JP2018071847A - Method of operating cooling system - Google Patents

Method of operating cooling system Download PDF

Info

Publication number
JP2018071847A
JP2018071847A JP2016209820A JP2016209820A JP2018071847A JP 2018071847 A JP2018071847 A JP 2018071847A JP 2016209820 A JP2016209820 A JP 2016209820A JP 2016209820 A JP2016209820 A JP 2016209820A JP 2018071847 A JP2018071847 A JP 2018071847A
Authority
JP
Japan
Prior art keywords
compressor
liquid
liquid container
cooling
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016209820A
Other languages
Japanese (ja)
Inventor
加賀 進一
Shinichi Kaga
進一 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2016209820A priority Critical patent/JP2018071847A/en
Publication of JP2018071847A publication Critical patent/JP2018071847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that if a compressor is started while an initial temperature of water in a liquid container as typified by a cooling cylinder of an auger type ice-making machine is kept high, excessive large cooling load makes it difficult to lower refrigerant pressure of a refrigeration circuit so as to continue a state where load on the compressor is large and continuing the state causes an overcurrent to flow in the compressor so as to stop operation of the compressor.SOLUTION: In a method of operating a cooling system including: a compressor 32 for compressing a refrigerant; a condenser 34 for condensing the refrigerant from the compressor 32; expansion means 36 for expanding the volume of the refrigerant from the condenser 34; an evaporator 18 for performing heat exchange by using the refrigerant from the expansion means 36; and a liquid container 14 for storing liquid to be cooled by the evaporator 18, the compressor 32 is started to start cooling operation and after required time elapses after start of the cooling operation, liquid is supplied to the liquid container 14.SELECTED DRAWING: Figure 1

Description

この発明は冷却系の運転方法に関し、更に詳しくは、冷凍回路の一部をなす蒸発器により液体容器中の液体を冷却することで冷却液体や氷を得る冷却装置において、前記冷凍回路の起動負荷を軽減させて経済的に冷却をなし得るようにした冷却系の運転方法に関するものである。   The present invention relates to an operation method of a cooling system, and more particularly, in a cooling device that obtains a cooling liquid or ice by cooling a liquid in a liquid container by an evaporator that forms a part of the refrigeration circuit. It is related with the operating method of the cooling system which reduced cooling and was able to achieve cooling economically.

例えば、オーガ式製氷機や冷却飲料ディスペンサは、液体容器中に貯留した液体を冷凍回路からの蒸発器により冷却して、該液体を凍らせたり、飲用に適する温度にまで冷却したりするようになっている。本発明は、前記液体容器の液体を冷却する装置に使用される冷却系運転方法の改良に関するので、先ず液体の冷却装置について、オーガ式製氷機を例に挙げて説明する。   For example, an auger type ice making machine or a cooled beverage dispenser cools a liquid stored in a liquid container by an evaporator from a refrigeration circuit so that the liquid is frozen or cooled to a temperature suitable for drinking. It has become. Since the present invention relates to the improvement of the cooling system operation method used in the apparatus for cooling the liquid in the liquid container, first, the liquid cooling apparatus will be described by taking an auger type ice making machine as an example.

図7は、オーガ式製氷機10の概略構成を示すもので、断熱材12で外周を囲われた円筒状の液体容器(以下「冷却シリンダ」ともいう)14では、その底部に開設した開口20に液体リザーバー21からの水(液体)が供給管22を介して供給される。前記円筒状の液体容器14の外側には、後述する冷凍回路16から導出した蒸発器18が密着的に巻回されている。前記液体容器14の内部には、螺旋状のオーガ刃26が同心的に挿通され、該オーガ刃26が下方に設けた回転軸28は、減速機構を備えたモーター30により一方向へ回転駆動されるようになっている。なお、前記オーガ刃26は、その螺旋状の周縁に掻き取り刃が形成されている。   FIG. 7 shows a schematic configuration of the auger type ice making machine 10. In a cylindrical liquid container (hereinafter also referred to as “cooling cylinder”) 14 surrounded by a heat insulating material 12, an opening 20 opened at the bottom thereof is shown. Water (liquid) from the liquid reservoir 21 is supplied through the supply pipe 22. On the outside of the cylindrical liquid container 14, an evaporator 18 led out from a refrigeration circuit 16 described later is tightly wound. A spiral auger blade 26 is concentrically inserted into the liquid container 14, and a rotary shaft 28 provided below the auger blade 26 is rotationally driven in one direction by a motor 30 having a speed reduction mechanism. It has become so. The auger blade 26 has a scraping blade formed on its spiral periphery.

また、前記液体容器14の上方には固定刃であるヘッド31が配置され、前記オーガ刃26により掻き取った氷片を圧縮した後に所定長に切断して細氷塊にするようになっている。前記液体容器14におけるヘッド31の上方は、得られた氷塊を放出して図示しない氷ストッカーに送る放出管33に連通している。更に、図7の右側に配置される前記液体リザーバー21には、貯留液体(本明細書では水)の水位を検出する水位センサ35が配設されて、水位検知情報を図示しない制御回路へ出力している。   Further, a head 31 as a fixed blade is disposed above the liquid container 14, and the ice pieces scraped by the auger blade 26 are compressed and then cut into a predetermined length to form a fine ice block. Above the head 31 in the liquid container 14 communicates with a discharge pipe 33 that discharges the obtained ice block and sends it to an ice stocker (not shown). Further, the liquid reservoir 21 arranged on the right side of FIG. 7 is provided with a water level sensor 35 for detecting the water level of the stored liquid (water in this specification), and outputs water level detection information to a control circuit (not shown). doing.

図7に示す冷凍回路16は、冷媒を圧縮する圧縮機32と、圧縮されて高温になっている冷媒を冷却して凝縮させる凝縮器34と、凝縮された冷媒を体積膨張させる膨張手段36と、前記蒸発器18とからなり、これらの部材は前記の順序で管路38により連続されて冷媒の循環系を構成している。なお、参照符号40は、前記凝縮器34を空冷するファンモーターを示している。また、前記膨張手段36は、図示例ではキャピラリーチューブを使用しているが、開閉弁からなる膨張弁であってもよい。   The refrigeration circuit 16 shown in FIG. 7 includes a compressor 32 that compresses the refrigerant, a condenser 34 that cools and condenses the compressed refrigerant at a high temperature, and expansion means 36 that expands the condensed refrigerant by volume. The evaporator 18 and these members are connected by the pipe line 38 in the order described above to constitute a refrigerant circulation system. Reference numeral 40 indicates a fan motor for air-cooling the condenser 34. The expansion means 36 uses a capillary tube in the illustrated example, but may be an expansion valve composed of an on-off valve.

前記冷凍回路16における圧縮機32を起動すると、該圧縮機32で圧縮されて液化した高温の冷媒は前記管路38を流れて前記凝縮器34へ流入し、ここで冷却された後に前記膨張手段36へ流入する。この膨張手段36の出口で冷媒は体積膨張して気化冷媒となり、前記蒸発器18で熱交換を行って前記液体容器14中の液体を冷却する。また、前記モーター30が起動して前記回転軸28を回転させることにより、前記オーガ刃26は冷却シリンダ14の内壁に対し僅かな間隙を保持して回転する。また、前記液体リザーバー21に貯留した水が前記供給管22を介して前記液体容器14へ底部から供給され、この水は該液体容器14の内部を上昇して該液体リザーバー21の水位まで充満する。前記液体容器14の外壁は、冷凍回路16の運転により蒸発器18を介して0℃以下にまで冷却されるため、該液体容器14の内壁に接触している水は凍結し氷層として成長する。また前記液体容器14の内部に位置する前記オーガ刃26は、その回転に伴い該液体容器14の内壁に形成された氷層を掻き削って、該オーガ刃26の回転に伴い上方へ搬送する。そして搬送された氷は、前記オーガ刃26の上方に位置する前記ヘッド31により圧縮されて氷塊となり、前記放出管33へ送られて氷ストッカーや飲料コップ等へ放出される。   When the compressor 32 in the refrigeration circuit 16 is started, the high-temperature refrigerant compressed and liquefied by the compressor 32 flows through the pipe line 38 and flows into the condenser 34, where it is cooled and then expanded. 36. The refrigerant expands in volume at the outlet of the expansion means 36 to become a vaporized refrigerant, and heat is exchanged in the evaporator 18 to cool the liquid in the liquid container 14. Further, the auger blade 26 rotates while maintaining a slight gap with respect to the inner wall of the cooling cylinder 14 by starting the motor 30 and rotating the rotary shaft 28. Further, water stored in the liquid reservoir 21 is supplied from the bottom to the liquid container 14 via the supply pipe 22, and this water rises inside the liquid container 14 and fills up to the water level of the liquid reservoir 21. . Since the outer wall of the liquid container 14 is cooled to 0 ° C. or less through the evaporator 18 by the operation of the refrigeration circuit 16, the water in contact with the inner wall of the liquid container 14 freezes and grows as an ice layer. . The auger blade 26 located inside the liquid container 14 scrapes off the ice layer formed on the inner wall of the liquid container 14 as it rotates, and conveys it upward as the auger blade 26 rotates. Then, the conveyed ice is compressed by the head 31 located above the auger blade 26 into an ice lump, sent to the discharge pipe 33 and discharged to an ice stocker, a beverage cup or the like.

特開2010−32203号公報JP 2010-32203 A

前述したオーガ式製氷機10では、前記蒸発器18により冷却される液体容器14に存在する水の温度が、冷凍回路16の冷却負荷になる。ところで、オーガ式製氷機10を最初に運転するときに、前記液体リザーバー21に貯留した水の初期温度は、夏場等にかなり高い場合がある。このことは、前記液体リザーバー21からの水が供給される前記液体容器14に対する冷凍回路16の冷却負荷が大きいことを意味する。従って、水の初期温度が高いままで前記圧縮機32を起動して冷凍回路16の運転を開始すると、冷却負荷が大き過ぎるために、該冷凍回路16における冷媒の圧力がなかなか下がらず、該圧縮機32に対する負荷が大きい状態が続いてしまう。この状態が続くと、圧縮機32を駆動するモーターに過電流が流れ、過電流検知器(何れも図示せず)が作動して該圧縮機32の運転を停止させてしまうことがある。   In the auger type ice making machine 10 described above, the temperature of the water present in the liquid container 14 cooled by the evaporator 18 becomes the cooling load of the refrigeration circuit 16. By the way, when the auger type ice making machine 10 is first operated, the initial temperature of the water stored in the liquid reservoir 21 may be considerably high in summer. This means that the cooling load of the refrigeration circuit 16 on the liquid container 14 supplied with water from the liquid reservoir 21 is large. Therefore, if the compressor 32 is started and the operation of the refrigeration circuit 16 is started while the initial temperature of water remains high, the refrigerant load in the refrigeration circuit 16 does not drop easily because the cooling load is too large. The state where the load on the machine 32 is large continues. If this state continues, an overcurrent flows in the motor that drives the compressor 32, and an overcurrent detector (none of which is shown) may be activated to stop the operation of the compressor 32.

前記の状態を、図2のタイムチャートを参照して説明する。なお、従来は前記圧縮機32を駆動する際には、前記液体容器14に冷却すべき水が既に存在している。圧縮機32を起動すると、液体容器14に貯留した水の温度は、図2に示すように次第に低下する。また、圧縮機32を駆動するモーターの電流値は、水温低下に伴う冷却負荷の減少により次第に低下する。しかし、前述した如く液体容器14における水の初期温度が高いと、水温は徐々にしか低下しないために、前記圧縮機32にとっては冷却負荷の大きい状態が続くことになる。このため、圧縮機32におけるモーターの過電流が一定時間以上継続することになり、図2に水平な一点破線で示す過電流値を一定時間でクリアできないことになり、遂に過電流が閾値を超えて該圧縮機32が停止してしまう。このような事態を防ぐためには、水の初期温度が高い場合でも極力早く水温を低下させて、冷凍回路16の冷媒圧力が速やかに下がるようにしてやる必要がある。この要請に応えるためには、容量のより大きい圧縮機を採用しなければならないが、これは圧縮機の費用と電気代との増大を意味し、極めて不経済であった。   The above state will be described with reference to the time chart of FIG. Conventionally, when the compressor 32 is driven, water to be cooled already exists in the liquid container 14. When the compressor 32 is started, the temperature of the water stored in the liquid container 14 gradually decreases as shown in FIG. Further, the current value of the motor that drives the compressor 32 gradually decreases due to a decrease in cooling load accompanying a decrease in water temperature. However, as described above, when the initial temperature of water in the liquid container 14 is high, the water temperature only gradually decreases, so that the compressor 32 continues to have a large cooling load. For this reason, the motor overcurrent in the compressor 32 continues for a certain period of time, and the overcurrent value indicated by the one-dot broken line in FIG. 2 cannot be cleared within a certain period of time, and the overcurrent finally exceeds the threshold value. As a result, the compressor 32 stops. In order to prevent such a situation, even when the initial temperature of water is high, it is necessary to lower the water temperature as quickly as possible so that the refrigerant pressure in the refrigeration circuit 16 quickly decreases. In order to meet this demand, a compressor having a larger capacity has to be adopted, which means an increase in the cost of the compressor and the electricity cost, which is extremely uneconomical.

このような冷却すべき液体の容器に付帯する冷却系に内在している前記課題を解決するために、冷凍回路における圧縮機を起動させた後に、所定時間が経過してから液体リザーバーからの水を液体容器に供給することで、冷凍回路の圧力低下を促進させる運転方法が提案される。すなわち、図2のタイムチャートに示すように、圧縮機32の起動時に前記液体容器14に水が存在していて、かつ当該水の初期温度が高い場合は、該液体容器14の水温が前記冷凍回路16の大きな冷却負荷になってしまう。このため、冷凍回路16における圧縮機32の過電流持続時間が長くなり、遂には一定時間を超えて運転停止になってしまう訳である。そこで発明者は、図1に示すように、圧縮機32の起動に対し所定時間だけ遅れて前記液体容器14へ水を供給するようにすれば、冷凍回路16の冷媒圧力低下が促進されることを知見したものである。   In order to solve the above-mentioned problem inherent in the cooling system attached to the container of the liquid to be cooled, the water from the liquid reservoir is started after a predetermined time has elapsed after starting the compressor in the refrigeration circuit. An operation method is proposed in which a pressure drop in the refrigeration circuit is promoted by supplying a liquid container. That is, as shown in the time chart of FIG. 2, when water is present in the liquid container 14 when the compressor 32 is started up and the initial temperature of the water is high, the water temperature of the liquid container 14 is the refrigeration. The circuit 16 becomes a large cooling load. For this reason, the overcurrent duration of the compressor 32 in the refrigeration circuit 16 becomes longer, and eventually the operation is stopped after a certain time. Therefore, as shown in FIG. 1, if the inventor supplies water to the liquid container 14 after a predetermined time with respect to the start of the compressor 32, the refrigerant pressure drop in the refrigeration circuit 16 is promoted. This is what we found.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、
冷媒を圧縮する圧縮機と、前記圧縮機からの冷媒を凝縮する凝縮器と、前記凝縮器からの冷媒を体積膨張させる膨張手段と、前記膨張手段からの冷媒により熱交換を行う蒸発器と、前記蒸発器により冷却されるべき液体を貯留する液体容器とからなる冷却系の運転方法において、
前記圧縮機を起動させて冷却運転を開始し、前記冷却運転の開始から所要時間が経過した後に前記液体容器に液体を供給するようにしたことを要旨とする。
請求項1に係る発明によれば、液体容器中の液体の初期温度が高い場合であっても、冷却回路の冷媒圧力が低下してから液体容器へ液体を供給するので、圧縮機のモーターに過電流が流れることがなく、該圧縮機の運転が停止してしまうことがない。
In order to solve the problem and achieve the intended object, the invention according to claim 1
A compressor that compresses the refrigerant, a condenser that condenses the refrigerant from the compressor, expansion means for volume expansion of the refrigerant from the condenser, and an evaporator that performs heat exchange with the refrigerant from the expansion means, In the operation method of the cooling system comprising a liquid container for storing the liquid to be cooled by the evaporator,
The gist of the invention is that the compressor is started to start the cooling operation, and the liquid is supplied to the liquid container after a required time has elapsed from the start of the cooling operation.
According to the first aspect of the present invention, even when the initial temperature of the liquid in the liquid container is high, the liquid is supplied to the liquid container after the refrigerant pressure in the cooling circuit is lowered. An overcurrent does not flow and the operation of the compressor is not stopped.

請求項2に記載の発明では、前記液体容器への液体の供給を徐々に増大させるようにしたことを要旨とする。
請求項2に係る発明によれば、液体容器中の液体の温度がかなり高い場合であっても、液体容器への液体の供給が徐々に増大されるので圧縮機のモーターに過電流が流れることがなく、該圧縮機の運転が停止してしまうことがない。
The gist of the invention described in claim 2 is that the supply of the liquid to the liquid container is gradually increased.
According to the second aspect of the present invention, even when the temperature of the liquid in the liquid container is considerably high, the supply of liquid to the liquid container is gradually increased, so that an overcurrent flows through the motor of the compressor. The compressor will not stop operating.

請求項3に記載の発明では、前記液体容器または該液体容器中の液体の温度が予め設定した閾値以下になってから、該液体容器への液体の供給を徐々に増大させるようにしたことを要旨とする。
請求項3に係る発明によれば、液体容器中の液体の温度が極めて高い場合であっても、液体容器または該液体容器中の液体の温度が所定値以下になってから、該液体容器へ液体を徐々に供給するので、圧縮機のモーターに過電流が流れることがなく、該圧縮機の運転が停止してしまうことがない。
In the invention according to claim 3, the supply of the liquid to the liquid container is gradually increased after the temperature of the liquid container or the liquid in the liquid container falls below a preset threshold value. The gist.
According to the invention of claim 3, even when the temperature of the liquid in the liquid container is extremely high, the liquid container or the temperature of the liquid in the liquid container becomes equal to or lower than a predetermined value before the liquid container Since the liquid is gradually supplied, no overcurrent flows through the motor of the compressor, and the operation of the compressor is not stopped.

本発明によれば、オーガ式製氷機の冷却シリンダのような液体容器に存在する液体の初期温度が高い場合であっても、冷凍回路の冷媒圧力が低下してから該液体容器へ液体を供給することにより、圧縮機に過負荷電流が流れて停止する不都合な事態を防ぐことができる。   According to the present invention, even when the initial temperature of the liquid existing in the liquid container such as the cooling cylinder of the auger type ice making machine is high, the liquid is supplied to the liquid container after the refrigerant pressure in the refrigeration circuit is lowered. By doing so, it is possible to prevent an inconvenient situation where an overload current flows through the compressor and stops.

本発明の実施例1に係る冷却系の運転方法を実施した場合におけるオーガ式製氷機の運転状況を示すタイムチャートである。It is a time chart which shows the operating condition of the auger type ice making machine at the time of implementing the operating method of the cooling system which concerns on Example 1 of this invention. 図7に示すオーガ式製氷機における従来の運転状況を示すタイムチャートである。It is a time chart which shows the conventional driving | running state in the auger type ice making machine shown in FIG. 本発明の実施例2に係る冷却系の運転方法を示すタイムチャートである。It is a time chart which shows the operating method of the cooling system which concerns on Example 2 of this invention. 本発明の実施例1に係る冷却系の運転方法に内在する欠点を示すタイムチャートである。It is a time chart which shows the fault inherent in the operating method of the cooling system concerning Example 1 of the present invention. 本発明の実施例3に係る冷却系の運転方法を示すタイムチャートである。It is a time chart which shows the operating method of the cooling system which concerns on Example 3 of this invention. 本発明の実施例2に係る冷却系の運転方法に内在する欠点を示すタイムチャートである。It is a time chart which shows the fault inherent in the operating method of the cooling system concerning Example 2 of the present invention. 冷却シリンダに液体が存在するオーガ式製氷機の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the auger type ice making machine in which the liquid exists in a cooling cylinder.

次に、本発明に係る冷却系の運転方法につき、好適な実施例を挙げて図面を参照して説明する。なお、冷却系の運転方法が適用される冷却装置としては、図7で説明したオーガ式製氷機を例示するが、製氷水を貯留するタンクを備えて、水皿から製氷室へ製氷水を供給する所謂クローズドセル式の製氷機や、前記水皿を有しない所謂オープンセル式の製氷機であってもよい。すなわち、本発明において冷却されるべき液体を貯留する液体容器は、オーガ式製氷機では冷却シリンダであり、またクローズドセル式やオープンセル式の製氷機では製氷水タンクがこれに該当する。更には、液体容器の外周(または内周)に蒸発管を密着させて該容器中の液体を冷却すると共に、この冷却液体に浸漬したコイル状の蛇管に飲料を通過させて冷却する冷却飲料ディスペンサにあっては、前記蛇管を収容している前記液体容器がそれに該当する。   Next, the operation method of the cooling system according to the present invention will be described with reference to the drawings with preferred embodiments. The cooling system to which the cooling system operation method is applied is exemplified by the auger type ice making machine described with reference to FIG. 7, but a tank for storing ice making water is provided and ice making water is supplied from the water tray to the ice making room. The so-called closed cell type ice making machine or the so-called open cell type ice making machine not having the water tray may be used. That is, the liquid container for storing the liquid to be cooled in the present invention is a cooling cylinder in an auger type ice making machine, and an ice making water tank in a closed cell type or open cell type ice making machine. Further, a cooling beverage dispenser that cools the liquid in the container by bringing the evaporation tube into close contact with the outer periphery (or inner periphery) of the liquid container and allowing the beverage to pass through the coiled serpentine immersed in the cooling liquid. In that case, the liquid container containing the serpentine tube corresponds to this.

〔実施例1〕
本発明の実施例1に係る冷却系の運転方法を、図1のタイムチャートを参照して説明する。先に図2に関して説明したように、従来は冷凍回路16の圧縮機32を起動するに際し、冷却シリンダ14には既に水が存在している状態であった。しかし、実施例1に係る発明では、図1に示す如く、前記オーガ式製氷機10の運転を立ち上げて圧縮機32を始動する際には、前記冷却シリンダ14に水は供給しないで空にしておく。すると、前記冷却シリンダ14中には水がないので、前記圧縮機32の始動により開始された冷却運転により、該冷却シリンダ14は前記蒸発器18により徐々に冷却されて行くが、冷却負荷は極めて軽い状態になる。そして、前記圧縮機32の起動後に所要時間が経過し、前記冷凍回路16の冷媒圧力が低下した段階で、図1に示す如く冷却シリンダ14中へ液体リザーバー21から水を供給する。なお、図7に示すように、前記冷却シリンダ14の開口20と前記液体リザーバー21とを連通する供給管22には、制御回路により開閉制御がなされる開閉弁41が配設されている。
[Example 1]
The cooling system operating method according to the first embodiment of the present invention will be described with reference to the time chart of FIG. As described above with reference to FIG. 2, conventionally, when the compressor 32 of the refrigeration circuit 16 is started, water is already present in the cooling cylinder 14. However, in the invention according to the first embodiment, as shown in FIG. 1, when the operation of the auger type ice making machine 10 is started and the compressor 32 is started, water is not supplied to the cooling cylinder 14 but is emptied. Keep it. Then, since there is no water in the cooling cylinder 14, the cooling cylinder 14 is gradually cooled by the evaporator 18 by the cooling operation started by starting the compressor 32, but the cooling load is extremely high. It becomes light. Then, when the required time elapses after the compressor 32 is started and the refrigerant pressure in the refrigeration circuit 16 is lowered, water is supplied from the liquid reservoir 21 into the cooling cylinder 14 as shown in FIG. As shown in FIG. 7, the supply pipe 22 that communicates the opening 20 of the cooling cylinder 14 and the liquid reservoir 21 is provided with an open / close valve 41 that is controlled to open and close by a control circuit.

このように、冷凍回路16の圧縮機32を先に起動し、該冷凍回路16における冷媒圧力が所定の値にまで下がるに必要な時間(所定時間)が過ぎた後に、前記開閉弁41を開放して前記冷却シリンダ14に水を供給する。すなわち、冷凍回路16における冷媒の圧力を低下させておくことで、図1に示す如く、前記圧縮機32を駆動するモーターの電流値は順調に低下し、該圧縮機32を駆動してから所定時間を経過した時点でも、過電流の閾値に到達しないので該圧縮機32が停止することはない。また、所定時間後に前記開閉弁41が開放して冷却シリンダ14へ水を供給し始めると、前記圧縮機32の電流値は若干上昇する。しかし、冷却シリンダ14は既に蒸発器18により冷却されているために、該冷却シリンダ14に供給された水は直ちに温度降下するため、冷凍回路16の冷媒圧力も低くなり、従って圧縮機32の電流値は再び下降し始める。すなわち、図1に示す冷却系の運転制御を行うことにより、冷却シリンダ14に流入した水の初期温度が高くても、前記冷凍回路16における冷媒圧力は順調に低くなるので、圧縮機32の負荷が大きくなって過電流により該圧縮機32の運転が停止してしまう、という不都合が好適に解消される。このため圧縮機32として大容量のものを使用する必要がなくなり、製造コストおよび消費電力を節減できて経済的である。   Thus, the compressor 32 of the refrigeration circuit 16 is started first, and after the time (predetermined time) necessary for the refrigerant pressure in the refrigeration circuit 16 to drop to a predetermined value has passed, the on-off valve 41 is opened. Then, water is supplied to the cooling cylinder 14. That is, by decreasing the refrigerant pressure in the refrigeration circuit 16, the current value of the motor that drives the compressor 32 decreases smoothly as shown in FIG. Even after a lapse of time, the compressor 32 does not stop because the overcurrent threshold is not reached. Further, when the on-off valve 41 opens after a predetermined time and begins to supply water to the cooling cylinder 14, the current value of the compressor 32 slightly increases. However, since the cooling cylinder 14 has already been cooled by the evaporator 18, the water supplied to the cooling cylinder 14 immediately drops in temperature, so that the refrigerant pressure in the refrigeration circuit 16 also decreases, and therefore the current of the compressor 32 is reduced. The value starts to fall again. That is, by performing the operation control of the cooling system shown in FIG. 1, the refrigerant pressure in the refrigeration circuit 16 steadily decreases even when the initial temperature of the water flowing into the cooling cylinder 14 is high. The problem that the operation of the compressor 32 is stopped due to overcurrent due to overcurrent is preferably solved. For this reason, it is not necessary to use a large-capacity compressor 32, and the manufacturing cost and power consumption can be reduced, which is economical.

〔実施例2〕
先に説明した実施例1の発明は優れた技術であるが、前記冷却シリンダ14に供給される水の初期温度がかなり高い場合は、圧縮機32の起動に対し所定時間を置いて水を供給する時間差制御を行っても、前記冷凍回路16の冷媒圧力が充分低下せず、該圧縮機32が過電流検知により停止してしまうことがある。すなわち、実施例1の発明を実施する際に、水温がかなり高めの場合は、図4に示すように、冷却シリンダ14へ時間差をもって水を供給しても、冷凍回路16における冷媒圧力は期待する程には低下せず、圧縮機32のモーターに流れる過電流が閾値を超えて停止してしまう。
[Example 2]
The invention of the first embodiment described above is an excellent technique, but when the initial temperature of the water supplied to the cooling cylinder 14 is considerably high, the water is supplied after a predetermined time from the start of the compressor 32. Even if the time difference control is performed, the refrigerant pressure in the refrigeration circuit 16 may not be sufficiently reduced, and the compressor 32 may stop due to overcurrent detection. That is, when the invention of the first embodiment is implemented, if the water temperature is considerably high, the refrigerant pressure in the refrigeration circuit 16 is expected even if water is supplied to the cooling cylinder 14 with a time difference as shown in FIG. The overcurrent flowing through the motor of the compressor 32 exceeds the threshold and stops.

実施例2に係る発明は、このような場合に対処するべく提案されたものであって、実施例1と同じく圧縮機32の起動に対し所定時間遅れて冷却シリンダ14へ水を供給することは同じである。しかし、図3に示すように、前記圧縮機32を起動した後に時間差をもって前記冷却シリンダ14へ水を供給するが、その水の供給態様としては、決められた時間毎に前記冷却シリンダ14への水の供給を段階的に増大させるようにする。この水量を徐々に多くする手段としては、前記開閉弁41の開閉動作の頻度や、該開閉弁41における開放時間の長短を制御回路(図示せず)により制御することが提案される。更に、供給水量の増大は段階的に行っても、線形または2次曲線的に推移させてもよい。   The invention according to the second embodiment has been proposed to cope with such a case, and as in the first embodiment, the water is supplied to the cooling cylinder 14 with a predetermined time delay from the start of the compressor 32. The same. However, as shown in FIG. 3, water is supplied to the cooling cylinder 14 with a time difference after the compressor 32 is started. As a water supply mode, the water is supplied to the cooling cylinder 14 every predetermined time. Increase the water supply step by step. As means for gradually increasing the amount of water, it is proposed to control the frequency of the opening / closing operation of the opening / closing valve 41 and the length of the opening / closing time of the opening / closing valve 41 by a control circuit (not shown). Further, the amount of water supply may be increased stepwise, or may be changed linearly or with a quadratic curve.

すなわち実施例2では、図3に示すように、圧縮機32の起動後に所定の時間差をもって前記冷却シリンダ14へ水を供給するが、これによる水の供給を一挙に立ち上げるのでなく、段階的に行うようにすることで、冷凍回路16の冷却負荷が少しずつ大きくなる(一挙に大きくなるのでなく)ように制御する。これにより圧縮機32におけるモーターの電流値は、図3に示すように前記水の段階的な供給に呼応して変動はするが、図中の水平な一点鎖線で示す過電流にまでは達することがない。従って、圧縮機32のモーターが過電流検出により停止することがない。   That is, in the second embodiment, as shown in FIG. 3, water is supplied to the cooling cylinder 14 with a predetermined time difference after the compressor 32 is started. By doing so, the cooling load of the refrigeration circuit 16 is controlled to increase little by little (not to increase at once). As a result, the current value of the motor in the compressor 32 fluctuates in response to the stepwise supply of water as shown in FIG. 3, but reaches the overcurrent indicated by the horizontal alternate long and short dash line in the figure. There is no. Therefore, the motor of the compressor 32 does not stop due to overcurrent detection.

〔実施例3〕
前述した実施例2の発明も優れた技術であるが、前記冷却シリンダ14に流入する水の初期温度が極めて高い場合には、図3で説明した運転方法を行っても冷凍回路16の冷媒圧力の低下が追い付かず圧縮機32が過電流検出により停止してしまうことがあった。例えば、図6に示すように実施例2の運転方法を実施しても、冷却シリンダ14における水の初期温度が極めて高い場合には、前記圧縮機32の起動後に時間差をもって徐々に供給する度に冷却シリンダ14内の水温が上がるため、全体として水温がなかなか低下せず、このため冷凍回路16の冷媒圧力が充分に下がらないで前記圧縮機32のモーターに過電流が流れ、該圧縮機32が停止してしまう。
Example 3
The invention of the second embodiment described above is also an excellent technique. However, when the initial temperature of the water flowing into the cooling cylinder 14 is extremely high, the refrigerant pressure of the refrigeration circuit 16 can be obtained even if the operation method described in FIG. However, the compressor 32 may stop due to overcurrent detection. For example, even if the operation method of the second embodiment is performed as shown in FIG. 6, when the initial temperature of water in the cooling cylinder 14 is extremely high, every time the compressor 32 is started up, it is gradually supplied with a time difference. Since the water temperature in the cooling cylinder 14 rises, the water temperature as a whole does not decrease easily. Therefore, the refrigerant pressure in the refrigeration circuit 16 does not sufficiently decrease, and an overcurrent flows to the motor of the compressor 32. It will stop.

実施例3に係る発明は、このような場合に対処するべく提案されたものであって、前記蒸発器18により冷却される冷却シリンダ14の温度または該冷却シリンダ14に貯留される水の温度を図示しない温度検知手段により検知し、当該検知温度が所定値にまで下がったら、図5に示すように、前記開閉弁41を開閉制御して水の供給を徐々に増大させて、冷凍回路16の冷却負荷が少しずつ大きくなるよう制御するものである。これにより、前記冷却シリンダ14に流入する水の初期水温が極めて高い場合であっても、予め該冷却シリンダ14または水の温度を温度検知手段により検出しているために、該冷却シリンダ14は充分に冷却されているために段階的に流入する水は直ちに冷却されるため、前記圧縮機32の容量を大きなものに換装する必要がなく経済的である。   The invention according to the third embodiment is proposed to cope with such a case, and the temperature of the cooling cylinder 14 cooled by the evaporator 18 or the temperature of the water stored in the cooling cylinder 14 is determined. When detected by a temperature detection means (not shown) and the detected temperature falls to a predetermined value, as shown in FIG. The cooling load is controlled to increase gradually. Thereby, even when the initial water temperature of the water flowing into the cooling cylinder 14 is extremely high, the temperature of the cooling cylinder 14 or water is detected by the temperature detecting means in advance, so that the cooling cylinder 14 is sufficiently Since the water flowing in stepwise is cooled immediately because it is cooled, it is economical because it is not necessary to replace the capacity of the compressor 32 with a larger one.

14 液体容器(冷却シリンダ),18 蒸発器,32 圧縮機,34 凝縮器,
36 膨張手段
14 liquid containers (cooling cylinders), 18 evaporators, 32 compressors, 34 condensers,
36 Expansion means

Claims (3)

冷媒を圧縮する圧縮機(32)と、前記圧縮機(32)からの冷媒を凝縮する凝縮器(34)と、前記凝縮器(34)からの冷媒を体積膨張させる膨張手段(36)と、前記膨張手段(36)からの冷媒により熱交換を行う蒸発器(18)と、前記蒸発器(18)により冷却されるべき液体を貯留する液体容器(14)とからなる冷却系の運転方法において、
前記圧縮機(32)を起動させて冷却運転を開始し、前記冷却運転の開始から所要時間が経過した後に前記液体容器(14)に液体を供給するようにした
ことを特徴とする冷却系の運転方法。
A compressor (32) for compressing the refrigerant, a condenser (34) for condensing the refrigerant from the compressor (32), and an expansion means (36) for volume expansion of the refrigerant from the condenser (34), In an operating method of a cooling system comprising an evaporator (18) that exchanges heat with refrigerant from the expansion means (36), and a liquid container (14) that stores liquid to be cooled by the evaporator (18). ,
A cooling system, wherein the compressor (32) is started to start a cooling operation, and a liquid is supplied to the liquid container (14) after a lapse of a required time from the start of the cooling operation. how to drive.
前記液体容器(14)への液体の供給を徐々に増大させるようにした請求項1記載の冷却系の運転方法。   The method of operating a cooling system according to claim 1, wherein the supply of liquid to the liquid container (14) is gradually increased. 前記液体容器(14)または該液体容器(14)中の液体の温度が予め設定した閾値以下になってから、該液体容器(14)への液体の供給を徐々に増大させるようにした請求項1または2に記載の冷却系の運転方法。   The supply of liquid to the liquid container (14) is gradually increased after the temperature of the liquid in the liquid container (14) or the liquid container (14) falls below a preset threshold value. The operation method of the cooling system according to 1 or 2.
JP2016209820A 2016-10-26 2016-10-26 Method of operating cooling system Pending JP2018071847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209820A JP2018071847A (en) 2016-10-26 2016-10-26 Method of operating cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209820A JP2018071847A (en) 2016-10-26 2016-10-26 Method of operating cooling system

Publications (1)

Publication Number Publication Date
JP2018071847A true JP2018071847A (en) 2018-05-10

Family

ID=62111552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209820A Pending JP2018071847A (en) 2016-10-26 2016-10-26 Method of operating cooling system

Country Status (1)

Country Link
JP (1) JP2018071847A (en)

Similar Documents

Publication Publication Date Title
KR20180002613A (en) Ice-maker with reversing condenser fan motor to maintain clean condenser
JP5594425B2 (en) Refrigeration equipment
JP5962054B2 (en) Auger ice machine and cooling system
JP2009121768A (en) Automatic ice making machine and control method for it
JP6767097B2 (en) Ice machine
JP7162339B2 (en) refrigerator
KR20110126313A (en) Refrigerant pipe and auger-type icemachine for using the same
JP5448618B2 (en) Ice machine
KR101507037B1 (en) Ice dispenser Housing for use of ice maker
JP2018071847A (en) Method of operating cooling system
JP7007573B2 (en) Ice making system
JP5052201B2 (en) Automatic ice maker and operation method of automatic ice maker
KR101094804B1 (en) Water purifier
EP3904789B1 (en) Operation control method for ice maker
JPH094950A (en) Auger type icemaker
WO2011004702A1 (en) Ice making machine
JP2002372349A (en) Auger type ice maker
JP2008101853A (en) Auger type ice making machine
JP5254098B2 (en) Ice machine
JP5219356B2 (en) Cold water supply device
JP2002323278A (en) Protection apparatus of auger type ice making machine
KR20190036943A (en) Cooling apparatus for ice maker and ice maker having the same
KR101716138B1 (en) A drinking water cooler and a method of controlling the drinking water cooler
JP4428524B2 (en) Dispenser
JP2006238704A (en) Device for making frozen confectionery