JP2018069487A - コンクリートの配合条件の予測方法 - Google Patents

コンクリートの配合条件の予測方法 Download PDF

Info

Publication number
JP2018069487A
JP2018069487A JP2016209479A JP2016209479A JP2018069487A JP 2018069487 A JP2018069487 A JP 2018069487A JP 2016209479 A JP2016209479 A JP 2016209479A JP 2016209479 A JP2016209479 A JP 2016209479A JP 2018069487 A JP2018069487 A JP 2018069487A
Authority
JP
Japan
Prior art keywords
data
value
concrete
learning
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016209479A
Other languages
English (en)
Other versions
JP6794039B2 (ja
Inventor
諒一 末松
Ryoichi Suematsu
諒一 末松
大亮 黒川
Daisuke Kurokawa
大亮 黒川
宙 平尾
Hiroshi Hirao
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016209479A priority Critical patent/JP6794039B2/ja
Publication of JP2018069487A publication Critical patent/JP2018069487A/ja
Application granted granted Critical
Publication of JP6794039B2 publication Critical patent/JP6794039B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

【課題】コンクリートの配合条件を予測することができる方法を提供する。【解決手段】学習済みのニューラルネットワークを用いたコンクリートの配合条件の予測方法であって、監視データが予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含むものであり、任意に変動させた監視データの値を含む、複数の監視データの値を、学習済みのニューラルネットワークの入力層に入力して、評価データの推測値を得ることを複数回行った後、変動させた監視データの値と評価データの推測値からなる複数の組み合わせを用いて回帰分析を行い、予測の対象となる、コンクリートの配合条件に関するデータである監視データと目標とする評価データとの関係式を得た後、得られた関係式と目標とする評価データの値から、目標とする評価データの値を得ることが可能なコンクリートの配合条件を予測する工程を含むコンクリートの配合条件の予測方法。【選択図】図1

Description

本発明は、ニューラルネットワークを用いたコンクリートの配合条件の予測方法に関する。
コンクリートの、流動性等のフレッシュ性状、圧縮強度、または種々の耐久性等の各種品質に、コンクリートの主要材料であるセメントの品質の影響が大きいことは常識である。しかし、その相互の品質間の詳細な関係については不明なところが多く、セメントの品質からコンクリートの品質を予測する技術は未だ確立されていない。
さらに、コンクリートの品質には、セメント以外のコンクリートの材料の品質や、コンクリートの配合や、コンクリートの施工方法や、コンクリートの供用環境及び供用期間等、多くの因子が影響することも周知である。
このように、多くの因子が影響するため、コンクリートの品質を予測することは困難である。そのため、コンクリートの品質管理は、現場試験や、供試体試験等の事後管理が一般的である。また、これまでに提案されている品質の推定方法も、製造後のコンクリートの品質から推定する事後的な方法である。
例えば、特許文献1には、普通コンクリートの性状を推定するコンクリートの性状の推定方法であって、前記普通コンクリートのフレッシュコンクリートをコンクリートポンプのホッパに投入し、前記ホッパ内のフレッシュコンクリートを攪拌する攪拌用の羽根の回転に関する負荷値及び前記羽根の回転数に基づいて、前記普通コンクリートのフレッシュ性状を推定することを特徴とするコンクリートの性状の推定方法が記載されている。
また、特許文献2には、コンクリートの強度とコンクリートの微視的構造に関する指標との関係を得る工程と、躯体を形成する躯体コンクリートの原位置での強度を推定する工程と、前記関係と前記躯体コンクリートの原位置での強度とに基づいて、前記躯体コンクリートの微視的構造に関する指標を算出する工程と、前記躯体コンクリートの微視的構造に関する指標に基づいて、前記躯体コンクリートの耐久性を推定する工程と、を含むことを特徴とするコンクリートの耐久性の推定方法が記載されている。
さらに、ニューラルネットワークとコンクリート施工後に関連する因子を用いたコンクリートの品質の予測方法として、特許文献3には、コンクリート構造物の、鉄筋のかぶり、中性化深さ、鉄筋位置の全塩化物量、コンクリート表面のひび割れ、浮きの有無、一般に公開されている気象情報のうち構造物が設置されている地域の年平均気温、年平均湿度、年間降水量などと、調査により露出した鉄筋の観察により得られる鉄筋の腐食程度を使用して構築されたニューラルネットワークにより、コンクリート中の鉄筋の腐食の進行を予測する方法が記載されている。
なお、ニューラルネットワークとは、学習によって最適化を行っていく情報処理システムであり、学習を深化させることで、より高度で、複雑で、適応性のある情報処理を可能とすることができる。
特開2010−249742号公報 特開2015−10918号公報 特開平10−21211号公報
特許文献1〜3に記載された方法は、製造したコンクリートを用いて事後的にコンクリートの品質を予測する方法であり、コンクリートを製造する前に目標とするコンクリートの品質を定め、該品質を得ることが可能なコンクリートの配合条件を予測するものではなかった。
本発明の目的は、コンクリートを製造する前に、短時間でかつ高い精度で、目標とするコンクリートの品質またはコンクリートの配合条件を得ることが可能なコンクリートの配合条件(計画された所定の品質を有するコンクリートを得るために決定される、コンクリートの材料の選択と使用量)を予測することができる方法を提供することである。
本発明者らは、上記課題を解決するために鋭意検討した結果、学習済みのニューラルネットワークを用いたコンクリートの配合条件の予測方法であって、監視データが予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含むものであり、任意に変動させた監視データの値を含む、複数の監視データの値を、学習済みのニューラルネットワークの入力層に入力して、評価データの推測値を得ることを複数回行った後、変動させた監視データの値と評価データの推測値からなる複数の組み合わせを用いて回帰分析を行い、予測の対象となる、コンクリートの配合条件に関するデータである監視データと目標とする評価データとの関係式を得た後、得られた関係式と目標とする評価データの値から、目標とする評価データの値を得ることが可能なコンクリートの配合条件を予測する工程を含むコンクリートの配合条件の予測方法によれば、上記目的を達成しうることを見出し、本発明を完成した。
すなわち、本発明は、以下の[1]〜[7]を提供するものである。
[1] 入力層及び出力層を有する学習済みのニューラルネットワークを用いたコンクリートの配合条件の予測方法であって、上記入力層は、コンクリート製造における監視データの値を入力するためのものであり、上記出力層は、コンクリートの品質またはコンクリートの配合条件の評価に関連する評価データの値を出力するためのものであり、上記監視データが、予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含むものであり、かつ、上記監視データと上記評価データの組み合わせが、
(i)上記監視データが、セメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、及びコンクリートの配合条件に関するデータの中から選ばれる一種以上のデータであり、かつ、上記評価データが、コンクリートの品質に関するデータである組み合わせ、または、
(ii)上記監視データが、セメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、コンクリートの配合条件に関するデータ、及びコンクリートの品質に関するデータの中から選ばれる一種以上のデータであり、かつ、上記評価データが、コンクリートの配合条件に関するデータである組み合わせ、であり、
(M)予測の対象となる、コンクリートの配合条件に関するデータであって、任意に変動させた監視データの値を含む、複数の監視データの値を、上記学習済みのニューラルネットワークの入力層に入力して、評価データの推測値を得ることを複数回行って、上記変動させた監視データの値と上記評価データの推測値からなる複数の組み合わせを得た後、得られた複数の組み合わせを用いて回帰分析を行い、予測の対象となる、コンクリートの配合条件に関するデータである監視データと、目標とする評価データとの関係式を得た後、得られた関係式と目標とする評価データの値から、目標とする評価データの値を得ることが可能なコンクリートの配合条件を予測する工程、
を含むことを特徴とするコンクリートの配合条件の予測方法。
[2] 上記監視データが、予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含む、2種以上の監視データであり、
工程(M)において、予測の対象となる、コンクリートの配合条件に関するデータである監視データを除く監視データの固定値を設定し、該固定値と、予測の対象となる、コンクリートの配合条件に関するデータであって任意に変動させた監視データの値を、上記学習済みのニューラルネットワークの入力層に入力して、評価データの推測値を得る、前記[1]に記載のコンクリートの配合条件の予測方法。
[3] 上記監視データと上記評価データの組み合わせが、上記(i)の組み合わせであり、かつ、該組み合わせにおける評価データが、強度、スランプ、またはスランプフローである前記[1]または[2]に記載のコンクリートの品質またはコンクリートの配合条件の予測方法。
[4] 上記(i)の組み合わせにおける監視データが、セメントのブレーン比表面積、ふるい試験残分量、色調a値、色調L値、セメントの鉱物組成、セメントの化学組成、モルタルフロー、混和剤量、及び単位水量の中から選ばれる一種以上である前記[3]に記載のコンクリートの品質またはコンクリートの配合条件の予測方法。
[5] 上記監視データが、(A−1)予測の対象となる、コンクリートの配合条件に関するデータを含む1種以上の監視データからなる監視データ集合体を、2種以上用意し、該2種以上の監視データ集合体の各々について、監視データの実測値と評価データの実測値の組み合わせである選択データを複数用いて、上記学習済みのニューラルネットワークとは異なる未学習のニューラルネットワークの学習を行い、得られたニューラルネットワークの入力層に、選択データの監視データの実測値を入力して得られた評価データの推測値と、選択データの評価データの実測値との平均2乗誤差を算出し、平均2乗誤差の数値が最も小さかった選択データにおける監視データである、前記[1]〜[4]のいずれかに記載のコンクリートの配合条件の予測方法。
[6] 工程(M)の前に、(A)学習回数の初期設定を行う工程と、
(B)監視データの実測値と評価データの実測値の組み合わせである学習データを複数用いて、ニューラルネットワークの学習を、前工程で設定された学習回数行う工程と、
(C)学習データの監視データの実測値を、直近の工程(B)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)、及び、ニューラルネットワークの学習結果の信頼性を確認するための監視データの実測値と評価データの実測値の組み合わせであるモニターデータの中の監視データの実測値を、直近の工程(B)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値とモニターデータの中の評価データの実測値との平均2乗誤差(σ)を算出し、算出されたσとσの関係がσ≧σである場合、工程(D)を実施し、算出されたσとσの関係がσ<σである場合、工程(E)を実施する工程と、
(D)直近の工程(A)で設定された学習回数および再設定された直近のニューラルネットワークの学習回数のいずれの学習回数よりも大きい学習回数を新たな学習回数として再設定し、再度工程(B)〜(C)を実施する工程と、
(E)直近のニューラルネットワークの学習で実施された学習回数を減らした学習回数を、新たな学習回数として再設定する工程と、
(F)直近の工程(B)で用いられた学習データを用いて、ニューラルネットワークの学習を直近の工程(E)で設定された学習回数行う工程と、
(G)学習データの監視データの実測値を、直近の工程(F)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)、及び、モニターデータの中の監視データの実測値を、直近の工程(F)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値とモニターデータの中の評価データの実測値との平均2乗誤差(σ)を算出し、算出されたσとσの関係がσ≧σである場合、工程(I)を実施し、算出されたσとσの関係がσ<σである場合、工程(H)を実施する工程と、
(H)直近の工程(F)におけるニューラルネットワークの学習回数が予め定めた数値を超えている場合、再度工程(E)〜(G)を実施し、直近の工程(F)におけるニューラルネットワークの学習回数が予め定めた数値以下の場合、工程(J)を実施する工程と、
(I)下記式(1)を用いて解析度判定値を算出し、該解析度判定値が予め定めた第一の設定値未満である場合、ニューラルネットワークの学習を終了して、学習済みのニューラルネットワークを得た後、工程(M)を実施し、上記解析度判定値が予め定めた第一の設定値以上である場合、工程(J)を実施する工程と、
(J)工程(A)を実施した回数の大きさについての判定を行い、該回数が予め設定した回数以下である場合、学習条件の初期化を行って、再度工程(A)〜(I)を行い、該回数が予め設定した回数を超える場合、工程(K)を実施する工程と、
(K)工程(I)において算出した全ての解析度判定値のうち、最も小さい解析度判定値が予め定めた第二の設定値未満である場合、最も小さい解析度判定値を得ることができた工程(I)におけるニューラルネットワークを、学習済みのニューラルネットワークとして得た後、工程(L)を実施し、最も小さい解析度判定値が予め定めた第二の設定値以上である場合、学習済みのニューラルネットワークを得ることはできないと判断して予測を終了する工程と、
(L)工程(I)において算出した全ての解析度判定値のうち、最も小さい解析度判定値を得ることができた工程(I)において、学習データとして使用した監視データの実測値と評価データの実測値の組み合わせについて無相関検定を行い、5%の有意水準で有意であると判断された監視データの種類が、予測の対象となる、コンクリートの配合条件に関するデータである監視データを含み、かつ、2種以上である場合、5%の有意水準で有意であると判断された監視データの全種類を座標軸とする座標空間に学習データとして使用した監視データの実測値をプロットし、座標空間において、プロットされた監視データ同士を結ぶことで形成される監視データの全てを包含する領域であって、該領域が最大となるように監視データ同士を結ぶことで形成される領域を、予測可能監視データ領域として設定した後、工程(M)を実施し、5%の有意水準で有意であると判断された監視データが、予測の対象となる、コンクリートの配合条件に関するデータである監視データを含まない場合、あるいは、0または1種類である場合、工程(K)で得た学習済みのニューラルネットワークを用いてコンクリートの配合条件を予測することはできないと判断して予測を終了する工程を含み、
工程(M)において使用する学習済みのニューラルネットワークが、工程(K)で得た学習済みのニューラルネットワークである場合、上記学習済みのニューラルネットワークの入力層に入力する監視データが、上記予測可能監視データ領域に含まれるものである、前記[1]〜[5]のいずれかに記載のコンクリートの配合条件の予測方法。
Figure 2018069487
(上記式(1)中、学習データの平均2乗誤差(σ)とは、学習データの監視データの実測値を学習後のニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)である。評価データの推測値の平均値とは、学習データの監視データの実測値を学習後のニューラルネットワークの入力層に入力して得られた評価データの推測値の平均値である。)
[7] 上記解析度判定値の予め定めた第一の設定値が6%以下であり、上記解析度判定値の予め定めた第二の設定値が上記第一の設定値よりも大きくかつ20%以下である前記[6]に記載のコンクリートの品質またはコンクリートの配合条件の予測方法。
本発明のコンクリートの配合条件の予測方法を用いれば、コンクリートを製造する前に、短時間でかつ高い精度で、目標とするコンクリートの品質またはコンクリートの配合条件を得ることが可能なコンクリートの配合条件を予測することができる。
本発明の予測方法の一例を示すフロー図である。 工程(L)において設定された予測可能監視データ領域を示す図である。
以下、本発明について詳細に説明する。
本発明の予測方法は、コンクリートの製造における監視データの値を入力するための入力層と、コンクリートの品質またはコンクリートの配合条件の評価に関連する評価データの値を出力するための出力層を有する学習済みのニューラルネットワークを用いて、コンクリートの配合条件を予測する方法である。
本発明のニューラルネットワークは、入力層と出力層の間に中間層を有する階層型のニューラルネットワークであってもよい。
上記監視データは、予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含むものである。
さらに、上記監視データと上記評価データの組み合わせとしては、以下の(i)または(ii)が挙げられる。
(i)上記監視データが、セメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、及びコンクリートの配合条件に関するデータの中から選ばれる一種以上のデータであり、かつ、上記評価データが、コンクリートの品質に関するデータである組み合わせ、または、
(ii)上記監視データが、セメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、コンクリートの配合条件に関するデータ、及びコンクリートの品質に関するデータの中から選ばれる一種以上のデータであり、かつ、上記評価データが、コンクリートの配合条件に関するデータである組み合わせ
前記(i)の組み合わせにおける監視データの一つである「セメントに関するデータ」としては、セメントの化学組成、セメントの鉱物組成、各鉱物の鉱物学的性質及び結晶学的性質、湿式f.CaO、強熱減量、ブレーン比表面積、粒度分布、ふるい試験残分量、石膏の半水化率、色調等が挙げられる。
また、セメントに含まれるセメントクリンカーの原料に関するデータ、セメントクリンカーの焼成条件に関するデータ、セメントの粉砕条件に関するデータ、及びセメントクリンカーに関するデータも、セメントに関するデータとして使用することができる。
ここで、セメントの化学組成としては、セメント原料中のSiO、Al、Fe、CaO、MgO、SO、NaO、KO、NaOeq(全アルカリ)、TiO、P、MnO、Cl、Cr、Zn、Pb、Cu、Ni、V、As、Zr、Mo、Sr、Ba、F等の含有率が挙げられる。
これらは、「JIS R 5202(セメントの化学分析方法)」や「JIS R 5204(セメントの蛍光X線分析方法)」等の化学組成分析方法によって得ることができる。
セメントの鉱物組成としては、3CaO・SiO(CS)、2CaO・SiO(CS)、3CaO・Al(CA)、4CaO・Al・Fe(CAF)、フリーライム、ペリクレース、二水石膏、半水石膏、無水石膏、石灰石粉、高炉スラグ、製鋼スラグ、フライアッシュ、天然ポゾラン、シリカフューム、珪石粉等のセメントクリンカー鉱物、石膏類、「JIS R 5210(ポルトランドセメント)」に記載されている少量混合成分、セメント混合材等の量や割合(含有率)が挙げられる。
これらは、光学顕微鏡や走査型電子顕微鏡の観察像を用いた測定;「JIS K 0131(X線回折分析通則)」に記載された各種鉱物組成定量方法を用いた分析;「JIS K 0129(熱分析通則)」に記載された各種熱分析法を用いた分析;ボーグの方法等による化学組成分値をもちいた推測;セメント色調等の化学組成以外のセメントの特性値を用いた推測;セメント製造工程での計量等の方法によって得ることができる。
各鉱物の鉱物学的性質及び結晶学的性質とは、各鉱物のテクスチャー(組織)、大きさ、色、複屈折等の光学特性、格子定数、結晶子径、格子ひずみ等の評価値、測定値または計算値である。
これらは、光学顕微鏡法、各種電子顕微鏡法または粉末X線回折法等によって得ることができる。
強熱減量は、「JIS R 5202(セメントの化学分析方法)」に記載された強熱減量の定量方法等による、湿分や石灰石の熱分解による乖離二酸化炭素等の揮発性成分の質量の測定値である。
ブレーン比表面積、粒度分布、及びふるい試験残分量は、「JIS R 5201(セメントの物理試験方法)」の比表面積試験または網ふるい試験による試験値、または、「JIS Z 8815(ふるい分け試験方法通則)」の方法によって得られる試験値若しくはレーザー回折・散乱法によって得られる粒度分布測定値である。
色調(色調L値、色調a値、色調b値)は、「JIS Z 8722(色の測定方法−反射及び透過物体色)」の方法等による測定値である。
「セメントクリンカーの原料に関するデータ」とは、セメントクリンカーの調合原料の化学組成、水硬率、ふるい試験残分量、ブレーン比表面積(粉末度)、強熱減量、キルンへの投入時から所定の時間前の時点(例えば、5時間前の1つの時点や、3時間前、4時間前、5時間前、及び6時間前の4つの時点のような複数の時点)のセメントクリンカーの原料(搬送中に向流する空気流によって微粒分等が抜き取られたセメントクリンカーの調合原料。以後、セメントクリンカーの窯入原料と称す。)の化学組成、水硬率、供給量、廃棄物のような特殊な原料からなるセメントクリンカーの副原料の供給量、調合原料のブレンディングサイロの貯留量(残量)、調合原料のストレージサイロの貯留量(残量)、原料ミルと調合原料のブレンディングサイロの間に位置するサイクロンの電流値(サイクロンの回転数を表し、サイクロンを通過する原料の速度と相関関係があるもの)、セメントクリンカーの窯入原料と副原料を混合してなる原料の化学組成、水硬率、ブレーン比表面積、ふるい試験残分量、脱炭酸率、水分量等が挙げられる。
ここで、セメントクリンカーの原料(調合原料または窯入原料)の化学組成とは、セメントクリンカーの原料中のSiO、Al、Fe、CaO、MgO、SO、NaO、KO、NaOeq(全アルカリ)、TiO、P、MnO、Cl、Cr、Zn、Pb、Cu、Ni、V、As、Zr、Mo、Sr、Ba、F等の含有率である。
「セメントクリンカーの焼成条件に関するデータ」としては、セメントクリンカーの原料の挿入量、キルン回転数、落口温度、焼成帯温度、セメントクリンカー温度、キルン平均トルク、O濃度、NO濃度、クリンカークーラー温度、プレヒーターのガスの流量(プレヒーターの温度と相関関係があるもの)等が挙げられる。
「セメントの粉砕条件に関するデータ」としては、粉砕温度、仕上ミル内の散水量、セパレーター風量、石膏の種類、石膏の添加量、セメントクリンカーの投入量、仕上ミルの回転数、仕上ミルから排出される粉体の温度、仕上ミルから排出される粉体の量、仕上ミルから排出されない粉体の量等が挙げられる。
「セメントクリンカーに関するデータ」としては、セメントクリンカーの鉱物組成、各鉱物の結晶学的性質(格子定数や結晶子径など)、2種以上の鉱物組成の比、化学組成、湿式f.CaO(フリーライム)、容重等が挙げられる。
ここで、セメントクリンカーの鉱物組成とは、3CaO・SiO(CS)、2CaO・SiO(CS)、3CaO・Al(CA)、4CaO・Al・Fe(CAF)、f.CaO、f.MgO等の含有率である。また「2種以上の鉱物組成の比」としては、例えば、CS/CSの比が挙げられる。
なお、セメントクリンカーの鉱物組成は、例えばXRD−リートベルト法によって得ることができる。
セメントクリンカーの化学組成とは、セメントクリンカー中のSiO、Al、Fe、CaO、MgO、SO、NaO、KO、NaOeq(全アルカリ)、TiO、P、MnO、Cl、Cr、Zn、Pb、Cu、Ni、V、As、Zr、Mo、Sr、Ba、F等の含有率である。
上述した「セメントに関するデータ」は、評価データの予測の精度を高める観点から、2種以上を用いることが好ましい。
前記(i)の組み合わせにおける監視データの一つである「セメントの物理特性に関するデータ」としては、セメントの密度、粉末度、凝結時間、安定性、強さ(モルタル圧縮強さ、曲げ強度)、流動性(モルタルフロー値等)、水和熱等が挙げられる。
セメントの密度、粉末度、凝結時間、安定性、強さ(モルタル圧縮強さ、曲げ強度)、流動性としては、「JIS R 5201(セメントの物理試験方法)」に記載の試験方法による測定値や、二重円筒型回転粘度計等による降伏値や、塑性粘度等のレオロジー特性の測定値や、セメントペーストまたはモルタルに関する各種流動性試験の測定値等が挙げられる。
セメントの水和熱としては、「JIS R 5203(セメントの水和熱測定方法(溶解熱方法))」に記載の試験方法による測定値等が挙げられる。
上述した「セメントの物理特性に関するデータ」は、評価データの予測の精度を高める観点から、2種以上を用いることが好ましい。
前記(i)の組み合わせにおける監視データの一つである「セメント以外のコンクリートの材料に関するデータ」において、コンクリートの材料とは、セメント、骨材、水、及び各種混和材料を示す。
以下に、各コンクリートの材料の詳細を述べる。
セメントとしては、「JIS R 5210(ポルトランドセメント)」、「JIS R 5211(高炉セメント)」、「JIS R 5212(シリカセメント)」、「JIS R 5213(フライアッシュセメント)」、または「JIS R 5214(エコセメント)」の規定に適合するセメント;諸外国の国内規格の規定に適合するセメント;白色セメント等が挙げられる。
骨材としては、「JIS A 5308(レディーミクストコンクリート)」付属書A、「JIS A 5002(構造用軽量コンクリート骨材)」、「JIS A 5005(コンクリート用砕石及び砕砂)」、「JIS A 5011(コンクリート用スラグ骨材)」等の規定に適合する骨材が挙げられる。
水としては、「JIS A 5308(レディーミクストコンクリート)」付属書Cの規定に適合する水等が挙げられる。
各種混和材料としては、「JIS A 6201(コンクリート用フライアッシュ)」、「JIS A 6202(コンクリート用膨張材)」、「JIS A 6204(コンクリート用化学混和剤)」、「JIS A 6205(鉄筋コンクリート用防せい剤)」、「JIS A 6206(コンクリート用高炉スラグ微粉末)」、「JIS A 5008(舗装用石灰石粉)」、「JIS K 5906(塗料用アルミニウム顔料)」の規定に適合する混和材料等が挙げられる。
上述した「セメント以外のコンクリートの材料に関するデータ」は、評価データの予測の精度を高める観点から、2種以上を用いることが好ましい。
前記(i)の組み合わせにおける監視データの一つである「コンクリートの配合条件に関するデータ」としては、コンクリートに配合されるセメント、細骨材、粗骨材、水、各種混和剤(AE剤、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、凝結遅延剤等)、及び各種混和材料等の配合割合(例えば、セメント100質量%に対する混和剤の量(質量%))や、示方配合表の項目である、粗骨材の最大寸法、水セメント比、空気量、細骨材率、単位水量、単位セメント量、単位細骨材量、単位粗骨材量、単位混和剤量、及び単位混和材量等が挙げられる。
粗骨材の最大寸法、水セメント比、空気量、及び細骨材率は、「JIS A 0203(コンクリート用語)」に規定されたものである。
単位水量、単位セメント量、単位細骨材量、単位粗骨材量、単位混和剤量、及び単位混和材量は、「JIS A 0203(コンクリート用語)」の“単位量”の規定に準じたものである。
上述した「コンクリートの配合条件に関するデータ」は、評価データの予測の精度を高める観点から、2種以上を用いることが好ましい。
前記(i)の組み合わせにおける監視データとして、セメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、及びコンクリートの配合条件に関するデータの中から選ばれるいずれか一種のデータのみを用いてもよいが、これら4種のデータのうちの2種以上(複数)のデータを用いることが、後述する工程(A−1)、(A)〜(L)において、より精度の高い(評価データの予測をより高い精度で行うことができる)学習済みのニューラルネットワークを得ることができる観点から好ましい。
前記(i)の組み合わせにおける評価データである「コンクリートの品質に関するデータ」としては、強度(コンクリートの圧縮強度や曲げ強度、モルタル圧縮強さ、モルタル曲げ強度等)、スランプ、スランプフロー、空気量、塩化物含有量、ひび割れ抵抗性、動弾性係数、動せん断弾性係数、動ポアソン比、硬化体空隙量及び空隙径分布、耐久性、色調等が挙げられる。中でも、コンクリートの品質としてより重要性の高い、強度(コンクリートの圧縮強度、モルタル圧縮強さ、曲げ強度等)、スランプ、又はスランプフローが好ましい。
なお、上記のコンクリートの圧縮強度や曲げ強度等、スランプ、スランプフロー、空気量、及び塩化物含有量は、「JIS A 5308(レディーミクストコンクリート)」に記載の試験方法で得られた測定値、または任意の配合、材齢において上記試験方法に準拠して得られる測定値であり、モルタル圧縮強さやモルタル曲げ強さは、「JIS R 5201(セメントの物理試験方法)」に記載の試験方法で得られた測定値、または任意の配合、材齢において上記試験方法に準拠して得られる測定値である。
ひび割れ抵抗性は、「JIS A 1151(拘束されたコンクリートの乾燥収縮ひび割れ試験方法)」に記載の試験方法による測定値、または任意の配合、材齢において上記試験方法に準拠して得られる測定値である。
動弾性係数、動せん断弾性係数、及び動ポアソン比は、「JIS A 1127(共鳴振動によるコンクリートの動弾性係数、動せん断弾性係数及び動ポアソン比試験方法)」等に記載の試験方法で得られる測定値である。
硬化体空隙量及び空隙径分布は、水銀圧入法による細孔分布によって得られる測定値である。
耐久性としては、促進中性化試験等の中性化に関する試験の測定値、塩化物イオンの拡散係数試験等の塩分浸透性に関する試験の測定値、残存膨張量試験等のアルカリ骨材反応に関する試験の測定値、「JIS A 1148(コンクリートの凍結融解試験方法)」に記載の試験方法等の凍結融解に関する試験の測定値、アウトプット法等の透水量に関する試験の測定値、各種耐久性能に関する試験の測定値等が挙げられる。
色調としては、「JIS Z 8722(色の測定方法−反射及び透過物体色)」の方法等によって得られる測定値等が挙げられる。
前記(i)の組み合わせにおける評価データの「コンクリートの品質に関するデータ」のうち、強度(コンクリートの圧縮強度や曲げ強度、モルタル圧縮強さ、モルタル曲げ強度等)、スランプ、又はスランプフローを、より高い精度で予測することができる監視データの好ましい組み合わせは、セメントのブレーン比表面積、ふるい試験残分量、色調a値、色調L値、セメントの鉱物組成、セメントの化学組成(より好ましくは、セメント原料中のMgO、NaO、KO、NaOeq(全アルカリ)、P、及びTiOの含有率の中から選ばれる1種以上)、モルタルフロー、混和剤量(より好ましくは、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤の中から選ばれる1種以上)、及び単位水量の中から選ばれる一種以上である。
前記(ii)の組み合わせにおける監視データである、「セメントに関するデータ」、「セメントの物理特性に関するデータ」、「セメント以外のコンクリートの材料に関するデータ」、及び「コンクリートの配合条件に関するデータ」は、各々、前記(i)の組み合わせにおける監視データである、「セメントに関するデータ」、「セメントの物理特性に関するデータ」、「セメント以外のコンクリートの材料に関するデータ」、及び「コンクリートの配合条件に関するデータ」と同様である。
また、前記(ii)の組み合わせにおける監視データである「コンクリートの品質に関するデータ」は、前記(i)の組み合わせにおける評価データである、「コンクリートの品質に関するデータ」と同様である。なお、監視データとして「コンクリートの品質に関するデータ」を用いる場合、後述する工程(A−1)、(A)〜(L)において、より精度の高い学習済みのニューラルネットワークを得ることができる観点から、2種以上を用いることが好ましい。
前記(ii)の組み合わせにおける評価データである、「コンクリートの配合条件」とは、前記(i)の組み合わせにおける監視データの一つである「コンクリートの配合条件に関するデータ」と同様である。
本発明において、複数の種類の監視データの中から特定の種類の監視データを選択し、選択した監視データを、後述する工程(A−1)、(A)〜(L)において用いることで、より精度の高い学習済みのニューラルネットワークを得ることができる。また、工程(M)において、該学習済みのニューラルネットワーク及び選択した監視データを用いることで、コンクリートの配合条件の予測の精度をより高めることできる。
なお、特定の種類の監視データ(より精度の高い学習済みのニューラルネットワークを得ることができる、1種又は2種以上の監視データの組み合わせ)は、評価データの種類によって異なるものである。
特定の種類の監視データは、評価データと相関性の高いものを選択することが好ましい。特定の種類の監視データを選択する方法については、後述(工程(A−1))する。
本発明のコンクリートの配合条件の予測方法において、対象となるコンクリートは、特に限定されるものではない。例えば、一般構造用コンクリート、寒中コンクリート、マスコンクリート、高流動コンクリート、低発熱コンクリート、膨張コンクリート、プレストレストコンクリート、低収縮コンクリート、繊維補強コンクリート、ポリマーコンクリート、水密コンクリート、水中コンクリート、透排水性コンクリート、樹脂含浸コンクリート、遮蔽用コンクリート、軽量コンクリート、プレパックドコンクリート、吹付けコンクリート、再生コンクリート、舗装用コンクリート、超硬練りコンクリート、ダムコンクリート、プレキャストコンクリート等が挙げられる。また、その配合は、示方配合である。
本発明は、学習済みのニューラルネットワークを用いて、コンクリートの配合条件を予測する方法(後述する工程(M))である。
本発明で用いられる学習済みのニューラルネットワークは、上述した監視データ及び評価データを用いた、一般的なニューラルネットワークの学習方法によって得られたものであってもよいが、コンクリートの配合条件の予測の精度をより高める観点から、以下の工程(A−1)、(A)〜(L)によって得られた学習済みのニューラルネットワーク(評価データの予測をより高い精度で行うことができるもの)を用いることが好ましい。
以下、工程(A−1)、(A)〜(L)について、図1を参照しながら詳しく説明する。
[工程(A−1)]
本工程は、より精度の高い学習済みのニューラルネットワークを得ることができ、かつ、コンクリートの配合条件の予測の精度をより高める観点から任意に行われる工程である。
本工程では、予測の対象となる、コンクリートの配合条件に関するデータを含む1種以上の監視データからなる監視データ集合体を、2種以上用意し、該2種以上の監視データ集合体の各々について、工程(A)〜(M)において用いるのに好適な監視データを選択するための、監視データの実測値と評価データの実測値の組み合わせ(以下、「選択データ」ともいう。)を複数用いて、工程(A)〜(M)において用いられるニューラルネットワークとは異なる未学習のニューラルネットワークの学習を行い、得られたニューラルネットワークの入力層に、選択データの監視データの実測値を入力して得られた評価データの推測値と、選択データの評価データの実測値との平均2乗誤差(RMSE:Root Mean Squared Error)を算出し、平均2乗誤差の数値が最も小さかった選択データにおける監視データを、工程(A)〜(M)における監視データとして用いるものとする。
予測の対象となる、コンクリートの配合条件に関するデータを含む1種以上の監視データが、予測の対象となる、コンクリートの配合条件に関するデータ以外の監視データを含む場合(予測の対象となる、コンクリートの配合条件に関するデータを含む2種以上の監視データの場合)、予測の対象となる、コンクリートの配合条件に関するデータ以外の監視データとは、上述したセメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、コンクリートの配合条件に関するデータ、及びコンクリートの品質に関するデータとして列挙されたものの中から任意に選択した1種以上(好ましくは2種以上、より好ましくは3種以上)のデータである。
本工程では、予測の対象となる、コンクリートの配合条件に関するデータを含む1種以上の監視データからなる監視データ集合体を、2種以上(好ましくは3種以上、より好ましくは4種以上)用意し、該2種以上の監視データ集合体の各々について、集合体における監視データの実測値と評価データの実測値の組み合わせである選択データを複数用いて、未学習のニューラルネットワークの学習を行う。
具体的には、選択用の複数のサンプルを用意し、該サンプルの監視データ(任意に選択した1種以上の監視データ)の実測値、及び予測の対象となる評価データの実測値を測定して、これらを選択データとして用いる。該選択データのうち、監視データの実測値をニューラルネットワークの入力層に入力して、出力層から出力された評価データの推測値と、該評価データの推測値に対応する選択データの評価データの実測値を比較評価してニューラルネットワークを修正することを、任意の学習回数行うことで、ニューラルネットワークの学習が行われる。
選択用のサンプルの数は、より高い精度で予測を行うことができる監視データを選択できる観点から、好ましくは10以上、より好ましくは14以上、さらに好ましくは16以上、特に好ましくは20以上である。サンプル数の上限は、特に限定されるものではないが、作業性の観点から、例えば、10,000である。
上記ニューラルネットワークの学習回数は、特に限定されるものではないが、好ましくは100〜2,000回、より好ましくは200〜1,500回である。
[工程(A)]
工程(A)において、学習回数の初期設定を実施する。設定される学習回数は、特に限定されるものではないが、好ましくは、ニューラルネットワークの過学習(オーバーラーニング)が発生する程度に、十分に大きな回数である。具体的には、通常5千〜100万回、好ましくは1万〜10万回である。
工程(A)では、ニューラルネットワークの過学習が発生する学習回数、具体的にはσ<σ(詳しくは後述する)となるような学習回数を設定することが好ましいが、後の工程において、学習回数の増減が行われるため、工程(A)において最初に設定される学習回数は、ニューラルネットワークの学習に通常行われる学習回数を用いても問題ない。
工程(A)終了後、工程(B)を実施する。
[工程(B)]
工程(B)では、学習用の監視データの実測値と評価データの実測値の組み合わせ(以下、「学習データ」ともいう。)を複数用いて、ニューラルネットワークの学習を、前工程で設定された学習回数行う。上記組み合わせの数は、例えば、5以上、好ましくは7以上である。上記組み合わせの数の上限は、特に限定されないが、例えば、1,000である。
ここで、「前工程で設定された学習回数」とは、工程(A)において設定される学習回数、または、工程(D)において再設定された新たな学習回数であって、直近の工程(工程(A)または工程(D))で設定された学習回数である。
具体的には、学習用の複数のサンプルを用意し、該サンプルの監視データの実測値、及び目的とする評価データの実測値を測定して、これらを学習データとして用いる。該学習データのうち、監視データの実測値をニューラルネットワークの入力層に入力して、出力層から出力された評価データの推測値と、該評価データの推測値に対応する学習データの評価データの実測値を比較評価してニューラルネットワークの修正することを、設定された学習回数行うことで、ニューラルネットワークの学習が行われる。
学習用のサンプルの数は、より高い精度で予測を行う観点から、好ましくは10以上、より好ましくは14以上、さらに好ましくは16以上、特に好ましくは20以上である。サンプル数の上限は、特に限定されるものではないが、作業性の観点から、例えば、10,000である。
なお、学習回数を変更して、ニューラルネットワークの再学習を行う際には、前回の学習の結果得られたニューラルネットワークは初期化され、再度学習が行われる。
工程(B)終了後、工程(C)を実施する。
[工程(C)]
工程(C)では、σとσが算出される。σとσの大小関係から、学習がニューラルネットワークの過学習が発生する程度に十分に大きな回数行われたか否かを判断することができる。
具体的には、学習データの監視データの実測値を、直近の工程(B)において学習が行われたニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)を算出する。次いで、モニターデータの監視データの実測値を、直近の工程(B)において学習が行われたニューラルネットワークの入力層に入力して得られた評価データの推測値とモニターデータの評価データの実測値との平均2乗誤差(σ)を算出する。その後、算出されたσとσの数値を比較することで、ニューラルネットワークの学習が十分に大きな回数で行われたか判断することができる。
ここで、モニターデータとは、学習データを得るために用いられたサンプルとは別のサンプルから得られた、監視データの実測値及び評価データの実測値の組み合わせであり、ニューラルネットワークの信頼性を確認するためのデータである。
モニターデータ(監視データの実測値及び評価データの実測値の組み合わせ)のサンプルの数は、作業性の観点から、学習データのサンプル数の好ましくは5〜50%、より好ましくは10〜30%である。
工程(C)で算出されたσとσの関係が、σ≧σである場合(図1の過学習判定における「No」)、直近に行った工程(B)の学習回数は、十分に大きな回数ではないと判断することができる。この場合、工程(D)を実施する。工程(C)で算出されたσとσの関係が、σ<σである場合(図1の過学習判定における「Yes」)、直近に行った工程(B)の学習回数は、十分に大きな回数であったと判断することができる。この場合、工程(E)を実施する。
[工程(D)]
工程(D)では、直近の工程(A)で設定された学習回数および再設定された直近のニューラルネットワークの学習回数のいずれの学習回数よりも大きい学習回数を新たな学習回数として再設定する(例えば、直近の工程(B)で実施された学習回数に2.0を乗じた数を新たな学習回数として設定する。)。新たな学習回数を再設定した後、再度工程(B)〜(C)を実施する。
[工程(E)]
工程(E)では、直近のニューラルネットワークの学習で実施された学習回数を減らした学習回数を、新たな学習回数として再設定する(例えば、直近の工程(B)または工程(F)で実施された学習回数に0.95を乗じた数を新たな学習回数として設定する。)。
なお、直近のニューラルネットワークの学習とは、より近い過去に実施された学習を指す。具体的には、工程(B)もしくは後述の工程(F)のうち、より近い過去に実施された学習を指す。
工程(E)終了後、工程(F)を実施する。
[工程(F)]
工程(F)では、直近の工程(B)で用いられた学習データを用いて、ニューラルネットワークの学習を直近の工程(E)で設定された学習回数行う。
工程(F)で実施する内容は、ニューラルネットワークの学習を工程(E)において新たに設定された学習回数行う以外は、工程(B)と同じである。
工程(F)終了後、工程(G)を実施する。
[工程(G)]
工程(G)では、直近の工程(F)の学習において得られたニューラルネットワークを用いて終了判定を行う。具体的には学習データの監視データの実測値を、直近の工程(F)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)、及び、モニターデータの中の監視データの実測値を、直近の工程(F)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値とモニターデータの中の評価データの実測値との平均2乗誤差(σ)を算出し、算出されたσとσの関係が、σ≧σである場合(図1の終了判定における「Yes」)、直近に行った工程(F)の学習回数は、もはや十分に大きな回数ではないと判断することができる。この場合、後述する工程(I)を実施する。算出されたσとσの関係がσ<σである場合(図1の終了判定における「No」)、直近に行った工程(F)の学習回数は、いまだ十分に大きな回数であったと判断することができる。この場合、後述する工程(H)を実施する。
[工程(H)]
工程(H)では、直近の工程(F)におけるニューラルネットワークの学習回数が予め定めた数値を超えていたかどうかの判定を行う。工程(H)は、工程(E)から工程(G)を無限に繰り返すことを回避するために行われる。工程(H)において直近に行った工程(F)におけるニューラルネットワークの学習回数が予め定めた数値を超えていた場合(図1における「Yes」)は、再度工程(E)〜(G)を実施する。工程(H)において直近に行った工程(F)の学習回数が予め定めた数値以下場合(図1における「No」)は、後述の工程(J)または(K)を実施する。
なお、上記予め定めた数値とは、特に限定されず、例えば、工程(E)で設定された学習回数の100分の1の数値以下、もしくは、1以下または0以下等が挙げられる。
[工程(I)]
工程(I)では解析度判定値が予め定めた第一の設定値未満であるか否かによって、解析度の判定を行うことができる。解析度判定値は下記式(1)を用いて算出される。
Figure 2018069487
上記式(1)中、学習データの平均2乗誤差(σ)とは、直近の工程(G)で算出された平均2乗誤差(σ)と同じである。評価データの推測値の平均値とは、学習データの監視データの実測値を、直近の工程(F)にて得られたニューラルネットワークの入力層に入力して得られた評価データの推測値の平均値である。
解析度の判定を行うことで学習を行ったニューラルネットワークを用いて、コンクリートの品質等の予測を高い精度で行うことができるか否かを判断することができる。
解析度判定値が予め定めた第一の設定値未満(図1の第一の解析度判定における「Yes」)であれば、解析は十分であると判断され、ニューラルネットワークの学習を終了して、学習済みのニューラルネットワーク得た後、後述する工程(M)を実施する。
解析度判定値が予め定めた第一の設定値以上(図1の第一の解析度判定における「No」)であれば、学習データを用いて学習を行ったニューラルネットワークをそのまま用いて、コンクリートの品質等の予測を高い精度で行うことはできないと判断され、工程(J)を実施する。
予め定めた第一の設定値は、特に限定されないが、より高い精度で予測を行う観点から、好ましくは6%以下、より好ましくは5%以下、特に好ましくは3%以下の値である。
なお、工程(A)〜(I)は、工程(I)において解析度判定値が予め定めた第一の設定値未満となるか、工程(J)において該回数が予め設定した回数を超えるまで繰り返される。工程(I)を実施するたびに得られる、解析度判定値及び学習済みのニューラルネットワークは、工程(K)において使用される。
[工程(J)]
工程(J)では、工程(A)を実施した回数が予め設定した数値以下であるかどうかの判定を実施する。判定を実施することによって、工程(A)から工程(I)を無限に繰り返すことを回避することができる。
工程(J)において、工程(A)を実施した回数が予め設定した回数以下(図1の回数判定における「Yes」)である場合、学習条件の初期化を行って、再度工程(A)〜(I)を行い、該回数が予め設定した回数を超える場合(図1の回数判定における「No」)、工程(K)を実施する。
予め設定した回数は、特に限定されないが、通常、5回以上である。予め設定した回数の上限は、工程(A)から工程(I)を多大に繰り返すことを防ぐ観点から、好ましくは100回以下である。
学習条件の初期化の方法としては、例えば、ニューラルネットワークを構成するユニットの閾値やユニットを結合している重みをランダムで変更した上で、学習データを再入力する方法、学習データを得るためのサンプルの数を増やす、使用する監視データの種類を変更する、又は不適切な学習データを除外する等を行った上で、新たな学習データを入力する方法等が挙げられる。
[工程(K)]
工程(K)では、工程(I)において算出した全ての解析度判定値のうち、最も小さい解析度判定値が予め定めた第二の設定値未満であるか否かによって、次の予測の実施の可否の判定を行うことができる。
工程(K)の判定を追加することで、工程(I)において、セメントの品質等の予測を高い精度で行うことはできないと判断された学習済みのニューラルネットワークであっても、後述する工程(L)〜(M)を実施することによって、コンクリートの配合条件の予測を高い精度で行うことができるか否かを判断することができる。
最も小さい解析度判定値が予め定めた第二の設定値未満(図1の第二の解析度判定における「Yes」)である場合、最も小さい解析度判定値を得ることができた工程(I)におけるニューラルネットワークを、学習済みのニューラルネットワークとして得た後、工程(L)を実施する。
最も小さい解析度判定値が予め定めた第二の設定値以上(図1の第二の解析度判定における「No」)であれば、コンクリートの配合条件の予測を高い精度で行うことが可能である学習済みのニューラルネットワークを得ることができないと判断して予測を終了する。
予め定めた第二の設定値は、上記第一の設定値よりも大きいものである。また、上限は、より高い精度で予測を行う観点から、好ましくは30%以下、より好ましくは20%である。
[工程(L)]
工程(L)では、工程(M)で用いられる予測可能監視データ領域を設定する。
最初に、工程(I)において算出した全ての解析度判定値のうち、最も小さい解析度判定値を得ることができた工程(I)において、学習データとして使用した監視データの実測値と評価データの実測値の組み合わせについて無相関検定を実施する。無相関検定において5%の有意水準で有意であると判断された監視データの種類が、予測の対象となる、コンクリートの配合条件に関する監視データを含み、かつ、2種以上である場合(図1の無相関検定における「Yes」)、5%の有意水準で有意であると判断された監視データの全種類を座標軸とする座標空間を作成する。
例えば、5%の有意水準で有意であると判断された監視データが、セメントのブレーン比表面積とセメントのCSの量の二種類である場合、セメントのブレーン比表面積をx軸とし、セメントのCSの量をy軸とする座標空間を作成する(図2参照)。
次いで、学習データとして使用した監視データの実測値のうち、5%の有意水準で有意であると判断された種類の監視データの実測値を全て、座標空間にプロットし、座標空間においてプロットされた監視データ同士を結ぶことで予測可能監視データ領域を設定する。該予測可能監視データ領域は、プロットされた監視データの全てを包含する領域であって、該領域が最大となるように監視データ同士を結ぶことで形成される領域である(図2参照)。予測可能監視データ領域を設定した後、工程(M)を実施する。
5%の有意水準で有意であると判断された監視データが、予測の対象となる、コンクリートの配合条件に関する監視データを含まない場合、あるいは、0または1種類である場合(図1の無相関検定における「No」)、セメントの品質または製造条件を高い精度で予測することはできないと判断して予測を終了する。
上述した工程(A−1)、(A)〜(L)において行われるニューラルネットワークの学習は、最初に十分に大きな学習回数(σ<σとなる程度の学習回数)で学習を行った後、学習回数を減らしながら、ニューラルネットワークの学習をσ≧σとなるまで繰り返すものである。該方法によれば、学習データにおいて評価データが不足している場合等の要因によって、σ、σの数値にばらつきがある場合であっても、該ばらつきを修正することができ、ニューラルネットワークの学習を適切に行うことができる。
また、学習データのサンプル数が少ない等の理由により、工程(I)において、解析度判定値が所定の基準値を満たしていない場合であっても、後述する工程(M)において、入力層に入力される監視データを予測可能監視データ領域に含まれるようにすることで、この監視データと学習済みのニューラルネットワークを用いて、高い精度でコンクリートの配合条件の予測を行うことができる。
ニューラルネットワークは、予測の精度を高い状態に維持するために、評価データの推測値と、該推測値に対応する実測値の乖離の大きさを定期的に点検し、その点検結果に基づいて、ニューラルネットワークを更新することが好ましい。
なお、上述した工程(A)〜(L)は、工程(M)の前に、任意に行われる工程である。
[工程(M)]
工程(M)では、予測の対象となる、コンクリートの配合条件に関するデータであって、任意に変動させた監視データの値を含む、複数の監視データの値を、学習済みのニューラルネットワークの入力層に入力して、評価データの推測値を得ることを複数回行って、変動させた監視データの値と評価データの推測値からなる複数の組み合わせを得た後、得られた複数の組み合わせを用いて回帰分析を行い、予測の対象となる、コンクリートの配合条件に関するデータである監視データと、目標とする評価データとの関係式を得た後、得られた関係式と目標とする評価データの値から、目標とする評価データの値を得ることが可能なコンクリートの配合条件を予測する工程である。
なお、工程(M)において使用する監視データの種類が1種類のみ(予測の対象となる、コンクリートの配合条件に関するデータのみ)の場合、上記「複数の監視データの値」とは、「予測の対象となる、コンクリートの配合条件に関するデータであって、任意に変動させた監視データの値」のみからなるものである。
変動させた監視データの値は、より高い精度で予測を行う観点から、ニューラルネットワークの学習に用いた監視データ(例えば、上述した学習データおよびモニターデータの監視データ)の実測値の、最大値と最小値の範囲内で変動させた値である。変動させた値の個数は、特に限定されるものではないが、より高い精度で予測を行う観点から、好ましくは5個以上、より好ましくは8個以上、特に好ましくは10個以上である。
上述した監視データが、予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含む、2種以上である場合において、より高い精度で予測を行う観点から、学習済みのニューラルネットワークの入力層に入力する、予測の対象となる、コンクリートの配合条件に関するデータである監視データを除く監視データの値として、予め設定した固定値を用いることが好ましい。
該固定値は、任意で設定してもよいが、より高い精度で予測を行う観点から、ニューラルネットワークの学習に用いた監視データ(例えば、上述した学習データおよびモニターデータの監視データ)の実測値の、最大値と最小値の範囲内の数値であり、より好ましくは学習に用いた監視データの実測値の平均値である。
回帰分析によって得られた、予測の対象となる、コンクリートの配合条件に関するデータである監視データと目標とする評価データとの関係式について、安全性に考慮した誤差の修正を行ってもよい。
該修正は、評価データの実測値(実際に製造されるコンクリートの品質または製造条件に関するもの)が、目標とする評価データの値と比べて過小になることを防ぐ目的で行われるものである。具体的には、任意の数値(誤差を考慮した数値)を、回帰分析によって得られた、予測の対象となる、コンクリートの配合条件に関するデータである監視データと目標とする評価データとの関係式の右辺から減算することで行われる。
工程(M)において使用する学習済みのニューラルネットワークが、上述した工程(K)で得られた学習済みのニューラルネットワークである場合、より高い精度で予測を行う観点から、学習済みのニューラルネットワークの入力層に入力する監視データは、工程(L)で設定した予測可能監視データ領域に含まれるものを使用する。
具体的には、予測の対象となる、コンクリートの配合条件に関するデータである監視データの値(任意に変動させたもの)や、予測の対象となる、コンクリートの配合条件に関するデータである監視データを除く監視データの固定値が、予測可能監視データ領域に含まれるように設定する。
なお、ニューラルネットワークの学習に用いた監視データ(上述した学習データおよびモニターデータの監視データ)が、工程(L)で作成された座標空間の座標軸として用いられていない種類の監視データ(無相関検定において5%の有意水準で有意であると判断されなかった監視データの種類)を含む場合、当該の座標軸として用いられていない種類の監視データは、工程(M)において入力される監視データの値に何ら制限を与えない。具体的には、当該の座標軸として用いられていない種類の監視データは、工程(M)において学習済みのニューラルネットワークの入力層に入力する監視データから除外され、該監視データを除いた監視データの値を用いて、関係式を得た後、得られた関係式を用いてコンクリートの配合条件を予測することができる。
また、工程(M)において使用する学習済みのニューラルネットワークが、上述した工程(I)で得られた学習済みのニューラルネットワークである場合、学習済みのニューラルネットワークの入力層に入力する監視データは、特に限定されるものではない。
本発明の予測方法によれば、目標とする評価データの値(例えば、コンクリートのモルタルフロー値)を得ることが可能であるコンクリートの配合条件(例えば、高性能減水剤の量)を、より高い精度で予測することができる。
さらに、コンクリート製造を制御するコンピュータと、本発明のコンクリートの配合条件の予測方法を実施するために用いるコンピュータを接続することによって、目標とする評価データの値に基づいて、該評価データの値を得ることができる監視データを人為的に変動させるための制御システムを自動化することもできる。
本発明において、ニューラルネットワークによる演算を行うためのソフトウェアとしては、例えば、OLSOFT社製の「Neural Network Library」(商品名)等が挙げられる。
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[使用材料]
使用材料としては、以下に示すとおりである。
(1)普通ポルトランドセメント:太平洋セメント社製
(2)細骨材A:山口県山口市産の砕砂と佐賀県東松浦郡産の海砂を、1:1の質量比で混合してなる混合砂、密度2.59g/cm
(3)細骨材B:一般社団法人セメント協会(販売元)セメント強さ試験用標準砂
(4)粗骨材:福岡県北九州市産硬質砂岩砕石、最大寸法20mm、密度2.65g/cm
(5)高性能AE減水剤:BASFジャパン製、商品名「マスターグレニウムSP8SV」
(6)高性能減水剤:花王株式会社製、商品名「マイティ150」
(7)消泡剤A:BASFジャパン製、商品名「マスターエア404」
(8)消泡剤B:株式会社小野田製、商品名「ニコフィックス800」
[実施例1]
[高性能AE減水剤量の予測]
選択用および学習用サンプル(以下、単に「学習用サンプル」ともいう。)としてサンプリング日の異なる15個の普通ポルトランドセメントについて、上記細骨材A、粗骨材、高性能AE減水剤、消泡剤Aを用いてコンクリートを製造した。
各材料の配合は、単位セメント量が330kg/m、細骨材率が45質量%、単位水量が165kg/m、高性能AE減水剤量がコンクリート100質量%中、0.5〜1.0質量%となるようにした。また、空気量が2%以下となるように消泡剤の添加量を調整した。製造したコンクリートの混練直後のスランプを測定した。
コンクリートの製造は、「JIS A 1138(試験室におけるコンクリートの作り方)」に準拠して行った。また、コンクリートのスランプは、「JIS A 1101(コンクリートのスランプ試験方法)」に準拠して測定した。
得られたスランプを評価データの実測値(選択データおよび学習データ)とした。
また、学習用サンプルに使用した15個の普通ポルトランドセメントの各々について、コンクリートの配合条件に関するデータとして高性能AE減水剤の量(以下、「高性能AE減水剤量」ともいう。)、セメントに関するデータとしてセメントの鉱物組成、及び、セメントの物理特性に関するデータとしてモルタルフローを、学習データにおける監視データの実測値とした。
なお、高性能AE減水剤量は、学習用サンプルとして製造したコンクリートにおいて目標スランプを8±1cmとして添加した量(コンクリート100質量%中の割合(質量%))である。
また、セメントの鉱物組成は、上記15個の普通ポルトランドセメントについて、粉末X線回折装置(ブルカー・エイエックスエス株式会社製D8 ADVANCE)にて、測定範囲:2θ=10〜65°の範囲で測定を行い、リ−トベルト解析ソフト(ブルカー・エイエックスエス株式会社製DIFFRACplusTOPAS(Ver.3))によって計算されたCSとCAの含有率である。
モルタルフローは、以下の方法による混練直後の値と混練30分後の値である。
[モルタルフロー試験]
上記普通ポルトランドセメント、細骨材B、高性能減水剤、消泡剤Bを、水セメント比が0.35、細骨材とセメントの質量比(細骨材/セメント)が2.0、高性能減水剤がセメント100質量%に対して1.2質量%、消泡剤がセメント100質量%に対して0.1質量%となるように混合して調製したモルタルについて、「JIS A 1171(ポリマーセメントモルタルの試験方法)」のフロー試験に準拠して、混練直後と混練30分後のモルタルフローを測定した。
[監視データの選択]
上述した監視データ(高性能AE減水剤量、CS及びCAの含有率、モルタルフロー(直後、30分後))のうち、表1に示す監視データを選択した条件1〜4の各々について(表1中、選択した監視データを「○」で示す。)、選択した監視データの実測値と、評価データの実測値を用いて、未学習のニューラルネットワークの学習を行った。該学習は1300回行った。
学習後のニューラルネットワークの入力層に、選択した監視データの実測値を入力して得られた評価データの推測値と、評価データの実測値との平均2乗誤差(表1中、「RMSE」と示す。)を算出した。
結果を表1に示す。
条件1〜4のうち、平均2乗誤差の値が最も小さかった条件1において選択した監視データの組み合わせ(高性能AE減水剤量、CS及びCAの含有率、モルタルフロー(直後、30分後))を、ニューラルネットワークの学習に用いられる監視データ(学習データおよびモニターデータ)とした。
Figure 2018069487
また、モニター用のサンプル(以下、「モニター用サンプル」ともいう。)として、前記学習用サンプルとして使用した15個の普通ポルトランドセメントとはサンプリング日の異なる2個の普通ポルトランドセメントを用いたコンクリートのスランプを学習データと同様に測定して、モニターデータ(評価データの実測値)とした。
さらに、上記2個の普通ポルトランドセメントを用いたコンクリートの高性能AE減水剤量、上記2個の普通ポルトランドセメントの鉱物組成、及び上記2個の普通ポルトランドセメントを用いたモルタルフローを、学習データと同様にして得て、モニターデータ(監視データの実測値)とした。
上記学習データを用いて、ニューラルネットワークの学習を行った。ニューラルネットワークとしては、入力層、中間層及び出力層を有する階層型のニューラルネットワークを用いた。なお、該ニューラルネットワークは、監視データの選択に用いたニューラルネットワークとは異なる未学習のものである。
ニューラルネットワークの学習は、最初に上記学習データとモニターデータを用いて10,000回行った。得られたニューラルネットワークを用いて、σとσを算出したところ、σとσの関係はσ<σであった。
その後、ニューラルネットワークを初期化し、上記学習データとモニターデータを用いて、ニューラルネットワークの学習を、前記学習回数に0.95を乗じた数の学習回数(端数切捨て)行うことを、学習後のニューラルネットワークを用いて算出されたσとσの関係がσ≧σとなるまで繰り返した。その結果、解析度判定値は、2.56%となったので、学習を終了した。
上記サンプルとは異なる普通ポルトランドセメントBを用いて、上記学習プロセスで使用したコンクリートと同一の条件で製造したコンクリートについて、スランプを測定した。その結果は、8.5cmであった。
一方、学習データおよびモニターデータにおける、17個の監視データの実測値の組み合わせ(高性能AE減水剤量、セメントの鉱物組成、及びモルタルフローの組み合わせ)を、得られた学習済みのニューラルネットワークの入力層に入力し、出力層より、スランプの推測値を出力した。
得られたスランプの推測値は、8.2±0.6cm(偏差は3σを示す。)であり、実測値と予測値はほぼ一致した。このことから、得られた学習済みのニューラルネットワークは信頼性の高いものであることがわかる。
次に、上記学習済みのニューラルネットワークを用いて、コンクリートの配合条件(高性能AE減水剤量)の予測を行った。
上記ニューラルネットワークの学習に使用した、サンプリング日の異なる17個(学習用サンプル15個とモニター用サンプル2個の合計)のコンクリートの高性能AE減水剤量を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値を算出した。
その結果、CSの含有率の実測値の平均値は60.4質量%、CAの含有率の実測値の平均値は6.7質量%、モルタルフロー(直後)の実測値の平均値は232mm、モルタルフロー(30分後)の実測値の平均値は160mmであった。
次いで、上記学習済みのニューラルネットワークの入力層に、高性能AE減水剤量を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値と、表2に示す高性能AE減水剤量を入力して、各高性能AE減水剤量に対するスランプの推測値を得た。結果を表2に示す。なお、高性能AE減水剤量は、上記17個のコンクリートの高性能AE減水剤量の実測値の数値範囲内で、任意に変動した値(実測値の最大値と最小値を10等分するように変動した値)である。
Figure 2018069487
高性能AE減水剤量とスランプの推測値との組み合わせから、回帰分析を行い、高性能AE減水剤量とスランプの推測値との関係を示す下記式(1)を得た。
スランプの推測値=8.51×(高性能AE減水剤量)+1.59・・・(1)
式(1)から、安全側に考慮して誤差を修正して、高性能AE減水剤の必要量とスランプの目標値との関係を示す下記式(2)を得た。修正はスランプの実測値がスランプの推測値と比べて過少になることを防ぐ目的で行われるものである。具体的には、誤差0.42cm(2σ)の値を、式(1)の右辺から減算することで行った。
スランプの目標値=8.51×(高性能AE減水剤の必要量)+1.17・・・(2)
得られた式(2)を用いて、スランプの目標値に対する高性能AE減水剤の必要量を求めた。具体的には、スランプの目標値を8.5cm以上と定め、上記式(2)に該目標値の下限値(8.5cm)を代入することで、高性能AE減水剤の必要量(0.80質量%)を得た。該必要量は、コンクリートの製造において、高性能AE減水剤量を0.80質量%以上とすれば、得られるコンクリートのスランプが目標値(8.5cm以上)を下回ることはないと推測できる値である。
[比較例1]
実施例1で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントを母集団とし、コンクリートのスランプとの高い相関を有するコンクリートの配合条件に関するデータ、セメントに関するデータ、及び、セメントの物理特性に関するデータであった、高性能AE減水剤量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を説明変数とした重回帰分析を行い、下記回帰式(決定係数R=0.42)を得た。
(コンクリートのスランプ(cm))=(8.95)×(高性能AE減水剤量(質量%))+(0.04)×(CSの含有率(質量%))−1.09×(CAの含有率(質量%))+1.9×10−3×(モルタルフロー(直後)(mm))−1.5×10−3×(モルタルフロー(30分後)(mm))+10.7
上記回帰式に、実施例1で使用した15個の普通ポルトランドセメントに関するデータである、高性能AE減水剤量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を代入して得られたスランプの推測値は、8.1±1.4cm(偏差は3σを示す。)であった。
学習済みのニューラルネットワークに高性能AE減水剤量を除く監視データの実測値の平均値と表2に示す高性能AE減水剤量を入力する代わりに、上記回帰式に高性能AE減水剤量を除く監視データの実測値の平均値と表2に示す高性能AE減水剤量を代入して、各高性能AE減水剤量に対するスランプの推測値を得る以外は実施例1と同様にして、高性能AE減水剤量とスランプの推測値との関係を示す下記式(3)を得た。
スランプの推測値=8.06×(高性能AE減水剤量)+1.59・・・(3)
式(3)から、安全側に考慮して誤差を修正して、高性能AE減水剤の必要量(スランプの目標値を得ることが可能である高性能AE減水剤量)とスランプの目標値との関係を示す下記式(4)を得た。修正はスランプの実測値がスランプの推測値と比べて過少になることを防ぐ目的で行われるものである。具体的には、誤差0.42cm(2σ)の値を、式(3)の右辺から減算することで行った。
スランプの目標値=8.06×(高性能AE減水剤の必要量)+1.39・・・(4)
得られた式(4)によりスランプの目標値(8.5cm以上)に対する高性能AE減水剤量の必要量を求めたところ、0.88質量%であった。
実施例1及び比較例1で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントとはサンプリング日の異なる普通ポルトランドセメントを用いたコンクリートであって、高性能AE減水剤量を除く監視データの実測値が上記17個のサンプルの実測値の平均値に近く、かつスランプが8.5cmに近いコンクリートにおける高性能AE減水剤量は0.79質量%であった。
該量は、比較例1で求めた高性能AE減水剤の必要量(0.88質量%)よりも、実施例1で求めた高性能AE減水剤の必要量(0.80質量%)に近いことから、本発明の予測方法によれば、より正確にコンクリートの配合条件を予測することができることがわかる。
[実施例2]
[単位水量の予測]
選択用および学習用サンプルとしてサンプリング日の異なる15個の普通ポルトランドセメントについて、上記細骨材A、粗骨材、高性能AE減水剤、消泡剤Aを用いてコンクリートを製造した。
各材料の配合量は、水とセメントの質量比(水/セメント)が0.3、細骨材率が45質量%、高性能AE減水剤量がセメント100質量%に対して0.7質量%となるようにした。また、空気量が2%以下となるように消泡剤の添加量を調整したコンクリートを製造し、製造したコンクリートの混練直後のスランプを測定した。
なお、コンクリートの製造方法およびスランプの測定方法は実施例1と同じである。
得られたスランプを評価データの実測値(選択データおよび学習データ)とした。
また、学習用サンプルに使用した15個の普通ポルトランドセメントの各々について、
コンクリートの配合条件に関するデータとして単位水量、セメントに関するデータとしてセメントの鉱物組成、及び、セメントの物理特性に関するデータとしてモルタルフローを、学習データにおける監視データの実測値とした。
なお、単位水量は、学習用サンプルとして製造したコンクリートにおいて、所要のスランプ(8±1cm)を得ることができる範囲でできるだけ小さくなるよう試験を行って調整した値である。
また、セメントの鉱物組成は、上記15個の普通ポルトランドセメントについて、実施例1と同様にして計算したCS及びCAの含有率である。
また、モルタルフローは、上記15個の普通ポルトランドセメントについて、実施例1と同様にして測定した混練直後の値と混練30分後の値である。
[監視データの選択]
上述した監視データ(単位水量、CS及びCAの含有率、及びモルタルフロー(直後、30分後))のうち、表3に示す監視データを選択した条件1〜4の各々について(表3中、選択した監視データを「○」で示す。)、選択した監視データの実測値と、評価データの実測値を用いて、未学習のニューラルネットワークの学習を行った。該学習は800回行った。
学習後のニューラルネットワークの入力層に、選択した監視データの実測値を入力して得られた評価データの推測値と、評価データの実測値との平均2乗誤差(表3中、「RMSE」と示す。)を算出した。
結果を表3に示す。
条件1〜4のうち、平均2乗誤差の値が最も小さかった条件1において選択した監視データの組み合わせ(単位水量、CS及びCAの含有率、モルタルフロー(直後、30分後))を、ニューラルネットワークの学習に用いられる監視データ(学習データおよびモニターデータ)とした。
Figure 2018069487
また、モニター用のサンプルとして、前記学習用サンプルとして使用した15個の普通ポルトランドセメントとはサンプリング日の異なる2個の普通ポルトランドセメントを用いて、コンクリートのスランプを学習データと同様に測定して、モニターデータ(評価データの実測値)とした。
さらに、上記2個の普通ポルトランドセメントを用いたコンクリートの単位水量、上記2個の普通ポルトランドセメントのセメントの鉱物組成、及び上記2個の普通ポルトランドセメントを用いたモルタルフローを、学習データと同様に測定して、モニターデータ(監視データの実測値)とした。
上記学習データを用いて、ニューラルネットワークの学習を行った。ニューラルネットワークとしては、入力層、中間層及び出力層を有する階層型のニューラルネットワークを用いた。なお、該ニューラルネットワークは、監視データの選択に用いたニューラルネットワークとは異なる未学習のものである。
ニューラルネットワークの学習は、最初に上記学習データとモニターデータを用いて10,000回行った。得られたニューラルネットワークを用いて、σとσMを算出したところ、σとσの関係はσ<σであった。
その後、ニューラルネットワークを初期化し、上記学習データとモニターデータを用いて、ニューラルネットワークの学習を、前記学習回数に0.95を乗じた数の学習回数(端数切捨て)行うことを、学習後のニューラルネットワークを用いて算出されたσとσの関係がσ≧σとなるまで繰り返した。その結果、解析度判定値は、4.66%となったので、学習を終了した。
上記サンプルとは異なる普通ポルトランドセメントBを用いて、上記学習プロセスで使用したコンクリートと同一の条件で製造したコンクリートについて、スランプを測定した。その結果は、7.5cmであった。
一方、学習データおよびモニターデータにおける、17個の監視データの実測値の組み合わせ(単位水量、セメントの鉱物組成、及びモルタルフローの組み合わせ)を、得られた学習済みのニューラルネットワークの入力層に入力し、出力層より、スランプの推測値を出力した。
得られたスランプの推測値は、7.3±1.2cm(偏差は3σを示す。)であり、実測値と予測値はほぼ一致した。このことから、得られた学習済みのニューラルネットワークは信頼性の高いものであることがわかる。
次に、上記学習済みのニューラルネットワークを使用してコンクリートの製造条件(単位水量)の予測を行った。
上記ニューラルネットワークの学習に使用した、サンプリング日の異なる17個(学習用サンプル15個とモニター用サンプル2個の合計)のコンクリートの単位水量を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値を算出した。
その結果、CSの含有率の実測値の平均値は60.4質量%、CAの含有率の実測値の平均値は6.7質量%、モルタルフロー(直後)の実測値の平均値は232mm、モルタルフロー(30分後)の実測値の平均値は160mmであった。
次いで、上記学習済みのニューラルネットワークの入力層に、単位水量を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値と、表4に示す単位水量を入力して、各単位水量に対するスランプの推測値を得た。結果を表4に示す。
なお、単位水量は、上記17個のコンクリートの単位水量の実測値の数値範囲内で、任意に変動した値(実測値の最大値と最小値を10等分するように変動した値)である。
Figure 2018069487
単位水量とスランプの推測値との組み合わせから、回帰分析を行い、単位水量とスランプの推測値との関係を示す下記式(5)を得た。
スランプの推測値=0.32×(単位水量)−44.9・・・(5)
式(5)から、安全側に考慮して誤差を修正して、単位水量の必要量とスランプの目標値との関係を示す下記式(6)を得た。修正はスランプの実測値がスランプの推測値と比べて過少になることを防ぐ目的で行われるものである。具体的には、誤差0.78cm(2σ)の値を、式(5)の右辺から減算する形で行った。
スランプの目標値=0.32×(単位水量の必要量)−45.7・・・(6)
得られた式(6)を用いて、スランプの目標値に対する単位水量の必要量を求めた。具体的には、スランプの目標値を8.0cm以上と定め、上記式(6)に該目標値の下限値(8.0cm)を代入することで、単位水量の必要量(165.3kg/m)を得た。該必要量は、コンクリートの製造において、単位水量を165.3kg/m以上とすれば、得られるコンクリートのスランプが目標値(8.0cm以上)を下回ることはないと推測できる値である。
[比較例2]
実施例2で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントに関するデータを母集団とし、コンクリートのスランプとの高い相関を有する、コンクリートの配合条件に関するデータ、セメントに関するデータ、及び、セメントの物理特性に関するデータであった、単位水量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を説明変数とした重回帰分析を行い、下記回帰式(決定係数R=0.47)を得た。
(コンクリートのスランプ(cm))=(0.16)×(単位水量(kg/m))−(0.15)×(CSの含有率(質量%))+1.20×(CAの含有率(質量%))−0.01×(モルタルフロー(直後)値(mm))+0.02×(モルタルフロー(30分後)値(mm))+2.82
上記回帰式に、実施例2で使用した17個の普通ポルトランドセメントに関するデータである単位水量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を代入して得られたスランプの推測値は、7.1±1.7cm(偏差は3σを示す。)であった。
学習済みのニューラルネットワークに単位水量を除く監視データの実測値の平均値と表4に示す単位水量を入力する代わりに、上記回帰式に単位水量を除く監視データの実測値の平均値と表4に示す単位水量を代入して、各単位水量に対するスランプの推測値を得る以外は実施例2と同様にして、単位水量とスランプの推測値の関係式(7)を得た。
スランプの推測値=0.17×(単位水量)−20.2・・・(7)
式(7)から安全側に考慮して誤差を修正して、単位水量の必要量とスランプの目標値との関係を示す下記式(8)を得た。修正はスランプの実測値がスランプの推測値と比べて過小になることを防ぐ目的で行われるものである。具体的には、誤差1.12cm(2σの値)を式(7)の右辺から減算することで行った。
スランプの目標値=0.17×(単位水量の必要量)−21.3・・・(8)
得られた式(8)によりスランプの目標値(8.0cm以上)に対する必要となる単位水量を求めたところ、173.6kg/mとなった。
実施例2及び比較例2で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントとはサンプリング日の異なる普通ポルトランドセメントを用いたコンクリートであって、単位水量を除く監視データの実測値が上記17個のサンプルの実測値の平均値に近く、かつスランプが8.0cmに近いコンクリートの単位水量は165.7kg/mであった。
該単位量は、比較例2で求めた単位水量の必要量(173.6kg/m)よりも、実施例2で求めた単位水量の必要量(165.7kg/m)に近いことから、本発明の予測方法によれば、より正確にコンクリートの配合条件を予測することができることがわかる。
[実施例3]
[高性能AE減水剤量の予測]
選択用および学習用サンプルとしてサンプリング日の異なる15個の普通ポルトランドセメントについて、上記細骨材A、粗骨材、消泡剤Aを用いてコンクリートを製造した。
各材料の配合量は、単位セメント量が330kg/m、細骨材率が45質量%、単位水量が165kg/mとなるようにした。また、空気量が2%以下となるように消泡剤の添加量を調整したコンクリートを製造した。製造したコンクリートの混練直後のスランプフローを測定した。
なお、コンクリートの製造方法は実施例1と同じである。スランプフローは「JIS A 1150(コンクリートのスランプフロー試験方法)」に準拠して測定した。
得られたスランプフローを評価データの実測値(選択データおよび学習データ)とした。
また、学習用サンプルに使用した15個の普通ポルトランドセメントの各々について、コンクリートの配合条件に関するデータとして高性能AE減水剤量、セメントに関するデータとしてセメントの鉱物組成、及び、セメントの物理特性に関するデータとしてモルタルフローを、学習データにおける監視データの実測値とした。
これらのデータを得る方法は、実施例1と同様である。
[監視データの選択]
上述した監視データ(高性能AE減水剤量、CS及びCAの含有率、モルタルフロー(直後、30分後))のうち、表5に示す監視データを選択した条件1〜4の各々について(表5中、選択した監視データを「○」で示す。)、監視データの実測値と、評価データの実測値を用いて、未学習のニューラルネットワークの学習を行った。該学習は1500回行った。
学習後のニューラルネットワークの入力層に、選択した監視データの実測値を入力して得られた評価データの推測値と、評価データの実測値との平均2乗誤差(表5中、「RMSE」と示す。)を算出した。
結果を表5に示す。
条件1〜4のうち、平均2乗誤差の値が最も小さかった条件1において選択した監視データの組み合わせ(高性能AE減水剤量、CS及びCAの含有率、モルタルフロー(直後、30分後))を、ニューラルネットワークの学習に用いられる監視データ(学習データおよびモニターデータ)とした。
Figure 2018069487
また、モニター用のサンプルとして、前記学習用サンプルとして使用した15個の普通ポルトランドセメントとはサンプリング日の異なる2個の普通ポルトランドセメントを用いて、コンクリートのスランプフローを学習データと同様に測定して、モニターデータ(評価データの実測値)とした。
さらに、上記2個の普通ポルトランドセメントを用いたコンクリートの高性能AE減水剤量、上記2個の普通ポルトランドセメントの鉱物組成、及び上記2個の普通ポルトランドセメントを用いたモルタルフローを、学習データと同様に測定して、モニターデータ(監視データの実測値)とした。
上記学習データを用いて、ニューラルネットワークの学習を行った。ニューラルネットワークとしては、入力層、中間層及び出力層を有する階層型のニューラルネットワークを用いた。なお、該ニューラルネットワークは、監視データの選択に用いたニューラルネットワークとは異なる未学習のものである。
ニューラルネットワークの学習は、最初に上記学習データとモニターデータを用いて10,000回行った。得られたニューラルネットワークを用いて、σとσMを算出したところ、σとσの関係はσ<σであった。
その後、ニューラルネットワークを初期化し、上記学習データとモニターデータを用いて、ニューラルネットワークの学習を、前記学習回数に0.95を乗じた数の学習回数(端数切捨て)行うことを、学習後のニューラルネットワークを用いて算出されたσとσの関係がσ≧σとなるまで繰り返した。その結果、解析度判定値は、0.34%となったので、学習を終了した。
上記サンプルとは異なる普通ポルトランドセメントBを用いて、上記学習プロセスで使用したコンクリートと同一の条件で製造したコンクリートについて、スランプフローを測定した。その結果は、58.5cmであった。
一方、学習データおよびモニターデータにおける、17個の監視データの実測値の組み合わせ(高性能AE減水剤量、セメントの鉱物組成、及び、モルタルフローの組み合わせ)を、得られた学習済みのニューラルネットワークの入力層に入力し、出力層より、スランプフローの推測値を出力した。
得られたスランプフローの推測値は、58.6±0.6cm(偏差は3σを示す。)であり、実測値と予測値はほぼ一致した。このことから、得られた学習済みのニューラルネットワークは信頼性の高いものであることがわかる。
次に、上記学習済みのニューラルネットワークを使用してコンクリートの配合条件(高性能AE減水剤量)の予測を行った。
上記ニューラルネットワークの学習に使用した、サンプリング日の異なる 17 個(学習用サンプル15個とモニター用サンプル2個の合計)のコンクリートの高性能AE減水剤を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値を算出した。
その結果、CSの含有率の実測値の平均値は56.2質量%、CAの含有率の実測値の平均値は6.5質量%、モルタルフロー(直後)の実測値の平均値は333mm、モルタルフロー(30分後)の実測値の平均値は243mmであった。
次いで、上記学習済みのニューラルネットワークの入力層に、高性能AE減水剤量を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値と、表6に示す高性能AE減水剤量を入力して、各高性能AE減水剤量に対するスランプフローの推測値を得た。結果を表6に示す。
なお、高性能AE減水剤量は、上記17個のコンクリートの高性能AE減水剤量の実測値の数値範囲内で、任意に変動した値(実測値の最大値と最小値を8等分するように変動した値)である。
Figure 2018069487
高性能AE減水剤量とスランプフローの推測値との組み合わせから、回帰分析を行い、高性能AE減水剤量とスランプフローの推測値との関係を示す下記式(9)を得た。
スランプフローの推測値=14.8×(高性能AE減水剤量)+43.4・・・(9)
式(9)から、安全側に考慮して誤差を修正して、高性能AE減水剤の必要量とスランプフローの目標値との関係を示す下記式(10)を得た。修正はスランプフローの実測値がスランプフローの推測値と比べて過少になることを防ぐ目的で行われるものである。具体的には、誤差0.42cm(2σ)の値を、式(9)の右辺から減算することで行った。
スランプフローの目標値=14.8×(高性能AE減水剤の必要量)+43.0・・・(10)
得られた式(10)を用いて、スランプフローの目標値に対する高性能AE減水剤の必要量を求めた。具体的には、スランプフローの目標値を60cm以上と定め、上記式(10)に該目標値の下限値(60cm)を代入することで、高性能AE減水剤の必要量(1.12質量%)を得た。該必要量は、コンクリートの製造において、高性能AE減水剤量を1.12質量%以上とすれば、得られるコンクリートのスランプフローが目標値(60cm以上)を下回ることはないと推測できる値である。
[比較例3]
実施例3で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントに関するデータを母集団とし、コンクリートのスランプフローとの高い相関を有する、コンクリートの配合条件に関するデータ、セメントに関するデータ、及び、セメントの物理特性に関するデータであった、高性能AE減水剤量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を説明変数とした重回帰分析を行い、下記回帰式(決定係数R=0.51)を得た。
(コンクリートのスランプフロー(cm))=(15.9)×(高性能AE減水剤量(質量%))−(0.11)×(CSの含有率(質量%))−(0.19)×(CAの含有率(質量%))+(0.05)×(モルタルフロー(直後)値(mm))−(0.02)×(モルタルフロー(30分後)値(mm))+33.9
上記回帰式に、実施例3で使用した17個の普通ポルトランドセメントに関するデータである、高性能AE減水剤量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を代入して得られたスランプフローの推測値は、59.1±1.6cm(偏差は3σを示す。)であった。
学習済みのニューラルネットワークに高性能AE減水剤量を除く監視データの実測値の平均値と表6に示す高性能AE減水剤量を入力する代わりに、上記回帰式に高性能AE減水剤量を除く監視データの実測値の平均値と表6に示す高性能AE減水剤量を代入して、各高性能AE減水剤量に対するスランプフローの推測値を得る以外は実施例3と同様にして、高性能AE減水剤量とスランプフローの推測値の関係式(11)を導出した。
スランプフローの推測値=15.9×(高性能AE減水剤量)+43.1・・・(11)
式(11)から安全側に考慮して誤差を修正して、高性能減水剤の必要量とスランプフローの目標値との関係を示す式(12)を得た。修正はスランプフローの実測値がスランプフローの推測値と比べて過小になることを防ぐ目的で行われるものである。具体的には、誤差1.12cm(2σの値)を式(11)の右辺から減算することで行った。
スランプフローの目標値=15.9×(高性能AE減水剤の必要量)+42.0・・・(12)
得られた式(12)によりスランプフローの目標値(60cm以上)に対する高性能AE減水剤量の必要量を求めたところ、1.19質量%となった。
実施例3及び比較例3で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントとはサンプリング日の異なる普通ポルトランドセメントを用いたコンクリートであって、高性能AE減水剤量を除く監視データの実測値が上記17個のサンプルの実測値の平均値に近く、かつスランプフローが60cmに近いコンクリートの高性能AE減水剤量は1.11質量%であった。
該量は、比較例3で求めた高性能AE減水剤の必要量(1.19質量%)よりも、実施例3で求めた高性能AE減水剤の必要量(1.15質量%)に近いことから、本発明の予測方法によれば、より正確にコンクリートの配合条件を予測することができることがわかる。
[実施例4]
[単位水量の予測]
選択用および学習用サンプルとしてサンプリング日の異なる15個の普通ポルトランドセメントについて、上記細骨材A、粗骨材、高性能AE減水剤、消泡剤Aを用いてコンクリートを製造した。
各材料の配合量は、水とセメントの質量比(水/セメント)が0.3、細骨材率が45質量%、高性能AE減水剤量がセメント100質量%に対して0.7質量%となるようにした。また、空気量が2%以下となるように消泡剤の添加量を調整したコンクリートを製造し、混練直後のコンクリートのスランプフローを測定した。
コンクリートの製造方法およびスランプフローの測定方法は実施例3と同じである。
得られたスランプフローを評価データの実測値(選択データおよび学習データ)とした。
また、学習用サンプルに使用した15個の普通ポルトランドセメントの各々について、
コンクリートの配合条件に関するデータとして単位水量、セメントに関するデータとしてセメントの鉱物組成、及び、セメントの物理特性に関するデータとしてモルタルフローを、学習データにおける監視データの実測値とした。
これらのデータを得る方法は、実施例2と同様である。
[監視データの選択]
上述した監視データ(単位水量、CS及びCAの含有率、及びモルタルフロー(直後、30分後))のうち、表7に示す監視データを選択した条件1〜4の各々について(表7中、選択した監視データを「○」で示す。)、監視データの実測値と、評価データの実測値を用いて、未学習のニューラルネットワークの学習を行った。該学習は900回行った。
学習後のニューラルネットワークの入力層に、選択した監視データの実測値を入力して得られた評価データの推測値と、評価データの実測値との平均2乗誤差(表7中、「RMSE」と示す。)を算出した。
結果を表7に示す。
条件1〜4のうち、平均2乗誤差の値が最も小さかった条件1において選択した監視データの組み合わせ(単位水量、CS及びCAの含有率、モルタルフロー(直後、30分後))を、ニューラルネットワークの学習に用いられる監視データ(学習データおよびモニターデータ)とした。
Figure 2018069487
また、モニター用のサンプルとして、前記学習用サンプルとして使用した15個の普通ポルトランドセメントとはサンプリング日の異なる2個の普通ポルトランドセメントを用いて、コンクリートのスランプを学習データと同様に測定して、モニターデータ(評価データの実測値)とした。
さらに、上記2個の普通ポルトランドセメントを用いたコンクリートの単位水量、上記2個の普通ポルトランドセメントの鉱物組成、及び上記2個の普通ポルトランドセメントを用いたモルタルフローを、学習データと同様に測定して、モニターデータ(監視データの実測値)とした。
上記学習データを用いて、ニューラルネットワークの学習を行った。ニューラルネットワークとしては、入力層、中間層及び出力層を有する階層型のニューラルネットワークを用いた。なお、該ニューラルネットワークは、監視データの選択に用いたニューラルネットワークとは異なる未学習のものである。
ニューラルネットワークの学習は、最初に上記学習データとモニターデータを用いて10,000回行った。得られたニューラルネットワークを用いて、σとσMを算出したところ、σとσの関係はσ<σであった。
その後、ニューラルネットワークを初期化し、上記学習データとモニターデータを用いて、ニューラルネットワークの学習を、前記学習回数に0.95を乗じた数の学習回数(端数切捨て)行うことを、学習後のニューラルネットワークを用いて算出されたσとσの関係がσ≧σとなるまで繰り返した。その結果、解析度判定値は、1.07%となったので、学習を終了した。
上記サンプルとは異なる普通ポルトランドセメントBを用いて、上記学習プロセスで使用したコンクリートと同一の条件で製造したコンクリートについて、スランプフローを測定した。その結果は、59.8cmであった。
一方、学習データおよびモニターデータにおける、17個の監視データの実測値の組み合わせ(単位水量、セメントの鉱物組成、及びモルタルフローの組み合わせ)を、得られた学習済みのニューラルネットワークの入力層に入力し、出力層よりスランプフローの推測値を出力した。
得られたスランプフローの推測値は、59.6±1.0cm(偏差は3σを示す。)であり、実測値と予測値はほぼ一致した。このことから、得られた学習済みのニューラルネットワークは信頼性の高いものであることがわかる。
次に、上記学習済みのニューラルネットワークを使用してコンクリートの製造条件(単位水量)の予測を行った。
上記ニューラルネットワークの学習に使用した、サンプリング日の異なる 17 個(学習用サンプル15個とモニター用サンプル2個の合計)のコンクリートの単位水量を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値を算出した。CSの含有率の実測値の平均値は56.2質量%、CAの含有率の実測値の平均値は6.5質量%、モルタルフロー(直後)の実測値の平均値は333mm、モルタルフロー(30分後)の実測値の平均値は243mmであった。
次いで、上記学習済みのニューラルネットワークの入力層に、単位水量を除く監視データ(CS及びCAの含有率、モルタルフロー(直後、30分後))の実測値の平均値と、表8に示す単位水量を入力して、各単位水量に対するスランプフローの推測値を得た。結果を表8に示す。
なお、単位水量は、上記17個のコンクリートの単位水量の実測値の数値範囲内で、任意に設定した値(実測値の最大値と最小値を10等分するように変動した値)である。
Figure 2018069487
単位水量とスランプフローの推測値との組み合わせから、回帰分析を行い、単位水量とスランプフローの推測値との関係を示す下記式(13)を得た。
スランプフローの推測値=0.44×(単位水量)−14.0・・・(13)
式(13)から、安全側に考慮して誤差を修正して、単位水量の必要量とスランプフローの目標値との関係を示す下記式(14)を得た。修正はスランプフローの実測値がスランプフローの推測値と比べて過少になることを防ぐ目的で行われるものである。具体的には、誤差0.66cm(2σ)の値を、式(13)の右辺から減算することで行った。
スランプフローの目標値=0.44×(単位水量の必要量)−14.7・・・(14)
得られた式(14)を用いて、スランプフローの目標値に対する単位水量の必要量を求めた。具体的には、スランプフローの目標値を60cm以上と定め、上記式(14)に該目標値の下限値(60cm)を代入することで、単位水量の必要量(168.1kg/m)を得た。該必要量は、コンクリートの製造において、単位水量を168.1kg/m以上とすれば、得られるコンクリートのスランプフローが目標値(60cm以上)を下回ることはないと推測できる値である。
[比較例4]
実施例4で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントに関するデータを母集団とし、コンクリートのスランプフローとの高い相関を有する、コンクリートの配合条件に関するデータ、セメントに関するデータ、及び、セメントの物理特性に関するデータであった、単位水量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を説明変数とした重回帰分析を行い、下記回帰式(決定係数R=0.39)を得た。
(コンクリートのスランプフロー(cm))=(0.03)×(単位水量(kg/m))−(0.03)×(CSの含有率(質量%))−1.55×(CAの含有率(質量%))−3.1×10−3×(モルタルフロー(直後)値(mm))−4.2×10−4×(モルタルフロー(30分後)値(mm))+18.4
上記回帰式に、実施例4で使用した17個の普通ポルトランドセメントに関するデータである単位水量、セメントの鉱物組成(CS及びCAの含有率)、及びモルタルフロー(直後、30分後)を代入して得られたスランプフローの推測値は、59.0±2.1cm(偏差は3σを示す。)であった。
学習済みのニューラルネットワークに単位水量を除く監視データの実測値の平均値と表8に示す単位水量の実測値を入力する代わりに、上記回帰式に単位水量を除く監視データの実測値の平均値と表8に示す単位水量を代入して、各単位水量に対するスランプフローの推測値を得る以外は実施例4と同様にして、単位水量とスランプフローの推測値との関係を示す下記式(15)を得た。
スランプフローの推測値=0.44×(単位水量)−15.3・・・(15)
式(15)から、安全側に考慮して誤差を修正して、単位水量の必要量とスランプフローの目標値との関係を示す下記式(16)を得た。修正はスランプフローの実測値がスランプフローの推測値と比べて過小になることを防ぐ目的で行われるものである。具体的には、誤差0.72N/mm(2σの値)を、式(15)の右辺から減算することで行った。
スランプフローの目標値=0.44×(単位水量の必要量)−16.0・・・(16)
得られた式(16)により、スランプフローの目標値(60cm以上)に対する必要となる単位水量を求めたところ、171.4kg/mであった。
実施例4及び比較例4で使用した17個(学習用サンプル15個+モニター用サンプル2個)の普通ポルトランドセメントとはサンプリング日の異なる普通ポルトランドセメントを用いたコンクリートであって、単位水量を除く監視データの実測値が上記17個のサンプルの実測値の平均値に近く、かつスランプフローが60cmに近いコンクリートの単位水量は167.6kg/mであった。
該量は、比較例4で求めた単位水量の必要量(171.4kg/m)よりも、実施例4で求めた単位水量の必要量(167.6kg/m)に近いことから、本発明の予測方法によれば、より正確にコンクリートの配合条件を予測することができることがわかる。

Claims (7)

  1. 入力層及び出力層を有する学習済みのニューラルネットワークを用いたコンクリートの配合条件の予測方法であって、
    上記入力層は、コンクリート製造における監視データの値を入力するためのものであり、上記出力層は、コンクリートの品質またはコンクリートの配合条件の評価に関連する評価データの値を出力するためのものであり、
    上記監視データが、予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含むものであり、かつ、
    上記監視データと上記評価データの組み合わせが、
    (i)上記監視データが、セメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、及びコンクリートの配合条件に関するデータの中から選ばれる一種以上のデータであり、かつ、上記評価データが、コンクリートの品質に関するデータである組み合わせ、または、
    (ii)上記監視データが、セメントに関するデータ、セメントの物理特性に関するデータ、セメント以外のコンクリートの材料に関するデータ、コンクリートの配合条件に関するデータ、及びコンクリートの品質に関するデータの中から選ばれる一種以上のデータであり、かつ、上記評価データが、コンクリートの配合条件に関するデータである組み合わせ、であり、
    (M)予測の対象となる、コンクリートの配合条件に関するデータであって、任意に変動させた監視データの値を含む、複数の監視データの値を、上記学習済みのニューラルネットワークの入力層に入力して、評価データの推測値を得ることを複数回行って、上記変動させた監視データの値と上記評価データの推測値からなる複数の組み合わせを得た後、得られた複数の組み合わせを用いて回帰分析を行い、予測の対象となる、コンクリートの配合条件に関するデータである監視データと、目標とする評価データとの関係式を得た後、得られた関係式と目標とする評価データの値から、目標とする評価データの値を得ることが可能なコンクリートの配合条件を予測する工程、
    を含むことを特徴とするコンクリートの配合条件の予測方法。
  2. 上記監視データが、予測の対象となる、コンクリートの配合条件に関するデータを少なくとも含む、2種以上の監視データであり、
    工程(M)において、予測の対象となる、コンクリートの配合条件に関するデータである監視データを除く監視データの固定値を設定し、
    該固定値と、予測の対象となる、コンクリートの配合条件に関するデータであって任意に変動させた監視データの値を、上記学習済みのニューラルネットワークの入力層に入力して、評価データの推測値を得る、請求項1に記載のコンクリートの配合条件の予測方法。
  3. 上記監視データと上記評価データの組み合わせが、上記(i)の組み合わせであり、かつ、該組み合わせにおける評価データが、強度、スランプ、またはスランプフローである請求項1または2に記載のコンクリートの品質またはコンクリートの配合条件の予測方法。
  4. 上記(i)の組み合わせにおける監視データが、セメントのブレーン比表面積、ふるい試験残分量、色調a値、色調L値、セメントの鉱物組成、セメントの化学組成、モルタルフロー、混和剤量、及び単位水量の中から選ばれる一種以上である請求項3に記載のコンクリートの品質またはコンクリートの配合条件の予測方法。
  5. 上記監視データが、(A−1)予測の対象となる、コンクリートの配合条件に関するデータを含む1種以上の監視データからなる監視データ集合体を、2種以上用意し、該2種以上の監視データ集合体の各々について、
    監視データの実測値と評価データの実測値の組み合わせである選択データを複数用いて、上記学習済みのニューラルネットワークとは異なる未学習のニューラルネットワークの学習を行い、得られたニューラルネットワークの入力層に、選択データの監視データの実測値を入力して得られた評価データの推測値と、選択データの評価データの実測値との平均2乗誤差を算出し、
    平均2乗誤差の数値が最も小さかった選択データにおける監視データである、請求項1〜4のいずれか1項に記載のコンクリートの配合条件の予測方法。
  6. 工程(M)の前に、(A)学習回数の初期設定を行う工程と、
    (B)監視データの実測値と評価データの実測値の組み合わせである学習データを複数用いて、ニューラルネットワークの学習を、前工程で設定された学習回数行う工程と、
    (C)学習データの監視データの実測値を、直近の工程(B)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)、及び、ニューラルネットワークの学習結果の信頼性を確認するための監視データの実測値と評価データの実測値の組み合わせであるモニターデータの中の監視データの実測値を、直近の工程(B)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値とモニターデータの中の評価データの実測値との平均2乗誤差(σ)を算出し、算出されたσとσの関係がσ≧σである場合、工程(D)を実施し、算出されたσとσの関係がσ<σである場合、工程(E)を実施する工程と、
    (D)直近の工程(A)で設定された学習回数および再設定された直近のニューラルネットワークの学習回数のいずれの学習回数よりも大きい学習回数を新たな学習回数として再設定し、再度工程(B)〜(C)を実施する工程と、
    (E)直近のニューラルネットワークの学習で実施された学習回数を減らした学習回数を、新たな学習回数として再設定する工程と、
    (F)直近の工程(B)で用いられた学習データを用いて、ニューラルネットワークの学習を直近の工程(E)で設定された学習回数行う工程と、
    (G)学習データの監視データの実測値を、直近の工程(F)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)、及び、モニターデータの中の監視データの実測値を、直近の工程(F)の学習で得られたニューラルネットワークの入力層に入力して得られた評価データの推測値とモニターデータの中の評価データの実測値との平均2乗誤差(σ)を算出し、算出されたσとσの関係がσ≧σである場合、工程(I)を実施し、算出されたσとσの関係がσ<σである場合、工程(H)を実施する工程と、
    (H)直近の工程(F)におけるニューラルネットワークの学習回数が予め定めた数値を超えている場合、再度工程(E)〜(G)を実施し、直近の工程(F)におけるニューラルネットワークの学習回数が予め定めた数値以下の場合、工程(J)を実施する工程と、
    (I)下記式(1)を用いて解析度判定値を算出し、該解析度判定値が予め定めた第一の設定値未満である場合、ニューラルネットワークの学習を終了して、学習済みのニューラルネットワークを得た後、工程(M)を実施し、上記解析度判定値が予め定めた第一の設定値以上である場合、工程(J)を実施する工程と、
    (J)工程(A)を実施した回数の大きさについての判定を行い、該回数が予め設定した回数以下である場合、学習条件の初期化を行って、再度工程(A)〜(I)を行い、該回数が予め設定した回数を超える場合、工程(K)を実施する工程と、
    (K)工程(I)において算出した全ての解析度判定値のうち、最も小さい解析度判定値が予め定めた第二の設定値未満である場合、最も小さい解析度判定値を得ることができた工程(I)におけるニューラルネットワークを、学習済みのニューラルネットワークとして得た後、工程(L)を実施し、最も小さい解析度判定値が予め定めた第二の設定値以上である場合、学習済みのニューラルネットワークを得ることはできないと判断して予測を終了する工程と、
    (L)工程(I)において算出した全ての解析度判定値のうち、最も小さい解析度判定値を得ることができた工程(I)において、学習データとして使用した監視データの実測値と評価データの実測値の組み合わせについて無相関検定を行い、5%の有意水準で有意であると判断された監視データの種類が、予測の対象となる、コンクリートの配合条件に関するデータである監視データを含み、かつ、2種以上である場合、5%の有意水準で有意であると判断された監視データの全種類を座標軸とする座標空間に学習データとして使用した監視データの実測値をプロットし、座標空間において、プロットされた監視データ同士を結ぶことで形成される監視データの全てを包含する領域であって、該領域が最大となるように監視データ同士を結ぶことで形成される領域を、予測可能監視データ領域として設定した後、工程(M)を実施し、5%の有意水準で有意であると判断された監視データが、予測の対象となる、コンクリートの配合条件に関するデータである監視データを含まない場合、あるいは、0または1種類である場合、工程(K)で得た学習済みのニューラルネットワークを用いてコンクリートの配合条件を予測することはできないと判断して予測を終了する工程を含み、
    工程(M)において使用する学習済みのニューラルネットワークが、工程(K)で得た学習済みのニューラルネットワークである場合、上記学習済みのニューラルネットワークの入力層に入力する監視データが、上記予測可能監視データ領域に含まれるものである、請求項1〜5のいずれか1項に記載のコンクリートの配合条件の予測方法。
    Figure 2018069487
    (上記式(1)中、学習データの平均2乗誤差(σ)とは、学習データの監視データの実測値を学習後のニューラルネットワークの入力層に入力して得られた評価データの推測値と学習データの評価データの実測値との平均2乗誤差(σ)である。評価データの推測値の平均値とは、学習データの監視データの実測値を学習後のニューラルネットワークの入力層に入力して得られた評価データの推測値の平均値である。)
  7. 上記解析度判定値の予め定めた第一の設定値が6%以下であり、上記解析度判定値の予め定めた第二の設定値が上記第一の設定値よりも大きくかつ20%以下である請求項6に記載のコンクリートの品質またはコンクリートの配合条件の予測方法。
JP2016209479A 2016-10-26 2016-10-26 コンクリートの配合条件の予測方法 Active JP6794039B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016209479A JP6794039B2 (ja) 2016-10-26 2016-10-26 コンクリートの配合条件の予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016209479A JP6794039B2 (ja) 2016-10-26 2016-10-26 コンクリートの配合条件の予測方法

Publications (2)

Publication Number Publication Date
JP2018069487A true JP2018069487A (ja) 2018-05-10
JP6794039B2 JP6794039B2 (ja) 2020-12-02

Family

ID=62112025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209479A Active JP6794039B2 (ja) 2016-10-26 2016-10-26 コンクリートの配合条件の予測方法

Country Status (1)

Country Link
JP (1) JP6794039B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110293630A (zh) * 2019-05-21 2019-10-01 海南圣岛科技有限公司 一种混凝土的制造系统及其制造方法
CN110516405A (zh) * 2019-09-11 2019-11-29 新疆农业大学 硅酸盐水泥基胶凝材料体系水化热无假定预测模型的构建方法
JP2020059159A (ja) * 2018-10-05 2020-04-16 Kyb株式会社 スランプ値推定システム及びこれを備えたミキサ車
KR102114215B1 (ko) * 2018-11-16 2020-05-25 사단법인 한국콘크리트학회 콘크리트 펌핑 시공 중 다변수 모니터링에 기반한 타설공정 관리 방법 및 타설공정 평가 시스템
CN111445160A (zh) * 2020-04-09 2020-07-24 广东创成建设监理咨询有限公司 一种基于人工智能视频分析的自伴混凝土质量管理方法
CN113183279A (zh) * 2021-06-01 2021-07-30 中铁一局集团有限公司 智能试配3d打印混杂纤维混凝土方法和控制系统
CN113554222A (zh) * 2021-07-19 2021-10-26 中国水利水电科学研究院 一种胶结坝广源化胶结料动态优化和智能调控配置方法
CN113614759A (zh) * 2019-02-11 2021-11-05 建筑研究和技术有限公司 用于配制或评估建筑组合物的系统和方法
CN114199945A (zh) * 2021-12-29 2022-03-18 郑州大学 一种地聚合物砂浆强度及抗氯离子渗透性预测方法
JP2022057130A (ja) * 2020-09-30 2022-04-11 住友大阪セメント株式会社 コンクリートの配合導出システム
KR20220056100A (ko) * 2020-10-27 2022-05-04 가부시키가이샤 리바티 생콘크리트 제조방법
KR20220091775A (ko) * 2020-12-24 2022-07-01 숭실대학교산학협력단 기계학습을 활용한 콘크리트 대상 임피던스 분광법의 분석 방법, 이를 수행하기 위한 기록 매체 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227832A (ja) * 1994-02-21 1995-08-29 Tokyo Electric Power Co Inc:The コンクリートの品質管理方法及び装置
KR20030072057A (ko) * 2002-03-05 2003-09-13 현대산업개발 주식회사 콘크리트 강도 추정을 위한 인공지능 시스템
WO2013179702A1 (ja) * 2012-05-30 2013-12-05 太平洋セメント株式会社 セメントの品質または製造条件の予測方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227832A (ja) * 1994-02-21 1995-08-29 Tokyo Electric Power Co Inc:The コンクリートの品質管理方法及び装置
KR20030072057A (ko) * 2002-03-05 2003-09-13 현대산업개발 주식회사 콘크리트 강도 추정을 위한 인공지능 시스템
WO2013179702A1 (ja) * 2012-05-30 2013-12-05 太平洋セメント株式会社 セメントの品質または製造条件の予測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大矢孝、魚本健人、堤知明: "ニューラルネットワークを用いたコンクリート製造管理システムに関する研究", 土木学会論文集, vol. 514/5-27, JPN7020001511, May 1995 (1995-05-01), JP, pages 9 - 18, ISSN: 0004280123 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059159A (ja) * 2018-10-05 2020-04-16 Kyb株式会社 スランプ値推定システム及びこれを備えたミキサ車
KR102114215B1 (ko) * 2018-11-16 2020-05-25 사단법인 한국콘크리트학회 콘크리트 펌핑 시공 중 다변수 모니터링에 기반한 타설공정 관리 방법 및 타설공정 평가 시스템
CN113614759A (zh) * 2019-02-11 2021-11-05 建筑研究和技术有限公司 用于配制或评估建筑组合物的系统和方法
CN110293630A (zh) * 2019-05-21 2019-10-01 海南圣岛科技有限公司 一种混凝土的制造系统及其制造方法
CN110516405A (zh) * 2019-09-11 2019-11-29 新疆农业大学 硅酸盐水泥基胶凝材料体系水化热无假定预测模型的构建方法
CN110516405B (zh) * 2019-09-11 2023-04-18 新疆农业大学 硅酸盐水泥基胶凝材料体系水化热无假定预测模型的构建方法
CN111445160A (zh) * 2020-04-09 2020-07-24 广东创成建设监理咨询有限公司 一种基于人工智能视频分析的自伴混凝土质量管理方法
CN111445160B (zh) * 2020-04-09 2022-04-26 广东创成建设监理咨询有限公司 一种基于人工智能视频分析的自伴混凝土质量管理方法
JP7411162B2 (ja) 2020-09-30 2024-01-11 住友大阪セメント株式会社 コンクリートの配合導出システム
JP2022057130A (ja) * 2020-09-30 2022-04-11 住友大阪セメント株式会社 コンクリートの配合導出システム
KR102519893B1 (ko) 2020-10-27 2023-04-10 가부시키가이샤 리바티 생콘크리트 제조방법
KR20220056100A (ko) * 2020-10-27 2022-05-04 가부시키가이샤 리바티 생콘크리트 제조방법
KR20220091775A (ko) * 2020-12-24 2022-07-01 숭실대학교산학협력단 기계학습을 활용한 콘크리트 대상 임피던스 분광법의 분석 방법, 이를 수행하기 위한 기록 매체 및 장치
KR102435577B1 (ko) 2020-12-24 2022-08-24 숭실대학교 산학협력단 기계학습을 활용한 콘크리트 대상 임피던스 분광법의 분석 방법, 이를 수행하기 위한 기록 매체 및 장치
CN113183279A (zh) * 2021-06-01 2021-07-30 中铁一局集团有限公司 智能试配3d打印混杂纤维混凝土方法和控制系统
CN113554222A (zh) * 2021-07-19 2021-10-26 中国水利水电科学研究院 一种胶结坝广源化胶结料动态优化和智能调控配置方法
CN113554222B (zh) * 2021-07-19 2023-11-28 中国水利水电科学研究院 一种胶结坝广源化胶结料动态优化和智能调控配置方法
CN114199945A (zh) * 2021-12-29 2022-03-18 郑州大学 一种地聚合物砂浆强度及抗氯离子渗透性预测方法
CN114199945B (zh) * 2021-12-29 2023-09-19 郑州大学 一种地聚合物砂浆强度及抗氯离子渗透性预测方法

Also Published As

Publication number Publication date
JP6794039B2 (ja) 2020-12-02

Similar Documents

Publication Publication Date Title
JP6794039B2 (ja) コンクリートの配合条件の予測方法
JP6674356B2 (ja) コンクリートの品質またはコンクリートの配合条件の予測方法
Kannan Strength and durability performance of self compacting concrete containing self-combusted rice husk ash and metakaolin
Thomas et al. Strength and durability of concrete containing recycled concrete aggregates
US9679244B2 (en) Method for predicting quality or manufacturing condition of cement
Abdalhmid et al. Long-term drying shrinkage of self-compacting concrete: Experimental and analytical investigations
Etxeberria et al. Influence of seawater and blast furnace cement employment on recycled aggregate concretes’ properties
Shekarchi et al. Long-term chloride diffusion in silica fume concrete in harsh marine climates
Abadou et al. Ceramic waste influence on dune sand mortar performance
Raharjo et al. Mixed concrete optimization using fly ash, silica fume and iron slag on the SCC's compressive strength
Rajhans et al. EMV mix design method for preparing sustainable self compacting recycled aggregate concrete subjected to chloride environment
JP6636358B2 (ja) フライアッシュセメントの品質または製造条件の予測方法
Mazloom et al. Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete
CN108229093A (zh) 饱和再生混凝土氯离子扩散系数多尺度预测模型的构建方法
ElNemr Generating water/binder ratio-to-strength curves for cement mortar used in Masnory walls
Zain et al. Mathematical regression model for the prediction of concrete strength
JP6732380B2 (ja) セメントの品質または製造条件の予測方法
Allahverdi et al. A model for prediction of compressive strength of chemically activated high phosphorous slag content cement
Campos et al. Evaluation of steel slag of Companhia Siderúrgica do Pecém replacing fine aggregate on mortars
JP6639987B2 (ja) セメントの品質または製造条件の予測方法
JP2017194417A (ja) 高強度コンクリート用骨材の評価方法
ElNemr Role of water/binder ratio on strength development of cement mortar
JP2017138178A (ja) コンクリートまたはモルタルの単位水量の推定方法
Zumba et al. Forecasting the rheological state properties of self-compacting concrete mixes using the response surface methodology technique for sustainable structural concreting
Kępniak et al. Influence of sand substitution with waste lime powder on the concrete carbonation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201110

R150 Certificate of patent or registration of utility model

Ref document number: 6794039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250