JP2018070431A - Light-wavelength conversion member and light-emitting device - Google Patents

Light-wavelength conversion member and light-emitting device Download PDF

Info

Publication number
JP2018070431A
JP2018070431A JP2016215303A JP2016215303A JP2018070431A JP 2018070431 A JP2018070431 A JP 2018070431A JP 2016215303 A JP2016215303 A JP 2016215303A JP 2016215303 A JP2016215303 A JP 2016215303A JP 2018070431 A JP2018070431 A JP 2018070431A
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
conversion member
crystal
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016215303A
Other languages
Japanese (ja)
Other versions
JP6486315B2 (en
Inventor
祐介 勝
Yusuke Katsu
祐介 勝
淳 茂木
Jun Mogi
淳 茂木
翔平 高久
Shohei Takahisa
翔平 高久
経之 伊藤
Tsuneyuki Ito
経之 伊藤
光岡 健
Takeshi Mitsuoka
健 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016215303A priority Critical patent/JP6486315B2/en
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to CN201780066919.2A priority patent/CN109923446B/en
Priority to EP17865089.1A priority patent/EP3534190A4/en
Priority to KR1020197011086A priority patent/KR102229730B1/en
Priority to CN201780066574.0A priority patent/CN109891274B/en
Priority to EP17865959.5A priority patent/EP3534193B1/en
Priority to US16/342,621 priority patent/US10910524B2/en
Priority to KR1020197010009A priority patent/KR102307670B1/en
Priority to PCT/JP2017/037920 priority patent/WO2018079421A1/en
Priority to US16/342,390 priority patent/US10727378B2/en
Priority to PCT/JP2017/037914 priority patent/WO2018079419A1/en
Priority to CN201780066927.7A priority patent/CN109891275B/en
Priority to KR1020197011087A priority patent/KR102318473B1/en
Priority to PCT/JP2017/038232 priority patent/WO2018079501A1/en
Priority to US16/343,188 priority patent/US11063186B2/en
Priority to EP17865459.6A priority patent/EP3534191A4/en
Priority to TW106137045A priority patent/TWI681147B/en
Priority to TW106137051A priority patent/TWI648242B/en
Priority to TW106137049A priority patent/TWI668295B/en
Publication of JP2018070431A publication Critical patent/JP2018070431A/en
Publication of JP6486315B2 publication Critical patent/JP6486315B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a light-wavelength conversion member and a light-emitting device that can have both high fluorescence intensity and high color homogeneity.SOLUTION: A light-emitting device 1 is provided with a housing 3, a light-emitting device 5, and light-wavelength conversion member 9. The light-wavelength conversion member 9 comprises a ceramic sintered body as a polycrystalline material in which a crystal particle AlOand a crystal particle having a component represented by chemical formula ABO:Ce are included as main components. More particularly, A and B each in ABOis at least one element selected from the element group below. The at least one element selected from the element group below is distributed between each crystal particle interior and crystal grain boundaries of the ceramic sintered body, and for the elements distributed at each crystal particle interior and crystal grain boundary, the density at the crystal grain boundary is higher than that in each crystal particle interior. A is Sc, Y, or lanthanoid (excluding Ce); and B is Al or Ga.SELECTED DRAWING: Figure 1

Description

本発明は、光の波長の変換が可能な光波長変換部材及びその光波長変換部材を備えた発光装置に関するものである。   The present invention relates to an optical wavelength conversion member capable of converting the wavelength of light and a light emitting device including the optical wavelength conversion member.

ヘッドランプや各種照明機器などでは、発光ダイオード(LED:Light Emitting Diode)や半導体レーザー(LD:Laser Diode)の青色光を、蛍光体によって波長変換することにより白色を得ている装置が主流となっている。   In headlamps and various lighting equipment, devices that obtain white color by converting the wavelength of blue light from light emitting diodes (LEDs) and semiconductor lasers (LDs: Laser Diodes) with phosphors have become mainstream. ing.

蛍光体としては、樹脂系やガラス系などが知られているが、近年、光源の高出力化が進められており、蛍光体には、より高い耐久性が求められるようになったことから、セラミックス蛍光体に注目が集まっている。   As the phosphor, a resin system or a glass system is known, but in recent years, the output of the light source has been increased, and the phosphor has been required to have higher durability. Attention has been focused on ceramic phosphors.

このセラミックス蛍光体としては、YAl12:Ce(YAG:Ce)に代表されるガーネット構造(A12)の成分にCeが賦活された蛍光体が知られている。 As this ceramic phosphor, a phosphor in which Ce is activated in a garnet structure (A 3 B 5 O 12 ) component typified by Y 3 Al 5 O 12 : Ce (YAG: Ce) is known.

例えば下記特許文献1では、Al中にYAG:Ceを複合化させることで、耐熱性や熱伝導性を向上させた技術が開示されている。 For example, Patent Document 1 below discloses a technique in which heat resistance and thermal conductivity are improved by compounding YAG: Ce in Al 2 O 3 .

特許第4609319号公報Japanese Patent No. 4609319 特許第5740017号公報Japanese Patent No. 5740017

しかしながら、これら先行技術では、Alを含むことによりYAG:Ce単一組成よりも高い熱伝導性を有するようになり、結果として耐熱性や耐レーザー出力性が向上するものの、下記の様な問題があった。 However, in these prior arts, the inclusion of Al 2 O 3 has higher thermal conductivity than the YAG: Ce single composition, and as a result, the heat resistance and laser output resistance are improved. There was a serious problem.

例えば特許文献1に記載の技術は、一方向凝固法によって焼結体を作製するため、その組成は体積比でAl/YAG:Ce=55/45のものしか作製することができず、蛍光強度や色ムラ(色バラツキ)などの蛍光特性は限定的なものにとどまっていた。 For example, since the technique described in Patent Document 1 produces a sintered body by a unidirectional solidification method, it can only produce a composition having a volume ratio of Al 2 O 3 / YAG: Ce = 55/45. In addition, the fluorescence characteristics such as fluorescence intensity and color unevenness (color variation) are limited.

また、特許文献2に記載の技術は、焼成中のCe蒸発によるCe濃度ムラに伴う色ムラ防止の為、結晶中にCeAl1118を析出させているが、CeAl1118自体は蛍光特性を有していないので、その物質が存在することによって焼結体全体の蛍光特性を損なっていた。 Further, in the technique described in Patent Document 2, CeAl 11 O 18 is precipitated in the crystal in order to prevent color unevenness due to Ce concentration unevenness due to Ce evaporation during firing, but CeAl 11 O 18 itself has fluorescent characteristics. Therefore, the presence of the substance impairs the fluorescence characteristics of the entire sintered body.

しかも、いずれの先行技術においても、微小な粒界部までを制御するには至っておらず、従来の樹脂系やガラス系蛍光体に対し、蛍光強度や色ムラなどの蛍光特性が劣っていた。   Moreover, none of the prior arts has been able to control even the fine grain boundary, and the fluorescent properties such as fluorescence intensity and color unevenness are inferior to conventional resin-based and glass-based phosphors.

本発明は、前記課題に鑑みてなされたものであり、その目的は、高い蛍光強度と高い色均質性とを両立できる光波長変換部材及び発光装置を提供することにある。   This invention is made | formed in view of the said subject, The objective is to provide the light wavelength conversion member and light-emitting device which can make high fluorescence intensity and high color homogeneity compatible.

(1)本発明の第1局面は、Al結晶粒子と化学式A12:Ceで表される成分の結晶粒子(以下、A12:Ce結晶粒子と記すこともある)とを主成分とする多結晶体であるセラミックス焼結体から構成された光波長変換部材に関するものである。 (1) In the first aspect of the present invention, Al 2 O 3 crystal particles and crystal particles of a component represented by the chemical formula A 3 B 5 O 12 : Ce (hereinafter referred to as A 3 B 5 O 12 : Ce crystal particles). And a light wavelength conversion member composed of a ceramic sintered body which is a polycrystal having a main component.

この光波長変換部材では、A12中のAとBは、下記元素群から選択される少なくとも1種の元素であり、且つ、セラミックス焼結体の各結晶粒子内と結晶粒界との間に、下記元素群から選択される少なくとも1種の元素が分布するとともに、各結晶粒子内と結晶粒界とに分布した元素は、各結晶粒子内の濃度より結晶粒界の濃度が高い。 In this optical wavelength conversion member, A and B in A 3 B 5 O 12 are at least one element selected from the following element group, and each crystal grain in the ceramic sintered body and grain boundaries And at least one element selected from the following element group is distributed, and the element distributed in each crystal grain and in the grain boundary has a grain boundary concentration higher than that in each crystal grain. high.

A:Sc、Y、ランタノイド(Ceは除く)
B:Al、Ga
このように、本第1局面の光波長変換部材は、各結晶粒子内と結晶粒界とに分布した元素は、各結晶粒子内の濃度より結晶粒界の濃度が高いので、後述する実験例からも明らかなように、高い蛍光強度と高い色均質性(即ち色バラツキが小さいこと)とを実現することができる。
A: Sc, Y, lanthanoid (excluding Ce)
B: Al, Ga
Thus, in the light wavelength conversion member of the first aspect, the element distributed in each crystal grain and the crystal grain boundary has a higher concentration at the crystal grain boundary than the concentration within each crystal grain. As is clear from the above, high fluorescence intensity and high color homogeneity (that is, small color variation) can be realized.

詳しくは、本第1局面では、結晶粒子内よりも結晶粒界に、上述した特定の元素が多く分布することにより、元素の供給源となる為、焼成中の蒸発に伴う濃度ムラ(従って色バラツキ)を低減することができると考えられる。なお、このことは、焼成後の濃度の分布から明らかである。   Specifically, in the first aspect, since the specific element described above is distributed more in the crystal grain boundary than in the crystal grain and becomes a supply source of the element, the density unevenness accompanying evaporation during firing (therefore the color) It is considered that (variation) can be reduced. This is apparent from the concentration distribution after firing.

また、結晶粒界に前記元素が存在することにより、結晶粒界などの不連続界面において生ずる、反射、屈折(複屈折)が緩和され、過度な粒界散乱による透光性の低下が起こりにくくなる。そのため、高い蛍光強度が得られると考えられる。   In addition, the presence of the element at the crystal grain boundary alleviates reflection and refraction (birefringence) that occur at the discontinuous interface such as the crystal grain boundary, and is less likely to cause a decrease in translucency due to excessive grain boundary scattering. Become. Therefore, it is considered that high fluorescence intensity can be obtained.

また、本第1局面の光波長変換部材は、上述した構成によって、高い熱伝導性を有しているので、光源が高出力化された場合でも、熱による影響を抑制すること、例えば光の消失を抑制することができる。   Moreover, since the light wavelength conversion member of the first aspect has high thermal conductivity due to the above-described configuration, even when the light source has a high output, it is possible to suppress the influence of heat, for example, light Disappearance can be suppressed.

さらに、この光波長変換部材は、セラミックス焼結体であるので、強度が高く、しかも、光源から光が繰り返して照射された場合でも性能が劣化しにくく、その上、耐候性にも優れているという利点がある。   Furthermore, since this light wavelength conversion member is a ceramic sintered body, its strength is high, and even when light is repeatedly irradiated from a light source, its performance is not easily deteriorated, and furthermore, weather resistance is also excellent. There is an advantage.

(2)本発明の第2局面では、A12:Ceで表される成分の結晶粒子中のCeの濃度が、元素Aに対して10.0mol%以下(但し0を含まず)である。
12:Ce結晶粒子中のCe濃度が、元素Aに対し0mol%であると、十分な蛍光強度が得られにくくなる。一方、前記Ce濃度が10mol%よりも多いと、濃度消光を起こしやすくなり、蛍光強度の低下を招く恐れがある。
In a second aspect of (2) the present invention, A 3 B 5 O 12: Ce concentration in the crystal particles of the component represented by Ce is, free of 10.0 mol% or less (0 for the element A ).
When the Ce concentration in the A 3 B 5 O 12 : Ce crystal particles is 0 mol% with respect to the element A, it is difficult to obtain sufficient fluorescence intensity. On the other hand, when the Ce concentration is higher than 10 mol%, concentration quenching is likely to occur, which may cause a decrease in fluorescence intensity.

従って、本第2局面のように、A12:Ce結晶中のCe濃度が、元素Aに対し10mol%以下(0を含まず)である場合には、高い蛍光強度を実現できるので、好適である。 Therefore, as in the second aspect, when the Ce concentration in the A 3 B 5 O 12 : Ce crystal is 10 mol% or less (not including 0) with respect to the element A, high fluorescence intensity can be realized. Therefore, it is preferable.

(3)本発明の第3局面では、セラミックス焼結体に占めるA12:Ceで表される成分の結晶粒子の割合が、3〜70vol%である。
ここで、A12:Ce結晶粒子が3vol%未満の場合、A12:Ce結晶粒子が少ないので十分な蛍光強度が得られにくくなる恐れがある。一方、A12:Ce結晶粒子が70vol%より多い場合、異種界面、即ちAl結晶粒子とA12:Ce結晶粒子との界面における粒界散乱が増加し、十分な透光性が得られにくくなる(即ち蛍光強度が低下する)恐れがある。
(3) In a third aspect of the present invention, a ceramic A 3 B 5 O 12 occupying the sintered body: the proportion of the crystal grains of the component represented by Ce is a 3~70vol%.
Here, when the amount of A 3 B 5 O 12 : Ce crystal particles is less than 3 vol%, the amount of A 3 B 5 O 12 : Ce crystal particles is small, so that it may be difficult to obtain sufficient fluorescence intensity. On the other hand, when the amount of A 3 B 5 O 12 : Ce crystal particles is more than 70 vol%, grain boundary scattering at the heterogeneous interface, that is, the interface between Al 2 O 3 crystal particles and A 3 B 5 O 12 : Ce crystal particles increases. , It may be difficult to obtain sufficient translucency (that is, the fluorescence intensity decreases).

従って、本第3局面のように、A12:Ce結晶粒子が3〜70vol%である場合には、十分な透光性が得られるとともに、発光強度が高くなるので好適である。
(4)本発明の第4局面は、第1〜3局面のいずれかの光波長変換部材を備えた発光装置である。
Therefore, as in the third aspect, when the A 3 B 5 O 12 : Ce crystal particles are 3 to 70 vol%, it is preferable because sufficient translucency can be obtained and the emission intensity can be increased. .
(4) 4th aspect of this invention is a light-emitting device provided with the optical wavelength conversion member in any one of 1st-3rd aspect.

本第4局面の発光装置(詳しくは光波長変換部材)にて波長が変換された光(即ち蛍光)は、高い蛍光強度と高い色均質性とを有する。
なお、発光装置の発光素子としては、例えばLEDやLDなどの公知の素子を用いることができる。
The light whose wavelength is converted by the light emitting device of the fourth aspect (specifically, the light wavelength conversion member) (that is, fluorescence) has high fluorescence intensity and high color homogeneity.
In addition, as a light emitting element of a light-emitting device, well-known elements, such as LED and LD, can be used, for example.

<以下に、本発明の各構成について説明する>
・前記「光波長変換部材」は、上述した構成を有するセラミックス焼結体であり、各結晶粒子やその粒界には、不可避不純物が含まれていてもよい。
<Each configuration of the present invention will be described below>
The “light wavelength conversion member” is a ceramic sintered body having the above-described configuration, and each crystal particle and its grain boundary may contain inevitable impurities.

・前記「主成分」とは、前記光波長変換部材中において、最も多い量(体積)存在することを示している。
・前記「A12:Ce」とは、A12中のAの一部にCeが固溶置換していることを示しており、このような構造を有することにより、同化合物は蛍光特性を示すようになる。
The “main component” indicates that the largest amount (volume) exists in the light wavelength conversion member.
-The above "A 3 B 5 O 12 : Ce" indicates that Ce is a solid solution substitution in a part of A in A 3 B 5 O 12. By having such a structure, The compound exhibits fluorescence characteristics.

・前記「濃度」としては、例えばmol%、重量%(wt%)、体積%(vol%)等、含有量の割合を示す各種の指標を採用できる。   -As said "concentration", the various parameter | index which shows the ratio of content, such as mol%, weight% (wt%), volume% (vol%), can be employ | adopted, for example.

光波長変換部材を備えた発光装置を厚み方向に破断した断面を示す断面図である。It is sectional drawing which shows the cross section which fractured | ruptured the light-emitting device provided with the light wavelength conversion member in the thickness direction. (a)はNo.3の試料のBF−STEM像、(b)は(a)の試料に対する線分析による濃度の変化を示すグラフである。(A) is a BF-STEM image of the sample of No. 3, (b) is a graph which shows the change of the density | concentration by the line analysis with respect to the sample of (a). (a)はNo. 8の試料のBF−STEM像、(b)は(a)の試料に対する線分析による濃度の変化を示すグラフである。(A) is a BF-STEM image of the sample of No. 8, and (b) is a graph showing a change in concentration by line analysis for the sample of (a). (a)はNo. 18の試料のBF−STEM像、(b)は(a)の試料に対する線分析による濃度の変化を示すグラフである。(A) is a BF-STEM image of the sample of No. 18, and (b) is a graph showing the change in concentration by line analysis for the sample of (a). (a)はNo. 20の試料のBF−STEM像、(b)は(a)の試料に対する線分析による濃度の変化を示すグラフである。(A) is a BF-STEM image of the sample of No. 20, and (b) is a graph showing a change in concentration by line analysis for the sample of (a).

次に、本発明の光波長変換部材及び発光装置の実施形態について説明する。
[1.実施形態]
[1−1.発光装置]
まず、光波長変換部材を備えた発光装置について説明する。
Next, embodiments of the light wavelength conversion member and the light emitting device of the present invention will be described.
[1. Embodiment]
[1-1. Light emitting device]
First, the light-emitting device provided with the light wavelength conversion member will be described.

図1に示すように、本実施形態の発光装置1は、例えばアルミナ等の箱状のセラミック製のパッケージ(容器)3と、容器3の内部に配置された例えばLD等の発光素子5と、容器3の開口部7を覆うように配置された板状の光波長変換部材9とを備えている。   As shown in FIG. 1, a light emitting device 1 of the present embodiment includes a box-shaped ceramic package (container) 3 such as alumina, and a light emitting element 5 such as an LD disposed inside the container 3. And a plate-like light wavelength conversion member 9 disposed so as to cover the opening 7 of the container 3.

この発光装置1では、発光素子5から放射された光は、透光性を有する光波長変換部材9を透過するとともに、その光の一部は光波長変換部材9の内部で波長変換されて発光する。つまり、光波長変換部材9では、発光素子5から放射される光の波長とは異なる波長の蛍光を発する。   In the light emitting device 1, the light emitted from the light emitting element 5 is transmitted through the light wavelength conversion member 9 having translucency, and a part of the light is wavelength-converted inside the light wavelength conversion member 9 to emit light. To do. That is, the light wavelength conversion member 9 emits fluorescence having a wavelength different from the wavelength of the light emitted from the light emitting element 5.

例えば、LDから照射される青色光が、光波長変換部材9によって波長変換されることにより、全体として白色光が光波長変換部材9から外部(例えば図1の上方)に照射させる。
[1−2.光波長変換部材]
次に、光波長変換部材9について説明する。
For example, blue light emitted from the LD is wavelength-converted by the light wavelength conversion member 9, so that white light as a whole is irradiated from the light wavelength conversion member 9 to the outside (for example, upward in FIG. 1).
[1-2. Optical wavelength conversion member]
Next, the light wavelength conversion member 9 will be described.

本実施形態の光波長変換部材9は、Al結晶粒子と化学式A12:Ceで表される成分の結晶粒子(即ちA12:Ce結晶粒子)とを主成分とする多結晶体であるセラミックス焼結体から構成されたものである。 The light wavelength conversion member 9 of the present embodiment includes Al 2 O 3 crystal particles and crystal particles of a component represented by the chemical formula A 3 B 5 O 12 : Ce (ie, A 3 B 5 O 12 : Ce crystal particles). It is composed of a ceramic sintered body which is a polycrystalline body as a main component.

この光波長変換部材9では、A12中のAとBは、下記元素群から選択される少なくとも1種の元素である。しかも、セラミックス焼結体の各結晶粒子内と結晶粒界との間に、下記元素群から選択される少なくとも1種の元素が分布するとともに、各結晶粒子内と結晶粒界とに分布した元素は、各結晶粒子内の濃度より結晶粒界の濃度が高い。 In this light wavelength conversion member 9, A and B in A 3 B 5 O 12 are at least one element selected from the following element group. In addition, at least one element selected from the following element group is distributed between each crystal grain of the ceramic sintered body and the crystal grain boundary, and the element distributed within each crystal grain and the crystal grain boundary Has a higher grain boundary concentration than the concentration in each crystal grain.

A:Sc、Y、ランタノイド(Ceは除く)
B:Al、Ga
また、本実施形態の光波長変換部材9では、A12:Ce結晶粒子中のCeの濃度が、元素Aに対して10.0mol%以下(但し0を含まず)を採用できる。
A: Sc, Y, lanthanoid (excluding Ce)
B: Al, Ga
Further, in the light wavelength conversion member 9 of the present embodiment, the concentration of Ce in the A 3 B 5 O 12 : Ce crystal particles can be 10.0 mol% or less (excluding 0) with respect to the element A. .

さらに、本実施形態の光波長変換部材9では、セラミックス焼結体に占めるA12:Ce結晶粒子の割合として、3〜70vol%を採用できる。
[1−3.効果]
次に、実施形態の効果を説明する。
Furthermore, the optical wavelength conversion member 9 of this embodiment, A 3 B 5 O 12 occupying the ceramic sintered body: as a percentage of Ce crystal grains can be employed 3~70vol%.
[1-3. effect]
Next, effects of the embodiment will be described.

本実施形態の光波長変換部材9は、各結晶粒子内と結晶粒界とに分布した元素は、各結晶粒子内の濃度より結晶粒界の濃度が高いので、高い蛍光強度と高い色均質性(即ち色バラツキが小さいこと)とを実現することができる。   In the light wavelength conversion member 9 of the present embodiment, the element distributed in each crystal grain and the crystal grain boundary has a higher crystal grain boundary concentration than the concentration in each crystal grain. (That is, the color variation is small).

また、本実施形態の光波長変換部材9は、高い熱伝導性を有しているので、光源が高出力化された場合でも、熱による影響を抑制すること、例えば光の消失を抑制することができる。   Moreover, since the light wavelength conversion member 9 of this embodiment has high thermal conductivity, even when the light source has a high output, it suppresses the influence of heat, for example, suppresses the loss of light. Can do.

さらに、本実施形態の光波長変換部材9は、セラミックス焼結体であるので、強度が高く、しかも、光源から光が繰り返して照射された場合でも性能が劣化しにくく、その上、耐候性にも優れているという利点がある。   Furthermore, since the light wavelength conversion member 9 of this embodiment is a ceramic sintered body, the strength is high, and even when light is repeatedly irradiated from the light source, the performance is not easily deteriorated, and in addition, the weather resistance is improved. Also has the advantage of being superior.

また、A12:Ce結晶粒子中のCe濃度が、元素Aに対し10mol%以下(0を含まず)である場合には、高い蛍光強度を実現できるので、好適である。
さらに、セラミックス焼結体に占めるA12:Ce結晶粒子の割合が、3〜70vol%である場合には、十分な透光性が得られるとともに、発光強度が高くなるという利点がある。
In addition, when the Ce concentration in the A 3 B 5 O 12 : Ce crystal particles is 10 mol% or less (not including 0) with respect to the element A, it is preferable because high fluorescence intensity can be realized.
Furthermore, when the ratio of A 3 B 5 O 12 : Ce crystal particles in the ceramic sintered body is 3 to 70 vol%, there is an advantage that sufficient translucency is obtained and the emission intensity is increased. is there.

従って、前記光波長変換部材9を備えた発光装置1では、高い蛍光強度と高い色均質性とを有する蛍光を発生することができるという効果を奏する。
[2.実施例]
次に、具体的な各実施例について説明する。
[2−1.実施例1〜3]
<実施例1>
下記表1に示す条件により、No.1〜4のセラミックス焼結体の試料を作製した。なお、各試料のうち、No.1〜3が本発明の範囲内の試料であり、No.4が本発明の範囲外(比較例)の試料である。
Therefore, the light emitting device 1 provided with the light wavelength conversion member 9 has an effect of generating fluorescence having high fluorescence intensity and high color uniformity.
[2. Example]
Next, specific examples will be described.
[2-1. Examples 1 to 3]
<Example 1>
Under the conditions shown in Table 1 below, samples of ceramic sintered bodies No. 1 to No. 4 were produced. Of the samples, Nos. 1 to 3 are samples within the scope of the present invention, and No. 4 is a sample outside the scope of the present invention (comparative example).

具体的には、各試料に対して、セラミックス焼結体(即ち光波長変換部材を構成するセラミックス焼結体)中のYAG(YAl12)の割合が21vol%になるように、また、Ce濃度がYAG中のYに対して1mol%になるように、Al(平均粒径0.3μm)とY(平均粒径1.2μm)、CeO(平均粒径1.5μm)を秤量した。 Specifically, for each sample, the ratio of YAG (Y 3 Al 5 O 12 ) in the ceramic sintered body (that is, the ceramic sintered body constituting the light wavelength conversion member) is 21 vol%. In addition, Al 2 O 3 (average particle size 0.3 μm), Y 2 O 3 (average particle size 1.2 μm), CeO 2 (average particle size) so that the Ce concentration is 1 mol% with respect to Y in YAG. Diameter 1.5 μm).

これを、有機溶剤と所定量の分散剤(原料粉末に対し固形物換算で2wt%)と共にボールミル中に投入し、12hr粉砕混合を行った。
前記混合粉砕は、以下の手順で行った。
This was put into a ball mill together with an organic solvent and a predetermined amount of a dispersant (2 wt% in terms of solid matter with respect to the raw material powder), and pulverized and mixed for 12 hours.
The mixing and grinding was performed according to the following procedure.

まず、下記(1)〜(4)のいずれかの方法で各粉末を作製した。
(1) Alのみで10hr粉砕混合
(2) AlとCeOのみで10hr粉砕混合
(3)YとCeOのみで10hr粉砕混合
(4) Al、Y、CeOで10hr粉砕混合
そして、前記(1)〜(4)の粉末を、下記条件で混合、粉砕し、A〜Dの各スラリーを作製した。
First, each powder was produced by any one of the following methods (1) to (4).
(1) Crushing and mixing for 10 hr only with Al 2 O 3
(2) 10 hr pulverization and mixing only with Al 2 O 3 and CeO 2
(3) 10 hr pulverization and mixing only with Y 2 O 3 and CeO 2
(4) Al 2 O 3 , Y 2 O 3 , CeO 2 for 10 hr pulverized and mixed Then, the powders of (1) to (4) were mixed and pulverized under the following conditions to prepare each slurry of AD .

A:(1)、(4)の粉末を混合し、2hr追加混合したスラリー
B:(2)、(4)の粉末を混合し、2hr追加混合したスラリー、
C:(2)、(3)、(4)の粉末を混合し、2hr追加混合したスラリー
D:(4)の粉末を2hr追加混合粉砕したスラリー
次に、下記表1に示すように、得られた各スラリーを用いて、ドクターブレード法によりシート成形体を作製した。そのシート成形体を脱脂後、大気雰囲気下で、焼成温度1450℃〜1750℃、保持時間3〜20時間で焼成を行った。これによって、No.1〜4のセラミックス焼結体の試料を得た。なお、セラミックス焼結体の寸法は、20mm角×厚み0.5mmである。
A: Slurry in which powders of (1) and (4) were mixed and mixed for 2 hours B: Slurry in which powders of (2) and (4) were mixed and mixed for 2 hours,
C: Slurry obtained by mixing the powders of (2), (3) and (4) and adding and mixing for 2 hr D: Slurry obtained by mixing and grinding the powder of (4) for 2 hr
Next, as shown in Table 1 below, a sheet molded body was produced by the doctor blade method using each of the obtained slurries. The sheet compact was degreased and fired in an air atmosphere at a firing temperature of 1450 ° C. to 1750 ° C. and a holding time of 3 to 20 hours. As a result, No. 1 to 4 ceramic sintered body samples were obtained. The size of the ceramic sintered body is 20 mm square x 0.5 mm thickness.

なお、分散剤としては、例えば、ポリカルボン酸系分散剤のサンノプコ社製SNディスパーサント5468や、日本油脂株式会社製マリアリムAKM−0531を用いることができる。   As the dispersant, for example, polydisperse dispersant SN Dispersant 5468 manufactured by San Nopco, or Marialim AKM-053 manufactured by Nippon Oil & Fats Co., Ltd. can be used.

次に、得られたセラミックス焼結体について、後述する他の実施例と同様に、下記の特性(a)〜(e)を調査した。その結果を下記表1に記す。
(a)相対密度
得られたセラミックス焼結体の相対密度は、アルキメデス法で密度を測定し、測定した密度を相対密度に換算する方法で算出した。
Next, the following characteristics (a) to (e) were investigated for the obtained ceramic sintered body in the same manner as in other examples described later. The results are shown in Table 1 below.
(A) Relative Density The relative density of the obtained ceramic sintered body was calculated by measuring the density by the Archimedes method and converting the measured density to the relative density.

(b)結晶粒界成分
各試料に対して、集束イオンビーム装置(FIB装置:Focused Ion Beam system)を用いて、セラミックス焼結体の任意の部分(例えば焼結体の中央部分)から、100nm四方の薄片を切り出した。観察の対象は、その薄片における任意の表面(例えば薄片の中央部分)とした。
(B) Grain boundary component For each sample, a focused ion beam device (FIB device: Focused Ion Beam system) is used to measure 100 nm from an arbitrary portion of the ceramic sintered body (for example, the central portion of the sintered body). Four slices were cut out. The object of observation was an arbitrary surface (for example, the central portion of the thin piece) in the thin piece.

そして、各試料における任意の表面を、走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscope)で観察し、結晶粒界を確認した。   And the arbitrary surface in each sample was observed with the scanning transmission electron microscope (STEM: Scanning Transmission Electron Microscope), and the crystal grain boundary was confirmed.

次に、結晶粒界を確認した各試料において、結晶粒子及び結晶粒界におけるCe元素の濃度を、エネルギ分散形X線分光器(EDS:Energy Dispersive X−ray Spectrometer)で測定することによって、Ce元素の有無を確認した。   Next, in each sample in which the crystal grain boundary is confirmed, the concentration of Ce element in the crystal grain and the crystal grain boundary is measured by an energy dispersive X-ray spectrometer (EDS: Energy Dispersive X-ray Spectrometer). The presence or absence of elements was confirmed.

詳しくは、後述する図2〜5に示すように、結晶粒子及び結晶粒界におけるCe元素の濃度を調べるために、結晶粒界とその両側の結晶粒子の内部とを含むように、直線状に所定範囲(即ち分析距離)を設定し、その範囲におけるCe元素の濃度を連続的に測定した(いわゆる線分析を行った)。   Specifically, as shown in FIGS. 2 to 5 to be described later, in order to examine the concentration of Ce element in the crystal grain and the crystal grain boundary, linearly so as to include the crystal grain boundary and the inside of the crystal grain on both sides thereof. A predetermined range (that is, analysis distance) was set, and the concentration of Ce element in the range was continuously measured (so-called line analysis was performed).

(c)蛍光強度
13mm角×厚み0.5mmに加工したサンプルに対し、465nmの波長を有する青色LD光をレンズで0.5mm幅まで集光させて照射し、透過した光をレンズによって集光させ、パワーセンサーによりその発光強度を測定した。この時、照射される出力密度は40W/mmとなるようにした。なお、その強度はYAG:Ce単結晶体の強度を100としたときの相対値で評価した。
(C) Fluorescence intensity A sample processed to 13 mm square x 0.5 mm thickness is irradiated with blue LD light having a wavelength of 465 nm to a width of 0.5 mm with a lens, and the transmitted light is collected with the lens. The emission intensity was measured with a power sensor. At this time, the output power density was set to 40 W / mm 2 . The strength was evaluated by a relative value when the strength of the YAG: Ce single crystal was 100.

(e)色バラツキ
色バラツキは、色彩照度計による色度バラツキ測定によって評価した。
具体的には、20mm角×厚み0.5mmに加工したサンプルに対し、462nmの波長を有する青色LD光をレンズで集光させて0.4mm幅とし、これを照射して反対面から透過してくる光について色彩照度計によって色度を測定した。
(E) Color variation The color variation was evaluated by measuring chromaticity variation with a color illuminometer.
Specifically, blue LD light having a wavelength of 462 nm is condensed with a lens to a width of 0.4 mm with respect to a sample processed into a 20 mm square × thickness of 0.5 mm, and this is irradiated and transmitted from the opposite surface. The chromaticity of the incoming light was measured with a color illuminometer.

照射は、サンプルの照射面(サンプル面)の中央おいて、18mm角の領域を設定し、その領域内において3mm間隔で行い、その色度(X方向)のバラツキ(ΔX)を評価した。ここで、バラツキ(ΔX)とは、色度(X方向)の偏差の最大値である。   Irradiation was carried out by setting an 18 mm square region at the center of the irradiation surface (sample surface) of the sample, and performing 3 mm intervals in the region, and evaluating the variation (ΔX) in the chromaticity (X direction). Here, the variation (ΔX) is the maximum value of deviation of chromaticity (X direction).

そして、上述のようにして各試料毎に得られた結果のうち、蛍光強度、色バラツキに関しては、下記のような評価基準により評価できる。なお、他の実施例も同様に評価できる。   Of the results obtained for each sample as described above, the fluorescence intensity and color variation can be evaluated according to the following evaluation criteria. Other examples can be similarly evaluated.

蛍光強度については、120以上が好ましいと考えられる。色バラツキについては、ΔX<0.015が好ましいと考えられる。
以下では、本実施例1について、前記評価基準に基づいた評価などについて説明する。
The fluorescence intensity is considered to be preferably 120 or more. Regarding color variation, ΔX <0.015 is considered preferable.
Below, about the present Example 1, the evaluation etc. based on the said evaluation criteria are demonstrated.

実施例1のいずれの試料においても、相対密度は99%以上で十分に緻密化されていた。
また、表1に示すように、各結晶粒子よりも結晶粒界にCe元素が多く分布しているNo.1〜3は、蛍光強度が高く、且つ、色バラツキが小さく、いずれも良好な結果となった。一方、Ceの濃度差が少ないNo.4は、蛍光強度が低く、色バラツキが大きかった。
In any sample of Example 1, the relative density was 99% or more, and the sample was sufficiently densified.
Further, as shown in Table 1, Nos. 1 to 3 in which more Ce elements are distributed in the crystal grain boundaries than each crystal grain have high fluorescence intensity and small color variation, both of which are good results. It became. On the other hand, No. 4 with a small concentration difference of Ce had low fluorescence intensity and large color variation.

なお、表1において、「Al−Al」とは、Al結晶粒子とAl結晶粒子との粒界を示し、「Al−A12」とは、Al結晶粒子とA12:Ce結晶粒子との粒界を示し、「A12−A12」とは、A12:Ce結晶粒子とA12:Ce結晶粒子との粒界を示している。また、各粒界において、「有」とは、線分析におけるCe濃度の最大のピークが粒界にあること、即ち各結晶粒子内のCe濃度よりも結晶粒界のCe濃度が高いことを示している。 In Table 1, “Al 2 O 3 —Al 2 O 3 ” indicates a grain boundary between Al 2 O 3 crystal particles and Al 2 O 3 crystal particles, and “Al 2 O 3 -A 3 B 5 “O 12 ” indicates a grain boundary between Al 2 O 3 crystal particles and A 3 B 5 O 12 : Ce crystal particles, and “A 3 B 5 O 12 -A 3 B 5 O 12 ” indicates A 3 B 5 O 12: Ce crystal grains and a 3 B 5 O 12: shows the grain boundary of the Ce crystal grains. In each grain boundary, “present” means that the maximum Ce concentration peak in the line analysis is at the grain boundary, that is, the Ce concentration in the grain boundary is higher than the Ce concentration in each crystal grain. ing.

<実施例2>
実施例1と同様な製造方法で、下記表1に示すように、セラミックス焼結体の試料(No.5〜14の試料)を作製して、同様に評価を行った。
<Example 2>
As shown in Table 1 below, samples of ceramic sintered bodies (samples Nos. 5 to 14) were produced by the same manufacturing method as in Example 1 and evaluated in the same manner.

ここでは、セラミックス焼結体のA12(YAG)中のYに対するCe濃度が0〜15mol%となるように原料配合比を変化させた。
その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。
Here, the raw material compounding ratio was changed so that the Ce concentration with respect to Y in A 3 B 5 O 12 (YAG) of the ceramic sintered body was 0 to 15 mol%.
As a result, all samples were sufficiently densified with a relative density of 99% or more.

また、結晶粒子内よりも結晶粒界にCe元素が多く分布していることが分かった。
そして、Ce濃度が10mol%以下(但し0ではない)の範囲にあるNo.6〜12は、蛍光強度、色バラツキが良好な結果となった。
It was also found that Ce elements were distributed more in the grain boundaries than in the crystal grains.
And No. 6-12 in which Ce density | concentration is 10 mol% or less (however, it is not 0) brought a result with favorable fluorescence intensity and color variation.

一方、Ceを含まないNo.5は、蛍光強度、色バラツキを測定できなかった。
また、Ce濃度が高いNo.13、14は、蛍光強度が低くなった。
<実施例3>
実施例1と同様な製造方法で、下記表1に示すように、セラミックス焼結体の試料(No.15〜22の試料)を作製して、同様に評価を行った。
On the other hand, No. 5 containing no Ce could not measure fluorescence intensity and color variation.
In addition, Nos. 13 and 14 with high Ce concentration had low fluorescence intensity.
<Example 3>
As shown in Table 1 below, samples of ceramic sintered bodies (samples Nos. 15 to 22) were prepared and evaluated in the same manner as in Example 1.

ただし、セラミックス焼結体中のA12:Ce量(YAG:Ce量)が1〜80vol%となるように原料配合比を変化させた。
その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。
However, the raw material compounding ratio was changed so that the amount of A 3 B 5 O 12 : Ce (YAG: Ce amount) in the ceramic sintered body was 1 to 80 vol%.
As a result, all samples were sufficiently densified with a relative density of 99% or more.

また、結晶粒子内よりも結晶粒界にCe元素が多く分布していることが分かった。
そして、YAG:Ce量が1〜70vol%の範囲にあるNo.16〜21は、蛍光強度、色バラツキのいずれも良好な結果となった。
It was also found that Ce elements were distributed more in the grain boundaries than in the crystal grains.
And No. 16-21 in which the amount of YAG: Ce is in the range of 1 to 70 vol% gave good results in both fluorescence intensity and color variation.

一方、YAG:Ce量が少ないNo.15、YAG:Ce量が多いNo.22は、蛍光強度が低くなり、色バラツキがやや大きくなった。
<実施例4>
実施例1と同様な製造方法で、下記表1に示すように、セラミックス焼結体の試料(No.23〜43の試料)を作製して、同様に評価を行った。
On the other hand, No. 15 with a small amount of YAG: Ce and No. 22 with a large amount of YAG: Ce had low fluorescence intensity and slightly increased color variation.
<Example 4>
With the same manufacturing method as in Example 1, as shown in Table 1 below, ceramic sintered body samples (samples Nos. 23 to 43) were prepared and evaluated in the same manner.

ただし、調合時にY粉末だけでなく、Lu(平均粒径1.3μm)またはYb(平均粒径1.5μm)、Gd(平均粒径1.5μm)、Tb(平均粒径1.6μm)、Ga(平均粒径1.3μm)の各粉末を一つ以上用い、所定のA12:Ceを合成できるように、配合比を変化させた。 However, not only Y 2 O 3 powder at the time of preparation, but also Lu 2 O 3 (average particle size 1.3 μm) or Yb 2 O 3 (average particle size 1.5 μm), Gd 2 O 3 (average particle size 1.5 μm) ), Tb 2 O 3 (average particle size: 1.6 μm), and Ga 2 O 3 (average particle size: 1.3 μm) at least one powder so that a predetermined A 3 B 5 O 12 : Ce can be synthesized. The blending ratio was changed.

その結果、いずれの試料においても、相対密度は99%以上で十分に緻密化されていた。
また、結晶粒子内よりも結晶粒界にCe元素が多く分布していることが分かった。
As a result, all samples were sufficiently densified with a relative density of 99% or more.
It was also found that Ce elements were distributed more in the grain boundaries than in the crystal grains.

そして、全ての試料において、蛍光強度、色バラツキのいずれもが良好な結果となった。   In all samples, both the fluorescence intensity and the color variation were satisfactory.

[2−2.線分析]
ここで、上述した線分析及びその結果について説明する。
図2(a)は、No.3の試料のBF−STEM像(倍率20万倍)である。ここでは、図2(a)に示すように、「YAG(即ちYAG結晶粒子)−結晶粒界−Al(即ちAl結晶粒子)」の範囲を横断する横線の範囲に対して、前記線分析を行った。
[2-2. Line analysis]
Here, the above-described line analysis and the result will be described.
Fig.2 (a) is a BF-STEM image (magnification 200,000 times) of the sample of No.3. Here, as shown in FIG. 2 (a), with respect to the range of horizontal lines crossing the range of “YAG (ie, YAG crystal particles) —grain boundary—Al 2 O 3 (ie, Al 2 O 3 crystal particles)” The line analysis was performed.

その結果を、図2(b)に示すが、結晶粒界においては、両側の結晶粒子内に比べて、Ce濃度が最大となっていることが分かる。
尚、図2(b)のグラフの横軸は、図2(a)に示す結晶粒界を横切る直線上の位置として、YAG(即ちYAG結晶粒子)における位置A1から、結晶粒界上の位置A2を経て、Al(即ちAl結晶粒子)における位置A3までの各位置を示す。位置A1から位置A3までの距離は、約100nmである。一方、縦軸はCeの濃度を示している。以下、他の線分析についても、線分析の範囲として、「A1、A2、A3」ではなく、「B1、B2、B3」、「C1、C2、C3」、「D1、D2、D3」の記号を用いる点は異なるが、同様である)。
The result is shown in FIG. 2B, and it can be seen that the Ce concentration is maximum at the crystal grain boundaries as compared with the crystal grains on both sides.
The horizontal axis of the graph of FIG. 2B is a position on the crystal grain boundary from a position A1 in YAG (that is, YAG crystal grain) as a position on a straight line crossing the crystal grain boundary shown in FIG. Each position from A2 to position A3 in Al 2 O 3 (ie, Al 2 O 3 crystal particles) is shown. The distance from the position A1 to the position A3 is about 100 nm. On the other hand, the vertical axis represents the concentration of Ce. Hereinafter, for other line analysis, the range of line analysis is not “A1, A2, A3” but “B1, B2, B3”, “C1, C2, C3”, “D1, D2, D3” The point is the same, though different.

図3(a)は、No.8の試料のBF−STEM像(倍率20万倍)である。ここでは、図3(a)に示すように、「Al−結晶粒界−Al」の範囲を横断する横線の範囲(B1〜B2〜B3)に対して、前記線分析を行った。 FIG. 3A is a BF-STEM image (magnification 200,000 times) of the sample No. 8. Here, as shown in FIG. 3 (a), - for a range of horizontal lines across the "Al 2 O 3 crystal grain boundary -Al 2 O 3" range (B1~B2~B3), the line Analysis Went.

その結果を、図3(b)に示すが、結晶粒界において、両側の結晶粒子内に比べて、Ce濃度が最大となっていることが分かる。
図4(a)は、No.18の試料のBF−STEM像(倍率20万倍)である。ここでは、図4(a)に示すように、「YAG−結晶粒界−Al」の範囲を横断する横線の範囲(C1〜C2〜C3)に対して、前記線分析を行った。
The result is shown in FIG. 3B, and it can be seen that the Ce concentration is maximum in the crystal grain boundaries as compared with the crystal grains on both sides.
4A is a BF-STEM image (magnification 200,000 times) of the sample No. 18. FIG. Here, as shown in FIG. 4 (a), for a range of horizontal lines across the range of "YAG- grain boundaries -Al 2 O 3" (C1~C2~C3), it was subjected to the line Analysis .

その結果を、図4(b)に示すが、結晶粒界において、両側の結晶粒子内に比べて、Ce濃度が最大となっていることが分かる。
図5(a)は、No.20の試料のBF−STEM像(倍率20万倍)である。ここでは、図5(a)に示すように、「YAG−結晶粒界−YAG」の範囲を横断する横線の範囲(D1〜D2〜D3)に対して、前記線分析を行った。
The result is shown in FIG. 4B, and it can be seen that the Ce concentration is maximum in the crystal grain boundaries as compared with the inside of the crystal grains on both sides.
FIG. 5A is a BF-STEM image (magnification of 200,000 times) of the No. 20 sample. Here, as shown to Fig.5 (a), the said line analysis was performed with respect to the range (D1-D2-D3) of the horizontal line which crosses the range of "YAG-grain boundary-YAG".

その結果を、図5(b)に示すが、結晶粒界において、両側の結晶粒子内に比べて、Ce濃度が最大となっていることが分かる。
[3.他の実施形態]
本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
The result is shown in FIG. 5B, and it can be seen that the Ce concentration is maximum in the crystal grain boundaries as compared with the crystal grains on both sides.
[3. Other Embodiments]
It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in various modes without departing from the present invention.

(1)例えば、前記実施例では、焼成方法として大気中での常圧焼成法を用いたが、その他に、真空雰囲気焼成法、還元雰囲気焼成法、ホットプレス(HP)法、熱間等方圧加圧(HIP)法またはこれらを組み合わせた焼成方法によっても、同等の性能を有したサンプルを作製することができる。   (1) For example, in the above embodiment, the atmospheric pressure firing method in the air was used as the firing method, but in addition, a vacuum atmosphere firing method, a reducing atmosphere firing method, a hot press (HP) method, hot isotropy, etc. A sample having equivalent performance can also be produced by a pressure and pressure (HIP) method or a firing method combining these methods.

(2)前記光波長変換部材や発光装置の用途としては、蛍光体、光波長変換機器、ヘッドランプ、照明、プロジェクター等の光学機器など、各種の用途が挙げられる。
(3)前記実施形態の構成を適宜組み合わせることができる。
(2) Examples of uses of the light wavelength conversion member and the light emitting device include various uses such as phosphors, light wavelength conversion devices, headlamps, illumination, and optical devices such as projectors.
(3) The configurations of the above embodiments can be combined as appropriate.

1…発光装置
5…発光素子
9…光波長変換部材
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 5 ... Light emitting element 9 ... Light wavelength conversion member

Claims (4)

Al結晶粒子と化学式A12:Ceで表される成分の結晶粒子とを主成分とする多結晶体であるセラミックス焼結体から構成された光波長変換部材であって、
前記A12中のAとBは、下記元素群から選択される少なくとも1種の元素であり、
且つ、前記セラミックス焼結体の前記各結晶粒子内と結晶粒界との間に、下記元素群から選択される少なくとも1種の元素が分布するとともに、前記各結晶粒子内と前記結晶粒界とに分布した元素は、前記各結晶粒子内の濃度より前記結晶粒界の濃度が高いことを特徴とする光波長変換部材。
A:Sc、Y、ランタノイド(Ceは除く)
B:Al、Ga
A light wavelength conversion member composed of a ceramic sintered body that is a polycrystalline body mainly composed of Al 2 O 3 crystal particles and crystal particles of a component represented by the chemical formula A 3 B 5 O 12 : Ce. ,
A and B in the A 3 B 5 O 12 are at least one element selected from the following element group;
In addition, at least one element selected from the following element group is distributed between the crystal grains of the ceramic sintered body and the crystal grain boundaries, and the crystal grains and the crystal grain boundaries The element distributed in the light wavelength conversion member, wherein the concentration of the crystal grain boundary is higher than the concentration in each crystal grain.
A: Sc, Y, lanthanoid (excluding Ce)
B: Al, Ga
前記A12:Ceで表される成分の結晶粒子中のCeの濃度が、前記元素Aに対して10.0mol%以下(但し0を含まず)であることを特徴とする請求項1に記載の光波長変換部材。 The concentration of Ce in the crystal grains of the component represented by A 3 B 5 O 12 : Ce is 10.0 mol% or less (excluding 0) with respect to the element A. Item 4. The light wavelength conversion member according to Item 1. 前記セラミックス焼結体に占める前記A12:Ceで表される成分の結晶粒子の割合が、3〜70vol%であることを特徴とする請求項1又は2に記載の光波長変換部材。 3. The light wavelength conversion according to claim 1, wherein a ratio of the crystal particles of the component represented by A 3 B 5 O 12 : Ce in the ceramic sintered body is 3 to 70 vol%. Element. 前記請求項1〜3のいずれか1項に記載の光波長変換部材を備えたことを特徴とする発光装置。   The light-emitting device provided with the light wavelength conversion member of any one of the said Claims 1-3.
JP2016215303A 2016-10-28 2016-11-02 Light wavelength conversion member and light emitting device Active JP6486315B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2016215303A JP6486315B2 (en) 2016-11-02 2016-11-02 Light wavelength conversion member and light emitting device
PCT/JP2017/037920 WO2018079421A1 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light-emitting device
PCT/JP2017/037914 WO2018079419A1 (en) 2016-10-28 2017-10-20 Light wavelength conversion member and light emitting device
CN201780066574.0A CN109891274B (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light emitting device
EP17865959.5A EP3534193B1 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light-emitting device
US16/342,621 US10910524B2 (en) 2016-10-28 2017-10-20 Light wavelength conversion member and light emitting device
KR1020197010009A KR102307670B1 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light emitting device
EP17865089.1A EP3534190A4 (en) 2016-10-28 2017-10-20 Light wavelength conversion member and light emitting device
US16/342,390 US10727378B2 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light-emitting device
KR1020197011086A KR102229730B1 (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light emitting device
CN201780066919.2A CN109923446B (en) 2016-10-28 2017-10-20 Optical wavelength conversion member and light emitting device
PCT/JP2017/038232 WO2018079501A1 (en) 2016-10-28 2017-10-24 Method for producing light wavelength conversion member, light wavelength conversion member, light wavelength conversion component and light emitting device
CN201780066927.7A CN109891275B (en) 2016-10-28 2017-10-24 Method for manufacturing optical wavelength conversion member, and light-emitting device
US16/343,188 US11063186B2 (en) 2016-10-28 2017-10-24 Method for producing light wavelength conversion member, light wavelength conversion member, light wavelength conversion component and light emitting device
EP17865459.6A EP3534191A4 (en) 2016-10-28 2017-10-24 Method for producing light wavelength conversion member, light wavelength conversion member, light wavelength conversion component and light emitting device
KR1020197011087A KR102318473B1 (en) 2016-10-28 2017-10-24 Method for producing optical wavelength conversion member, optical wavelength conversion member, optical wavelength conversion component, and light-emitting device
TW106137045A TWI681147B (en) 2016-10-28 2017-10-27 Optical wavelength conversion member and light emitting device
TW106137051A TWI648242B (en) 2016-10-28 2017-10-27 Manufacturing method of optical wavelength conversion member, optical wavelength conversion member, optical wavelength conversion component, and light-emitting device
TW106137049A TWI668295B (en) 2016-10-28 2017-10-27 Optical wavelength conversion member and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215303A JP6486315B2 (en) 2016-11-02 2016-11-02 Light wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2018070431A true JP2018070431A (en) 2018-05-10
JP6486315B2 JP6486315B2 (en) 2019-03-20

Family

ID=62112149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215303A Active JP6486315B2 (en) 2016-10-28 2016-11-02 Light wavelength conversion member and light emitting device

Country Status (1)

Country Link
JP (1) JP6486315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187205A (en) * 2019-05-13 2020-11-19 日本特殊陶業株式会社 Light wavelength conversion member and light-emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001316A1 (en) * 2004-06-24 2006-01-05 Ube Industries, Ltd. White light emitting diode device
WO2011102566A1 (en) * 2010-02-16 2011-08-25 The Industry & Academic Cooperation In Chungnam National University (Iac) Rapid solid-state synthesis of yttrium aluminum garnet yellow-emitting phosphors
WO2011125422A1 (en) * 2010-03-31 2011-10-13 宇部興産株式会社 Ceramic composites for light conversion, process for production thereof, and light-emitting devices provided with same
JP2012062459A (en) * 2010-08-18 2012-03-29 Covalent Materials Corp Ceramic composite
JP2013147643A (en) * 2011-12-22 2013-08-01 Shin-Etsu Chemical Co Ltd Method for preparing yttrium-cerium-aluminum garnet phosphor
WO2016117623A1 (en) * 2015-01-21 2016-07-28 三菱化学株式会社 Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001316A1 (en) * 2004-06-24 2006-01-05 Ube Industries, Ltd. White light emitting diode device
WO2011102566A1 (en) * 2010-02-16 2011-08-25 The Industry & Academic Cooperation In Chungnam National University (Iac) Rapid solid-state synthesis of yttrium aluminum garnet yellow-emitting phosphors
WO2011125422A1 (en) * 2010-03-31 2011-10-13 宇部興産株式会社 Ceramic composites for light conversion, process for production thereof, and light-emitting devices provided with same
JP2012062459A (en) * 2010-08-18 2012-03-29 Covalent Materials Corp Ceramic composite
JP2013147643A (en) * 2011-12-22 2013-08-01 Shin-Etsu Chemical Co Ltd Method for preparing yttrium-cerium-aluminum garnet phosphor
WO2016117623A1 (en) * 2015-01-21 2016-07-28 三菱化学株式会社 Sintered phosphor, light emitting device, illumination device, vehicle headlamp, and method for manufacturing sintered phosphor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187205A (en) * 2019-05-13 2020-11-19 日本特殊陶業株式会社 Light wavelength conversion member and light-emitting device

Also Published As

Publication number Publication date
JP6486315B2 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP6449963B2 (en) Light wavelength conversion member and light emitting device
JP2008231218A (en) Phosphor material and white light-emitting diode
KR102229730B1 (en) Optical wavelength conversion member and light emitting device
JP6591951B2 (en) Light wavelength conversion member and light emitting device
WO2018079419A1 (en) Light wavelength conversion member and light emitting device
JP6486315B2 (en) Light wavelength conversion member and light emitting device
JP6725774B2 (en) Light wavelength conversion member and light emitting device
KR102318473B1 (en) Method for producing optical wavelength conversion member, optical wavelength conversion member, optical wavelength conversion component, and light-emitting device
JP6499237B2 (en) Light wavelength conversion member and light emitting device
JP6741885B2 (en) Light wavelength conversion member and light emitting device
WO2018079373A1 (en) Light wavelength conversion member and light emission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180928

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190219

R150 Certificate of patent or registration of utility model

Ref document number: 6486315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250