JP2018071833A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2018071833A
JP2018071833A JP2016209030A JP2016209030A JP2018071833A JP 2018071833 A JP2018071833 A JP 2018071833A JP 2016209030 A JP2016209030 A JP 2016209030A JP 2016209030 A JP2016209030 A JP 2016209030A JP 2018071833 A JP2018071833 A JP 2018071833A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
storage material
cooling element
enclosing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016209030A
Other languages
Japanese (ja)
Inventor
西村 健
Takeshi Nishimura
健 西村
淳 安部井
Atsushi Abei
淳 安部井
章太 茶谷
Shota Chatani
章太 茶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016209030A priority Critical patent/JP2018071833A/en
Publication of JP2018071833A publication Critical patent/JP2018071833A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger capable of exhibiting high heat storage performance by suitably securing adhesion between a sealing part for storing a heat storage material or a cold storage material and a cooling element.SOLUTION: A heat exchanger 10 has: a cooling element 11 in which heat radiation occurs on one heat radiation surface 11B by flowing a current and cooling occurs on the other heat absorption surface 11A; a cold storage material sealing part 12 having a cold storage material storage part 16 in which a cold storage material 18 for storing cold heat of the cooling element 11 is stored inside, provided by coming into contact with the heat absorption surface 11A of the cooling element 11, and cooled by the cooling element 11; a heat radiation plate 13 provided by coming into contact with the heat radiation surface 11B of the cooling element 11 on the opposite side from the cold storage material sealing part 12, and for heating the air flowing in the periphery based on the heat transmitted from the cooling element 11; and a bolt 19 functioning as an adhesion improving part for improving adhesion between the cold storage material sealing part 12 and the heat radiation plate 13.SELECTED DRAWING: Figure 1

Description

本開示は、熱交換器に関する。   The present disclosure relates to a heat exchanger.

従来、冷熱素子を利用して蓄熱材への蓄熱、または蓄冷材への蓄冷を行い、蓄熱材または蓄冷材に蓄えられた温熱または冷熱を放出して、周囲を流れる空気を加熱または冷却する熱交換器が知られている。このような熱交換器について、例えば特許文献1には、冷却フィンを備える放熱板と、蓄冷体が載置される吸熱板との間に冷熱素子を挟着した構造が記載されている。   Conventionally, heat is stored in a heat storage material using a refrigeration element or stored in a cold storage material, and the heat or cold stored in the heat storage material or the cold storage material is released to heat or cool the air flowing around An exchanger is known. Regarding such a heat exchanger, for example, Patent Document 1 describes a structure in which a cooling element is sandwiched between a heat radiating plate having cooling fins and a heat absorbing plate on which a cool storage body is placed.

特開平2−25672号公報Japanese Patent Laid-Open No. 2-25672

特許文献1に記載の熱交換器では、蓄冷体は、薄肉のビニールシートなどで成形された容器の内部に蓄冷材が収容されたものであり、吸熱板に載置されているに過ぎず、面圧がかけられた状態で取り付けられたものではない。そのため、蓄冷体と、吸熱板を介した冷熱素子との間の密着性が低く、高い蓄冷性能を発揮することができない。   In the heat exchanger described in Patent Document 1, the regenerator is one in which a regenerator material is housed inside a container formed of a thin vinyl sheet or the like, and is merely placed on a heat absorption plate, It was not installed with surface pressure applied. Therefore, the adhesiveness between the cold storage body and the cooling element via the heat absorption plate is low, and high cold storage performance cannot be exhibited.

本開示は、蓄熱材または蓄冷材を収容する封入部と、冷熱素子との密着性を好適に確保することで高い蓄熱性能を発揮できる熱交換器を提供することを目的とする。   An object of this indication is to provide the heat exchanger which can exhibit high heat storage performance by ensuring the adhesion nature of the enclosing part which stores a heat storage material or a cold storage material, and a cold storage element suitably.

本開示は、熱交換器(10,10A,20,30)であって、電流を流すことによって一方の面(11B)で放熱が生じ、他方の面(11A)で冷却が生じる冷熱素子(11)と、内部に前記冷熱素子の温熱を蓄熱するための蓄熱材または前記冷熱素子の冷熱を蓄冷するための蓄冷材(18)のいずれか一方が収容される収容部(16,26)を有し、前記冷熱素子のいずれかの1つの面と接触して設けられ、前記冷熱素子によって放熱または冷却される封入部(12)と、前記封入部とは反対側の前記冷熱素子の面と接触して設けられ、前記冷熱素子から伝達される冷熱または温熱に基づき、周囲を流れる空気を冷却または加熱する熱放射部(13)と、前記封入部と前記熱放射部との密着性を高める密着性向上部(19,31)と、を備える熱交換器である。   The present disclosure relates to a heat exchanger (10, 10A, 20, 30), in which a heat-generating element (11) that generates heat on one surface (11B) and cools on the other surface (11A) by passing an electric current. ) And a storage part (16, 26) in which either one of the heat storage material for storing the heat of the cooling element or the cold storage material (18) for storing the cold energy of the cooling element is stored. And a sealing portion (12) provided in contact with any one surface of the cooling element and dissipated or cooled by the cooling element, and a surface of the cooling element opposite to the sealing portion. And a heat radiation part (13) that cools or heats the air flowing around based on the cold or heat transmitted from the cold element, and the adhesion that enhances the adhesion between the sealed part and the heat radiation part And improvement department (19, 31) That is a heat exchangers.

この構成により、封入部と熱放射部との密着性を高めることで、両者により挟持される冷熱素子と、封入部及び熱放射部との密着性も向上させることができ、この結果、蓄熱材を収容する封入部と、冷熱素子との密着性を好適に確保することで高い蓄熱性能を発揮できる。   With this configuration, the adhesion between the encapsulating part and the heat radiating part can be improved by improving the adhesion between the encapsulating part and the heat radiating part. As a result, the heat storage material can be improved. High heat storage performance can be exhibited by suitably ensuring the adhesiveness between the enclosing portion for housing the heat and the cooling element.

本開示によれば、蓄熱材または蓄冷材を収容する封入部と、冷熱素子との密着性を好適に確保することで高い蓄熱性能を発揮できる熱交換器を提供することができる。   According to the present disclosure, it is possible to provide a heat exchanger that can exhibit high heat storage performance by suitably securing the adhesion between the encapsulating portion that stores the heat storage material or the cold storage material and the cooling element.

図1は、第1実施形態に係る熱交換器の概略構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of a heat exchanger according to the first embodiment. 図2は、第1実施形態の変形例の概略構成を示す図である。FIG. 2 is a diagram illustrating a schematic configuration of a modified example of the first embodiment. 図3は、第2実施形態に係る熱交換器の概略構成を示す図である。FIG. 3 is a diagram illustrating a schematic configuration of a heat exchanger according to the second embodiment. 図4は、図3の熱交換器の分解図である。FIG. 4 is an exploded view of the heat exchanger of FIG. 図5は、第3実施形態に係る熱交換器の概略構成を示す図である。FIG. 5 is a diagram illustrating a schematic configuration of a heat exchanger according to the third embodiment. 図6は、図5の熱交換器の分解図である。FIG. 6 is an exploded view of the heat exchanger of FIG.

以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。   Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

なお、以下の説明で用いる「温熱」とは、冷熱素子11の放熱面11Bにより発生され、加熱用フィン14に伝達されて放出されることにより、加熱用フィン14の周囲を流れる空気を加熱させることができる熱をいう。また、以下の説明で用いる「冷熱」とは、冷熱素子11の吸熱面11Aにより発生され、冷却用フィン15に伝達されて放出されることにより、冷却用フィン15の周囲を流れる空気を冷却させることができる熱をいう。また、「蓄熱性能」とは、上記の温熱を蓄熱材に蓄熱させるための能力と、上記の冷熱を蓄冷材18に蓄冷させるための能力の両者を包含するものとする。   The “warm heat” used in the following description is generated by the heat radiating surface 11B of the cooling element 11 and is transmitted to the heating fin 14 and released to heat the air flowing around the heating fin 14. The heat that can be. In addition, “cooling heat” used in the following description is generated by the heat absorbing surface 11A of the cooling element 11, transmitted to the cooling fins 15 and discharged, thereby cooling the air flowing around the cooling fins 15. The heat that can be. The “heat storage performance” includes both the ability to store the above-mentioned warm heat in the heat storage material and the ability to store the above-mentioned cold energy in the cold storage material 18.

また、以下の説明では、蓄冷材封入部12、冷熱素子11、及び放熱板13が積層される方向(図1の上下方向)を「積層方向」と表現し、この積層方向と直交し、加熱用フィン14及び冷却用フィン15が並ぶ方向(図1の左右方向)を「並列方向」と表現する。   Moreover, in the following description, the direction (vertical direction in FIG. 1) in which the regenerator material enclosing portion 12, the cooling element 11, and the heat radiating plate 13 are stacked is expressed as a “stacking direction”, and is orthogonal to the stacking direction. A direction in which the fins 14 for cooling and the fins 15 for cooling are arranged (the left-right direction in FIG. 1) is expressed as a “parallel direction”.

[第1実施形態]
図1を参照して第1実施形態を説明する。まず第1実施形態に係る熱交換器10の構成について説明する。図1に示されるように、第1実施形態に係る熱交換器10は、冷熱素子11と、蓄冷材封入部12(封入部)と、放熱板13(熱放射部)と、を備える。
[First Embodiment]
A first embodiment will be described with reference to FIG. First, the configuration of the heat exchanger 10 according to the first embodiment will be described. As shown in FIG. 1, the heat exchanger 10 according to the first embodiment includes a cooling element 11, a regenerator material enclosing unit 12 (encapsulating unit), and a heat radiating plate 13 (thermal radiating unit).

冷熱素子11は、電流を流すことによって一方の放熱面11Bで放熱が生じ、他方の吸熱面11Aで吸熱(冷却)が生じるというペルチェ効果を利用した電子素子である。本実施形態では、冷熱素子11の吸熱面11Aは、蓄冷材封入部12と面接触の状態で直接取り付けられ、冷熱素子11の放熱面11Bは、放熱板13と面接触の状態で直接取り付けられている。   The cooling element 11 is an electronic element that utilizes the Peltier effect in which heat is radiated on one heat radiating surface 11B and heat is absorbed (cooled) on the other heat absorbing surface 11A by passing an electric current. In this embodiment, the heat absorption surface 11A of the cooling element 11 is directly attached in a surface contact state with the regenerator material enclosing portion 12, and the heat radiation surface 11B of the cooling element 11 is directly attached in a surface contact state with the heat dissipation plate 13. ing.

蓄冷材封入部12は、冷熱素子11の吸熱面11Aに取り付けられ、冷熱素子11によって冷却され、冷熱が伝達される。蓄冷材封入部12は、その内部に冷熱素子11の冷熱を蓄熱するための蓄冷材18が収容される蓄冷材収容部16(収容部)を有する。蓄冷材封入部12には、冷熱素子11との接触面とは反対側(図1では積層方向の上側)の面に、複数の冷却用フィン15が並列方向に沿って所定間隔で並列に立設されている。冷却用フィン15のそれぞれは、積層方向に沿って延在するよう形成されている。   The regenerator material enclosing unit 12 is attached to the heat absorption surface 11A of the cooling element 11 and is cooled by the cooling element 11 to transmit cold heat. The regenerator material enclosing unit 12 has a regenerator material accommodating unit 16 (accommodating unit) in which a regenerator material 18 for accumulating the cold heat of the cold element 11 is accommodated. A plurality of cooling fins 15 stand in parallel at predetermined intervals along the parallel direction on the surface opposite to the contact surface with the cooling element 11 (upper side in the stacking direction in FIG. 1). It is installed. Each of the cooling fins 15 is formed so as to extend along the stacking direction.

蓄冷材18は、冷熱を拡散又は吸収して固体とゲルと液体との間を相変化する相変化材料である。このような相変化材料の成分としては、相変化温度が比較的安定しており、20℃乃至60℃で液相に相変化する成分、例えばパラフィン(融点−12乃至44℃)、塩化カルシウム水和物(融点29.7℃)、硫酸ナトリウム水和物(融点32.4℃)、チオ硫酸ナトリウム水和物(融点48℃)、酢酸ナトリウム水和物(融点58℃)等があるが、被冷却体の熱保有温度に応じてこれらの成分の中から適宜選択される。これらの成分の融点を微調整する目的でこれらの成分に適宜の調整剤を添加することができる。   The cold storage material 18 is a phase change material that changes phase between solid, gel, and liquid by diffusing or absorbing cold heat. Components of such a phase change material include components that have a relatively stable phase change temperature and change into a liquid phase at 20 ° C. to 60 ° C., for example, paraffin (melting point −12 to 44 ° C.), calcium chloride water Japanese hydrate (melting point 29.7 ° C.), sodium sulfate hydrate (melting point 32.4 ° C.), sodium thiosulfate hydrate (melting point 48 ° C.), sodium acetate hydrate (melting point 58 ° C.), etc. The component is appropriately selected from these components according to the heat holding temperature of the object to be cooled. For the purpose of finely adjusting the melting point of these components, an appropriate adjusting agent can be added to these components.

放熱板13は、冷熱素子11の放熱面11Bに取り付けられ、冷熱素子11によって加熱され、温熱が伝達される。放熱板13には、冷熱素子11との接触面と反対側(図1では積層方向の下側)の面に、複数の加熱用フィン14が並列方向に沿って所定間隔で並列に立設されている。加熱用フィン14のそれぞれは、積層方向に沿って延在するよう形成されている。   The heat radiating plate 13 is attached to the heat radiating surface 11B of the cooling / heating element 11 and is heated by the cooling / heating element 11 to transmit the heat. On the heat radiating plate 13, a plurality of heating fins 14 are erected in parallel at predetermined intervals along the parallel direction on the surface opposite to the contact surface with the cooling element 11 (lower side in the stacking direction in FIG. 1). ing. Each of the heating fins 14 is formed so as to extend along the stacking direction.

蓄冷材封入部12、放熱板13、加熱用フィン14、冷却用フィン15は、例えばアルミニウム等の熱伝導性材料で形成される。蓄冷材18は、相変化に応じて体積が変化するので、最大体積で蓄冷材封入部12が破壊することがないように、蓄冷材収容部16は、その内部容量が設定されている。   The cold storage material enclosing part 12, the heat radiating plate 13, the heating fins 14, and the cooling fins 15 are made of a heat conductive material such as aluminum, for example. Since the volume of the cold storage material 18 changes in accordance with the phase change, the internal capacity of the cold storage material accommodation unit 16 is set so that the cold storage material enclosure 12 does not break at the maximum volume.

そして、特に本実施形態では、蓄冷材封入部12、冷熱素子11、及び放熱板13は、この順番で積層された状態で、複数のボルト19(挿通部材、締結部材)によって、蓄冷材封入部12と放熱板13との積層方向の相対距離を一定に保持するよう締結されている。ボルト19は、放熱板13の加熱用フィン14の側から挿入され、放熱板13及び冷熱素子11を貫通して、蓄冷材封入部12に設けられるボルト孔12A(挿入孔)に挿入されて、蓄冷材封入部12と螺合する。ここで、「蓄冷材封入部12と放熱板13との相対距離」とは、蓄冷材封入部12及び放熱板13の対向面のなす隙間とも表現できる。この隙間に冷熱素子11が挟持されているので、相対距離を調整することによって、つまり、ボルト19の締結力や締結位置を調整することによって、冷熱素子11と、蓄冷材封入部12及び放熱板13との密着度合いを調整できる。   And especially in this embodiment, the cool storage material enclosure part 12, the cooling element 11, and the heat sink 13 are laminated | stacked in this order, and the cool storage material enclosure part by the some volt | bolt 19 (insertion member, fastening member). 12 and the heat sink 13 are fastened so as to keep the relative distance in the stacking direction constant. The bolt 19 is inserted from the side of the heating fin 14 of the heat radiating plate 13, penetrates the heat radiating plate 13 and the cooling element 11, and is inserted into a bolt hole 12 </ b> A (insertion hole) provided in the cold storage material enclosing portion 12. The cold storage material enclosure 12 is screwed together. Here, the “relative distance between the regenerator material enclosing part 12 and the heat sink 13” can also be expressed as a gap formed between the opposing surfaces of the regenerator material enclosing part 12 and the heat sink 13. Since the cooling element 11 is sandwiched in the gap, the cooling element 11, the regenerator material enclosing portion 12, and the radiator plate are adjusted by adjusting the relative distance, that is, by adjusting the fastening force and fastening position of the bolt 19. 13 can be adjusted.

蓄冷材収容部16の内部空間は、基本的には、冷熱素子11の吸熱面11Aの延在方向(図1では並列方向)と同方向に延在している。また、蓄冷材収容部16の内部空間は、ボルト19が蓄冷材封入部12の内部に挿入される部分(すなわちボルト孔12A)を避けて形成されている。図1の例では、蓄冷材封入部12の並列方向の中央部と両端の3か所にボルト孔12Aが設けられており、これらの位置において、蓄冷材収容部16は冷却用フィン15の側に凹んで形成されている。   The internal space of the cool storage material accommodation portion 16 basically extends in the same direction as the extending direction of the heat absorbing surface 11A of the cooling element 11 (parallel direction in FIG. 1). Further, the internal space of the regenerator material accommodating portion 16 is formed so as to avoid a portion where the bolt 19 is inserted into the regenerator material enclosing portion 12 (that is, the bolt hole 12A). In the example of FIG. 1, bolt holes 12 </ b> A are provided at three locations, ie, the central portion and both ends in the parallel direction of the regenerator material enclosing portion 12. It is formed to be recessed.

蓄冷材収容部16の内部空間には、蓄冷材封入部12の冷熱素子11との対向面側から蓄冷材収容部16の内部空間へ突出する複数の柱状体12Bが設けられている。これらの複数の柱状体12Bは、積層方向に沿って延在し、並列方向に沿って所定間隔で並設されている。さらに、蓄冷材収容部16の内部空間には、蓄冷材封入部12の冷却用フィン15側から蓄冷材収容部16の内部空間へ突出する複数の柱状体12Cが設けられている。これらの複数の柱状体12Cは、並列方向に沿った複数の柱状体12Bの各間隙の位置にて、積層方向に沿って延在している。つまり、柱状体12Bと柱状体12Cとは、並列方向に沿って交互に蓄冷材収容部16の内部空間へ突出している。蓄冷材収容部16の形状は、図1の紙面方向から視たときに、これらの柱状体12B及び柱状体12Cの隙間に形成される蛇行形状となる。このような蓄冷材収容部16の内部空間の形状を、本実施形態では「柱状構造」と呼ぶ。   A plurality of columnar bodies 12 </ b> B are provided in the internal space of the regenerator material accommodation unit 16 so as to protrude from the surface of the regenerator material enclosing unit 12 facing the cooling element 11 to the internal space of the regenerator material accommodation unit 16. The plurality of columnar bodies 12B extend along the stacking direction, and are arranged in parallel at a predetermined interval along the parallel direction. Furthermore, a plurality of columnar bodies 12 </ b> C projecting from the cooling fin 15 side of the regenerator material enclosure 12 to the internal space of the regenerator material container 16 are provided in the internal space of the regenerator material container 16. The plurality of columnar bodies 12C extend along the stacking direction at the positions of the gaps of the plurality of columnar bodies 12B along the parallel direction. That is, the columnar body 12 </ b> B and the columnar body 12 </ b> C protrude into the internal space of the regenerator material accommodation unit 16 alternately along the parallel direction. The shape of the regenerator material accommodating portion 16 is a meandering shape formed in the gap between the columnar body 12B and the columnar body 12C when viewed from the paper surface direction of FIG. Such a shape of the internal space of the regenerator material accommodating portion 16 is referred to as a “columnar structure” in the present embodiment.

蓄冷材収容部16には、柱状構造による蛇行形状に沿って、内部空間の全域に亘りインナフィン17が設置されている。   Inner fins 17 are installed in the regenerator material accommodating portion 16 over the entire inner space along a meandering shape of a columnar structure.

次に第1実施形態に係る熱交換器10の動作について説明する。冷熱素子11に電流が流れると、一方の放熱面11Bで放熱が生じ、他方の吸熱面11Aで吸熱(冷却)が生じる。本実施形態では、吸熱面11Aが蓄冷材封入部12に当接しているので、冷熱素子11の吸熱面11Aに生じた冷熱は、良伝熱性の蓄冷材封入部12を介して内部の蓄冷材収容部16に収容される蓄冷材18に伝達され、蓄冷材18に蓄冷される。   Next, the operation of the heat exchanger 10 according to the first embodiment will be described. When a current flows through the cooling element 11, heat is radiated on one heat radiating surface 11B, and heat is absorbed (cooled) on the other heat absorbing surface 11A. In this embodiment, since the heat absorption surface 11A is in contact with the cold storage material enclosing part 12, the cold generated on the heat absorption surface 11A of the cooling element 11 is transferred to the internal cold storage material via the good heat transfer cold storage material enclosure 12. It is transmitted to the regenerator material 18 accommodated in the accommodating part 16 and is regenerated in the regenerator material 18.

蓄冷材収容部16の蓄冷材18に蓄冷される冷熱によって冷却用フィン15が冷却される。そして、冷却用フィン15の間隙を流れる空気と、この冷却用フィン15との間で熱交換が行われ、冷却用フィン15から放出される冷熱によって空気が冷却されて、冷風が吹出される。   The cooling fins 15 are cooled by the cold heat stored in the cold storage material 18 of the cold storage material accommodation unit 16. Then, heat exchange is performed between the air flowing through the gaps between the cooling fins 15 and the cooling fins 15, the air is cooled by the cold heat released from the cooling fins 15, and cold air is blown out.

一方、冷熱素子11の放熱面11B側では、放熱面11Bが放熱板13に当接しているので、冷熱素子11の放熱面11Bに生じた温熱は、放熱板13を介して加熱用フィン14に伝達され、加熱用フィン14が加熱される。そして、加熱用フィン14の間隙を流れる空気と、この加熱用フィン14との間で熱交換が行われ、加熱用フィン14から放出される温熱によって空気が加熱されて、温風が吹出される。   On the other hand, since the heat radiating surface 11B is in contact with the heat radiating plate 13 on the heat radiating surface 11B side of the cooling element 11, the heat generated on the heat radiating surface 11B of the cooling element 11 is transferred to the heating fin 14 via the heat radiating plate 13. Then, the heating fins 14 are heated. Then, heat exchange is performed between the air flowing through the gap between the heating fins 14 and the heating fins 14, and the air is heated by the warm heat released from the heating fins 14, and hot air is blown out. .

次に第1実施形態に係る熱交換器10の効果について説明する。第1実施形態の熱交換器10は、電流を流すことによって一方の放熱面11Bで放熱が生じ、他方の吸熱面11Aで冷却が生じる冷熱素子11と、内部に冷熱素子11の冷熱を蓄冷するための蓄冷材18が収容される蓄冷材収容部16を有し、冷熱素子11の吸熱面11Aと接触して設けられ、冷熱素子11によって冷却される蓄冷材封入部12と、蓄冷材封入部12とは反対側の冷熱素子11の放熱面11Bと接触して設けられ、冷熱素子11から伝達される温熱に基づき、周囲を流れる空気を加熱する放熱板13と、蓄冷材封入部12と放熱板13との密着性を高める密着性向上部として機能するボルト19とを備える。ボルト19は、放熱板13を貫通して蓄冷材封入部12の内部に挿入されて、蓄冷材封入部12のボルト孔12Aと螺合して、放熱板13と蓄冷材封入部12との相対距離を一定に保持するよう締結する。   Next, the effect of the heat exchanger 10 according to the first embodiment will be described. The heat exchanger 10 according to the first embodiment stores a cold element 11 in which heat is radiated on one heat radiating surface 11B and cooled on the other heat absorbing surface 11A by passing an electric current, and cold heat of the chilled element 11 is stored inside. A regenerator material accommodating part 16 for accommodating the regenerator material 18 for the regenerator material, a regenerator material enclosing part 12 provided in contact with the heat absorption surface 11A of the cooler element 11 and cooled by the cooler element 11 12 is provided in contact with the heat radiating surface 11B of the cooling element 11 on the opposite side to the heat radiating plate 11 to heat the air flowing around based on the heat transmitted from the chilling element 11, and the regenerator enclosing portion 12 and the heat radiating A bolt 19 that functions as an adhesion improving portion that improves adhesion with the plate 13 is provided. The bolt 19 is inserted into the regenerator material enclosing part 12 through the heat dissipating plate 13, and is screwed into the bolt hole 12 </ b> A of the regenerator material enclosing part 12, so that the heat sink 13 and the regenerator material encapsulating part 12 are relative to each other. Fasten to keep the distance constant.

この構成により、蓄冷材封入部12と放熱板13との密着性を高めることで、両者により挟持される冷熱素子11と、蓄冷材封入部12及び放熱板13との密着性も向上させることができる。この結果、第1実施形態の熱交換器10は、蓄冷材18を収容する蓄冷材封入部12と、冷熱素子11との密着性を好適に確保することで高い蓄熱性能を発揮できる。さらに、蓄冷材封入部12と放熱板13との密着性を高める具体的手段としてボルト19の締結を利用するため、ボルト19の締結力や締結位置を調整することによって、冷熱素子11と、蓄冷材封入部12及び放熱板13との密着度合いを容易に調整することができ、蓄熱性能の調整を容易にできる。   With this configuration, by increasing the adhesion between the regenerator material enclosing part 12 and the heat radiating plate 13, it is possible to improve the adhesion between the cooling element 11 sandwiched between them, the regenerator material enclosing part 12 and the heat radiating plate 13. it can. As a result, the heat exchanger 10 of the first embodiment can exhibit high heat storage performance by suitably ensuring the adhesion between the cold storage element enclosing portion 12 that houses the cold storage material 18 and the cooling element 11. Furthermore, in order to use the fastening of the bolt 19 as a specific means for enhancing the adhesion between the regenerator material enclosing portion 12 and the heat radiating plate 13, by adjusting the fastening force and fastening position of the bolt 19, The degree of adhesion between the material enclosing part 12 and the heat radiating plate 13 can be easily adjusted, and the heat storage performance can be easily adjusted.

また、第1実施形態の熱交換器10では、蓄冷材収容部16は、ボルト19が蓄冷材封入部12の内部に挿入される部分であるボルト孔12Aを避けて形成される。この構成により、蓄冷材収容部16とボルト孔12Aの配置を積層方向に直列にすることなく一部重畳させることができるので、蓄冷材封入部12を冷熱素子11及び放熱板13と締結する領域を十分に確保できると共に、蓄冷材封入部12の厚型化を抑制できる。   Moreover, in the heat exchanger 10 of 1st Embodiment, the cool storage material accommodating part 16 is formed avoiding the bolt hole 12A which is a part in which the volt | bolt 19 is inserted in the inside of the cool storage material enclosure part 12. FIG. By this structure, since arrangement | positioning of the cool storage material accommodating part 16 and the bolt hole 12A can be partially overlapped without connecting in series with the lamination direction, the area | region which fastens the cool storage material enclosure part 12 with the cooling element 11 and the heat sink 13 Can be sufficiently secured, and the thickening of the regenerator material enclosing portion 12 can be suppressed.

また、第1実施形態の熱交換器10では、蓄冷材収容部16が上述した内柱構造である。この構成により、蓄冷材収容部16に収容する蓄冷材18の収容量を少なくでき、かつ、熱伝達性を良くすることができる。   Moreover, in the heat exchanger 10 of 1st Embodiment, the cool storage material accommodating part 16 is the inner pillar structure mentioned above. With this configuration, the amount of the regenerator material 18 accommodated in the regenerator material accommodation unit 16 can be reduced, and heat transfer performance can be improved.

また、第1実施形態の熱交換器10は、蓄冷材収容部16の内部にインナフィン17を備える。この構成により、蓄冷材収容部16の内部の熱伝達性を高めることができ、蓄冷に要する時間を短縮できる。   In addition, the heat exchanger 10 of the first embodiment includes an inner fin 17 inside the cold storage material accommodation unit 16. With this configuration, it is possible to improve the heat transferability inside the cold storage material accommodation unit 16 and to shorten the time required for cold storage.

[変形例]
図2を参照して第1実施形態の変形例を説明する。図1に示す第1実施形態の構成では、蓄冷材封入部12と冷却用フィン15とが一体的に形成される構造を例示したが、例えば図2に示すように、蓄冷材封入部12と冷却用フィン15とを別体としてもよい。図2の熱交換器10Aでは、蓄冷材封入部12の積層方向上側の面に吸熱板15Aが取り付けられ、この吸熱板15Aに冷却用フィン15が立設される。吸熱板15Aは、蓄冷材収容部16の蓄冷材18に蓄冷される冷熱を外部に放出すると共に、冷却用フィン15に伝達する。
[Modification]
A modification of the first embodiment will be described with reference to FIG. In the configuration of the first embodiment shown in FIG. 1, the structure in which the regenerator material enclosing part 12 and the cooling fins 15 are integrally formed is illustrated, but for example, as shown in FIG. The cooling fin 15 may be a separate body. In the heat exchanger 10A of FIG. 2, the heat absorption plate 15A is attached to the upper surface in the stacking direction of the regenerator material enclosing portion 12, and the cooling fins 15 are erected on the heat absorption plate 15A. The heat absorbing plate 15 </ b> A releases the cold heat stored in the cold storage material 18 of the cold storage material accommodation unit 16 to the outside and transmits it to the cooling fins 15.

このような構成をとる熱交換器10Aでも、第1実施形態の熱交換器10と同様にボルト19によって放熱板13と蓄冷材封入部12とを締結する構成をとるので、第1実施形態の熱交換器10と同様の効果を奏することができる。変形例の熱交換器10Aと第1実施形態の熱交換器10の構成を比較すると、第1実施形態の熱交換器10では、蓄冷材封入部12の積層方向上側の面が、図2に示す吸熱板15Aの機能を併せ持っているとも表現することができる。   Even in the heat exchanger 10A having such a configuration, the heat sink 10 and the cold storage material enclosing portion 12 are fastened by the bolts 19 as in the heat exchanger 10 of the first embodiment. The same effect as the heat exchanger 10 can be obtained. Comparing the configuration of the heat exchanger 10A of the modification and the heat exchanger 10 of the first embodiment, in the heat exchanger 10 of the first embodiment, the upper surface in the stacking direction of the regenerator material enclosing portion 12 is shown in FIG. It can also be expressed as having the function of the endothermic plate 15A shown.

また、上記の第1実施形態では、蓄冷材封入部12と放熱板13との密着性を高める密着性向上部として、ボルト19を締結する構成を例示したが、放熱板13を貫通して蓄冷材封入部12の内部に挿入され、放熱板13と蓄冷材封入部12との相対距離を一定に保持することができる何らかの他の挿通部材を適用することもできる。このような挿通部材としては、例えばリベットなどの圧入部品が挙げられる。   Moreover, in said 1st Embodiment, although the structure which fastens the volt | bolt 19 was illustrated as an adhesive improvement part which improves the adhesiveness of the cool storage material enclosure part 12 and the heat sink 13, it penetrated the heat sink 13 and stored cold. Any other insertion member that can be inserted into the material enclosing portion 12 and can keep the relative distance between the heat radiation plate 13 and the cool storage material enclosing portion 12 constant can also be applied. Examples of such an insertion member include press-fitting parts such as rivets.

[第2実施形態]
図3及び図4を参照して第2実施形態を説明する。図3に示すように、第2実施形態に係る熱交換器20は、蓄冷材封入部12に設けられるボルト孔12Aが、蓄冷材収容部26に連通する連通孔27である点、連通孔27に挿入されるボルト19が、連通孔27を封止する封止部材としても機能する点で、第1実施形態の熱交換器20と異なる。
[Second Embodiment]
A second embodiment will be described with reference to FIGS. 3 and 4. As shown in FIG. 3, in the heat exchanger 20 according to the second embodiment, the bolt hole 12 </ b> A provided in the regenerator material enclosing part 12 is a communication hole 27 that communicates with the regenerator material accommodating part 26. The bolt 19 inserted into the heat exchanger 20 differs from the heat exchanger 20 of the first embodiment in that it also functions as a sealing member that seals the communication hole 27.

第2実施形態の熱交換器20の組立工程では、図4に示すように、まずは蓄冷材封入部12の連通孔27のいずれかから、蓄冷材収容部26に蓄冷材18が充填される。このとき、複数の連通孔27があることにより、蓄冷材18の充填速度を促進できる。   In the assembly process of the heat exchanger 20 of the second embodiment, as shown in FIG. 4, first, the cold storage material 18 is filled into the cold storage material accommodation portion 26 from any one of the communication holes 27 of the cold storage material enclosure 12. At this time, due to the presence of the plurality of communication holes 27, the filling speed of the regenerator material 18 can be accelerated.

そして、蓄冷材18が充填された蓄冷材封入部12に対して、冷熱素子11及び放熱板13が積層配置され、ボルト19が放熱板13及び冷熱素子11を貫通して、蓄冷材封入部12の連通孔27の入口に形成されたボルト孔12Aと螺合して、蓄冷材封入部12、冷熱素子11及び放熱板13が一体的に締結される。また、ボルト19がボルト孔12Aと螺合することにより連通孔27が封止され、これにより蓄冷材18が蓄冷材収容部26に封止される。   And the cool storage element 11 and the heat sink 13 are laminated | stacked and arrange | positioned with respect to the cool storage material enclosure part 12 with which the cool storage material 18 was filled, the volt | bolt 19 penetrates the heat sink 13 and the cool element 11, and the cool storage material enclosure part 12 The cold storage material enclosing portion 12, the cooling element 11, and the heat radiating plate 13 are integrally fastened by screwing with a bolt hole 12A formed at the inlet of the communication hole 27. Further, when the bolt 19 is screwed into the bolt hole 12 </ b> A, the communication hole 27 is sealed, whereby the cool storage material 18 is sealed in the cool storage material accommodation portion 26.

このように、ボルト孔12Aを蓄冷材収容部26の連通孔27として、ボルト19を封止部材としても機能させることにより、蓄冷材18を蓄冷材収容部26の内部に収容して封止する機能と、蓄冷材封入部12を冷熱素子11及び放熱板13と締結させる機能とを、ボルト19及びボルト孔12Aで両立させることができる。これにより、部品点数を低減させることができ、蓄冷材封入部12の構造を簡易化でき、コストも低減できる。   Thus, by making the bolt hole 12 </ b> A function as the communication hole 27 of the regenerator material accommodation portion 26 and the bolt 19 also function as a sealing member, the regenerator material 18 is accommodated and sealed inside the regenerator material accommodation portion 26. The function and the function of fastening the regenerator material enclosing part 12 to the cooling element 11 and the heat sink 13 can be made compatible by the bolt 19 and the bolt hole 12A. Thereby, a number of parts can be reduced, the structure of the cool storage material enclosure part 12 can be simplified, and cost can also be reduced.

なお、複数のボルト孔12Aのすべてを連通孔27としなくてもよく、少なくとも1つが連通孔27であればよい。ただし、連通孔27が2以上ある場合には、1か所から蓄冷材18を注入する際に別の連通孔から空気を逃がすことができるので、蓄冷材18を内部に充填しやすくできる。これにより蓄冷材18の封入性を高めることができ、工数低減やコスト低減を図ることができる。   Note that not all of the plurality of bolt holes 12 </ b> A may be the communication holes 27, and at least one of the bolt holes 12 </ b> A may be the communication hole 27. However, when there are two or more communication holes 27, air can be released from another communication hole when the cool storage material 18 is injected from one place, so that the cool storage material 18 can be easily filled therein. Thereby, the enclosure property of the cool storage material 18 can be improved, and a man-hour reduction and cost reduction can be aimed at.

また、第2実施形態の熱交換器20も、第1実施形態の熱交換器10と同様にボルト19によって放熱板13と蓄冷材封入部12とを締結する構成をとるので、第1実施形態の熱交換器10と同様の効果を奏することができる。   Moreover, since the heat exchanger 20 of 2nd Embodiment also takes the structure which fastens the heat sink 13 and the cool storage material enclosure part 12 with the volt | bolt 19 similarly to the heat exchanger 10 of 1st Embodiment, 1st Embodiment The same effects as those of the heat exchanger 10 can be obtained.

なお、上記の第1,第2実施形態では、蓄冷材収容部16,26は、ボルト19が蓄冷材封入部12の内部に挿入される部分であるボルト孔12Aを避けて形成される構成を例示したが、蓄冷材収容部16,26がボルト孔12Aを避けない形状とすることもできる。この場合、蓄冷材収容部16,26とボルト孔12Aとは積層方向に重畳せずに直列に配置される。   In the first and second embodiments described above, the regenerator material accommodating portions 16 and 26 are configured so as to avoid the bolt holes 12 </ b> A that are portions where the bolts 19 are inserted into the regenerator material enclosing portion 12. Although illustrated, it can also be set as the shape where the cool storage material accommodating parts 16 and 26 do not avoid the bolt hole 12A. In this case, the cool storage material accommodating portions 16 and 26 and the bolt holes 12A are arranged in series without overlapping in the stacking direction.

[第3実施形態]
図5及び図6を参照して第3実施形態を説明する。図5に示すように、第3実施形態に係る熱交換器30は、蓄冷材封入部12と放熱板13との密着性を高める密着性向上部として、冷熱素子11、蓄冷材封入部12、放熱板13が積層された状態の外側に設けられ、冷熱素子11、蓄冷材封入部12、放熱板13の相対距離を一定に保持する外枠体31を用いる点で、第1実施形態の熱交換器10と異なる。
[Third Embodiment]
A third embodiment will be described with reference to FIGS. As shown in FIG. 5, the heat exchanger 30 according to the third embodiment includes a cooling element 11, a regenerator material enclosing unit 12, as an adhesion improving unit that increases the adhesion between the regenerator material enclosing unit 12 and the radiator plate 13. The heat of the first embodiment is provided in that the outer frame 31 is provided outside the heat sink 13 in a stacked state and keeps the relative distance of the cooling element 11, the regenerator material enclosing portion 12, and the heat sink 13 constant. Different from the exchanger 10.

第3実施形態の熱交換器30の組立工程では、図6に示すように、まずは蓄冷材封入部12、冷熱素子11及び放熱板13の順で積層配置されて積層体32が組み立てられ、これらの積層体32が外枠体31の開口から内部に収容される。外枠体31の積層方向の内径aは、冷熱素子11、蓄冷材封入部12、放熱板13が積層された積層体32の積層方向の寸法bより小さいことが好ましい。これにより、積層体32が外枠体31に収容された状態では、蓄冷材封入部12及び放熱板13が外枠体31から積層方向へ常時押圧され、これにより、蓄冷材封入部12及び放熱板13と、これらに挟持される冷熱素子11との密着度を高い状態で維持することができる。   In the assembly process of the heat exchanger 30 of the third embodiment, as shown in FIG. 6, first, the regenerator material enclosing part 12, the cooling element 11, and the heat radiating plate 13 are stacked in this order to assemble the laminate 32. The laminated body 32 is housed inside the opening of the outer frame body 31. The inner diameter a in the stacking direction of the outer frame body 31 is preferably smaller than the dimension b in the stacking direction of the stack 32 in which the cooling element 11, the regenerator material enclosing portion 12, and the heat dissipation plate 13 are stacked. Thereby, in the state where the laminated body 32 is accommodated in the outer frame body 31, the regenerator material enclosing part 12 and the heat radiating plate 13 are always pressed from the outer frame body 31 in the laminating direction. The degree of adhesion between the plate 13 and the cooling element 11 sandwiched between them can be maintained in a high state.

このように、第3実施形態の熱交換器30は、外枠体31によって第1実施形態と同様に蓄冷材封入部12と放熱板13との密着性を高めることができるので、第1実施形態の熱交換器10と同様の効果を奏することができる。   Thus, since the heat exchanger 30 of 3rd Embodiment can improve the adhesiveness of the cool storage material enclosure part 12 and the heat sink 13 similarly to 1st Embodiment by the outer frame 31, it is 1st implementation. The effect similar to the heat exchanger 10 of a form can be show | played.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。   The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

蓄冷材収容部16の内柱構造は、並列方向の全域に亘って配される必要はなく、一部に限定されてもよい。また、蓄冷材収容部16の内部空間を内柱構造以外の形状としてもよい。   The inner pillar structure of the regenerator material accommodation part 16 does not need to be arranged over the entire region in the parallel direction, and may be limited to a part. Moreover, it is good also considering the internal space of the cool storage material accommodating part 16 as shapes other than an inner pillar structure.

また、蓄冷材収容部16の内部にインナフィン17を設けない構成としてもよい。   Moreover, it is good also as a structure which does not provide the inner fin 17 in the inside of the cool storage material accommodating part 16. FIG.

上記実施形態では、冷熱素子11が蓄冷材封入部12を冷却して内部の蓄冷材18に蓄冷し、蓄冷材18に蓄えられた冷熱素子11の冷熱を利用して、冷却用フィン15の周囲を流れる空気を冷却する構成を例示したが、これと反対に空気を加熱する構成でもよい。この場合、蓄熱材封入部(上記実施形態の蓄冷材封入部12に相当)の内部には蓄冷材18の代わりに蓄熱材が収容される。また、冷熱素子11の放熱面11Bが蓄冷材封入部に当接され、冷熱素子11が蓄冷材封入部を加熱し、内部の蓄熱材を蓄熱し、蓄熱材に蓄えられた冷熱素子11の温熱を利用して、加熱用フィン(上記実施形態の冷却用フィン15に相当)の周囲を流れる空気を加熱する。一方、冷熱素子11の吸熱面11Aは吸熱板(上記実施形態の放熱板13に相当)に当接され、冷熱素子11の吸熱面11Aに生じた冷熱は、吸熱板を介して冷却用フィン(上記実施形態の加熱用フィン14に相当)伝達され、冷却用フィンの周囲を流れる空気を冷却する。この構成では、上記実施形態におけるボルト19などの密着性向上部は、蓄熱材封入部と吸熱板との密着性を高めるよう機能する。   In the above-described embodiment, the cooling element 11 cools the regenerator material enclosing portion 12 and stores it in the internal regenerator material 18, and uses the cold energy of the cooler element 11 stored in the regenerator material 18 to surround the cooling fin 15. Although the structure which cools the air which flows through was illustrated, the structure which heats air contrary to this may be sufficient. In this case, the heat storage material is housed in the heat storage material enclosure (corresponding to the cold storage material enclosure 12 of the above embodiment) instead of the cold storage material 18. Further, the heat radiation surface 11B of the cooling element 11 is brought into contact with the cold storage material enclosing part, the cooling element 11 heats the cold storage material enclosing part, stores the internal heat storage material, and the heat of the cooling element 11 stored in the heat storage material. Is used to heat the air flowing around the heating fin (corresponding to the cooling fin 15 of the above embodiment). On the other hand, the endothermic surface 11A of the cooling element 11 is brought into contact with an endothermic plate (corresponding to the radiator plate 13 in the above embodiment), and the cooling heat generated on the endothermic surface 11A of the cooling element 11 is cooled by a cooling fin ( The air that is transmitted and corresponds to the heating fins 14 in the above embodiment is cooled. In this configuration, the adhesion improving portion such as the bolt 19 in the above embodiment functions to improve the adhesion between the heat storage material enclosing portion and the heat absorbing plate.

10,10A,20,30:熱交換器
11:冷熱素子
11A:吸熱面
11B:放熱面
12:蓄冷材封入部(封入部)
12A:ボルト孔(挿通孔)
13:放熱板(熱放射部)
16,26:蓄冷材収容部(収容部)
18:蓄冷材
19:ボルト(密着性向上部、締結部材、挿通部材)
27:連通孔
31:外枠体(密着性向上部)
10, 10A, 20, 30: Heat exchanger 11: Cooling element 11A: Endothermic surface 11B: Heat radiation surface 12: Cold storage material enclosure (encapsulation part)
12A: Bolt hole (insertion hole)
13: Heat sink (heat radiation part)
16, 26: Cold storage material accommodation part (accommodation part)
18: Cold storage material 19: Bolt (adhesion improving part, fastening member, insertion member)
27: Communication hole 31: Outer frame (adhesion improving part)

Claims (9)

熱交換器(10,10A,20,30)であって、
電流を流すことによって一方の面(11B)で放熱が生じ、他方の面(11A)で冷却が生じる冷熱素子(11)と、
内部に前記冷熱素子の温熱を蓄熱するための蓄熱材または前記冷熱素子の冷熱を蓄冷するための蓄冷材(18)のいずれか一方が収容される収容部(16,26)を有し、前記冷熱素子のいずれかの1つの面と接触して設けられ、前記冷熱素子によって放熱または冷却される封入部(12)と、
前記封入部とは反対側の前記冷熱素子の面と接触して設けられ、前記冷熱素子から伝達される冷熱または温熱に基づき、周囲を流れる空気を冷却または加熱する熱放射部(13)と、
前記封入部と前記熱放射部との密着性を高める密着性向上部(19,31)と、
を備える熱交換器。
A heat exchanger (10, 10A, 20, 30),
A cooling element (11) in which heat is radiated on one surface (11B) and cooling is performed on the other surface (11A) by passing an electric current;
It has a storage part (16, 26) in which either one of the heat storage material for storing the heat of the cold element or the cold storage material (18) for storing the cold energy of the cold element is stored, An enclosure (12) provided in contact with one of the surfaces of the thermal element and radiated or cooled by the thermal element;
A heat radiating section (13) that is provided in contact with the surface of the cooling element opposite to the enclosing section and cools or heats the air flowing around based on the cooling or heating transmitted from the cooling element;
An adhesion improving section (19, 31) for increasing the adhesion between the encapsulating section and the thermal radiation section;
A heat exchanger.
前記密着性向上部は、前記熱放射部を貫通して前記封入部の内部に挿入され、前記熱放射部と前記封入部との相対距離を一定に保持する挿通部材(19)である、
請求項1に記載の熱交換器(10,10A,20)。
The adhesion improving portion is an insertion member (19) that penetrates the heat radiating portion and is inserted into the enclosing portion to keep a relative distance between the heat radiating portion and the enclosing portion constant.
The heat exchanger (10, 10A, 20) according to claim 1.
前記挿通部材は、前記熱放射部を貫通して前記封入部の内部に挿入されて、前記封入部と螺合して、前記熱放射部と前記封入部との相対距離を一定に保持するよう締結する締結部材である、
請求項2に記載の熱交換器。
The insertion member is inserted into the enclosing portion through the heat radiating portion, and is screwed into the enclosing portion so as to keep a relative distance between the heat radiating portion and the enclosing portion constant. A fastening member to be fastened,
The heat exchanger according to claim 2.
前記収容部は、前記挿通部材が前記封入部の内部に挿入される部分を避けて形成される、
請求項2または3に記載の熱交換器。
The accommodating portion is formed to avoid a portion where the insertion member is inserted into the enclosure portion.
The heat exchanger according to claim 2 or 3.
前記封入部に設けられ、前記挿通部材が挿入される挿入孔(12A)の少なくとも1つは、前記収容部(26)に連通される連通孔(27)であり、
前記連通孔に挿入される前記挿通部材は、前記連通孔を封止する封止部材としても機能する、
請求項2〜4のいずれか1項に記載の熱交換器(20)。
At least one of the insertion holes (12A) provided in the sealing part and into which the insertion member is inserted is a communication hole (27) communicating with the housing part (26),
The insertion member inserted into the communication hole also functions as a sealing member for sealing the communication hole.
The heat exchanger (20) according to any one of claims 2 to 4.
複数の前記挿入孔が前記収容部の前記連通孔である、
請求項5に記載の熱交換器。
A plurality of the insertion holes are the communication holes of the housing portion.
The heat exchanger according to claim 5.
前記密着性向上部は、前記冷熱素子、前記封入部、前記熱放射部が積層された状態の外側に設けられ、前記冷熱素子、前記封入部、前記熱放射部の相対距離を一定に保持する外枠体(31)である、
請求項1に記載の熱交換器(30)。
The adhesion improving unit is provided outside the stacked state of the cooling element, the enclosing unit, and the heat radiating unit, and maintains a constant relative distance between the cooling element, the enclosing unit, and the heat radiating unit. An outer frame (31),
The heat exchanger (30) according to claim 1.
前記収容部が内柱構造である、
請求項1〜7に記載の熱交換器(10,10A,20,30)。
The accommodating portion has an inner pillar structure;
The heat exchanger (10, 10A, 20, 30) according to claim 1-7.
前記収容部の内部にインナフィン(17)を備える、
請求項1〜8のいずれか1項に記載の熱交換器。
Inner fins (17) are provided inside the housing part,
The heat exchanger according to any one of claims 1 to 8.
JP2016209030A 2016-10-25 2016-10-25 Heat exchanger Pending JP2018071833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209030A JP2018071833A (en) 2016-10-25 2016-10-25 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209030A JP2018071833A (en) 2016-10-25 2016-10-25 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2018071833A true JP2018071833A (en) 2018-05-10

Family

ID=62114668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209030A Pending JP2018071833A (en) 2016-10-25 2016-10-25 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2018071833A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109771U (en) * 1988-01-14 1989-07-25
JPH09293910A (en) * 1996-04-25 1997-11-11 Aisin Seiki Co Ltd Thermal conversion device
JP2000274867A (en) * 1999-03-18 2000-10-06 Tatsuo Konya Electronic temperature regulator
JP2004200428A (en) * 2002-12-19 2004-07-15 Fuji Electric Fa Components & Systems Co Ltd Cooling device
JP2004319658A (en) * 2003-04-15 2004-11-11 Nippon Buroaa Kk Electronic cooler
JP2005260155A (en) * 2004-03-15 2005-09-22 Central Res Inst Of Electric Power Ind Thermo-electric conversion system
JP2012038844A (en) * 2010-08-05 2012-02-23 Sumitomo Electric Ind Ltd Communication apparatus
JP2013194680A (en) * 2012-03-22 2013-09-30 Honda Motor Co Ltd Air bleeding structure of locker arm shaft

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109771U (en) * 1988-01-14 1989-07-25
JPH09293910A (en) * 1996-04-25 1997-11-11 Aisin Seiki Co Ltd Thermal conversion device
JP2000274867A (en) * 1999-03-18 2000-10-06 Tatsuo Konya Electronic temperature regulator
JP2004200428A (en) * 2002-12-19 2004-07-15 Fuji Electric Fa Components & Systems Co Ltd Cooling device
JP2004319658A (en) * 2003-04-15 2004-11-11 Nippon Buroaa Kk Electronic cooler
JP2005260155A (en) * 2004-03-15 2005-09-22 Central Res Inst Of Electric Power Ind Thermo-electric conversion system
JP2012038844A (en) * 2010-08-05 2012-02-23 Sumitomo Electric Ind Ltd Communication apparatus
JP2013194680A (en) * 2012-03-22 2013-09-30 Honda Motor Co Ltd Air bleeding structure of locker arm shaft

Similar Documents

Publication Publication Date Title
US20180294452A1 (en) Tray, power battery pack and electric vehicle
JP6753854B2 (en) Battery cell cooling device and battery module including it
JP6555107B2 (en) Cooling member and power storage module
JP6112077B2 (en) Semiconductor device
CN107634164A (en) A kind of battery thermal management system combined based on microchannel thermotube and phase-change material
RU2013103441A (en) ELECTRIC BATTERY COOLING SYSTEM AND A BATTERY WITH SUCH A SYSTEM
JP2013157111A (en) Cooling and heating structure of battery pack
US20220107137A1 (en) Phase-change heat dissipation device
JP2009152440A (en) Temperature regulator for heating element
JP2016178078A (en) Cooling member and power storage module
CN106410314B (en) Heat exchange structure with annular fins and heat dissipation device with heat exchange structure
WO2020152822A1 (en) Cooling device
WO2012161002A1 (en) Flat plate cooling device, and method for using same
CN104329870B (en) Cold transferring and heat dissipating modular component, assembling method thereof and semiconductor refrigerator
JP2018071833A (en) Heat exchanger
JP2002100816A (en) Thermoelectric cooling system
WO2016148225A1 (en) Cooling member and power storage module
JP2018059678A (en) Heat exchanger
JP2005180795A (en) Heat insulating panel with electronic cooling unit
CN108258936A (en) Thermo-electric generation system and electricity-generating method based on phase-change heat transfer
KR20190049994A (en) Apparatus for cooling and heating cup holder for vehicle
KR20190049992A (en) Apparatus for cooling and heating cup holder for vehicle
KR20020053838A (en) Heat transfer apparatus using refrigerant and computer having the same
CN108807730B (en) Layered electric automobile battery pack
CN207368037U (en) A kind of heat dissipation battery box structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200616