JP2018071418A - Power generation control device of vehicle - Google Patents

Power generation control device of vehicle Download PDF

Info

Publication number
JP2018071418A
JP2018071418A JP2016211576A JP2016211576A JP2018071418A JP 2018071418 A JP2018071418 A JP 2018071418A JP 2016211576 A JP2016211576 A JP 2016211576A JP 2016211576 A JP2016211576 A JP 2016211576A JP 2018071418 A JP2018071418 A JP 2018071418A
Authority
JP
Japan
Prior art keywords
power generation
engine
torque
isg
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016211576A
Other languages
Japanese (ja)
Other versions
JP6759979B2 (en
Inventor
真郷 荒井
Masato Arai
真郷 荒井
太田 康夫
Yasuo Ota
康夫 太田
樋口 徹
Toru Higuchi
徹 樋口
裕一 宇田
Yuichi Uda
裕一 宇田
正和 齋藤
Masakazu Saito
正和 齋藤
知明 森川
Tomoaki Morikawa
知明 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2016211576A priority Critical patent/JP6759979B2/en
Priority to DE102017218919.3A priority patent/DE102017218919B4/en
Priority to FR1760124A priority patent/FR3058117B1/en
Priority to CN201711024745.1A priority patent/CN108016279B/en
Publication of JP2018071418A publication Critical patent/JP2018071418A/en
Application granted granted Critical
Publication of JP6759979B2 publication Critical patent/JP6759979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/16Control strategies specially adapted for achieving a particular effect for reducing engine exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4808Electric machine connected or connectable to gearbox output shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • B60W2710/0672Torque change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • B60W2710/085Torque change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/006Starting of engines by means of electric motors using a plurality of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0829Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to special engine control, e.g. giving priority to engine warming-up or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/084State of vehicle accessories, e.g. air condition or power steering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/08Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing being of friction type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/026Catalyst temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0806Air condition state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation control device of a vehicle, which can prevent an engine from reviving up due to sudden reduction of power generation torque in stopping the power generation of a power generator.SOLUTION: In the case where a catalyst device is in warming-up and the ignition timing of an engine is retarded (YES at step S4), when stopping the power generation of an integrated starter generator (ISG), an ECU reduces power generation torque at a reduction rate smaller than that at the time when stopping the power generation of the ISG in a state that the ignition timing of the engine is not retarded (step S6). The reduction rate is not limited to a constant reduction rate, and when stopping the power generation of the ISG in the state that the ignition timing of the engine is retarded, the ECU may vary the reduction rate of the power generation torque within a predetermined range smaller than the reduction rate of the power generation torque at the time when the ignition timing is not retarded.SELECTED DRAWING: Figure 2

Description

本発明は、車両の発電制御装置に関する。   The present invention relates to a vehicle power generation control device.

自動車等の車両にあっては、エンジンと、エンジンの回転速度の制御を行うことが可能な回転電機と、エンジンの点火時期を制御する制御装置とを備えた車両が従来知られている(特許文献1参照)。   In vehicles such as automobiles, a vehicle including an engine, a rotating electrical machine capable of controlling the rotational speed of the engine, and a control device that controls the ignition timing of the engine is conventionally known (patent). Reference 1).

特許文献1に記載の車両において、制御装置は、エンジンの回転速度が回転電機により制御されていない場合には、エンジンの回転速度が回転電機により制御されている場合に比べて、エンジン始動時の点火時期をより遅角側に設定するようになっている。   In the vehicle described in Patent Document 1, when the engine rotation speed is not controlled by the rotating electrical machine, the control device is more capable of starting the engine than when the engine rotation speed is controlled by the rotating electrical machine. The ignition timing is set to a more retarded side.

これにより、特許文献1に記載の車両は、エンジンの回転速度が制御されない場合に、低負荷であるために始動直後のエンジン回転速度が急激に増加してしまうのを防止できる。また、始動直後のエンジン回転速度の急増を防止すべく点火時期等の始動条件を設定した場合に、負荷の増加とエンジンのトルク不足によりノッキング等が生じてしまうのを防止できる。したがって、特許文献1に記載の車両は、エンジン始動時のエンジンの負荷変動に起因する運転性能の悪化を抑制できる。   As a result, the vehicle described in Patent Document 1 can prevent the engine rotation speed immediately after starting from rapidly increasing due to the low load when the engine rotation speed is not controlled. Further, when starting conditions such as ignition timing are set to prevent a rapid increase in engine rotation speed immediately after starting, it is possible to prevent knocking or the like from occurring due to an increase in load and insufficient engine torque. Therefore, the vehicle described in Patent Literature 1 can suppress deterioration in driving performance due to engine load fluctuation at the time of engine start.

特許第5772963号公報Japanese Patent No. 5772963

ここで、エンジンの負荷変動は、エンジンの始動時だけでなくエンジンの始動後のアイドリング中や車両走行中にも発生することがある。例えば、エンジンの動力により発電機を駆動して蓄電池を充電している状態から、充電完了により発電機を停止させるとき、発電機の発電トルクが大きく急減する。この場合、発電トルクとエンジントルクとの釣り合いが急激に崩れ、エンジン回転数の急増、すなわちエンジンの吹け上がりが発生してしまう。このようなエンジンの吹け上がりは、排気ガスの増大、燃費の悪化、振動および騒音の増加を引き起こしてしまう。一方、エンジンの点火時期は、触媒装置の暖機等を目的に遅角側に設定されるため、状況によっては限界まで遅角される。   Here, engine load fluctuations may occur not only when the engine is started, but also during idling after the engine is started or during vehicle travel. For example, when the generator is stopped by charging completion from the state where the generator is driven by the power of the engine and the storage battery is charged, the power generation torque of the generator greatly decreases. In this case, the balance between the power generation torque and the engine torque is abruptly lost, and a rapid increase in the engine speed, that is, engine blow-up occurs. Such engine surging causes an increase in exhaust gas, deterioration in fuel consumption, vibration and noise. On the other hand, the ignition timing of the engine is set to the retard side for the purpose of warming up the catalyst device or the like, and therefore is retarded to the limit depending on the situation.

しかしながら、特許文献1に記載のものは、点火時期が既に限界まで遅角された状況では、発電機の発電を停止する際の発電トルクの急減に応じて点火時期をさらに遅角することができず、エンジンの吹け上がりを防止することができないという問題があった。   However, in the case where the ignition timing is already retarded to the limit, the one described in Patent Document 1 can further retard the ignition timing according to the sudden decrease in the power generation torque when stopping the power generation of the generator. Therefore, there was a problem that it was not possible to prevent the engine from running up.

本発明は、上記のような問題点に着目してなされたものであり、発電機の発電を停止する際の発電トルクの急減によりエンジンが吹け上がるのを防止できる車両の発電制御装置を提供することを目的とするものである。   The present invention has been made paying attention to the above problems, and provides a power generation control device for a vehicle that can prevent an engine from blowing up due to a sudden decrease in power generation torque when stopping power generation of a generator. It is for the purpose.

本発明は、エンジンと、前記エンジンの駆動軸に連結され、前記エンジンの駆動力により発電する発電機と、前記エンジンの点火時期を調整する点火制御装置と、前記発電機に電気的に接続され、前記発電機が発電した電力が充電される蓄電池と、を備える車両の発電制御装置であって、前記蓄電池の充電状態が所定値以上になると前記発電機の発電トルクを減少して発電を停止する制御部を備え、前記制御部は、前記点火制御装置により前記エンジンの点火時期が遅角された状態で前記発電機の発電を停止させる場合は、前記点火制御装置により前記エンジンの点火時期が遅角されていない状態で前記発電機の発電を停止させるときよりも、前記発電トルクの減少率を小さく設定することを特徴とする。   The present invention is electrically connected to an engine, a generator coupled to a drive shaft of the engine and generating electric power by the driving force of the engine, an ignition control device for adjusting an ignition timing of the engine, and the generator. And a storage battery charged with the power generated by the generator, and when the charged state of the storage battery exceeds a predetermined value, the power generation torque of the generator is reduced to stop power generation And when the ignition control device stops the power generation of the generator while the ignition timing of the engine is retarded by the ignition control device, the ignition control device determines the ignition timing of the engine. The reduction rate of the power generation torque is set to be smaller than when the power generation of the generator is stopped in a state where the angle is not retarded.

このように上記の本発明によれば、発電機の発電を停止する際の発電トルクの急減によりエンジンが吹け上がるのを防止できる。   As described above, according to the present invention, it is possible to prevent the engine from blowing up due to a sudden decrease in the power generation torque when the power generation of the generator is stopped.

図1は、本発明の第1実施例に係る発電制御装置を搭載する車両の構成図である。FIG. 1 is a configuration diagram of a vehicle equipped with a power generation control device according to a first embodiment of the present invention. 図2は、本発明の第1実施例に係る発電制御装置の発電制御動作を説明するフローチャートである。FIG. 2 is a flowchart for explaining the power generation control operation of the power generation control apparatus according to the first embodiment of the present invention. 図3は、本発明の第1実施例に係る発電制御装置により発電制御動作が実施されたときの車両状態の経時変化を示すタイミングチャートである。FIG. 3 is a timing chart showing changes over time in the vehicle state when the power generation control operation is performed by the power generation control apparatus according to the first embodiment of the present invention. 図4は、本発明の第2実施例に係る発電制御装置の発電制御動作を説明するフローチャートである。FIG. 4 is a flowchart for explaining the power generation control operation of the power generation control apparatus according to the second embodiment of the present invention. 図5は、本発明の第2実施例に係る発電制御装置により発電制御動作が実施されたときの車両状態の経時変化を示すタイミングチャートである。FIG. 5 is a timing chart showing changes over time in the vehicle state when the power generation control operation is performed by the power generation control device according to the second embodiment of the present invention.

本発明の一実施の形態に係る車両の発電制御装置は、エンジンと、エンジンの駆動軸に連結され、エンジンの駆動力により発電する発電機と、エンジンの点火時期を調整する点火制御装置と、発電機に電気的に接続され、発電機が発電した電力が充電される蓄電池と、を備える車両の発電制御装置であって、蓄電池の充電状態が所定値以上になると発電機の発電トルクを減少して発電を停止する制御部を備え、制御部は、点火制御装置によりエンジンの点火時期が遅角された状態で発電機の発電を停止させる場合は、点火制御装置によりエンジンの点火時期が遅角されていない状態で発電機の発電を停止させるときよりも、発電トルクの減少率を小さく設定することを特徴とする。これにより、本発明の一実施の形態に係る車両の発電制御装置は、発電機の発電を停止する際の発電トルクの急減によりエンジンが吹け上がるのを防止できる。   A vehicle power generation control device according to an embodiment of the present invention includes an engine, a generator connected to a drive shaft of the engine and generating power by the driving force of the engine, an ignition control device that adjusts the ignition timing of the engine, A power generation control device for a vehicle comprising a storage battery that is electrically connected to a power generator and charged with power generated by the power generator, and reduces the power generation torque of the power generator when the charge state of the storage battery exceeds a predetermined value A control unit that stops the power generation, and the control unit delays the engine ignition timing by the ignition control device when stopping the power generation of the generator with the ignition control device retarded by the ignition control device. The reduction rate of the power generation torque is set to be smaller than when the power generation of the generator is stopped in a state where the power is not turned. Thus, the vehicle power generation control device according to the embodiment of the present invention can prevent the engine from blowing up due to a sudden decrease in the power generation torque when the power generation of the generator is stopped.

以下、本発明の第1実施例に係る車両の発電制御装置について図面を用いて説明する。図1から図3は、本発明の第1実施例に係る車両の発電制御装置を説明する図である。   A vehicle power generation control apparatus according to a first embodiment of the present invention will be described below with reference to the drawings. 1 to 3 are diagrams for explaining a vehicle power generation control device according to a first embodiment of the present invention.

図1に示すように、ハイブリッド車両1は、内燃機関としてのエンジン2と、トランスミッション3と、モータジェネレータ4と、駆動輪5と、ハイブリッド車両1を総合的に制御するECU(Electronic Control Unit)10と、とを含んで構成される。   As shown in FIG. 1, the hybrid vehicle 1 includes an engine 2 as an internal combustion engine, a transmission 3, a motor generator 4, drive wheels 5, and an ECU (Electronic Control Unit) 10 that comprehensively controls the hybrid vehicle 1. And.

エンジン2には、複数の気筒が形成されている。本実施例において、エンジン2は、各気筒に対して、吸気行程、圧縮行程、膨張行程および排気行程からなる一連の4行程を行うように構成されている。エンジン2の点火時期は、ECU10により制御される。エンジン2の排気管17には触媒装置19が設けられており、触媒装置19は、エンジン2からの排気を浄化する。   The engine 2 is formed with a plurality of cylinders. In this embodiment, the engine 2 is configured to perform a series of four strokes including an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke for each cylinder. The ignition timing of the engine 2 is controlled by the ECU 10. A catalyst device 19 is provided in the exhaust pipe 17 of the engine 2, and the catalyst device 19 purifies exhaust from the engine 2.

トランスミッション3は、エンジン2から出力された回転を変速し、ドライブシャフト23を介して駆動輪5を駆動するようになっている。トランスミッション3は、平行軸歯車機構からなる常時噛合式の図示しない変速機構を備えている。   The transmission 3 shifts the rotation output from the engine 2 and drives the drive wheels 5 via the drive shaft 23. The transmission 3 is provided with a transmission mechanism (not shown) of a constantly meshing type composed of a parallel shaft gear mechanism.

エンジン2とトランスミッション3の間には、乾式単板式のクラッチ26が設けられており、クラッチ26は、エンジン2とトランスミッション3との間の動力伝達を接続または切断する。   A dry single-plate clutch 26 is provided between the engine 2 and the transmission 3, and the clutch 26 connects or disconnects power transmission between the engine 2 and the transmission 3.

トランスミッション3と駆動輪5の間にはギヤ27が設けられている。ギヤ27と駆動輪5はドライブシャフト23により連結されている。ギヤ27は、左右の駆動輪5が差動回転可能に、トランスミッション3からドライブシャフト23に駆動力を伝達する。   A gear 27 is provided between the transmission 3 and the drive wheel 5. The gear 27 and the drive wheel 5 are connected by a drive shaft 23. The gear 27 transmits driving force from the transmission 3 to the drive shaft 23 so that the left and right drive wheels 5 can be differentially rotated.

モータジェネレータ4は、ギヤ27に対して、チェーン等の動力伝達機構28を介して連結されている。モータジェネレータ4は、電動機として機能することで、動力伝達機構28を介してギヤ27に動力を伝達し、この動力により駆動輪5を駆動させる。   The motor generator 4 is connected to the gear 27 via a power transmission mechanism 28 such as a chain. The motor generator 4 functions as an electric motor, thereby transmitting power to the gear 27 through the power transmission mechanism 28 and driving the drive wheels 5 with this power.

このように、ハイブリッド車両1は、エンジン2とモータジェネレータ4の両方の動力を車両の駆動に用いることが可能なパラレルハイブリッドシステムを構成している。ハイブリッド車両1は、エンジン2およびモータジェネレータ4の少なくとも一方が発生する動力により走行する。モータジェネレータ4は、発電機としても機能し、ハイブリッド車両1の走行によって発電を行うようになっている。   Thus, the hybrid vehicle 1 forms a parallel hybrid system that can use the power of both the engine 2 and the motor generator 4 for driving the vehicle. The hybrid vehicle 1 travels using power generated by at least one of the engine 2 and the motor generator 4. The motor generator 4 also functions as a generator and generates power when the hybrid vehicle 1 travels.

ハイブリッド車両1は、図示しない高電圧バッテリとインバータとを備えており、モータジェネレータ4には、高電圧バッテリの電気がインバータを介して供給される。インバータは、ECU10の制御により、交流電力と直流電力とを相互に変換するようになっている。   The hybrid vehicle 1 includes a high voltage battery and an inverter (not shown), and the motor generator 4 is supplied with electricity from the high voltage battery via the inverter. The inverter converts AC power and DC power to each other under the control of the ECU 10.

ECU10は、例えば、モータジェネレータ4を力行させるときには、高電圧バッテリが放電した直流電力をインバータにより交流電力に変換させてモータジェネレータ4に供給する。一方、ECU10は、モータジェネレータ4を回生させるときには、モータジェネレータ4が発電した交流電力をインバータにより直流電力に変換させて高電圧バッテリに充電する。   For example, when powering the motor generator 4, the ECU 10 converts the DC power discharged from the high voltage battery into AC power by an inverter and supplies the AC power to the motor generator 4. On the other hand, when regenerating motor generator 4, ECU 10 converts the AC power generated by motor generator 4 into DC power by an inverter and charges the high voltage battery.

なお、モータジェネレータ4は、トランスミッション3から駆動輪5までの動力伝達経路の何れかの箇所に動力伝達可能に連結されていればよく、必ずしもギヤ27に連結される必要はない。   The motor generator 4 may be connected to any part of the power transmission path from the transmission 3 to the drive wheel 5 so as to be able to transmit power, and is not necessarily connected to the gear 27.

ハイブリッド車両1はISG(Integrated Starter Generator)20、鉛電池30およびLi電池31を備えている。   The hybrid vehicle 1 includes an ISG (Integrated Starter Generator) 20, a lead battery 30 and a Li battery 31.

ISG20は、ベルト22を介してエンジン2の駆動軸18に連結されている。ISG20は、電力が供給されることにより回転することでエンジン2を始動させる電動機の機能と、エンジン2の駆動力により発電する発電機の機能とを有する。すなわち、ISG20は、スタータと発電機を統合した回転電機である。ISG20は、本発明における発電機を構成している。   The ISG 20 is connected to the drive shaft 18 of the engine 2 via a belt 22. The ISG 20 has a function of an electric motor that starts the engine 2 by rotating when supplied with electric power, and a function of a generator that generates electric power by the driving force of the engine 2. That is, the ISG 20 is a rotating electrical machine that integrates a starter and a generator. ISG20 comprises the generator in this invention.

ISG20の発電時は、エンジン2の動力の一部が発電に用いられており、ISG20で発電するための発電トルクが、負荷トルクとしてエンジン2に作用する。なお、ISG20は、電動機として機能することでハイブリッド車両1の走行をアシストすることもできる。   During power generation by the ISG 20, a part of the power of the engine 2 is used for power generation, and the power generation torque for generating power by the ISG 20 acts on the engine 2 as a load torque. In addition, ISG20 can also assist driving | running | working of the hybrid vehicle 1 by functioning as an electric motor.

鉛電池30およびLi電池31は、充電可能な二次電池からなる。鉛電池30は電極に鉛を用いた鉛蓄電池からなる。Li電池31は、正極と負極の間をリチウムイオンが行き来することで放電と充電を行うリチウムイオン二次電池からなり、鉛電池30よりも高出力かつ高エネルギー密度な蓄電池である。   The lead battery 30 and the Li battery 31 are rechargeable secondary batteries. The lead battery 30 is a lead storage battery using lead as an electrode. The Li battery 31 is a lithium ion secondary battery that discharges and charges when lithium ions move back and forth between the positive electrode and the negative electrode, and is a storage battery that has higher output and higher energy density than the lead battery 30.

Li電池31は、鉛電池30と比較して短い時間で充電が可能であるという特性を有する。鉛電池30およびLi電池31は、約12Vの出力電圧を発生するようにセルの個数等が設定された低電圧電池である。鉛電池30およびLi電池31の充電状態(SOC)はECU10によって管理される。   The Li battery 31 has a characteristic that it can be charged in a shorter time than the lead battery 30. The lead battery 30 and the Li battery 31 are low voltage batteries in which the number of cells is set so as to generate an output voltage of about 12V. The state of charge (SOC) of the lead battery 30 and the Li battery 31 is managed by the ECU 10.

ハイブリッド車両1は、一般負荷37および被保護負荷38を備えている。被保護負荷38は、常に安定した電力供給が要求される電気負荷である。この被保護負荷38は、車両の横滑りを防止するスタビリティ制御装置、操舵輪の操作力を電気的にアシストする図示しない電動パワーステアリング制御装置、およびヘッドライト等を含んでいる。   The hybrid vehicle 1 includes a general load 37 and a protected load 38. The protected load 38 is an electric load that always requires a stable power supply. The protected load 38 includes a stability control device that prevents the vehicle from slipping, an electric power steering control device (not shown) that electrically assists the operating force of the steering wheel, a headlight, and the like.

また、被保護負荷38は、図示しないインストルメントパネルのランプ類およびメータ類並びにカーナビゲーションシステムも含んでいる。一般負荷37は、被保護負荷38と比較して安定した電力供給が要求されず、一時的に使用される電気負荷である。一般負荷37には、例えば、図示しないワイパー、および、エンジン2に冷却風を送風する電動クーリングファンが含まれる。   The protected load 38 also includes instrument panel lamps and meters (not shown) and a car navigation system. The general load 37 is an electric load that is temporarily used without requiring stable power supply as compared with the protected load 38. The general load 37 includes, for example, a wiper (not shown) and an electric cooling fan that blows cooling air to the engine 2.

ISG20は、低電圧ケーブル36を介して、一般負荷37、被保護負荷38、鉛電池30、Li電池31に電力を供給可能に接続されている。鉛電池30およびLi電池31は、ISG20に電気的に接続されており、ISG20が発電した電力が充電される。Li電池31は本発明における蓄電池を構成している。   The ISG 20 is connected to a general load 37, a protected load 38, a lead battery 30, and a Li battery 31 through a low voltage cable 36 so that power can be supplied. The lead battery 30 and the Li battery 31 are electrically connected to the ISG 20, and the electric power generated by the ISG 20 is charged. Li battery 31 comprises the storage battery in this invention.

ISG20、一般負荷37、被保護負荷38、鉛電池30およびLi電池31は、互いに並列に接続されている。低電圧ケーブル36は、ISG20とLi電池31とを接続するように配設された母線部分36Aと、この母線部分36Aに鉛電池30、一般負荷37、Li電池31、被保護負荷38を接続する支線部分36Bとからなる。低電圧ケーブル36の母線部分36Aには、ISG20からLi電池31側に向かって、鉛電池30、一般負荷37、Li電池31、被保護負荷38が順次接続されている。   The ISG 20, the general load 37, the protected load 38, the lead battery 30 and the Li battery 31 are connected in parallel to each other. The low voltage cable 36 is connected to the bus portion 36A disposed so as to connect the ISG 20 and the Li battery 31, and the lead battery 30, the general load 37, the Li battery 31, and the protected load 38 are connected to the bus portion 36A. It consists of a branch line portion 36B. A lead battery 30, a general load 37, a Li battery 31, and a protected load 38 are sequentially connected from the ISG 20 to the Li battery 31 side to the bus portion 36A of the low voltage cable 36.

低電圧ケーブル36におけるLi電池31の支線部分36Bには、Li接続スイッチ40が設けられており、Li接続スイッチ40は、Li電池31とISG20とを接続または遮断する。ここで、Li接続スイッチ40は、閉状態のときにLi電池31とISG20とを接続し、開状態のときにLi電池31とISG20とを遮断する。Li接続スイッチ40の開閉はECU10により制御される。   A Li connection switch 40 is provided in a branch line portion 36B of the Li battery 31 in the low voltage cable 36, and the Li connection switch 40 connects or disconnects the Li battery 31 and the ISG 20. Here, the Li connection switch 40 connects the Li battery 31 and the ISG 20 in the closed state, and shuts off the Li battery 31 and the ISG 20 in the open state. Opening and closing of the Li connection switch 40 is controlled by the ECU 10.

Li接続スイッチ40が閉じているときは、Li電池31とISG20とが接続されるため、ISG20で発電された電力をLi電池31に充電可能な状態となる。Li接続スイッチ40が開いているときは、Li電池31とISG20とが遮断されるため、ISG20で発電された電力がLi電池31に充電されない状態となる。   When the Li connection switch 40 is closed, since the Li battery 31 and the ISG 20 are connected, the Li battery 31 can be charged with the electric power generated by the ISG 20. When the Li connection switch 40 is open, the Li battery 31 and the ISG 20 are disconnected, so that the power generated by the ISG 20 is not charged in the Li battery 31.

なお、低電圧ケーブル36の母線部分36Aにおける一般負荷37とLi電池31との間には、接続スイッチ41が設けられている。ECU10は、Li接続スイッチ40および接続スイッチ41の開閉を車両状態に応じて制御し、常に安定した電力供給が要求される被保護負荷38に優先的に電力を供給するようになっている。   A connection switch 41 is provided between the general load 37 and the Li battery 31 in the bus portion 36A of the low voltage cable 36. The ECU 10 controls the opening and closing of the Li connection switch 40 and the connection switch 41 according to the vehicle state, and supplies power preferentially to the protected load 38 for which stable power supply is always required.

例えば、アイドリングストップによりエンジン2が停止しているときは、Li接続スイッチ40を閉じ、接続スイッチ41を開くことで、高出力かつ高エネルギー密度なLi電池31から被保護負荷38に電力を供給するようになっている。   For example, when the engine 2 is stopped due to idling stop, the Li connection switch 40 is closed and the connection switch 41 is opened to supply power to the protected load 38 from the Li battery 31 with high output and high energy density. It is like that.

ハイブリッド車両1は、ヒートポンプ式のエアコン6を備えており、このエアコン6は、内部のコンプレッサ等で作った低温の空気と、エンジン2を熱源として作った高温の空気とを混合することで、車内の温度を調整する。   The hybrid vehicle 1 includes a heat pump type air conditioner 6. The air conditioner 6 mixes low temperature air produced by an internal compressor and the like with high temperature air produced using the engine 2 as a heat source. Adjust the temperature.

エアコン6は、エンジン2の駆動軸18にベルト21を介して連結されており、エンジン2の動力によって内部のコンプレッサを駆動させることで作動する。エアコン6はマグネットクラッチ6Aを備えており、マグネットクラッチ6Aによりエンジン2との動力伝達を接続または切断する。   The air conditioner 6 is connected to a drive shaft 18 of the engine 2 via a belt 21 and operates by driving an internal compressor with the power of the engine 2. The air conditioner 6 includes a magnet clutch 6A, and the power transmission with the engine 2 is connected or disconnected by the magnet clutch 6A.

エアコン6の作動中は、マグネットクラッチ6Aが接続されてエンジン2の動力の一部がエアコン6のコンプレッサの駆動に用いられるため、コンプレッサを駆動するための負荷トルクがエンジン2に作用する。エアコン6は本発明における補機および空調装置を構成する。   During the operation of the air conditioner 6, the magnet clutch 6 </ b> A is connected and a part of the power of the engine 2 is used to drive the compressor of the air conditioner 6, so that a load torque for driving the compressor acts on the engine 2. The air conditioner 6 constitutes an auxiliary machine and an air conditioner in the present invention.

なお、エアコン6は、運転者によって作動と非作動とに切替えられる手動式エアコンであってもよいし、設定温度との差に応じて自動的に作動と非作動とに切り替わるオート式エアコンであってもよい。   The air conditioner 6 may be a manual air conditioner that is switched between activated and deactivated by the driver, or an automatic air conditioner that automatically switches between activated and deactivated according to the difference from the set temperature. May be.

ECU10は、CPU(Central Processing Unit)と、RAM(Random Access Memory)と、ROM(Read Only Memory)と、バックアップ用のデータなどを保存するフラッシュメモリと、入力ポートと、出力ポートとを備えたコンピュータユニットによって構成されている。   The ECU 10 includes a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a flash memory for storing backup data, an input port, and an output port. It is composed of units.

このコンピュータユニットのROMには、各種定数や各種マップ等とともに、当該コンピュータユニットをECU10として機能させるためのプログラムが格納されている。すなわち、CPUがRAMを作業領域としてROMに格納されたプログラムを実行することにより、これらのコンピュータユニットは、本実施例におけるECU10として機能する。   The ROM of the computer unit stores a program for causing the computer unit to function as the ECU 10 along with various constants and maps. That is, when the CPU executes a program stored in the ROM using the RAM as a work area, these computer units function as the ECU 10 in this embodiment.

ここで、エンジン2の冷機始動直後等で触媒装置19の温度が低い状態では、触媒装置19は本来の排気ガス浄化性能を発揮することができない。そこで、ECU10は、エンジン2の点火時期を遅角させることで、触媒装置19を早期活性化させるようになっている。   Here, when the temperature of the catalyst device 19 is low, such as immediately after the engine 2 is cold-started, the catalyst device 19 cannot exhibit its original exhaust gas purification performance. Therefore, the ECU 10 delays the ignition timing of the engine 2 to activate the catalyst device 19 early.

エンジン2の点火時期が遅角されると、混合気が点火により燃焼を開始してから排気ガスとなって排気弁から排出されるまでの時間が短くなり、冷える前の高温の排気ガスが触媒装置19に到達する。   When the ignition timing of the engine 2 is retarded, the time from when the air-fuel mixture starts to combust by ignition until it becomes exhaust gas and is exhausted from the exhaust valve is shortened. Device 19 is reached.

これにより、触媒装置19は、早期に活性温度まで上昇し、排気ガス浄化性能を発揮する。このように、ECU10は、触媒装置19の暖機中はエンジン2の点火時期を遅角するようになっている。ECU10は、本発明における点火制御装置を構成している。   As a result, the catalyst device 19 quickly rises to the activation temperature and exhibits exhaust gas purification performance. In this way, the ECU 10 retards the ignition timing of the engine 2 while the catalyst device 19 is warming up. The ECU 10 constitutes an ignition control device in the present invention.

ECU10は、点火時期を調整したり、スロットルバルブ開度を制御して吸気量を調整したりすることで、エンジントルクと負荷トルクの釣り合いを保ち、負荷トルクの変動によりエンジン回転数が大きく変動するのを抑制するようになっている。言い換えると、ECU10は、外乱によるエンジン回転数の変動を抑制するようにエンジントルクを制御している。   The ECU 10 maintains the balance between the engine torque and the load torque by adjusting the ignition timing or adjusting the intake air amount by controlling the throttle valve opening, and the engine speed greatly fluctuates due to the fluctuation of the load torque. It has come to suppress. In other words, the ECU 10 controls the engine torque so as to suppress fluctuations in the engine speed due to disturbance.

ここで、点火時期の調整によりエンジントルクを調整する方法は、安定燃焼を維持する必要があるために調整可能な範囲は限定されるが、エンジントルクを速やかに調整できるという特性がある。   Here, the method for adjusting the engine torque by adjusting the ignition timing has a characteristic that the engine torque can be adjusted quickly although the adjustable range is limited because it is necessary to maintain stable combustion.

一方、吸気量を調整してエンジントルクを調整する方法は、調整可能な範囲が大きいが、スロットルバルブと燃焼室とが離れていることによる吸気の応答遅れにより、スロットルバルブ開度を変化させてから実際にエンジントルクが変化するまでに遅延が生じてしまうという特性がある。このため、ECU10は、上記の2つの調整方法を状況に応じて使い分けている。   On the other hand, the method of adjusting the engine torque by adjusting the intake amount has a large adjustable range, but the throttle valve opening is changed by the response delay of the intake due to the separation of the throttle valve and the combustion chamber. Therefore, there is a characteristic that a delay occurs until the engine torque actually changes. For this reason, the ECU 10 uses the above two adjustment methods in accordance with the situation.

ECU10は、エアコン6が作動を停止してマグネットクラッチ6Aが切り離された場合、マグネットクラッチ6Aの切り離しによるエンジン2の負荷トルクの急減に対し、点火時期の遅角によってエンジントルクを調整するようになっている。   When the air conditioner 6 stops operating and the magnet clutch 6A is disconnected, the ECU 10 adjusts the engine torque by retarding the ignition timing against the sudden decrease in the load torque of the engine 2 due to the disconnection of the magnet clutch 6A. ing.

また、本実施例では、ECU10は、Li電池31の充電状態が所定値以上になるとISG20の発電トルクを減少して発電を停止するようになっている。ECU10は、本発明における制御部を構成している。また、ECU10は、ISG20の発電を停止した後、Li接続スイッチ40を開いてLi電池31とISG20とを遮断するようになっている。   Further, in this embodiment, the ECU 10 stops the power generation by reducing the power generation torque of the ISG 20 when the state of charge of the Li battery 31 exceeds a predetermined value. ECU10 comprises the control part in this invention. The ECU 10 stops the power generation of the ISG 20 and then opens the Li connection switch 40 to shut off the Li battery 31 and the ISG 20.

なお、ISG20の発電を停止してLi接続スイッチ40を開いているときは、ECU10は、接続スイッチ41を閉じて鉛電池30から被保護負荷38に電力を供給する。   When the power generation of the ISG 20 is stopped and the Li connection switch 40 is opened, the ECU 10 closes the connection switch 41 and supplies power from the lead battery 30 to the protected load 38.

ここで、点火時期を遅角していない状態でISG20の発電を停止する場合、点火時期を遅角する余地があるため、発電トルクの減少率が大きい場合であっても、点火時期の遅角により、速やかにエンジントルクを発電トルクに追従させて減少させることができる。   Here, when the power generation of the ISG 20 is stopped in a state where the ignition timing is not retarded, there is room for retarding the ignition timing, so even if the reduction rate of the power generation torque is large, the ignition timing retardation As a result, the engine torque can be quickly made to follow the power generation torque and reduced.

一方、点火時期を限界まで遅角して触媒装置19を暖機している状態でISG20の発電を停止する場合、点火時期を更に遅角することはできない。この場合、吸気量の調整によりエンジントルクを調整する必要があり、発電トルクの減少率が大きすぎるとエンジントルクの減少が追いつかず、エンジン2が吹け上がってしまう。   On the other hand, when the power generation of the ISG 20 is stopped while the ignition timing is retarded to the limit and the catalyst device 19 is warmed up, the ignition timing cannot be further retarded. In this case, it is necessary to adjust the engine torque by adjusting the intake air amount. If the reduction rate of the power generation torque is too large, the reduction of the engine torque cannot catch up and the engine 2 blows up.

そこで、ECU10は、エンジン2の点火時期が遅角された状態でISG20の発電を停止させる場合は、エンジン2の点火時期が遅角されていない状態でISG20の発電を停止させるときよりも、発電トルクの減少率を小さく設定するようになっている。   Therefore, when the ECU 10 stops the power generation of the ISG 20 with the ignition timing of the engine 2 retarded, the ECU 10 generates power more than when the power generation of the ISG 20 stops with the ignition timing of the engine 2 not retarded. The torque reduction rate is set to be small.

ここで、発電トルクの減少率は、一定の減少率でもよいし、変化する減少率でもよい。言い換えると、ISG20を停止する際に、一定の減少率で発電トルクを線形に減少させてもよいし、減少率を変化させて発電トルクを非線形に減少させてもよい。   Here, the reduction rate of the power generation torque may be a constant reduction rate or a changing reduction rate. In other words, when the ISG 20 is stopped, the power generation torque may be linearly decreased at a constant decrease rate, or the power generation torque may be decreased nonlinearly by changing the decrease rate.

このように、ECU10は、エンジン2の点火時期が遅角された状態でISG20の発電を停止させるときは、エンジン2の点火時期が遅角されていないときの発電トルクの減少率より低い所定範囲で、発電トルクの減少率を変化させてもよい。ここで、発電トルクの減少率が小さすぎるとISG20の停止に長い時間がかかり、Li電池31が過充電になるおそれがある。そこで、この所定範囲は、点火時期が遅角されていないときの減少率より小さく、かつ、Li電池31が過充電にならない程度に大きい範囲に設定される。   As described above, when the ECU 10 stops the power generation of the ISG 20 in a state where the ignition timing of the engine 2 is retarded, the ECU 10 has a predetermined range lower than the reduction rate of the power generation torque when the ignition timing of the engine 2 is not retarded. Thus, the reduction rate of the power generation torque may be changed. Here, if the reduction rate of the power generation torque is too small, it takes a long time to stop the ISG 20, and the Li battery 31 may be overcharged. Therefore, this predetermined range is set to a range that is smaller than the rate of decrease when the ignition timing is not retarded and large enough that the Li battery 31 is not overcharged.

ECU10は、例えば、発電トルクが大きな減少率と小さな減少率とで階段状に減少するように、発電トルクの減少率を変化させてもよい。これにより、減少率を一定とした場合より短時間でISG20を停止させることができる。   For example, the ECU 10 may change the power generation torque decrease rate so that the power generation torque decreases stepwise between a large decrease rate and a small decrease rate. As a result, the ISG 20 can be stopped in a shorter time than when the reduction rate is constant.

以上のように構成されたハイブリッド車両の発電制御装置において実行される発電制御動作について、図2に示すフローチャートを参照して説明する。   The power generation control operation executed in the power generation control device for a hybrid vehicle configured as described above will be described with reference to the flowchart shown in FIG.

図2において、ECU10は、Li電池31の充電状態が所定値以下であるか否かを判定し(ステップS1)、充電状態が所定値を超えている場合は、Li電池31の充電が必要ないため、今回の発電制御動作を終了する。   In FIG. 2, the ECU 10 determines whether or not the state of charge of the Li battery 31 is equal to or less than a predetermined value (step S1). If the state of charge exceeds the predetermined value, charging of the Li battery 31 is not necessary. Therefore, the current power generation control operation is terminated.

ステップS1でLi電池31の充電状態が所定値以下であった場合は、ECU10は、Li電池31の充電が必要であるため、Li電池31とISG20の間のLi接続スイッチ40をオン(接続状態)にして(ステップS2)、ISG20を駆動する(ステップS3)。このステップS2、S3により、ISG20で所定の発電トルクで電力が発電され、この電力がLi電池31に充電される。   If the charged state of the Li battery 31 is equal to or less than the predetermined value in step S1, the ECU 10 needs to charge the Li battery 31, and therefore turns on the Li connection switch 40 between the Li battery 31 and the ISG 20 (connected state). ) (Step S2), the ISG 20 is driven (step S3). Through steps S2 and S3, electric power is generated with a predetermined power generation torque by the ISG 20, and the Li battery 31 is charged with this electric power.

次いで、ECU10は、触媒装置19の暖機中であるか否かを判別する(ステップS4)。前述した通り、触媒装置19が暖機中である場合、エンジン2の点火時期が遅角側に設定されている。すなわち、このステップS4では、触媒装置19の暖機中であるかを判別することで、エンジン2の点火時期が遅角されているか否かを間接的に判別している。   Next, the ECU 10 determines whether or not the catalyst device 19 is warming up (step S4). As described above, when the catalyst device 19 is warming up, the ignition timing of the engine 2 is set to the retard side. That is, in this step S4, it is indirectly determined whether or not the ignition timing of the engine 2 is retarded by determining whether or not the catalyst device 19 is warming up.

ステップS4で触媒装置19が暖機中であると判別した場合、ECU10は、Li電池31の充電状態がa1以上であるか否かの判別を繰り返し(ステップS5)、充電状態がa1以上となった場合は、ISG20の発電トルクを、小さな減少率b1で緩やかに減少させる(ステップS6)。   If it is determined in step S4 that the catalyst device 19 is warming up, the ECU 10 repeatedly determines whether or not the state of charge of the Li battery 31 is a1 or more (step S5), and the state of charge becomes a1 or more. If this occurs, the power generation torque of the ISG 20 is gradually reduced with a small reduction rate b1 (step S6).

一方、ステップS4で触媒装置19が暖機中ではないと判別した場合、ECU10は、Li電池31の充電状態がa1より大きいa2以上であるか否かの判別を繰り返し(ステップS7)、充電状態がa2以上となった場合は、ISG20の発電トルクを、b1よりも大きい通常時の減少率b2で速やかに減少させる(ステップS7)。   On the other hand, if it is determined in step S4 that the catalyst device 19 is not warmed up, the ECU 10 repeatedly determines whether or not the state of charge of the Li battery 31 is greater than a2 and greater than a2 (step S7). If it becomes a2 or more, the power generation torque of the ISG 20 is quickly reduced at a normal reduction rate b2 larger than b1 (step S7).

ステップS6、S8の後、ECU10は、ISG20の発電が停止して発電トルクが0になったか否かの判別を繰り返し(ステップS9)、発電トルクが0になった場合は、Li電池31とISG20の間のLi接続スイッチ40をオフ(遮断状態)にし(ステップS10)、今回の発電制御動作を終了する。   After steps S6 and S8, the ECU 10 repeatedly determines whether or not the power generation torque of the ISG 20 has stopped and the power generation torque has become zero (step S9). If the power generation torque has become zero, the ECU 10 and the ISG 20 The Li connection switch 40 is turned off (shut off) (step S10), and the current power generation control operation is terminated.

このように、本実施例の発電制御動作では、触媒装置19の暖機のために点火時期が遅角されている状態でISG20の発電を停止する場合は、点火時期が遅角されていないときの通常の減少率b2より小さな減少率b1で、発電トルクを緩やかに減少させる。   Thus, in the power generation control operation of the present embodiment, when the power generation of the ISG 20 is stopped in a state where the ignition timing is retarded for warming up the catalyst device 19, the ignition timing is not retarded. The power generation torque is gradually reduced at a reduction rate b1 smaller than the normal reduction rate b2.

これにより、スロットルバルブ開度の調整により、エンジントルクを発電トルクに追従して減少させることができ、エンジン2の吹け上がりを防止できる。   Thus, by adjusting the throttle valve opening, the engine torque can be reduced following the power generation torque, and the engine 2 can be prevented from being blown up.

また、点火時期が遅角されている場合は、a2より小さい充電状態a1を閾値として、ISG20の発電トルクを早いタイミングで減少し始めるので、Li電池31が過充電になることを防止できる。   Further, when the ignition timing is retarded, since the power generation torque of the ISG 20 starts to decrease at an early timing with the charging state a1 smaller than a2 as a threshold, it is possible to prevent the Li battery 31 from being overcharged.

次に、図2の発電制御動作が実施されたときの車両状態の時系列変化について、図3のタイミングチャートに基づいて説明する。   Next, a time series change of the vehicle state when the power generation control operation of FIG. 2 is performed will be described based on the timing chart of FIG.

図3において、横軸は時間を示し、縦軸は、上から順に触媒暖機状態、エンジン回転数、Li電池31の充電状態、ISG20の発電トルク、ISG20とLi電池31とを接続するLi接続スイッチ40の接続状態を示している。なお、図示していないがこのタイミングチャートでは接続スイッチ41は閉じられている。   In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the catalyst warm-up state, engine speed, charging state of the Li battery 31, power generation torque of the ISG 20, and Li connection for connecting the ISG 20 and the Li battery 31 in order from the top. The connection state of the switch 40 is shown. Although not shown, the connection switch 41 is closed in this timing chart.

時刻t1で、エンジン2が始動され、エンジン回転数が0からアイドル回転数まで増加する。また、触媒暖機状態が非暖機中から暖機中に変化し、触媒装置19の暖機のためにエンジン2の点火時期が遅角側に設定される。この状態でのエンジン2のアイドル回転数は、触媒装置19の暖機中に対応する高めの回転数である。   At time t1, the engine 2 is started, and the engine speed increases from 0 to an idle speed. Further, the catalyst warm-up state changes from non-warm-up to warm-up, and the ignition timing of the engine 2 is set to the retard side for warming up the catalyst device 19. The idle speed of the engine 2 in this state is a higher speed corresponding to the warming-up of the catalyst device 19.

その後、時刻t2で、Li電池31の充電状態が低く充電が必要なため、Li接続スイッチ40がオンにされ、ISG20が発電を開始して発電トルクが所定の発電トルクまで増加しはじめる。これにより、ISG20からLi電池31に電力が充電され、Li電池31の充電状態が増加する。   Thereafter, at time t2, since the state of charge of the Li battery 31 is low and charging is required, the Li connection switch 40 is turned on, the ISG 20 starts generating power, and the generated torque starts to increase to a predetermined generated torque. Thereby, electric power is charged from the ISG 20 to the Li battery 31, and the state of charge of the Li battery 31 increases.

その後、時刻t3で、Li電池31の充電状態がa1以上となったことで、ISG20の発電トルクが減少率b1で緩やかに減少される。   Thereafter, at time t3, the state of charge of the Li battery 31 becomes a1 or more, so that the power generation torque of the ISG 20 is gently reduced at the reduction rate b1.

その後、時刻t4で、ISG20の発電トルクが0まで減少し、Li接続スイッチ40がオフにされ、Li電池31の充電が終了する。また、時刻t4では、Li電池31の充電終了後にISG20の発電トルクが所定の発電トルクまで増加され、ISG20の電力が電気負荷に供給される。   Thereafter, at time t4, the power generation torque of the ISG 20 decreases to 0, the Li connection switch 40 is turned off, and the charging of the Li battery 31 is completed. At time t4, after the charging of the Li battery 31 is completed, the power generation torque of the ISG 20 is increased to a predetermined power generation torque, and the power of the ISG 20 is supplied to the electric load.

その後、時刻t5で、触媒装置19の暖機が完了して触媒暖機状態が非暖機中となり、エンジン回転数が暖機完了後のアイドル回転数まで低下される。   Thereafter, at time t5, the warm-up of the catalyst device 19 is completed, the catalyst warm-up state becomes non-warm-up, and the engine speed is reduced to the idle speed after the warm-up is completed.

その後、時刻t6で、エンジン2が停止され、エンジン回転数が0に向かって低下し、ISG20の発電トルクが0に向かって低下する。また、電気負荷での電力消費によりLi電池31の充電状態が低下し始める。   After that, at time t6, the engine 2 is stopped, the engine speed decreases toward 0, and the power generation torque of the ISG 20 decreases toward 0. In addition, the charged state of the Li battery 31 starts to decrease due to power consumption by the electric load.

また、エンジン2の再始動後の時刻t7で、Li電池31が充電を要する充電状態まで低下したことで、Li接続スイッチ40がオンにされ、ISG20が発電を開始して発電トルクが増加し、Li電池31の充電状態が増加する。その後、時刻t8で、ISG20の発電トルクが所定の発電トルクで一定にされる。   In addition, at time t7 after the engine 2 is restarted, the Li battery 31 is lowered to a charged state that requires charging, so that the Li connection switch 40 is turned on, the ISG 20 starts generating power, and the generated torque increases. The state of charge of the Li battery 31 increases. Thereafter, at time t8, the power generation torque of the ISG 20 is made constant at a predetermined power generation torque.

その後、時刻t9で、Li電池31の充電状態がa2以上となったことで、ISG20の発電トルクが減少率b2で減少される。   Thereafter, at time t9, the state of charge of the Li battery 31 becomes a2 or more, so that the power generation torque of the ISG 20 is reduced at the reduction rate b2.

その後、時刻t10で、ISG20の発電トルクが0まで減少し、Li接続スイッチ40がオフにされ、Li電池31の充電が終了する。また、時刻t19では、Li電池31の充電終了後にISG20の発電トルクが所定の発電トルクまで増加され、ISG20の電力が電気負荷に供給される。   Thereafter, at time t10, the power generation torque of the ISG 20 decreases to 0, the Li connection switch 40 is turned off, and the charging of the Li battery 31 is completed. At time t19, after the charging of the Li battery 31 is completed, the power generation torque of the ISG 20 is increased to a predetermined power generation torque, and the power of the ISG 20 is supplied to the electric load.

以上のように、本実施例に係る車両の発電制御装置において、ECU10は、Li電池31の充電状態が所定値以上になるとISG20の発電トルクを減少して発電を停止する。   As described above, in the vehicle power generation control device according to the present embodiment, the ECU 10 stops the power generation by reducing the power generation torque of the ISG 20 when the state of charge of the Li battery 31 exceeds a predetermined value.

そして、ECU10は、エンジン2の点火時期が遅角された状態でISG20の発電を停止させる場合は、エンジン2の点火時期が遅角されていない状態でISG20の発電を停止させるときよりも、発電トルクの減少率を小さく設定する。   When the ECU 10 stops the power generation of the ISG 20 when the ignition timing of the engine 2 is retarded, the ECU 10 generates power more than when the power generation of the ISG 20 is stopped when the ignition timing of the engine 2 is not retarded. Decrease the torque reduction rate.

これにより、エンジン2の点火時期が遅角された状態でISG20の発電を停止させるときは、点火時期が遅角されていない状態でISG20の発電を停止させるときよりも、ISG20の発電トルクを緩やかに減少させることができる。   Thus, when the power generation of the ISG 20 is stopped when the ignition timing of the engine 2 is retarded, the power generation torque of the ISG 20 is made slower than when the power generation of the ISG 20 is stopped when the ignition timing is not retarded. Can be reduced.

このため、負荷トルクとしてエンジン2へ作用する発電トルクが緩やかに減少するため、吸気量の調整によってエンジントルクを発電トルクの減少に追従させることができる。   For this reason, since the power generation torque acting on the engine 2 as the load torque is gradually reduced, the engine torque can be made to follow the decrease in the power generation torque by adjusting the intake air amount.

この結果、ISG20の発電を停止する際の発電トルクの急減によりエンジン2が吹け上がるのを防止できる。   As a result, it is possible to prevent the engine 2 from blowing up due to a sudden decrease in the power generation torque when the power generation of the ISG 20 is stopped.

また、本実施例に係る車両の発電制御装置において、ECU10は、エンジン2の点火時期が遅角された状態でISG20の発電を停止させるときは、エンジン2の点火時期が遅角されていないときの発電トルクの減少率より低い所定範囲で、発電トルクの減少率を変化させる。   In the vehicle power generation control apparatus according to this embodiment, when the ECU 10 stops the power generation of the ISG 20 in a state where the ignition timing of the engine 2 is retarded, the ignition timing of the engine 2 is not retarded. The power generation torque reduction rate is changed within a predetermined range lower than the power generation torque reduction rate.

これにより、所定範囲内の減少率を保ったまま、段階的に発電トルクを減少させるようにしてもよい。これにより、減少率を一定とした場合より短時間でISG20を停止させることができる。   As a result, the power generation torque may be reduced stepwise while maintaining a reduction rate within a predetermined range. As a result, the ISG 20 can be stopped in a shorter time than when the reduction rate is constant.

また、本実施例において、ハイブリッド車両1は、ISG20とLi電池31とを接続または遮断するLi接続スイッチ40を備えており、ECU10は、ISG20の発電を停止した後、Li接続スイッチ40を開いてLi電池31とISG20とを遮断する。   Further, in this embodiment, the hybrid vehicle 1 includes a Li connection switch 40 that connects or disconnects the ISG 20 and the Li battery 31, and the ECU 10 opens the Li connection switch 40 after stopping the power generation of the ISG 20. The Li battery 31 and the ISG 20 are shut off.

これにより、ISG20からLi電池31へ電流が流れていない状態でLi接続スイッチ40を開くことができるため、Li接続スイッチ40の溶着等を防止できる。Li電池31と鉛電池30との間で電力が行き来するのを防止でき、Li電池31と鉛電池30の充電状態が意図せず変化してしまうのを防止できる。   Thereby, since the Li connection switch 40 can be opened in a state where no current flows from the ISG 20 to the Li battery 31, welding of the Li connection switch 40 and the like can be prevented. It is possible to prevent power from going back and forth between the Li battery 31 and the lead battery 30, and to prevent the state of charge of the Li battery 31 and the lead battery 30 from changing unintentionally.

また、本実施例において、ハイブリッド車両1は、エンジン2からの排気を浄化する触媒装置19を備えており、ECU10は、触媒装置19の暖機中は点火時期を遅角する。   In the present embodiment, the hybrid vehicle 1 includes a catalyst device 19 that purifies exhaust from the engine 2, and the ECU 10 retards the ignition timing while the catalyst device 19 is warmed up.

これにより、触媒装置19の暖機中でエンジン2の点火時期が遅角されている場合、ISG20の発電を停止する際に発電トルクが緩やかに減少されるため、吸気量の調整によってエンジントルクを発電トルクの減少に追従させることができる。このため、ISG20の発電を停止する際の発電トルクの急減によりエンジン2が吹け上がるのを防止できる。   As a result, when the ignition timing of the engine 2 is retarded while the catalyst device 19 is warming up, the power generation torque is gradually reduced when the power generation of the ISG 20 is stopped. It is possible to follow the decrease in power generation torque. For this reason, it is possible to prevent the engine 2 from blowing up due to a sudden decrease in the power generation torque when the power generation of the ISG 20 is stopped.

次に、本発明の第2実施例に係る車両の発電制御装置について図面を用いて説明する。図4、図5は、本発明の一実施例に係る車両の発電制御装置を説明する図である。第1実施例と同じ構成には同じ符号を用いて説明する。   Next, a vehicle power generation control apparatus according to a second embodiment of the present invention will be described with reference to the drawings. 4 and 5 are diagrams illustrating a vehicle power generation control device according to an embodiment of the present invention. The same components as those in the first embodiment will be described using the same reference numerals.

ハイブリッド車両1において、エアコン6の負荷トルクは補機の中でも大きいため、エアコン6が作動を停止してマグネットクラッチ6Aが切り離された場合、エンジン2の負荷トルクは大きく急減する。   In the hybrid vehicle 1, the load torque of the air conditioner 6 is large among the auxiliary machines. Therefore, when the operation of the air conditioner 6 stops and the magnet clutch 6A is disconnected, the load torque of the engine 2 greatly decreases.

エアコン6が作動を停止してマグネットクラッチ6Aが切り離された場合、ECU10は、負荷トルクの急減に対して点火時期の遅角によってエンジントルクを調整する。このため、エアコン6が作動を停止した直後にISG20の発電を停止する場合は、既に限界まで遅角されている点火時期を更に遅角することはできず、点火時期を遅角する方法でエンジントルクを減少させることができない。   When the air conditioner 6 stops operating and the magnetic clutch 6A is disconnected, the ECU 10 adjusts the engine torque by retarding the ignition timing with respect to the sudden decrease in the load torque. For this reason, when the power generation of the ISG 20 is stopped immediately after the operation of the air conditioner 6 is stopped, the ignition timing that has already been retarded to the limit cannot be further retarded, and the engine is retarded by retarding the ignition timing. Torque cannot be reduced.

また、エアコン6の作動中にISG20の発電を停止する場合、ISG20の発電トルクが減少している途中でエアコン6が非作動に切替えられることもある。この場合、エアコン6の非作動への切替えとISG20の発電停止とが同時に起きるため、エアコン6の負荷トルクの急減とISG20の発電トルクの急減とが重なってしまい、エンジン2の吹け上がりを引き起こすおそれがある。   Further, when the power generation of the ISG 20 is stopped while the air conditioner 6 is operating, the air conditioner 6 may be switched to the non-operating state while the power generation torque of the ISG 20 is decreasing. In this case, since switching to the non-operation of the air conditioner 6 and power generation stop of the ISG 20 occur at the same time, the sudden decrease in the load torque of the air conditioner 6 and the sudden decrease in the power generation torque of the ISG 20 may overlap, which may cause the engine 2 to blow up. There is.

そこで、ECU10は、エアコン6の作動中または非作動に切り替わった直後にISG20の発電を停止させる場合、エアコン6の非作動中にISG20の発電を停止させるときよりも、発電トルクの減少率を小さく設定するようになっている。ここで、エアコン6が非作動に切り替わった直後とは、非作動に切り替わった後、このとき遅角された点火時期が進角側に戻されるまでの期間である。   Therefore, when the power generation of the ISG 20 is stopped immediately after the air conditioner 6 is operating or switched to the non-operating state, the ECU 10 reduces the decrease rate of the power generation torque smaller than when the power generation of the ISG 20 is stopped while the air conditioner 6 is not operating. It is supposed to be set. Here, “immediately after the air conditioner 6 is switched to non-operation” refers to a period until the ignition timing retarded at this time is returned to the advance side after switching to the non-operation.

本実施例のハイブリッド車両の発電制御装置において実行される発電制御動作について、図4に示すフローチャートを参照して説明する。   The power generation control operation executed in the hybrid vehicle power generation control device of this embodiment will be described with reference to the flowchart shown in FIG.

図4において、ECU10は、Li電池31の充電状態が所定値以下であるか否かを判定し(ステップS11)、充電状態が所定値を超えている場合は、Li電池31の充電が必要ないため、ステップS11以降の処理を実施することなく今回の動作を終了する。   In FIG. 4, the ECU 10 determines whether or not the state of charge of the Li battery 31 is equal to or less than a predetermined value (step S11). If the state of charge exceeds the predetermined value, charging of the Li battery 31 is not necessary. Therefore, the current operation is terminated without performing the processing after step S11.

ステップS11でLi電池31の充電状態が所定値以下であった場合、ECU10は、Li電池31の充電が必要であるため、Li電池31とISG20の間のLi接続スイッチ40をオン(接続状態)にし(ステップS12)、ISG20を駆動する(ステップS13)。このステップS12、S13により、ISG20で所定の発電トルクで電力が発電され、この電力がLi電池31に充電される。   If the state of charge of the Li battery 31 is equal to or less than the predetermined value in step S11, the ECU 10 needs to charge the Li battery 31, so the Li connection switch 40 between the Li battery 31 and the ISG 20 is turned on (connected state). In step S12, the ISG 20 is driven (step S13). By these steps S12 and S13, electric power is generated by the ISG 20 with a predetermined power generation torque, and the Li battery 31 is charged with this electric power.

次いで、ECU10は、エアコン6が作動中であるか否かを判別する(ステップS14)。このステップS14では、エアコン6が実際に作動中の場合、および、エアコン6が作動から非作動に切り替わった直後の所定時間内であるとき、エアコン6が作動中であると判別する。   Next, the ECU 10 determines whether or not the air conditioner 6 is operating (step S14). In this step S14, it is determined that the air conditioner 6 is in operation when the air conditioner 6 is actually in operation and within a predetermined time immediately after the air conditioner 6 is switched from operation to non-operation.

ステップS14でエアコン6が作動中であると判別した場合、ECU10は、Li電池31の充電状態がa1以上であるか否かの判別を繰り返し(ステップS15)、充電状態がa1以上となった場合は、ISG20の発電トルクを、緩やかな減少率b1で減少させる(ステップS16)。   When it is determined in step S14 that the air conditioner 6 is operating, the ECU 10 repeatedly determines whether or not the state of charge of the Li battery 31 is a1 or more (step S15), and the state of charge becomes a1 or more. Decreases the power generation torque of the ISG 20 at a gradual decrease rate b1 (step S16).

一方、ステップS14でエアコン6が非作動中であると判別した場合、ECU10は、Li電池31の充電状態がa1より大きいa2以上であるか否かの判別を繰り返し(ステップS17)、充電状態がa2以上となった場合は、ISG20の発電トルクを、b1よりも大きい通常時の減少率b2で速やかに減少させる(ステップS18)。   On the other hand, if it is determined in step S14 that the air conditioner 6 is not in operation, the ECU 10 repeatedly determines whether or not the charging state of the Li battery 31 is greater than a2 and greater than a2 (step S17). When it becomes a2 or more, the power generation torque of the ISG 20 is quickly reduced at a normal reduction rate b2 larger than b1 (step S18).

ステップS16、S18の後、ECU10は、ISG20の発電が停止して発電トルクが0になったか否かの判別を繰り返し(ステップS19)、発電トルクが0になった場合は、Li電池31とISG20の間のLi接続スイッチ40をオフ(遮断状態)にし(ステップS20)、今回の発電制御動作を終了する。   After steps S16 and S18, the ECU 10 repeatedly determines whether the power generation torque of the ISG 20 is stopped and the power generation torque has become zero (step S19). If the power generation torque has become zero, the ECU 10 and the ISG 20 The Li connection switch 40 is turned off (blocked) (step S20), and the current power generation control operation is terminated.

このように、本実施例の発電制御動作では、エアコン6の作動中にISG20の発電を停止する場合は、エアコン6の非作動中に用いる通常の減少率b2より小さな減少率b1で、発電トルクを緩やかに減少させる。これにより、吸気量を調整する方法でエンジントルクを発電トルクに追従して減少させることができ、エンジン2の吹け上がりを防止できる。   As described above, in the power generation control operation of the present embodiment, when the power generation of the ISG 20 is stopped while the air conditioner 6 is operating, the power generation torque is reduced at the reduction rate b1 smaller than the normal reduction rate b2 used when the air conditioner 6 is not operating. Decrease slowly. Thereby, the engine torque can be decreased following the power generation torque by a method of adjusting the intake air amount, and the engine 2 can be prevented from being blown up.

また、エアコン6が作動中である場合は、エアコン6が非作動中における充電状態a2より小さい充電状態a1で、ISG20の発電トルクを減少し始めるので、Li電池31が過充電になることを防止できる。なお、実施例2の発電制御動作は、実施例1の発電制御動作と併せて実施してもよい。   In addition, when the air conditioner 6 is in operation, since the power generation torque of the ISG 20 starts to decrease in the charge state a1 smaller than the charge state a2 when the air conditioner 6 is not in operation, the Li battery 31 is prevented from being overcharged. it can. Note that the power generation control operation of the second embodiment may be performed together with the power generation control operation of the first embodiment.

ここで、トラック等の車両においては、高温のときに作動する冷却ファンをエンジンの駆動軸に連結したものがある。この種の冷却ファンも、内部に設けられたクラッチによって温度に応じて作動と非作動を切替えるようになっており、本実施例におけるエアコン6と同様に、作動状態と非作動状態とで負荷トルクが変動する補機である。   Here, in some vehicles such as trucks, a cooling fan that operates at a high temperature is connected to an engine drive shaft. This type of cooling fan is also switched between operation and non-operation according to the temperature by a clutch provided in the interior, and, like the air conditioner 6 in this embodiment, the load torque between the operation state and the non-operation state. Is an accessory that fluctuates.

したがって、ハイブリッド車両1がこの冷却ファンを備える場合、図4の発電制御動作においてステップSで冷却ファンが作動中か否かを判別することで、エンジン2の吹け上がりを防止できる。   Therefore, when the hybrid vehicle 1 includes this cooling fan, it is possible to prevent the engine 2 from being blown up by determining whether or not the cooling fan is operating in step S in the power generation control operation of FIG.

次に、図4の発電制御動作が実施されたときの車両状態の時系列変化について、図5のタイミングチャートに基づいて説明する。   Next, the time-series change of the vehicle state when the power generation control operation of FIG. 4 is performed will be described based on the timing chart of FIG.

図5において、横軸は時間を示し、縦軸は、上から順に、ISG20とLi電池31とを接続するLi接続スイッチ40の接続状態、Li電池31の充電状態、エアコン6の作動状態、ISG20の発電トルク、エアコンの負荷トルク、エンジン要求負荷、点火時期、エンジン回転数を示している。   In FIG. 5, the horizontal axis indicates time, and the vertical axis indicates, in order from the top, the connection state of the Li connection switch 40 that connects the ISG 20 and the Li battery 31, the charging state of the Li battery 31, the operating state of the air conditioner 6, ISG 20 Power generation torque, air conditioner load torque, engine required load, ignition timing, and engine speed.

なお、このタイミングチャートは、ハイブリッド車両1が走行中の車両状態を表しており、エンジン回転数の増減は車速の増減に対応している。また、図示していないがこのタイミングチャートでは接続スイッチ41は閉じられている。   This timing chart represents a vehicle state in which the hybrid vehicle 1 is traveling, and an increase or decrease in engine speed corresponds to an increase or decrease in vehicle speed. Although not shown, the connection switch 41 is closed in this timing chart.

ここで、図5のタイミングチャートでは、時刻t10から時刻t14において、エアコン6がオンからオフに変更された後にISG20の発電を停止する場合の車両状態の変化を表しており、時刻t20から時刻t23において、エアコン6がオフに維持された状態でISG20の発電を停止する場合の車両状態の変化を表している。   Here, in the timing chart of FIG. 5, the change in the vehicle state when the power generation of the ISG 20 is stopped after the air conditioner 6 is changed from on to off from time t10 to time t14 is shown. FIG. 4 shows a change in the vehicle state when the power generation of the ISG 20 is stopped in a state where the air conditioner 6 is kept off.

まず、時刻t10では、Li電池31の充電状態が低く充電が必要なため、Li接続スイッチ40がオンの状態で、ISG20が発電トルクXで発電し、Li電池31の充電状態が増加する。   First, at time t10, since the state of charge of the Li battery 31 is low and charging is required, the ISG 20 generates power with the power generation torque X while the Li connection switch 40 is on, and the state of charge of the Li battery 31 increases.

また、時刻t10では、エアコン6が負荷トルクYで作動しており、エンジン負荷要求は、発電トルクXと負荷トルクYの和に釣り合うようにX+Yとなっている。エンジン2はこのエンジン要求負荷に等しいエンジントルクを発生するよう制御されている。   At time t10, the air conditioner 6 is operated with the load torque Y, and the engine load request is X + Y so as to balance the sum of the power generation torque X and the load torque Y. The engine 2 is controlled to generate an engine torque equal to the engine required load.

また、時刻t10では、エンジン回転数はハイブリッド車両1の車速に対応する回転数となっており、点火時期は進角側に設定されている。   At time t10, the engine speed is the speed corresponding to the vehicle speed of the hybrid vehicle 1, and the ignition timing is set to the advance side.

その後、時刻t11で、エアコン6がオフにされ、エアコン6の負荷トルクが0になる。このため、エンジン要求負荷は、負荷トルクYだけ減少されて発電トルクXのみになる。そして、このエンジン要求負荷までエンジントルクを速やかに減少するため、点火時期が遅角側に設定される。   Thereafter, at time t11, the air conditioner 6 is turned off, and the load torque of the air conditioner 6 becomes zero. For this reason, the engine required load is reduced by the load torque Y and becomes only the power generation torque X. Then, in order to quickly reduce the engine torque to the engine required load, the ignition timing is set to the retard side.

その後、時刻t12で、Li電池31の充電状態がa1以上となったことで、ISG20の発電トルクが小さな減少率b1で緩やかに減少され、この発電トルクの減少に合わせてエンジン要求負荷が減少される。   Thereafter, at time t12, since the state of charge of the Li battery 31 becomes a1 or more, the power generation torque of the ISG 20 is gradually decreased with a small reduction rate b1, and the engine required load is reduced in accordance with the decrease in the power generation torque. The

このため、発電トルクの緩やかな減少に合わせて、エンジントルクが吸気量の調整により減少され、エンジン回転数の変動が防止される。なお、仮に、時刻t12でISG20の発電トルクが大きく急減された場合、エンジン回転数は破線で示すように大きく増加し、エンジン2が吹け上がってしまう。   For this reason, the engine torque is reduced by adjusting the intake air amount in accordance with the gradual decrease in the power generation torque, and fluctuations in the engine speed are prevented. If the power generation torque of the ISG 20 is sharply reduced at time t12, the engine speed increases greatly as shown by the broken line, and the engine 2 is blown up.

その後、時刻t13で、ISG20の発電トルクが0まで減少し、Li接続スイッチ40がオフにされ、Li電池31の充電が終了する。   Thereafter, at time t13, the power generation torque of the ISG 20 decreases to 0, the Li connection switch 40 is turned off, and the charging of the Li battery 31 is completed.

その後、時刻t14で、Li接続スイッチ40がオフのままISG20の発電トルクがXまで増加され、ISG20の電力が電気負荷に供給される。また、時刻t14では、エンジン要求負荷がXに増加する。点火遅角限界まで遅角されていた点火時期は、このエンジン要求負荷の増大にエンジントルクを速やかに追従させるために進角側に設定される。   Thereafter, at time t14, the power generation torque of the ISG 20 is increased to X while the Li connection switch 40 is off, and the power of the ISG 20 is supplied to the electric load. Further, at the time t14, the engine required load increases to X. The ignition timing that has been retarded to the ignition retard limit is set to the advance side in order to cause the engine torque to quickly follow the increase in engine demand load.

一方、時刻t20では、時刻t10と同様に、Li電池31の充電状態が低く充電が必要なため、Li接続スイッチ40がオンの状態で、ISG20が発電トルクXで発電し、Li電池31の充電状態が増加する。   On the other hand, at time t20, similarly to time t10, since the charging state of the Li battery 31 is low and needs to be charged, the ISG 20 generates power with the power generation torque X while the Li connection switch 40 is on, and the Li battery 31 is charged. The state increases.

また、時刻t20では、エアコン6が作動していないので、エンジン負荷要求は、発電トルクXに釣り合うようにXとなっている。   At time t20, since the air conditioner 6 is not operating, the engine load request is X so as to balance the power generation torque X.

その後、時刻t21で、Li電池31の充電状態がa2以上となったことで、ISG20の発電トルクが通常の減少率b2で速やかに減少され、この発電トルクの減少に合わせてエンジン要求負荷が減少される。   After that, at time t21, the charged state of the Li battery 31 becomes a2 or more, so that the power generation torque of the ISG 20 is quickly reduced at the normal reduction rate b2, and the engine required load decreases in accordance with the decrease in the power generation torque. Is done.

この時刻t21では、点火時期が遅角されておらず、点火時期の遅角によるエンジントルクの調整が可能な状態である。このため、時刻t21では、点火時期を遅角し、エンジン要求負荷までエンジントルクを速やかに減少させている。   At time t21, the ignition timing is not retarded, and the engine torque can be adjusted by retarding the ignition timing. For this reason, at time t21, the ignition timing is retarded, and the engine torque is quickly reduced to the engine required load.

その後、時刻t22で、ISG20の発電トルクが0まで減少し、Li接続スイッチ40がオフにされ、Li電池31の充電が終了する。また、時刻t22では、ISG20の発電トルクに合わせて、エンジン要求負荷も0まで減少する。   Thereafter, at time t22, the power generation torque of the ISG 20 decreases to 0, the Li connection switch 40 is turned off, and the charging of the Li battery 31 is completed. Further, at time t22, the engine required load also decreases to 0 in accordance with the power generation torque of the ISG 20.

その後、時刻t23で、Li接続スイッチ40がオフのままISG20の発電トルクがXまで増加され、ISG20の電力が電気負荷に供給される。また、時刻t23では、エンジン要求負荷がXに増加する。時刻t21で遅角された点火時期は、このエンジン要求負荷の増大にエンジントルクを速やかに追従させるために、時刻t23で進角側に設定される。   Thereafter, at time t23, the power generation torque of the ISG 20 is increased to X while the Li connection switch 40 is off, and the power of the ISG 20 is supplied to the electric load. Further, at time t23, the engine required load increases to X. The ignition timing retarded at time t21 is set to the advance side at time t23 in order to cause the engine torque to quickly follow the increase in engine demand load.

以上のように、本実施例の車両の発電制御装置において、ECU10は、エアコン6が作動から非作動に切り替わった際に点火時期を遅角するようになっている。   As described above, in the vehicle power generation control device of the present embodiment, the ECU 10 retards the ignition timing when the air conditioner 6 is switched from operation to non-operation.

そして、ECU10は、エアコン6の作動中または非作動に切り替わった直後にISG20の発電を停止させる場合は、エアコン6の非作動中にISG20の発電を停止させるときよりも、発電トルクの減少率を小さく設定する。   When the ECU 10 stops the power generation of the ISG 20 immediately after the operation of the air conditioner 6 or switches to the non-operation, the ECU 10 sets the reduction rate of the generated torque more than when the power generation of the ISG 20 is stopped while the air conditioner 6 is not operating. Set smaller.

これにより、エアコン6の作動中または非作動に切り替わった直後にISG20の発電を停止させるときは、エアコン6の非作動中にISG20の発電を停止させるときよりも、ISG20の発電トルクを緩やかに減少させることができる。   As a result, when the power generation of the ISG 20 is stopped immediately after the air conditioner 6 is in operation or switched to non-operation, the power generation torque of the ISG 20 is reduced more slowly than when the power generation of the ISG 20 is stopped while the air conditioner 6 is not operating. Can be made.

このため、負荷トルクとしてエンジン2へ作用する発電トルクが緩やかに減少するため、吸気量の調整によってエンジントルクを負荷トルクの減少に追従させることができる。この結果、ISG20の発電を停止する際の発電トルクの急減によりエンジン2が吹け上がるのを防止できる。   For this reason, since the power generation torque acting on the engine 2 as the load torque gradually decreases, the engine torque can follow the decrease in the load torque by adjusting the intake air amount. As a result, it is possible to prevent the engine 2 from blowing up due to a sudden decrease in the power generation torque when the power generation of the ISG 20 is stopped.

本発明の実施例を開示したが、当業者によっては本発明の範囲を逸脱することなく変更が加えられうることは明白である。すべてのこのような修正および等価物が次の請求項に含まれることが意図されている。   While embodiments of the invention have been disclosed, it will be apparent to those skilled in the art that changes may be made without departing from the scope of the invention. All such modifications and equivalents are intended to be included in the following claims.

1 ハイブリッド車両(車両)
2 エンジン
6 エアコン(補機、空調装置)
10 ECU(点火制御装置、制御部)
18 駆動軸
19 触媒装置
20 ISG(発電機)
31 Li電池(蓄電池)
40 Li接続スイッチ(接続スイッチ)
1 Hybrid vehicle (vehicle)
2 Engine 6 Air conditioner (auxiliary machine, air conditioner)
10 ECU (ignition control device, control unit)
18 Drive shaft 19 Catalytic device 20 ISG (generator)
31 Li battery (storage battery)
40 Li connection switch (connection switch)

Claims (6)

エンジンと、
前記エンジンの駆動軸に連結され、前記エンジンの駆動力により発電する発電機と、
前記エンジンの点火時期を調整する点火制御装置と、
前記発電機に電気的に接続され、前記発電機が発電した電力が充電される蓄電池と、を備える車両の発電制御装置であって、
前記蓄電池の充電状態が所定値以上になると前記発電機の発電トルクを減少して発電を停止する制御部を備え、
前記制御部は、前記点火制御装置により前記エンジンの点火時期が遅角された状態で前記発電機の発電を停止させる場合は、前記点火制御装置により前記エンジンの点火時期が遅角されていない状態で前記発電機の発電を停止させるときよりも、前記発電トルクの減少率を小さく設定することを特徴とする車両の発電制御装置。
Engine,
A generator connected to the drive shaft of the engine and generating electric power by the driving force of the engine;
An ignition control device for adjusting the ignition timing of the engine;
A storage battery electrically connected to the generator and charged with electric power generated by the generator; and a vehicle power generation control device comprising:
A controller that reduces power generation torque of the generator and stops power generation when the state of charge of the storage battery is equal to or greater than a predetermined value;
When the control unit stops the power generation of the generator while the ignition timing of the engine is retarded by the ignition control device, the ignition timing of the engine is not retarded by the ignition control device The power generation control device for a vehicle is characterized in that the rate of decrease in the power generation torque is set smaller than when the power generation of the generator is stopped.
前記制御部は、前記点火制御装置により前記エンジンの点火時期が遅角された状態で前記発電機の発電を停止させるときは、前記エンジンの点火時期が遅角されていないときの前記発電トルクの減少率より低い所定範囲で、前記発電トルクの減少率を変化させることを特徴とする請求項1に記載の車両の発電制御装置。   When stopping the power generation of the generator in a state where the ignition timing of the engine is retarded by the ignition control device, the control unit determines the power generation torque when the ignition timing of the engine is not retarded. The power generation control device for a vehicle according to claim 1, wherein the power generation torque reduction rate is changed within a predetermined range lower than the reduction rate. 前記発電機と前記蓄電池とを接続または遮断する接続スイッチを備え、
前記制御部は、前記発電機の発電を停止した後、前記接続スイッチを開いて前記発電機と前記蓄電池とを遮断することを特徴とする請求項1または請求項2に記載の車両の発電制御装置。
A connection switch for connecting or disconnecting the generator and the storage battery;
3. The power generation control for a vehicle according to claim 1, wherein, after the power generation of the generator is stopped, the control unit opens the connection switch to shut off the generator and the storage battery. 4. apparatus.
前記エンジンからの排気を浄化する触媒装置を備え、
前記点火制御装置は、前記触媒装置の暖機中は前記点火時期を遅角することを特徴とする請求項1から請求項3の何れか1項に記載の車両の発電制御装置。
A catalyst device for purifying exhaust from the engine;
4. The power generation control device for a vehicle according to claim 1, wherein the ignition control device retards the ignition timing while the catalyst device is warmed up. 5.
前記エンジンの駆動軸に連結され、前記エンジンの駆動力により作動する補機を備え、
前記点火制御装置は、前記補機が作動から非作動に切り替わった際に前記点火時期を遅角し、
前記制御部は、前記補機の作動中または非作動に切り替わった直後に前記発電機の発電を停止させる場合は、前記補機の非作動中に前記発電機の発電を停止させるときよりも、前記発電トルクの減少率を小さく設定することを特徴とする請求項1から請求項4の何れか1項に記載の車両の発電制御装置。
An auxiliary machine connected to the drive shaft of the engine and operated by the driving force of the engine;
The ignition control device retards the ignition timing when the auxiliary machine is switched from operation to non-operation,
The control unit, when stopping the power generation of the generator immediately after the auxiliary machine is in operation or switched to non-operation than when stopping the power generation of the generator during non-operation of the auxiliary machine, The vehicle power generation control device according to any one of claims 1 to 4, wherein a reduction rate of the power generation torque is set to be small.
前記補機は、少なくとも空調装置を含むことを特徴とする請求項5に記載の車両の発電制御装置。   The vehicle power generation control device according to claim 5, wherein the auxiliary machine includes at least an air conditioner.
JP2016211576A 2016-10-28 2016-10-28 Vehicle power generation control device Active JP6759979B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016211576A JP6759979B2 (en) 2016-10-28 2016-10-28 Vehicle power generation control device
DE102017218919.3A DE102017218919B4 (en) 2016-10-28 2017-10-24 Power generation control system
FR1760124A FR3058117B1 (en) 2016-10-28 2017-10-27 ELECTRIC POWER GENERATION CONTROL SYSTEM
CN201711024745.1A CN108016279B (en) 2016-10-28 2017-10-27 Power generation control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016211576A JP6759979B2 (en) 2016-10-28 2016-10-28 Vehicle power generation control device

Publications (2)

Publication Number Publication Date
JP2018071418A true JP2018071418A (en) 2018-05-10
JP6759979B2 JP6759979B2 (en) 2020-09-23

Family

ID=61912592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016211576A Active JP6759979B2 (en) 2016-10-28 2016-10-28 Vehicle power generation control device

Country Status (4)

Country Link
JP (1) JP6759979B2 (en)
CN (1) CN108016279B (en)
DE (1) DE102017218919B4 (en)
FR (1) FR3058117B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210107448A1 (en) * 2019-10-09 2021-04-15 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP2021191102A (en) * 2020-05-29 2021-12-13 株式会社デンソー Switch control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082619B (en) * 2019-04-24 2020-02-21 重庆斯微奇电子技术有限公司 Initiating explosive device detection system and detection method
CN112874507B (en) * 2019-11-29 2022-07-15 比亚迪股份有限公司 Hybrid vehicle and control method, device and system thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772963A (en) 1980-10-24 1982-05-07 Mitsui Petrochem Ind Ltd Alpha-(2-pyridyl)arylacetaldehyde
DE102004016559A1 (en) 2004-04-03 2005-10-27 Volkswagen Ag Method for operating a hybrid motor vehicle
JP4605256B2 (en) * 2008-06-10 2011-01-05 トヨタ自動車株式会社 Control device for vehicle power transmission device
JP5310330B2 (en) * 2009-07-09 2013-10-09 トヨタ自動車株式会社 Vehicle control device
US8355833B2 (en) 2010-12-02 2013-01-15 Gm Global Technology Operations, Llc Systems and methods for controlling engine torque
EP2752342B1 (en) 2011-08-31 2016-11-23 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and hybrid vehicle control method
JP5939221B2 (en) * 2013-09-20 2016-06-22 トヨタ自動車株式会社 Hybrid vehicle control device and hybrid vehicle control method
JP6156285B2 (en) * 2014-08-12 2017-07-05 マツダ株式会社 Control device for hybrid vehicle
JP2016132426A (en) * 2015-01-22 2016-07-25 トヨタ自動車株式会社 Hybrid vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210107448A1 (en) * 2019-10-09 2021-04-15 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
US11628819B2 (en) * 2019-10-09 2023-04-18 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP2021191102A (en) * 2020-05-29 2021-12-13 株式会社デンソー Switch control device
JP7380426B2 (en) 2020-05-29 2023-11-15 株式会社デンソー switch control device

Also Published As

Publication number Publication date
CN108016279B (en) 2020-07-31
FR3058117B1 (en) 2020-03-06
DE102017218919A1 (en) 2018-05-03
CN108016279A (en) 2018-05-11
FR3058117A1 (en) 2018-05-04
JP6759979B2 (en) 2020-09-23
DE102017218919B4 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
JP2738819B2 (en) Power generation control device for hybrid vehicle
JP2587202B2 (en) Power generation control device for hybrid vehicle
JP2790779B2 (en) Power generation control device for hybrid vehicle
US7503413B2 (en) System and method for controlling stopping and starting of a vehicle engine
JP2003219564A (en) Controller for storage device in vehicle
US20180233943A1 (en) Power supply system for vehicle
JP6759979B2 (en) Vehicle power generation control device
US10910972B2 (en) Control apparatus and onboard system
JP2018140698A (en) Controller for vehicle
JP2019183794A (en) Vehicular power supply device
JP6476936B2 (en) Drive control device
JP6583009B2 (en) Vehicle charging / discharging device
JP6719353B2 (en) Power supply control device and power supply control system
JP3826295B2 (en) Vehicle power supply control device
JP6028724B2 (en) Hybrid vehicle control device
JP6795910B2 (en) vehicle
JP6634807B2 (en) Drive control device for hybrid vehicle
JP6766480B2 (en) Idling stop controller
JP2018207658A (en) Power generation controller
JP7415361B2 (en) Engine power generation control device
JP7110718B2 (en) Start control device for internal combustion engine
JP6977321B2 (en) Vehicle control device
JP6573279B2 (en) Vehicle power supply
JP6614967B2 (en) Vehicle control device
JP2007309195A (en) Method for controlling engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6759979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151