明顕微鏡。
  12. 請求項1乃至請求項11のいずれか1項に記載のシート照明顕微鏡であって、
    前記照明光強度変調素子は、音響光学フィルタである
    ことを特徴とするシート照明顕微鏡。
  13. 請求項1乃至請求項11のいずれか1項に記載のシート照明顕微鏡であって、
    前記照明光強度変調素子は、ガルバノミラーと反射率分布型ミラーである
    ことを特徴とするシート照明顕微鏡。
  14. 請求項1乃至請求項13のいずれか1項に記載のシート照明顕微鏡であって、さらに、
    前記集光位置を前記観察光学系の光軸方向に移動させる第2の集光位置移動装置と、
    前記観察光学系が取り込んだ光から画像信号を取得する撮像素子と、
    前記撮像素子が取得する前記画像信号を用いて3次元画像データを生成する計算装置と、を備え、
    前記計算装置は、前記第2の集光位置移動装置によって前記観察光学系の光軸方向の前記集光位置がそれぞれ異なる位置に移動された状態で、前記撮像装置が取得した複数の画像信号から生成される3次元画像データに対して、前記シート照明顕微鏡の光学伝達特性に応じて、前記3次元画像データが有する空間周波数特性を変更する空間周波数フィルタ処理を行う
    ことを特徴とするシート照明顕微鏡。
JP2016213731A 2016-10-31 2016-10-31 シート照明顕微鏡 Pending JP2018072641A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016213731A JP2018072641A (ja) 2016-10-31 2016-10-31 シート照明顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016213731A JP2018072641A (ja) 2016-10-31 2016-10-31 シート照明顕微鏡

Publications (1)

Publication Number Publication Date
JP2018072641A true JP2018072641A (ja) 2018-05-10

Family

ID=62115366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016213731A Pending JP2018072641A (ja) 2016-10-31 2016-10-31 シート照明顕微鏡

Country Status (1)

Country Link
JP (1) JP2018072641A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747115A (zh) * 2019-11-19 2020-02-04 长春理工大学 细胞工厂生物反应器显微光电监测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110747115A (zh) * 2019-11-19 2020-02-04 长春理工大学 细胞工厂生物反应器显微光电监测系统

Similar Documents

Publication Publication Date Title
JP6411472B2 (ja) レーザスキャニング顕微鏡、および特に高解像度のスキャニング顕微鏡法で結像収差を修正する方法
JP6360825B2 (ja) 結像光学系、照明装置および観察装置
JP5381984B2 (ja) 顕微鏡装置および顕微鏡装置制御プログラム
JP6000554B2 (ja) 顕微鏡システム
JP6491578B2 (ja) シート照明顕微鏡システム、画像処理装置、シート照明顕微鏡法、及び、プログラム
EP2498116A1 (en) Microscope apparatus
CN108351503B (zh) 图像取得装置、图像取得方法以及空间光调制单元
CN108351502A (zh) 图像取得装置、图像取得方法以及空间光调制单元
US9729800B2 (en) Image generation system
US10488640B2 (en) Image acquisition device and image acquisition method
WO2016056147A1 (ja) 結像光学系、照明装置および観察装置
JP6210754B2 (ja) 走査型光学顕微鏡
CN110520779B (zh) 像差校正方法和光学装置
CN109073873B (zh) 图像取得装置以及图像取得方法
JP2018072641A (ja) シート照明顕微鏡
JP2004303827A (ja) 補償光学用参照点光源の作成法
US10816472B2 (en) Image acquisition device and image acquisition method
CN114153061A (zh) 一种基于光片成像的激发光轴向强度可调拼接方法
JP4207467B2 (ja) 顕微鏡照明装置
JP5765569B2 (ja) 顕微鏡装置
WO2022202565A1 (ja) 顕微鏡、観察方法、およびプログラム
JP2023130196A (ja) レーザ走査型顕微鏡システム