JP2018066718A - Distance measurement device, and distance measurement method - Google Patents

Distance measurement device, and distance measurement method Download PDF

Info

Publication number
JP2018066718A
JP2018066718A JP2017079874A JP2017079874A JP2018066718A JP 2018066718 A JP2018066718 A JP 2018066718A JP 2017079874 A JP2017079874 A JP 2017079874A JP 2017079874 A JP2017079874 A JP 2017079874A JP 2018066718 A JP2018066718 A JP 2018066718A
Authority
JP
Japan
Prior art keywords
measurement
distance
support member
length
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017079874A
Other languages
Japanese (ja)
Other versions
JP6834735B2 (en
Inventor
佑斗 岡部
Yuto Okabe
佑斗 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2018066718A publication Critical patent/JP2018066718A/en
Application granted granted Critical
Publication of JP6834735B2 publication Critical patent/JP6834735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain a length measurement device and length measurement method in which in a distance measurement among parallel columns such as facilities, an objective is that the distance measurement has general versatility, is excellent in repeatability, has objectivity, and further makes highly accurate measurements, and which realize these objectives.SOLUTION: A distance measurement among parallel columns can be simply made by: a length measurement unit (a length measurement step) that is arranged in at least one end of a supporting member on a linear reference axis, scans an in-plane including at least the reference axis, and contactlessly measures a distance among measurement object planes; a length measurement angle measurement device (a length measurement angle measurement step) that measures an angle formed by a direction where a measurement is made and the reference axis; and computation (a computation step) of the distance among the measurement object planes from the distance measured by the length measurement unit (the length measurement step), the angle measured by length measurement angle measurement device (the length measurement angle measurement step), and a length between either end of the supporting member.SELECTED DRAWING: Figure 1

Description

本発明は、設備などの平行柱間の距離を測定する距離測定装置、および距離測定方法に関する。特に、圧延機などの大型設備における設備の保守点検上重要な、設備の変形等をチェックするために平行に対向した平面間の距離を測定する際に有効に適用できる。   The present invention relates to a distance measuring device and a distance measuring method for measuring a distance between parallel columns such as equipment. In particular, it can be effectively applied when measuring the distance between planes facing in parallel in order to check the deformation of the equipment, which is important for the maintenance inspection of the equipment in a large equipment such as a rolling mill.

設備の保守点検上、設備の変形をチェックすることは重要な要素である。特に、大型設備のハウジングの変形は、その設備による製造される製造物の精度に直結する。通常、ハウジングは、平行な柱状部分により構成されている場合が多く、メンテナンス上、この平行柱間の間隔を測定し、設備の変形をチェックしている。   It is an important factor to check the deformation of the equipment for the maintenance inspection of the equipment. In particular, the deformation of the housing of a large facility is directly linked to the accuracy of the product produced by the facility. Usually, the housing is often constituted by parallel columnar portions, and the distance between the parallel columns is measured for checking maintenance for the maintenance.

一例として図4に示す製鉄用圧延機を取り上げる。圧延機のハウジング21は、断面四角形の平行柱により構成されている。補助ロール23、作業ロール24の両端はチョック(軸受)22、25で支えられ、補助ロール・チョック22、作業ロール・チョック25は圧延機のハウジング21により支持され、強大な圧延荷重を受け止めている。図4では、作業ロール・チョック25は、作業ロール・チョック支持面26、26’を介してハウジング21に支持される構造になっており、補助ロール・チョック22は、補助ロール・チョック支持面27、27’を介してハウジング21に支持される構造になっている。しかし、作業ロール・チョック支持面26、26’や、補助ロール・チョック支持面27、27’が変形すると、ハウジング21とチョック22、25の間のガタが増大し、製造する鋼板の形状や寸法の精度(圧延精度)に大きく影響を及ぼすだけでなく、蛇行などの圧延操業にも重大な影響を及ぼす。そのため、ハウジングの対向する平行柱間(ロール・チョック支持面と支持面の間)の距離を把握して、作業ロール・チョック支持面26、26’や、補助ロール・チョック支持面27.27’を修正するメンテナンス作業が非常に重要である。   As an example, a steel mill rolling mill shown in FIG. 4 will be taken up. The housing 21 of the rolling mill is constituted by parallel columns having a square cross section. Both ends of the auxiliary roll 23 and work roll 24 are supported by chocks (bearings) 22 and 25, and the auxiliary roll chock 22 and work roll chock 25 are supported by the housing 21 of the rolling mill to receive a strong rolling load. . In FIG. 4, the work roll chock 25 has a structure that is supported by the housing 21 via work roll / chock support surfaces 26, 26 ′, and the auxiliary roll chock 22 has an auxiliary roll / chock support surface 27. , 27 ′, it is supported by the housing 21. However, if the work roll / chock support surfaces 26, 26 ′ and the auxiliary roll / chock support surfaces 27, 27 ′ are deformed, the backlash between the housing 21 and the chock 22, 25 increases, and the shape and dimensions of the steel plate to be manufactured are increased. Not only greatly affects the accuracy (rolling accuracy), but also significantly affects rolling operations such as meandering. Therefore, the distance between the parallel columns facing the housing (between the roll / chock support surface and the support surface) is grasped, and the work roll / chock support surfaces 26, 26 ′ and the auxiliary roll / chock support surface 27.27 ′ are obtained. Maintenance work to correct is very important.

圧延機ハウジングのように、互いに平行に対向する平面を有する平行柱(以下、単に平行柱と言う場合がある。)の間の距離の測定は、金属製の巻き尺(スケール)やダイヤルゲージを用いて行われている。測定装置としては、例えば、片端にダイヤルゲージやマイクロメータを配置した測長器が提案されている。これは、鋼管の内径や、平行面間の測定する装置として、インサイドマイクロメータと呼ばれ、精度よく測定する装置および方法が提案されている(例えば、特許文献1)。   Measurement of the distance between parallel columns (hereinafter simply referred to as parallel columns) having mutually parallel planes, such as a rolling mill housing, is performed using a metal tape measure (scale) or a dial gauge. Has been done. As a measuring device, for example, a length measuring device in which a dial gauge or a micrometer is arranged at one end has been proposed. This is called an inside micrometer as an apparatus for measuring the inner diameter of a steel pipe or between parallel surfaces, and an apparatus and method for measuring with high accuracy have been proposed (for example, Patent Document 1).

実用新案登録第3045593号公報Utility Model Registration No. 3045593 特開2014−240083号公報JP 2014-240083 A

設備の保守点検の現場は、配管等が配置され、非常に狭隘な空間での作業を強いられるだけではなく、時間的制約も受ける。そのような環境の中で、ダイヤルゲージやマイクロメータなどによる測定は、測定場所の選択や目盛りの読み取りなどが人為的に行われており、再現性が悪く、正確な測定ができない。さらに、圧延機ハウジングのような平行柱間の測定において、従来のダイヤルゲージなどによる測定方法は、接触具合などの官能的な判断をせざるをえず、作業員の感覚や技能に頼るものであった。その結果、作業員の個人差が生じ、測定の再現性、客観性が得られないという問題がある。   At the site of equipment maintenance and inspection, piping and the like are arranged, and not only are they forced to work in very narrow spaces, but they are also subject to time constraints. In such an environment, measurement with a dial gauge, a micrometer, or the like is artificially performed by selecting a measurement location or reading a scale, so that reproducibility is poor and accurate measurement cannot be performed. Furthermore, in the measurement between parallel columns such as a rolling mill housing, the conventional measurement method using a dial gauge, etc., must make sensual judgments such as contact condition and relies on the operator's sense and skill. there were. As a result, there is a problem that individual differences among workers occur and measurement reproducibility and objectivity cannot be obtained.

測定位置を固定し、作業者間のバラつきをなくす方法として、例えば、基準面側に配置したハウジングライナー面(例えば図4のチョック支持面26が、それに相当する。)と、基準面の反対側に配置したハウジングライナー面(例えば図4のチョック支持面26’が、それに相当する。)に凹部を設け、凹部の底を測定用固定点として、基準面との距離を測定する方法が示されている(特許文献2)。しかし、全ての測定箇所にライナーを設置することは現実的ではないだけでなく、設備メンテナンス上、任意の場所で測定をすることが通常であるから、この方法は汎用性に欠け、日常の保守点検に用いられることは限定的である。
このように互いに平行に対向する平面を有する平行柱間の距離を測定することは、一方の柱の平面内の任意の点から、他方の柱の平面(測定対象となる平面)までの距離を測定することと同じである。
As a method of fixing the measurement position and eliminating variations between workers, for example, a housing liner surface (for example, the chock support surface 26 in FIG. 4) disposed on the reference surface side and the opposite side of the reference surface. A method of measuring a distance from a reference surface is provided, with a recess provided on the housing liner surface (for example, the chock support surface 26 ′ in FIG. 4 corresponds to that) and a bottom of the recess as a measurement fixing point. (Patent Document 2). However, it is not practical to install liners at all measurement points, and it is usually not possible to perform measurements at any location for equipment maintenance. It is limited to be used for inspection.
Thus, measuring the distance between parallel columns having planes facing each other in parallel means that the distance from any point in the plane of one column to the plane of the other column (the plane to be measured) It is the same as measuring.

そこで、本発明は、互いに平行に対向する平面を有する平行柱間の距離や、任意の点から測定対象となる平面(測定対象平面)まで間の距離の測定において、汎用性があり、再現性がよく、客観性があり、さらに高精度に測定することを課題とし、それを具現化する測長装置および測長方法を得ることを目的とする。   Therefore, the present invention has versatility and reproducibility in measuring the distance between parallel columns having planes facing each other in parallel and the distance from an arbitrary point to the plane to be measured (measurement plane). Therefore, the objective is to obtain a length measuring device and a length measuring method that embody it, with the objective of measuring it with good objectivity and high accuracy.

本発明者らは、上記課題を解決するために鋭意検討を行い、以下の知見を得た。
(a)ダイヤルゲージなどの測定では、接触具合を作業者が判断しなければならないため、作業者の官能に頼ることになる。これを排除するため、測定自体を非接触測定で行うことを発想した。非接触測定とは、例えば、超音波やレーザーを照射し、測定対象物からの反射波を捉え、測定対象物(以下、単に対象物と呼ぶ場合がある。)との間の距離を測定することができるものである(以下、本明細書において、非接触で距離を測定することができる装置を単に測長器と呼ぶ。)。本発明において、距離の測定に直接的に関わる部分は、非接触で距離を測定する測長部とそれを支える支持部材である。測長部の態様は特に限定しないが、一般にレーザーなどをスキャンし、非接触で測長する測長用機器である場合が多い(以下、測長部として、単に測長器という場合がある。)。
In order to solve the above-mentioned problems, the present inventors have intensively studied and obtained the following knowledge.
(A) In measurement of a dial gauge or the like, the operator must judge the contact condition, and thus depends on the sensuality of the operator. In order to eliminate this, the idea was to perform the measurement itself by non-contact measurement. Non-contact measurement refers to, for example, irradiating an ultrasonic wave or a laser, capturing a reflected wave from the measurement object, and measuring a distance from the measurement object (hereinafter sometimes simply referred to as an object). (Hereinafter, a device capable of measuring a distance in a non-contact manner is simply referred to as a length measuring device in this specification). In the present invention, the portions directly related to the distance measurement are a length measuring unit that measures the distance in a non-contact manner and a support member that supports the length measuring unit. The aspect of the length measuring unit is not particularly limited, but is generally a length measuring device that scans a laser or the like and measures the length without contact (hereinafter, the length measuring unit may be simply referred to as a length measuring device). ).

(b)任意の点から平面までの距離は、測定対象となる平面に対し垂直になる線上で測定する必要があるが、現実的な作業環境では垂直を確認しながら測定することは困難である。また、特許文献2のように、測定用のライナーを設置することも、前述したように現実的ではなく、汎用性を欠くものである。そこで、本発明者らは、これらの問題を解決するために、非接触測定において、超音波やレーザーなどをスキャンさせて測定された距離のうち、最小値を採用することにより、平行柱などの平行に設置された対象物間の距離を把握できることを見出した。 (B) The distance from an arbitrary point to the plane needs to be measured on a line perpendicular to the plane to be measured, but it is difficult to measure while confirming the vertical in a realistic work environment. . Also, as described in Patent Document 2, it is not practical to install a measurement liner as described above, and lacks versatility. Therefore, in order to solve these problems, the present inventors adopted a minimum value among distances measured by scanning ultrasonic waves, lasers, etc. in non-contact measurement, such as parallel columns. It was found that the distance between objects placed in parallel can be grasped.

現実の測定現場では、作業者が測長器を動かしながら最短距離を探索することになる。その動作を考慮すると、測長器自体の有するスキャン機能は、少なくとも2次元スキャンであればよい。すなわち、測長器自体が2次元(平面)スキャンをしつつ、測長器がスキャンする平面と略垂直になるように、作業者が測長器を動かすことにより3次元(立体空間)スキャンがなされ、対象物間の最短距離を測定することができるからである。これにより、汎用性があり、再現性よく、客観的な測定値を得ることができる。   In an actual measurement site, an operator searches for the shortest distance while moving the length measuring device. Considering the operation, the scanning function of the length measuring device itself may be at least a two-dimensional scan. That is, while the length measuring device itself performs two-dimensional (plane) scanning, the operator moves the length measuring device so that it is substantially perpendicular to the plane scanned by the length measuring device, so that three-dimensional (three-dimensional space) scanning is performed. This is because the shortest distance between objects can be measured. This makes it possible to obtain objective measurement values that are versatile and have good reproducibility.

(c)さらに高精度に測定するためには、測長器と対象物間をできるだけ近づけることが望ましい。このため、対象物間の距離に応じた支持部材を用い、その一端に測長器を配置することにより、対象物と測長器の間の距離を短くすることができる。そのとき、測長器のスキャンの基本軸と支持部材の基準軸を一致させることにより、スキャン方向と基準軸との角度を用いて、支持部材の他端(測長部が配置されたとは反対側の端)と対象物との距離を、幾何学的に求めることができることを見出した。即ち、任意の点から測定対象となる平面までの間の距離を測定することができるものである。 (C) In order to measure with higher accuracy, it is desirable that the length measuring device and the object be as close as possible. For this reason, the distance between a target object and a length measuring device can be shortened by using the supporting member according to the distance between target objects, and arrange | positioning a length measuring device in the end. At that time, by matching the basic axis of the length measuring device scan with the reference axis of the support member, the angle between the scan direction and the reference axis is used, and the other end of the support member (as opposed to the arrangement of the length measurement unit). It has been found that the distance between the side edge) and the object can be obtained geometrically. That is, the distance from an arbitrary point to the plane to be measured can be measured.

測長器のスキャンの基本軸とは、スキャン平面やスキャン空間の中心をなす直線のことをいう。スキャン方向は、この基本軸とのなす角度で把握されることが重要である。例えば、2次元(平面)スキャンの場合(図2(a))は、スキャンする扇形の中心角8の中央であって、スキャン範囲の両端からの角度が同じになる軸を基本軸9とするとよい。同様に3次元(立体空間)の場合(図2(b))は、スキャンする円錐状の中心角の中央であって、円錐上の任意の母線からの角度が同じになる軸を基本軸9にするとよい。   The basic axis of the measuring instrument scan is a straight line that forms the center of the scan plane or scan space. It is important that the scanning direction is grasped at an angle formed with this basic axis. For example, in the case of two-dimensional (planar) scanning (FIG. 2A), if the axis that is the center of the center angle 8 of the sector to be scanned and has the same angle from both ends of the scan range is the basic axis 9 Good. Similarly, in the case of a three-dimensional (three-dimensional space) (FIG. 2B), the axis that is the center of the conical center angle to be scanned and has the same angle from any generatrix on the cone is the basic axis 9. It is good to make it.

支持部材の基準軸とは、支持部材の両端を結ぶ直線のことをいう。言い換えれば、直線状の基準軸上に支持部材の両端が配置される。支持部材4が直線状の場合は、支持部材の中心軸が基準軸2となる(図3(a))。支持部材4が直線状でない場合は、必ずしも支持部材4の中心軸と基準軸2は一致しないが、両端を結ぶ直線が基準軸2であるので、基準軸2は一義的に決まる(図3(b))。支持部材4が枝状に分岐するなどして、3以上の端部を有する場合は、測長器3を配置する端部と距離測定の基準点となる端部5を結ぶ直線が基準軸2となる(図3(c))。このように支持部材が3以上の端部を有する場合でも、測長器3を配置する端部と距離測定の基準となる端部5(測定基準点と呼ぶ場合がある。)を、便宜的に両端と称する。   The reference axis of the support member refers to a straight line connecting both ends of the support member. In other words, both ends of the support member are arranged on the linear reference axis. When the support member 4 is linear, the central axis of the support member is the reference axis 2 (FIG. 3A). When the support member 4 is not linear, the center axis of the support member 4 and the reference axis 2 do not necessarily coincide with each other, but the reference axis 2 is uniquely determined because the straight line connecting both ends is the reference axis 2 (FIG. 3 ( b)). When the support member 4 branches in a branch shape or the like and has three or more end portions, a straight line connecting the end portion where the length measuring device 3 is arranged and the end portion 5 serving as a reference point for distance measurement is the reference axis 2. (FIG. 3C). Thus, even when the support member has three or more end portions, the end portion where the length measuring device 3 is arranged and the end portion 5 which is a reference for distance measurement (sometimes referred to as a measurement reference point) are convenient. Are referred to as both ends.

測長器は、支持部材の一端に配置してもよく、または両端に配置してもよい。
測長器を支持部材の一端に配置した場合(片端にのみ配置した場合)は、その測長器による距離測定の基準点が支持部材の他端(図3中の測定基準点5)になる。測定基準点から対象面までの距離は、測長器で測定した距離とその時の基本軸からの角度、および支持部材の長さから逐次演算し、得られた値の最小値を当該距離とすることができる。測定は、測長器が配置されていない他端(測定基準点)を一方の対象物に接触させればよい。単に接触するだけでよいので、従来のインサイドマイクロメータのように、作業者の官能により接触具合を判断する必要はない。そのため、作業員の個人差が生じることはなくなるので、測定の再現性が高まり、測定のバラツキが発生しにくくなり、客観性を得ることができる。
The length measuring device may be disposed at one end of the support member, or may be disposed at both ends.
When the length measuring device is arranged at one end of the support member (when arranged at only one end), the reference point for distance measurement by the length measuring device becomes the other end of the support member (measurement reference point 5 in FIG. 3). . The distance from the measurement reference point to the target surface is calculated sequentially from the distance measured by the length measuring instrument, the angle from the basic axis at that time, and the length of the support member, and the minimum value obtained is taken as the distance. be able to. The measurement may be performed by bringing the other end (measurement reference point) where the length measuring device is not placed into contact with one object. Since it is only necessary to make contact, it is not necessary to judge the contact state based on the operator's sensation unlike the conventional inside micrometer. Therefore, since there is no difference between workers, the reproducibility of the measurement is increased, the measurement variation is less likely to occur, and the objectivity can be obtained.

測長器を支持部材の両端に配置した場合は、それぞれの測長器に対向する平面までの距離を、それぞれの測長器で測定し、その時の基本軸(すなわち基準軸)からの角度、および支持部材長さから逐次演算により両平面間の距離を測定することができる。この場合、測長器を配置した支持材の端部とは反対側の端部を、その測長器による距離測定の基準点にしてもよい。この場合、それぞれの測長器で測定した距離を合算し、支持部材長さの重複を補正したものの最小値を対象平面間の距離としてもよい。また例えば、基準軸上の任意の一点をそれぞれの測長器の距離測定の基準点にしてもよい。この場合は、それぞれの測長器の距離測定の基準点から対象面までの距離を逐次演算し、それぞれの距離の最小値を合算して対象平面間の距離を得ることができる。いずれにしても、支持部材の両端に測長器があるため、対象平面には非接触で測定されることになる。そのため、片端に測長器を配置した場合と同様、作業者の官能により接触具合を判断する必要はなく、測定の再現性が高まり、測定のバラツキが発生しにくくなり、客観性を得ることができる。   When the length measuring device is arranged at both ends of the support member, the distance to the plane facing each length measuring device is measured with each length measuring device, and the angle from the basic axis (that is, the reference axis) at that time, The distance between the two planes can be measured by sequential calculation from the length of the support member. In this case, the end opposite to the end of the support member on which the length measuring device is disposed may be used as a reference point for distance measurement by the length measuring device. In this case, the distances measured by the respective length measuring devices may be added together, and the minimum value obtained by correcting the overlapping of the support member lengths may be set as the distance between the target planes. Further, for example, an arbitrary point on the reference axis may be used as a reference point for distance measurement of each length measuring device. In this case, the distance from the reference point of the distance measurement of each length measuring device to the target surface is sequentially calculated, and the distance between the target planes can be obtained by adding the minimum values of the respective distances. In any case, since there are length measuring devices at both ends of the support member, the measurement is performed without contact with the target plane. Therefore, as in the case where a length measuring device is arranged at one end, it is not necessary to judge the contact condition based on the operator's sensation, the reproducibility of the measurement is increased, measurement variations are less likely to occur, and objectivity can be obtained. it can.

測定の際に、対象平面に対し垂直に測定することが望ましい。そのため測定装置が対象平面に対し垂直な平面内で可動できるようガイド装置(治具)を設けてもよい。例えば、測長器を支持部材の片端に配置した場合は、他端(測定基準点)にガイド装置を設けてもよい。例えば、測長器を両端に配置した場合は、支持部材の中央部を回転中心になるようなガイド装置や、支持部材が同一平面内を可動(傾動)できるガイド装置を設けてもよい。   When measuring, it is desirable to measure perpendicular to the object plane. Therefore, a guide device (jig) may be provided so that the measuring device can move in a plane perpendicular to the target plane. For example, when the length measuring device is disposed at one end of the support member, a guide device may be provided at the other end (measurement reference point). For example, in the case where the length measuring devices are arranged at both ends, a guide device in which the central portion of the support member is the center of rotation, or a guide device in which the support member can move (tilt) in the same plane may be provided.

スキャン周期(スキャンしてから次のスキャンを行うまでの時間)は短い方が、測定精度は高くなる。例えば、1秒間に1000回のスキャン(スキャン周期0.001秒)でもよいが、1秒間に10000回のスキャンをする方が、最短距離に相当するスキャン方向に一致する確率が高くなり、その分精度が高くなる。
測定精度については、必要に応じて、測定精度の高い機器を用いればよい。一般的に、スキャン範囲が広い場合には測定精度が低くなり、スキャン範囲が狭い場合には測定精度が高くなるので、必要とする測定精度を得ることができるように、測長器を選択し、且つ、支持部材の長さを伸縮自在に調整することができるようにして、測定範囲を選定することが出来るようにするとよい。
また、支持部材の長さは測定時の温度により変化しないように、不変鋼(例えば、Fe−Ni36%鋼(インバー合金))を用いるとよい。
The shorter the scan cycle (the time from scanning to the next scanning), the higher the measurement accuracy. For example, 1000 scans per second (a scan cycle of 0.001 seconds) may be used, but 10,000 scans per second increases the probability of matching the scan direction corresponding to the shortest distance. Increases accuracy.
About measurement accuracy, what is necessary is just to use an apparatus with high measurement accuracy as needed. In general, the measurement accuracy is low when the scan range is wide, and the measurement accuracy is high when the scan range is narrow. Select a length measuring device so that the required measurement accuracy can be obtained. And it is good to be able to adjust the length of a supporting member so that expansion and contraction is possible, and to be able to select a measurement range.
In addition, invariant steel (for example, Fe-Ni 36% steel (Invar alloy)) may be used so that the length of the support member does not change depending on the temperature at the time of measurement.

(d)実際の測定現場において、作業者は、測定した距離を逐次監視し、そのうち最小値を最短距離として把握してもよいが、記憶装置を用い、逐次測定データを保存し、最小値を判断させ、それを表示させることが望ましい。例えば、測定において、一定期間(数秒〜数十秒)最小値の更新がなければ、既に最短距離が把握されているとして作業者に通知し、測定を終了させることもできる。このようなインタフェースを用いることにより、作業者の負荷を軽減させることができる。 (D) At the actual measurement site, the operator may monitor the measured distance sequentially, and may grasp the minimum value as the shortest distance, but use a storage device to store the measured data and store the minimum value. It is desirable to make a judgment and display it. For example, in the measurement, if the minimum value is not updated for a certain period (several seconds to several tens of seconds), the operator can be notified that the shortest distance has already been grasped, and the measurement can be terminated. By using such an interface, the load on the operator can be reduced.

本発明は、上記知見に基づき成されたものであり、その要旨は以下のとおりである。
(1)
測定対象となる平面までの距離を測定する距離測定装置であって、直線状の基準軸上に両端を有する支持部材と、前記支持部材の少なくとも一端に配置され、少なくとも前記基準軸を含む平面内をスキャンしつつ、測定対象平面との間の距離を非接触で測定する測長部と、前記測長部に付随して測定している方向と前記基準軸とがなす角度を測定する測長角測定部と、前記測定対象平面までの距離を演算する演算部と、前記演算部で演算した結果を表示する表示部とを有し、
前記演算部が、前記測長部により測定した距離と前記測長角測定部で測定した角度と前記支持部材の両端間の長さから、前記測定対象平面までの距離を演算することを特徴とする距離測定装置。
(2)
前記測長部が前記支持部材の一端に配置され、前記演算部が、前記支持部材の両端のうち前記測長部が配置された端とは反対側の端である測定基準点と、前記測定対象平面との距離を演算することを特徴とする(1)に記載の距離測定装置。
(3)
前記測長部が前記支持部材の両端に配置され、前記演算部が、前記測定対象平面の間の距離を演算することを特徴とする(1)に記載の距離測定装置。
(4)
前記演算部が、前記測長部が1スキャンする間に得られた距離のうち最小値diと、前記測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の両端間の長さLと、下記式1から、
前記測定基準点と前記測定対象平面との間の距離Diを求め、前記測長部が測定中に得られたDiの最小値を、前記測定基準点と前記測定対象平面との距離とすることを特徴とする(2)に記載の距離測定装置。
Di=di+L・cos(θi) ・・・・・・(式1)
(5)
前記演算部が、前記支持部材の一方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値diと、前記一方の端の前記測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、
前記支持部材の前記基準軸上の1点を固定して、前記測長部が測定するときの、前記支持部材の前記基準軸上の固定した点から前記支持部材の一方の端までの距離Liと、
前記支持部材の他方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値djと、前記他方の端の前記測長角測定部で得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、
前記支持部材の前記基準軸上の固定した点から前記支持部材の他方の端までの距離Ljと、下記式2、式3から、前記支持部材の前記基準軸上の固定した点と前記測定対象平面との距離Di、Djを求め、前記測長部が測定中に得られたDiの最小値とDjの最小値を合計したものを、
前記測定対象平面の間の距離とすることを特徴とする(3)に記載の距離測定装置。
Di=di+Li・cos(θi) ・・・・・・(式2)
Dj=dj+Lj・cos(θj) ・・・・・・(式3)
(6)
前記演算部が、前記支持部材の一方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値diと、前記一方の端の前記測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の他方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値djと、前記他方の端の前記測長角測定部で得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、さらに前記支持部材の両端間の長さLと、下記式4から、
前記測定対象平面の間の距離Dkを求め、両端に配置された前記測長部がスキャンする平面が同一平面内にあるときに、前記測長部が測定中に得られたDkの最小値を前記測定対象平面の間の距離とすることを特徴とする(3)に記載の距離測定装置。
Dk=di+dj+(L・cos(θi)+ L・cos(θj))/2 ・・・・・・(式4)
(7)
前記測定基準点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置を備えることを特徴とする(2)または(4)に記載の距離測定装置。
(8)
前記支持部材の前記基準軸上の1点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置を備えることを特徴とする(3)または(5)に記載の距離測定装置。
(9)
前記支持部材が同一平面内を傾動できるようにするガイド装置を備えることを特徴とする(3)または(6)に記載の距離測定装置。
(10)
前記支持部材が回転または傾動したときの前記同一平面と、前記測長部がスキャンする平面とが垂直であることを特徴とする(7)〜(9)のいずれか1項に記載の距離測定装置。
(11)
前記測定基準点が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面内上にあり、前記測定対象平面が、他方のライナー面であることを特徴とする(2)、(4)、(7)のいずれか1項に記載の距離測定装置。
(12)
前記測定対象平面の一方が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面であり、前記測定対象平面の他方が、他方のライナー面であることを特徴とする(3)、(5)、(6)、(8)、(9)のいずれか1項に記載の距離測定装置。
(13)
水平器が、前記基準軸に平行に前記支持部材に配置されていることを特徴とする(1)〜(12)のいずれか1項に記載の距離測定装置。
(14)
前記測長部が、超音波またはレーザーを用いて測定することを特徴とする(1)〜(13)のいずれか1項に記載の距離測定装置。
(15)
前記演算部により得られた距離を記憶する記憶部と、記憶した距離のうち最小値を判断する最小値判断部とを有し、得られた最小値を前記表示部に表示することを特徴とする(1)〜(14)のいずれか1項に記載の距離測定装置。
(16)
前記支持部材が、不変鋼からなることを特徴とする(1)〜(15)のいずれか1項に記載の距離測定装置。
(17)
前記支持部材が、前記基準軸方向に伸縮調整可能であることを特徴とする(1)〜(16)のいずれか1項に記載の距離測定装置。
(18)
前記測長部のスキャン周期が0.001秒以下であることを特徴とする(1)〜(17)のいずれか1項に記載の距離測定装置。
(19)
測定対象となる平面までの距離を測定する距離測定方法であって、直線状の基準軸上に両端を有する支持部材の少なくとも一端において、少なくとも前記基準軸を含む平面内をスキャンしつつ、測定対象平面との間の距離を非接触で測定する測長ステップと、前記測長ステップに付随して測定している方向と前記基準軸とがなす角度を測定する測長角測定ステップと、前記測定対象平面までの距離を演算する演算ステップと、前記演算ステップで演算した結果を表示する表示ステップとを有し、
前記演算ステップが、前記測長ステップにより測定した距離と前記測長角測定ステップで測定した角度と前記支持部材の両端間の長さから、前記測定対象平面までの距離を演算することを特徴とする距離測定方法。
(20)
前記測長ステップが、前記支持部材の一端において、前記測定対象平面との間の距離を非接触で測定し、
前記演算ステップが、前記支持部材の他端である測定基準点と前記測定対象平面との距離を演算することを特徴とする(19)に記載の距離測定方法。
(21)
前記測長ステップが、前記支持部材の両端のそれぞれにおいて、前記測定対象平面との間の距離を非接触で測定し、
前記演算ステップが、前記測定対象平面の間の距離を算出することを特徴とする(19)に記載の距離測定方法。
(22)
前記演算ステップが、前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値diと、前記測長角測定ステップで得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の両端間の長さLと、下記式1から、
前記測定基準点と前記測定対象平面との間の距離Diを求め、前記測定ステップにより測定中に得られたDiの最小値を、前記測定基準点と前記測定対象平面との距離とすることを特徴とする(20)に記載の距離測定方法。
Di=di+L・cos(θi) ・・・・・・(式1)
(23)
前記演算ステップが、前記支持部材の一方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値diと、前記一方の端での前記測長角測定ステップで得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、
前記支持部材の前記基準軸上の1点を固定して、前記測長ステップで測定するときの、前記支持部材の前記基準軸上の固定した点から前記支持部材の一方の端までの距離Liと、
前記支持部材の他方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値djと、前記他方の端での測長角測定ステップで得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、
前記支持部材の前記基準軸上の固定した点から前記支持部材の他方の端までの距離Ljと、下記式2、式3から、前記支持部材の前記基準軸上の固定した点と前記測定対象平面との距離Di、Djを求め、前記測長ステップで測定中に得られたDiの最小値とDjの最小値を合計したものを、
前記測定対象平面の間の距離とすることを特徴とする(21)に記載の距離測定方法。
Di=di+Li・cos(θi) ・・・・・・(式2)
Dj=dj+Lj・cos(θj) ・・・・・・(式3)
(24)
前記演算ステップが、前記支持部材の一方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値diと、前記一方の端での前記測長角測定ステップで得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の他方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値djと、前記他方の端での前記測長角測定ステップで得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、さらに前記支持部材の両端間の長さLと、下記式4から、
前記測定対象平面の間の距離Dkを求め、両端での測長ステップにおいてスキャンする平面が同一平面内にあるときに、前記測長ステップにおいて測定中に得られたDkの最小値を前記測定対象平面の間の距離とすることを特徴とする(21)に記載の距離測定方法。
Dk=di+dj+(L・cos(θi)+ L・cos(θj))/2 ・・・・・・(式4)
(25)
前記測定基準点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置により、前記支持部材が、前記測定基準点を中心に同一平面内を回転することを特徴とする(20)または(22)に記載の距離測定方法。
(26)
前記支持部材の前記基準軸上の1点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置により、前記支持部材が、前記支持部材の前記基準軸上の1点を中心に同一平面内を回転することを特徴とする(21)または(23)に記載の距離測定方法。
(27)
前記支持部材が同一平面内を傾動できるようにするガイド装置により、前記支持部材が、同一平面内を傾動することを特徴とする(21)または(24)に記載の距離測定方法。
(28)
前記支持部材が回転または傾動したときの前記同一平面と、前記測長ステップにおいてスキャンする平面とが垂直であることを特徴とする(25)〜(27)のいずれか1項に記載の距離測定方法。
(29)
前記測定基準点が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面内上にあり、前記測定対象平面が、他方のライナー面であることを特徴とする(20)、(22)、(25)のいずれか1項に記載の距離測定方法。
(30)
前記測定対象平面の一方が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面であり、前記測定対象平面の他方が、他方のライナー面であることを特徴とする(21)、(23)、(24)、(26)、(27)のいずれか1項に記載の距離測定方法。
(31)
前記基準軸に平行に前記支持部材に配置された水平器により、一方の端が、他方の端に対し、少なくとも鉛直方向上方から下方もしくは鉛直方向下方から上方になるように、前記支持部材を動かすことを特徴とする(19)〜(30)のいずれか1項に記載の距離測定方法。
(32)
前記測長ステップが、超音波またはレーザーを用いて測定することを特徴とする(19)〜(31)のいずれか1項に記載の距離測定方法。
(33)
前記演算ステップにより得られた距離を記憶する記憶ステップと、記憶した距離のうち最小値を判断する最小値判断ステップとを有し、前記表示ステップが得られた最小値を表示することを特徴とする(19)〜(32)のいずれか1項に記載の距離測定方法。
(34)
前記支持部材が、不変鋼からなることを特徴とする(19)〜(33)のいずれか1項に記載の距離測定方法。
(35)
前記支持部材が、前記基準軸方向に伸縮調整可能であることを特徴とする(19)〜(34)のいずれか1項に記載の距離測定方法。
(36)
前記測長ステップでのスキャン周期が0.001秒以下であることを特徴とする(19)〜(35)のいずれか1項に記載の距離測定方法。
This invention is made | formed based on the said knowledge, The summary is as follows.
(1)
A distance measuring device for measuring a distance to a plane to be measured, a support member having both ends on a linear reference axis, and at least one end of the support member, and in a plane including at least the reference axis Measuring the distance between the measurement target plane and the measuring axis, and measuring the angle formed by the reference axis and the direction measured along with the length measuring section. An angle measurement unit, a calculation unit that calculates a distance to the measurement target plane, and a display unit that displays a result calculated by the calculation unit,
The calculation unit calculates the distance to the measurement target plane from the distance measured by the length measurement unit, the angle measured by the measurement angle measurement unit, and the length between both ends of the support member, Distance measuring device.
(2)
The length measurement unit is disposed at one end of the support member, and the calculation unit is a measurement reference point that is an end opposite to an end of the support member on which the length measurement unit is disposed, and the measurement The distance measuring device according to (1), wherein the distance to the target plane is calculated.
(3)
The distance measuring device according to (1), wherein the length measuring units are arranged at both ends of the support member, and the calculating unit calculates a distance between the measurement target planes.
(4)
Among the distances obtained while the length measurement unit performs one scan, the calculation unit scans the minimum value di and the measurement direction and the reference axis obtained by the measurement angle measurement unit. And a length L between both ends of the support member, and the following formula 1,
A distance Di between the measurement reference point and the measurement target plane is obtained, and a minimum value of Di obtained by the length measurement unit during measurement is set as a distance between the measurement reference point and the measurement target plane. (2) The distance measuring device according to (2).
Di = di + L · cos (θi) (Equation 1)
(5)
The calculation unit obtains the minimum value di among the distances obtained while the length measurement unit provided at one end of the support member performs one scan, and the length measurement angle measurement unit at the one end. A measurement angle θi formed by the measurement direction and the reference axis when scanning the minimum value di,
A distance Li from the fixed point on the reference axis of the support member to one end of the support member when the length measuring unit measures by fixing one point on the reference axis of the support member When,
Among the distances obtained while the length measuring unit provided at the other end of the support member performs one scan, the minimum value dj and the minimum value obtained by the length measuring angle measuring unit at the other end. a measurement angle θj formed by a measurement direction and a reference axis when dj is scanned;
The distance Lj from the fixed point on the reference axis of the support member to the other end of the support member, and the fixed point on the reference axis of the support member and the measurement object from the following formulas 2 and 3 The distances Di and Dj with respect to the plane are obtained, and the length measuring unit sums the minimum value of Di and the minimum value of Dj obtained during measurement.
The distance measuring device according to (3), wherein the distance between the measurement target planes is set.
Di = di + Li · cos (θi) (Equation 2)
Dj = dj + Lj · cos (θj) (Equation 3)
(6)
The calculation unit obtains the minimum value di among the distances obtained while the length measurement unit provided at one end of the support member performs one scan, and the length measurement angle measurement unit at the one end. And the distance obtained during one scan of the length measuring portion θi formed by the measurement direction and the reference axis when the minimum value di is scanned and the other end of the support member. , The measurement angle θj formed by the measurement direction when the minimum value dj is scanned and the reference axis, obtained by the measurement angle measurement unit at the other end, and the support member From the length L between both ends and the following formula 4,
The distance Dk between the measurement target planes is obtained, and when the planes scanned by the length measuring units arranged at both ends are in the same plane, the minimum value of Dk obtained by the length measuring unit during measurement is calculated. The distance measuring device according to (3), wherein the distance between the measurement target planes is set.
Dk = di + dj + (L · cos (θi) + L · cos (θj)) / 2 (Expression 4)
(7)
The distance measuring device according to (2) or (4), further comprising a guide device that allows the support member to rotate in the same plane around the measurement reference point.
(8)
The distance measuring device according to (3) or (5), further comprising a guide device that allows the support member to rotate in the same plane around one point on the reference axis of the support member. .
(9)
The distance measuring device according to (3) or (6), further comprising a guide device that allows the support member to tilt in the same plane.
(10)
The distance measurement according to any one of (7) to (9), wherein the same plane when the support member rotates or tilts and a plane scanned by the length measuring unit are perpendicular to each other. apparatus.
(11)
The measurement reference point is on one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the measurement target plane is the other liner surface. The distance measuring device according to any one of (2), (4), and (7), which is characterized.
(12)
One of the measurement target planes is one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the other measurement target plane is the other liner surface. The distance measuring device according to any one of (3), (5), (6), (8), and (9).
(13)
The distance measuring device according to any one of (1) to (12), wherein a level is disposed on the support member in parallel with the reference axis.
(14)
The distance measuring device according to any one of (1) to (13), wherein the length measuring unit measures using an ultrasonic wave or a laser.
(15)
A storage unit that stores the distance obtained by the calculation unit; and a minimum value determination unit that determines a minimum value of the stored distances, and the obtained minimum value is displayed on the display unit. The distance measuring device according to any one of (1) to (14).
(16)
The distance measuring device according to any one of (1) to (15), wherein the support member is made of invariant steel.
(17)
The distance measuring device according to any one of (1) to (16), wherein the support member is adjustable in expansion and contraction in the reference axis direction.
(18)
The distance measuring device according to any one of (1) to (17), wherein a scan cycle of the length measuring unit is 0.001 second or less.
(19)
A distance measurement method for measuring a distance to a plane to be measured, wherein at least one end of a support member having both ends on a linear reference axis is scanned while scanning at least the plane including the reference axis. A length measuring step for measuring the distance between the flat surface in a non-contact manner, a length measuring angle measuring step for measuring an angle formed by a direction measured along with the length measuring step and the reference axis, and the measurement A calculation step for calculating the distance to the target plane; and a display step for displaying the result calculated in the calculation step,
The calculating step calculates a distance to the measurement target plane from the distance measured in the length measuring step, the angle measured in the length measuring angle measuring step, and the length between both ends of the support member. How to measure distance.
(20)
The length measurement step measures the distance between the measurement target plane at one end of the support member in a non-contact manner,
The distance measuring method according to (19), wherein the calculating step calculates a distance between a measurement reference point which is the other end of the support member and the measurement target plane.
(21)
The length measuring step measures the distance between the measurement target planes at each end of the support member in a non-contact manner,
The distance measuring method according to (19), wherein the calculating step calculates a distance between the measurement target planes.
(22)
Among the distances obtained during one scan in the length measurement step, the calculation step is the minimum value di, and the measurement direction and the reference axis obtained when the minimum value di is scanned in the length measurement angle measurement step. And a length L between both ends of the support member, and the following formula 1,
A distance Di between the measurement reference point and the measurement target plane is obtained, and a minimum value of Di obtained during the measurement by the measurement step is set as a distance between the measurement reference point and the measurement target plane. The distance measuring method according to (20), which is characterized.
Di = di + L · cos (θi) (Equation 1)
(23)
The calculation step is obtained by the minimum value di among the distances obtained during one scan in the length measurement step at one end of the support member and the length measurement angle measurement step at the one end. , The measurement angle θi formed by the measurement direction and the reference axis when scanning the minimum value di,
A distance Li from the fixed point on the reference axis of the support member to one end of the support member when one point on the reference axis of the support member is fixed and measured in the length measuring step When,
Among the distances obtained during one scan in the length measuring step at the other end of the support member, the minimum value dj obtained in the length measuring angle measuring step at the other end Measurement angle θj formed by the measurement direction and the reference axis when scanned,
The distance Lj from the fixed point on the reference axis of the support member to the other end of the support member, and the fixed point on the reference axis of the support member and the measurement object from the following formulas 2 and 3 The distances Di and Dj with respect to the plane are obtained, and the sum of the minimum value of Di and the minimum value of Dj obtained during the measurement in the length measurement step,
The distance measurement method according to (21), wherein the distance between the measurement target planes is set.
Di = di + Li · cos (θi) (Equation 2)
Dj = dj + Lj · cos (θj) (Equation 3)
(24)
The calculation step is obtained by the minimum value di among the distances obtained during one scan in the length measurement step at one end of the support member and the length measurement angle measurement step at the one end. , The measurement angle θi formed by the measurement direction and the reference axis when the minimum value di is scanned, and the minimum distance among the distances obtained during one scan in the measurement step at the other end of the support member The value dj, the measurement angle θj formed by the measurement direction when the minimum value dj is scanned and the reference axis, obtained in the measurement angle measurement step at the other end, and between both ends of the support member From the length L of the
The distance Dk between the measurement target planes is obtained, and when the planes to be scanned in the length measurement steps at both ends are in the same plane, the minimum value of Dk obtained during the measurement in the length measurement step is determined as the measurement target. The distance measuring method according to (21), wherein the distance between the planes is set.
Dk = di + dj + (L · cos (θi) + L · cos (θj)) / 2 (Expression 4)
(25)
The support member rotates in the same plane around the measurement reference point by a guide device that allows the support member to rotate in the same plane around the measurement reference point (20 ) Or the distance measuring method according to (22).
(26)
With the guide device that allows the support member to rotate within the same plane around one point on the reference axis of the support member, the support member is centered on one point on the reference axis of the support member. The distance measuring method according to (21) or (23), wherein the distance is rotated in the same plane.
(27)
The distance measuring method according to (21) or (24), wherein the support member is tilted in the same plane by a guide device that allows the support member to tilt in the same plane.
(28)
The distance measurement according to any one of (25) to (27), wherein the same plane when the support member rotates or tilts and a plane scanned in the length measurement step are perpendicular to each other. Method.
(29)
The measurement reference point is on one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the measurement target plane is the other liner surface. The distance measuring method according to any one of (20), (22), and (25).
(30)
One of the measurement target planes is one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the other measurement target plane is the other liner surface. The distance measuring method according to any one of (21), (23), (24), (26), and (27), characterized in that:
(31)
The support member is moved by a leveler arranged on the support member in parallel with the reference axis so that one end thereof is at least from the upper side in the vertical direction or the lower side in the vertical direction relative to the other end. (19) The distance measuring method according to any one of (19) to (30).
(32)
The distance measuring method according to any one of (19) to (31), wherein the length measuring step uses ultrasonic waves or a laser.
(33)
A storage step for storing the distance obtained by the calculation step; and a minimum value determination step for determining a minimum value among the stored distances, wherein the minimum value obtained by the display step is displayed. The distance measuring method according to any one of (19) to (32).
(34)
The distance measuring method according to any one of (19) to (33), wherein the support member is made of invariant steel.
(35)
The distance measuring method according to any one of (19) to (34), wherein the support member is adjustable in expansion and contraction in the reference axis direction.
(36)
(19) The distance measuring method according to any one of (19) to (35), wherein a scan cycle in the length measuring step is 0.001 second or less.

本発明によれば、互いに平行に対向する平面を有する平行柱間の距離や、任意の点から平面までの間の距離を、汎用性があり、再現性がよく、客観的に高精度で測定することができる。   According to the present invention, the distance between parallel columns having planes opposed in parallel to each other and the distance between any point and the plane are versatile, reproducible, and objectively measured with high accuracy. can do.

図1は、本発明の一例を示す概念図であって、支持部材の一端に測長器を配置し、平行対向する面の間の距離の測定方法を示す概念図である。FIG. 1 is a conceptual diagram illustrating an example of the present invention, and is a conceptual diagram illustrating a method of measuring a distance between parallelly opposed surfaces by arranging a length measuring device at one end of a support member. 図2は測長器の基本軸を説明する概念図である。図2(a)は2次元(平面)スキャンの場合を、図2(b)は3次元(立体空間)スキャンの場合を示す。FIG. 2 is a conceptual diagram illustrating the basic axis of the length measuring device. FIG. 2A shows a case of two-dimensional (planar) scanning, and FIG. 2B shows a case of three-dimensional (stereoscopic space) scanning. 図3は支持部材の基準軸を説明する概念図である。図3(a)は支持部材が直線状の場合を、図3(b)は支持部材が直線状ではない場合を、図3(c)は支持部材が3以上の端部を有する場合を示す。FIG. 3 is a conceptual diagram illustrating the reference axis of the support member. 3A shows a case where the support member is linear, FIG. 3B shows a case where the support member is not linear, and FIG. 3C shows a case where the support member has three or more ends. . 製鉄用圧延機の1例を示す概念図である。It is a conceptual diagram which shows one example of the rolling mill for iron manufacture. 本発明に係る測定装置による測定作業の状態を示す概念図である。図5(a)は、本発明に係る測定装置により、1方向のみを測定する場合を示す概念図である。図5(b)は、本発明に係る測定装置を、スキャン平面に略垂直な方向に振ることにより、対向する平行面の任意面をスキャンし、測定する場合を示す概念図である。It is a conceptual diagram which shows the state of the measurement operation | work by the measuring apparatus which concerns on this invention. Fig.5 (a) is a conceptual diagram which shows the case where it measures only one direction with the measuring apparatus which concerns on this invention. FIG. 5B is a conceptual diagram showing a case in which an arbitrary parallel plane facing is scanned and measured by shaking the measurement apparatus according to the present invention in a direction substantially perpendicular to the scan plane. 図6は、本発明に係る測定装置による測定作業の状態において、距離の算出方法を説明するための図である。図6(a)はスキャン平面と測定対象平面が略垂直である状態を示す概念図である。図6(b)は、その時の距離の算出方法を説明する図である。FIG. 6 is a diagram for explaining a distance calculation method in the state of measurement work by the measurement apparatus according to the present invention. FIG. 6A is a conceptual diagram showing a state in which the scan plane and the measurement target plane are substantially perpendicular. FIG. 6B is a diagram for explaining a distance calculation method at that time. 図7は、片端に測長器を配置した場合の本発明に係る測定装置におけるガイド装置の例として、測定基準点(他端)を中心に測定装置が回転できるガイド装置の一例を示す概念図である。FIG. 7 is a conceptual diagram showing an example of a guide device that can rotate the measurement device around the measurement reference point (the other end) as an example of the guide device in the measurement device according to the present invention when a length measuring device is arranged at one end. It is. 図8は、本発明の一例を示す概念図であって、支持部材の両端に測長器を配置した場合の測定方法の一例を示す概念図である。FIG. 8 is a conceptual diagram showing an example of the present invention, and is a conceptual diagram showing an example of a measurement method when length measuring devices are arranged at both ends of the support member. 図9は、本発明の一例を示す概念図であって、支持部材の両端に測長器を配置した場合であって、基準軸上の一点を中心にした測定方法の一例を示す概念図である。FIG. 9 is a conceptual diagram showing an example of the present invention, and is a conceptual diagram showing an example of a measuring method centered on one point on the reference axis when a length measuring device is arranged at both ends of the support member. is there. 図10は、両端に測長器を配置した場合の本発明に係る測定装置におけるガイド装置の例として、支持部材上の一点を中心に測定装置が回転できるガイド装置の一例を示す概念図である。FIG. 10 is a conceptual diagram showing an example of a guide device that can rotate the measuring device around one point on a support member as an example of a guide device in the measuring device according to the present invention when length measuring devices are arranged at both ends. . 図11も、両端に測長器を配置した場合の本発明に係る測定装置におけるガイド装置の例として、測定装置が同一平面内を傾動することができるガイド装置の一例を示す概念図である。FIG. 11 is also a conceptual diagram showing an example of a guide device that can tilt the measuring device in the same plane as an example of the guide device in the measuring device according to the present invention when length measuring devices are arranged at both ends.

本発明について、図面を例として実施するための形態を説明する。   The present invention will be described with reference to the drawings.

[測定対象となる平面]
本発明が測定対象とするのは、任意の点から平面までの間の距離および平行する平面間の距離であり、測定対象物が平面を有していれば、対象物の形状は特に限定しない(以下、測定対象とする平面を測定対象平面という場合がある。)。平面を有する測定対象物の断面形状が四角形や6角形のような多角形でもよく、また対象物の一部に平面があってもよい。すなわち、任意の点が平面上にあり、当該平面と対象物の平面とが平行であれば、両平面間の距離を測定することができる。
[Plane to be measured]
The object of measurement of the present invention is the distance between an arbitrary point and a plane and the distance between parallel planes, and the shape of the object is not particularly limited as long as the object to be measured has a plane. (Hereinafter, the plane to be measured may be referred to as the measurement plane). The cross-sectional shape of the measurement object having a plane may be a polygon such as a quadrangle or a hexagon, or a part of the object may have a plane. That is, if an arbitrary point is on a plane and the plane is parallel to the plane of the object, the distance between both planes can be measured.

例えば装置の支柱間距離や、建造物の柱間距離、柱と壁面間距離などの測定などが対象となり得る。通常は、これらの支柱や柱の断面形状が四角形の場合が多く、尚且つそれぞれの対象物に互いに平行に対向する平面を有する場合が多い。例えば、図4に示す製鉄用圧延機では、圧延機ハウジング21は断面形状が四角形の柱状物で構成され、それぞれの柱状物は互いに平行であり、互いに平行に対向する平面を有している。例えば、図4の作業ロール・チョック支持面26、26’や、補助ロール・チョック支持面27,27’が、その平行に対向する平面に該当する。したがって、この対向する平面間の距離を測定すれば、ハウジングの対向する柱状物の間の距離を測定することができる。本発明は、こうした平行に対向する平面であっても、一方の平面上の任意の点と他方の平面までの距離を測定することにより、当該平行に対向する2つの平面間の距離を測定することができる。   For example, measurement of the distance between the columns of the apparatus, the distance between the columns of the building, the distance between the columns and the wall surface, and the like can be targeted. Normally, the cross-sectional shapes of these columns and pillars are often rectangular, and there are many cases where each object has flat surfaces facing each other in parallel. For example, in the rolling mill for iron making shown in FIG. 4, the rolling mill housing 21 is composed of columnar objects having a quadrangular cross section, and the respective columnar objects are parallel to each other and have planes facing each other in parallel. For example, the work roll / chock support surfaces 26, 26 ′ and the auxiliary roll / chock support surfaces 27, 27 ′ of FIG. Therefore, if the distance between the opposing planes is measured, the distance between the opposing columnar objects of the housing can be measured. The present invention measures the distance between two planes facing in parallel by measuring the distance between an arbitrary point on one plane and the other plane even in such planes facing parallel to each other. be able to.

[直線状の基準軸上に両端を有する支持部材]
前述したように、本発明において、距離の測定に直接的に関わる部分は、非接触で距離を測定する測長部とそれを支える支持部材である。測長部の態様は特に限定しないが、一般にレーザーなどをスキャンし、非接触で測長する測長用機器である場合が多い(前述したように、測長部として、単に測長器という場合がある。)。測長器がスキャンする際の基本軸と、支持部材の片端と片端とを通る基準軸とが同一直線上に配置されることが重要である。以下、本発明において、支持部材が棒状であり、その基準軸(例えば図1の基準軸2)が、基本軸(例えば図1の基本軸9)と同一直線上になるように配置している場合を例に説明する。支持部材の基準軸と測長器の基本軸を同一線上に配置できない場合は、両軸の成す角度を予め測定し、幾何学的関係から、演算により補正することで対応することができる。
[Supporting member having both ends on a linear reference axis]
As described above, in the present invention, the portions directly related to the distance measurement are the length measuring unit that measures the distance in a non-contact manner and the support member that supports the length measuring unit. There are no particular limitations on the length measuring section, but in general, it is often a measuring instrument that scans a laser and measures the length in a non-contact manner (as described above, the length measuring section is simply called a length measuring instrument). There is.) It is important that the basic axis when the length measuring device scans and the reference axis passing through one end and one end of the support member are arranged on the same straight line. Hereinafter, in the present invention, the support member has a rod shape, and the reference axis (for example, the reference axis 2 in FIG. 1) is arranged so as to be collinear with the basic axis (for example, the basic axis 9 in FIG. 1). A case will be described as an example. When the reference axis of the support member and the basic axis of the length measuring device cannot be arranged on the same line, it can be dealt with by measuring in advance the angle formed by both axes and correcting it by calculation from the geometric relationship.

まず、図1に示すような本発明に係る測定装置で一端に測長器を配置した場合の例を中心にして説明する。支持部材4は、その両端3、5が基準軸2上にあればよく、支持部材自体の形状は特に限定されない。図1に示す支持部材4は直線状のものを示しているが、支持部材は特に直線状に限定されるものではない。
また、支持部材の形状が三又や四又のように、3以上の端部を有する形状であっても構わない。そのうちの2端が直線状の基準軸上にあればよい。3以上の端部を有する形状であっても、本発明においては、この基準軸上にある2つの端部を対象とするものであり、その他の端部は本発明においては無視する。
First, an example in which a length measuring device is arranged at one end of the measuring apparatus according to the present invention as shown in FIG. 1 will be mainly described. The support member 4 only needs to have both ends 3 and 5 on the reference shaft 2, and the shape of the support member itself is not particularly limited. Although the support member 4 shown in FIG. 1 is linear, the support member is not particularly limited to a linear shape.
Further, the shape of the support member may be a shape having three or more ends, such as three or four. Two of them need only be on a linear reference axis. Even in a shape having three or more end portions, in the present invention, the two end portions on the reference axis are targeted, and the other end portions are ignored in the present invention.

[測長部および測長ステップ]
本発明の中核をなす装置およびステップである。
測長部3(測長ステップ)は、支持部材の少なくとも一端に配置された測長器を含むものであり、測長器から対象物までの距離を測定する機能を有する。言いかえれば、測長部3(測長ステップ)は、支持部材4の一端から測定対象平面10までの距離を測定する機能を有する。測長部は、支持部材の一方の端のみに配置されていてもよく、また両端に配置されていてもよい。測長部が両端に配置されている場合も、それぞれの測長部の機能は同じである。
[Length measuring section and length measuring step]
It is the apparatus and step that form the core of the present invention.
The length measuring unit 3 (length measuring step) includes a length measuring device arranged at at least one end of the support member, and has a function of measuring the distance from the length measuring device to the object. In other words, the length measurement unit 3 (length measurement step) has a function of measuring the distance from one end of the support member 4 to the measurement target plane 10. The length measuring unit may be disposed only at one end of the support member, or may be disposed at both ends. Even when the length measuring units are arranged at both ends, the functions of the respective length measuring units are the same.

図1は、支持部材4の一端に測長部3を備えた本発明に係る測定装置1を用いて、平行柱(平行対向する面)7、7’の間の距離を測定する場合について、測長部3がスキャンするスキャン平面6に対して、略垂直な方向から見たときの概念図である。図1は、一方の平行柱7の平面が、測定対象平面10である場合を示している。   FIG. 1 shows a case where a distance between parallel columns (parallelly opposed surfaces) 7 and 7 ′ is measured using a measuring device 1 according to the present invention having a length measuring unit 3 at one end of a support member 4. It is a conceptual diagram when it sees from the substantially perpendicular | vertical direction with respect to the scanning plane 6 which the length measuring part 3 scans. FIG. 1 shows a case where the plane of one parallel column 7 is the measurement target plane 10.

測長器による距離測定は、非接触であればその方式は特に限定しない。精度との関係から指向性が高い方が望ましい。そのため、超音波などの音波式、またはレーザーなどの光学式による測長方法が望ましい。実際の測長方法は、例えば、超音波やレーザーが対象物で反射し、その反射を捉えるまでの時間で距離を算出するものであればよい。以下、本発明をレーザーによる測長を例として説明する。超音波を使用する場合は、レーザーを超音波に読み替えればよい。   The distance measurement by the length measuring device is not particularly limited as long as it is non-contact. Higher directivity is desirable in relation to accuracy. Therefore, a length measuring method using a sound wave type such as an ultrasonic wave or an optical type such as a laser is desirable. The actual length measurement method may be any method that calculates the distance by the time until the ultrasonic wave or laser is reflected by the object and the reflection is captured. Hereinafter, the present invention will be described with reference to laser measurement. When using ultrasonic waves, the laser may be read as ultrasonic waves.

測長器は、少なくとも基準軸を含む平面上をスキャンできるとよい。(本明細書において、このスキャンする平面をスキャン平面6という。)スキャン平面6と測定対象平面10による交線(直線)上を測長することになる。スキャン平面は、測定対象平面10との関係から三角形になる(例えば、図1および図2(a)のスキャン平面6)。当該スキャン平面の中心角8は特に問わない。すなわち、距離の測定範囲と対象物上のスキャン幅は特に限定されない。例えば、キーエンス社のLJ−V7080型の場合、距離の測定範囲が80±23mmに対し、スキャン幅は32±7mmで設定されているし、同社のLJ−V7200型の場合、距離の測定範囲が200±48mmに対し、スキャン幅は62±11mmで設定されている。それぞれの測長器の特性に応じて設定すればよい。   The length measuring device may scan at least on a plane including the reference axis. (In this specification, this plane to be scanned is referred to as a scan plane 6.) A length on an intersection line (straight line) between the scan plane 6 and the measurement target plane 10 is measured. The scan plane is triangular due to the relationship with the measurement target plane 10 (for example, the scan plane 6 in FIGS. 1 and 2A). The center angle 8 of the scan plane is not particularly limited. That is, the distance measurement range and the scan width on the object are not particularly limited. For example, in the case of Keyence's LJ-V7080 type, the distance measurement range is set to 80 ± 23 mm, while the scan width is set to 32 ± 7 mm. In the case of the company's LJ-V7200 type, the distance measurement range is The scan width is set to 62 ± 11 mm for 200 ± 48 mm. What is necessary is just to set according to the characteristic of each length measuring device.

スキャンは、基準軸を含む立体空間(本明細書において、このスキャンする空間をスキャン空間という。)でもよい。その場合は、円錐状(場合によっては四角錐上や円錐台状、四角錐台状)にスキャンすることになる(図2(b)のスキャン空間6’’)。基準軸がスキャン空間内に含まれればよく、基準軸は円錐の中心線に一致する方が望ましい。そして、一致させた円錐の中心線と支持部材の基準軸とを、測長器の基本軸9と一致させるとよい。円錐状の中心角も特に限定されるものではない。それぞれの測長器の特性に応じて設定すればよい。   The scan may be a three-dimensional space including a reference axis (in this specification, the space to be scanned is referred to as a scan space). In this case, scanning is performed in a conical shape (in some cases, on a quadrangular pyramid, a truncated cone shape, or a truncated pyramid shape) (scan space 6 ″ in FIG. 2B). It is sufficient that the reference axis is included in the scan space, and it is preferable that the reference axis coincides with the center line of the cone. Then, it is preferable that the center line of the cone and the reference axis of the support member coincide with the basic axis 9 of the length measuring device. The conical center angle is not particularly limited. What is necessary is just to set according to the characteristic of each length measuring device.

スキャン周期は、平面スキャンの場合も立体スキャンの場合も、0.001秒以下にすることが望ましい。これは、後述するが、作業者が測定作業において支持部材を動かす速度に対し、十分早いスキャン速度が必要であるからである。スキャン周期は、短時間である方が好ましく、できれば0.0001秒以下、さらには0.00001秒以下であればより好ましい。   It is desirable that the scan cycle be 0.001 second or less for both planar scanning and stereoscopic scanning. This is because, as will be described later, a sufficiently high scanning speed is required for the speed at which the operator moves the support member in the measurement work. The scan cycle is preferably a short time, preferably 0.0001 seconds or less, more preferably 0.00001 seconds or less.

測定精度については、必要とする測定精度を得ることができるように、支持部材の長さを伸縮自在に調整することができるようにして、測定範囲を選定することが出来るようにするとよい。また、支持部材の長さは測定時の温度により変化しないように、不変鋼(例えば、Fe−Ni36%鋼(インバー合金))を用いるとよい。   Regarding the measurement accuracy, it is preferable that the measurement range can be selected by adjusting the length of the support member so that the required measurement accuracy can be obtained. In addition, invariant steel (for example, Fe-Ni 36% steel (Invar alloy)) may be used so that the length of the support member does not change depending on the temperature at the time of measurement.

[測長角測定部および測長角測定ステップ]
測長器は、レーザーを一方向に発振(照射ともいう。)し、その反射波を捉え距離を求めている。このレーザーの発振方向を変化させて測定していくのだが、そのときの発振方向と基準軸とのなす角を、本明細書において「測長角」と定義する。測長角測定部(測長角測定ステップ)は、この測長角を測定する機能を有する。測長角を測定する具体的手段(方法)は特に限定されない。スキャン中のレーザー発振方向と基準軸の角度が把握できれば、どのような手段でもよい。その観点から、2次元測定であるスキャン平面の場合は、三角形状のスキャン平面の中心角を2等分する直線を、対象物を測定する方向を変化させて測定する測長器の基本軸とし、この測長器の基本軸(例えば図1の基本軸9)と支持部材の基準軸(例えば図1の基準軸2)とを一致させるとよい。3次元測定であるスキャン空間の場合は、円錐形のスキャン空間の頂点を通り、当該円錐形を回転対称とする回転軸に相当する直線を、対象物を測定する方向を変化させて測定する測長器の基本軸とし、この測長器の基本軸と支持部材の基準軸とを一致させるとよい。なお、測長部は、この測長角測定部を含んでもよい。
[Measurement angle measurement unit and measurement angle measurement step]
The length measuring device oscillates the laser in one direction (also called irradiation) and captures the reflected wave to obtain the distance. Measurement is performed while changing the laser oscillation direction. The angle formed between the oscillation direction and the reference axis is defined as a “measurement angle” in this specification. The measurement angle measurement unit (measurement angle measurement step) has a function of measuring the measurement angle. The specific means (method) for measuring the measurement angle is not particularly limited. Any means may be used as long as the angle of the laser oscillation direction and the reference axis during scanning can be grasped. From this point of view, in the case of a scan plane that is a two-dimensional measurement, a straight line that bisects the central angle of the triangular scan plane is used as the basic axis of a length measuring instrument that changes the direction in which the object is measured. The basic axis (for example, the basic axis 9 in FIG. 1) of the length measuring device and the reference axis (for example, the reference axis 2 in FIG. 1) of the support member may be matched. In the case of a scan space that is a three-dimensional measurement, a measurement is performed by measuring a straight line that passes through the apex of a conical scan space and corresponds to a rotation axis that is rotationally symmetric with respect to the conical shape by changing the direction in which the object is measured. The basic axis of the length measuring device may be set to coincide with the basic axis of the length measuring device and the reference axis of the support member. Note that the length measurement unit may include this measurement angle measurement unit.

[演算部および演算ステップ]
対象物間の距離は、測長器により測定した距離の最小値と、最小値を測定したときに測長角測定部により測定した測長角、および支持部材の両端部間の長さ(以下、支持部材長さと呼ぶ。)から演算できる。例えば、図1のように、支持部材4の一端に測長器3を配置し、他端(距離を測定した測長器が配置された端とは反対側の端(測定基準点5))を一方の対象物に接触させて、対象物間距離を測定する場合、測長器により測定した距離の最小値di、当該最小値diをスキャンした時の測定方向(測長器3から測定対象平面10に下した垂線31’)と、測長部の基本軸9(すなわち、支持部材の基準軸2)とがなす測長角θi、支持部材長さLから、対象物間の最短距離Diを以下の式1で求めることができる。
Di=di+L・cos(θi) ・・・(式1)
なお、図1中には、測定基準点5から測定対象平面10に下した垂線31を記載し、対象物間の最短距離Diを説明している。
[Calculation unit and calculation step]
The distance between objects is the minimum distance measured by the length measuring device, the measurement angle measured by the measurement angle measuring unit when the minimum value is measured, and the length between both ends of the support member (hereinafter referred to as , Called the length of the support member). For example, as shown in FIG. 1, the length measuring device 3 is arranged at one end of the support member 4, and the other end (the end opposite to the end at which the length measuring device for measuring the distance is arranged (measurement reference point 5)). When measuring the distance between the objects by contacting the object with one object, the minimum distance di measured by the length measuring device, the measurement direction when the minimum value di is scanned (from the length measuring device 3 to the measuring object) The shortest distance Di between the objects from the measurement angle θi and the support member length L formed by the perpendicular line 31 ') and the basic axis 9 of the length measurement unit (that is, the reference axis 2 of the support member). Can be obtained by the following Equation 1.
Di = di + L · cos (θi) (Formula 1)
In FIG. 1, a perpendicular line 31 drawn from the measurement reference point 5 to the measurement target plane 10 is shown, and the shortest distance Di between the objects is described.

演算部(演算ステップ)(演算部は図示せず。)は、少なくとも上記式1に従った演算を行う機能を有すればよい。具体的な演算手段(演算方法)は特に限定されない。例えば、本発明に係る測定装置に組み込まれたマイクロプロセッサー(MPU)に予め設定したプログラムにより演算することができる。
そして、支持部材の基準軸が、測定対象平面に垂直になった時や、スキャン平面6と測定対象平面10が垂直に交わる時に、Diの値が最小値になり、それが測定基準点と測定対象平面との距離となる。すなわち、逐次演算されるDiの値のうち、それらの最小値を求め、それを測定基準点と測定対象平面との距離とすることができる。
The calculation unit (calculation step) (the calculation unit is not shown) only needs to have at least a function of performing calculation according to the above equation 1. Specific calculation means (calculation method) is not particularly limited. For example, the calculation can be performed by a program set in advance in a microprocessor (MPU) incorporated in the measurement apparatus according to the present invention.
When the reference axis of the support member is perpendicular to the measurement target plane or when the scan plane 6 and the measurement target plane 10 intersect perpendicularly, the value of Di becomes the minimum value, which is the measurement reference point and the measurement. This is the distance to the target plane. That is, among the sequentially calculated values of Di, the minimum value thereof can be obtained and used as the distance between the measurement reference point and the measurement target plane.

支持部材の両端に測長部(測長ステップ)を配置する場合は、片側の測長部(測長ステップ)ごとに測定対象平面までの距離を測定し、それに支持部材の長さを加味して演算処理により、測定対象平面間の距離を演算により求めることができる。
例えば、図9に示すように、基準軸上の任意の一点を測定基準点とし、その測定基準点から各測長部ごとに測定対象平面までの距離を演算し、それを加算することにより測定対象平面間の距離を求めることができる。図9では、支持部材が直線状の例を示す。したがって、支持部材上の任意の一点45を測定基準点としている。このとき、一方の端に備えられた前記測長部3が1スキャンする間に得られた距離のうち最小値diと、その一方の端の測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiとする。また、支持部材の基準軸上の1点45から支持部材の一方の端(測長部3が配置されている端)までの距離Liとする。
When placing length measuring sections (length measuring steps) on both ends of the support member, measure the distance to the measurement target plane for each length measuring section (length measuring step) and add the length of the support member to it. Thus, the distance between the measurement target planes can be obtained by calculation through the calculation process.
For example, as shown in FIG. 9, an arbitrary point on the reference axis is used as a measurement reference point, the distance from the measurement reference point to the measurement target plane is calculated for each length measuring unit, and added to the measurement. The distance between target planes can be determined. FIG. 9 shows an example in which the support member is linear. Therefore, an arbitrary point 45 on the support member is set as a measurement reference point. At this time, the minimum value di of the distances obtained while the length measuring unit 3 provided at one end performs one scan and the minimum value di obtained by the length measuring angle measuring unit at one end thereof. Is the measurement angle θi formed by the measurement direction and the reference axis when scanning. Further, the distance Li is a distance from one point 45 on the reference axis of the support member to one end of the support member (an end where the length measuring unit 3 is disposed).

一方、支持部材の他方の端に備えられた測長部3’が1スキャンする間に得られた距離のうち最小値djと、その他方の端の測長角測定部で得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjとする。また、支持部材の基準軸上の1点45から支持部材の他方の端(測長部3’が配置されている端)までの距離Ljとする。これらのdi、θi、Liとdj、θj、Ljと下記式2、式3から、演算部(演算ステップ)において、支持部材の基準軸上の1点45と測定対象平面10、10’との距離Di、Djを求め、両測長部3、3’が測定中に得られたDiの最小値とDjの最小値を合計したものを、測定対象平面10、10’の間の距離とすることができる。
Di=di+Li・cos(θi) ・・・・・・(式2)
Dj=dj+Lj・cos(θj) ・・・・・・(式3)
On the other hand, the minimum value dj of the distance obtained while the length measuring unit 3 ′ provided at the other end of the support member performs one scan and the minimum value obtained by the length measuring angle measuring unit at the other end. The value dj is defined as a measurement angle θj formed by a measurement direction and a reference axis when scanned. Further, the distance Lj is a distance from one point 45 on the reference axis of the support member to the other end of the support member (the end where the length measuring section 3 ′ is disposed). From these di, θi, Li and dj, θj, Lj and the following formulas 2 and 3, in the calculation unit (calculation step), the point 45 on the reference axis of the support member and the measurement target planes 10, 10 ′ The distances Di and Dj are obtained, and the sum of the minimum value of Di and the minimum value of Dj obtained by both length measuring units 3 and 3 ′ is used as the distance between the measurement target planes 10 and 10 ′. be able to.
Di = di + Li · cos (θi) (Equation 2)
Dj = dj + Lj · cos (θj) (Equation 3)

すなわち、片側にだけ測長部が配置された場合と同様、支持部材4の基準軸2が、測定対象平面10、10’に垂直になった時や、スキャン平面6、6’と測定対象平面10、10’が垂直に交わる時に、Di、Djの値が最小値になり、それが測定対象平面10、10’の間の距離となる。すなわち、逐次演算されるDi、Djの値のうち、それらの最小値を求め、それらの合計値(Diの最小値+Djの最小値)をもって、それを測定対象平面10、10’の間の距離とすることができる。なお、一方のスキャン平面6と他方のスキャン平面6’が、同一平面にあるときは、Di、Djが最小値になるとき(つまりDiの最小値+Djの最小値も最小値になるとき)、幾何学的にはθi=θjになる。   That is, as in the case where the length measuring unit is arranged only on one side, when the reference axis 2 of the support member 4 is perpendicular to the measurement target planes 10, 10 ′, or when the scan planes 6, 6 ′ and the measurement target planes are When 10, 10 'intersects perpendicularly, the values of Di, Dj become the minimum value, which is the distance between the measurement object planes 10, 10'. That is, among the values of Di and Dj that are sequentially calculated, their minimum values are obtained, and their total value (minimum value of Di + minimum value of Dj) is used to calculate the distance between the measurement target planes 10 and 10 ′. It can be. When one scan plane 6 and the other scan plane 6 ′ are on the same plane, when Di and Dj are minimum values (that is, when the minimum value of Di + the minimum value of Dj is also the minimum value), Geometrically, θi = θj.

また、片側に測長部(測長ステップ)が配置されている場合の距離測定方法を、両端に測長部(測長ステップ)が配置されている場合に適用し、一方のスキャン平面6と他方のスキャン平面6’を同一平面とすることで、例えば図8に示すように、演算により測定対象平面の間の距離を求めることができる。   Further, the distance measuring method in the case where the length measuring unit (length measuring step) is arranged on one side is applied to the case where the length measuring unit (length measuring step) is arranged on both ends, By making the other scan plane 6 ′ the same plane, for example, as shown in FIG. 8, the distance between the measurement target planes can be obtained by calculation.

すなわち、支持部材4の一方の端に備えられた測長部3が1スキャンする間に得られた距離のうち最小値diと、一方の端(測長部3が配置されている端)の測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiとする。一方、支持部材4の他方の端に備えられた測長部3’が1スキャンする間に得られた距離のうち最小値djと、他方の端(測長部3’が配置されている端)の測長角測定部で得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjとする。さらに支持部材4の両端間の長さLと、下記式4から、演算部(演算ステップ)において、測定対象平面10、10’の間の距離Dkを求め、前記測長部が測定中に得られたDkの最小値を前記測定対象平面の間の距離とすることができる。
Dk=di+dj+(L・cos(θi)+ L・cos(θj))/2 ・・・・・・(式4)
That is, the minimum value di among the distances obtained while the length measuring unit 3 provided at one end of the support member 4 performs one scan and one end (the end where the length measuring unit 3 is disposed) The measurement angle θi formed by the measurement direction and the reference axis when the minimum value di obtained by the measurement angle measurement unit is scanned is used. On the other hand, of the distances obtained while the length measuring unit 3 ′ provided at the other end of the support member 4 performs one scan, the minimum value dj and the other end (the end where the length measuring unit 3 ′ is disposed). ), The measurement angle θj formed by the measurement direction and the reference axis when the minimum value dj is scanned. Further, from the length L between both ends of the support member 4 and the following equation 4, the calculation unit (calculation step) obtains the distance Dk between the measurement target planes 10 and 10 ′, and the measurement unit obtains it during the measurement. The obtained minimum value of Dk can be set as the distance between the measurement object planes.
Dk = di + dj + (L · cos (θi) + L · cos (θj)) / 2 (Expression 4)

この場合も、片側にだけ測長部が配置された場合と同様、支持部材4の基準軸2が、測定対象平面10、10’に垂直になった時や、スキャン平面6、6’と測定対象平面10、10’が垂直に交わる時に、Dkの値が最小値になり、それが測定対象平面10、10’の間の距離となる。すなわち、逐次演算されるDkの値のうち、それらの最小値を求めて、それを測定対象平面10、10’の間の距離とすることができる。Dkが最小値になるとき、幾何学的にはθi=θjになる。   In this case, as in the case where the length measuring unit is arranged only on one side, the measurement is performed when the reference axis 2 of the support member 4 is perpendicular to the measurement target planes 10 and 10 ′, and the scan planes 6 and 6 ′. When the target planes 10 and 10 ′ intersect perpendicularly, the value of Dk becomes the minimum value, which is the distance between the measurement target planes 10 and 10 ′. That is, among the values of Dk that are sequentially calculated, the minimum value thereof can be obtained and used as the distance between the measurement target planes 10, 10 '. When Dk becomes the minimum value, geometrically θi = θj.

[表示部(表示ステップ)]
表示部(表示ステップ)(表示部は図示せず。)は、演算部で演算した結果を、作業者が認識できるように表示する機能を有する。具体的な表示手段(表示方法)は、作業者が認識できれば特に限定されない。例えば、液晶表示装置により演算結果を表示することができる。
[Display section (display step)]
The display unit (display step) (the display unit is not shown) has a function of displaying the result calculated by the calculation unit so that the operator can recognize it. Specific display means (display method) is not particularly limited as long as the operator can recognize it. For example, the calculation result can be displayed by a liquid crystal display device.

[距離測定作業の例とガイド装置]
作業者は、表示部に表示される最短距離を確認しつつ、作業することができる。
対象平面までの距離は、基準軸が測定対象平面に垂直になるように配置されたときに測定される。現実の測定作業では、基準軸を対象平面に厳密に垂直に配置させることは難しい。しかし、図5に測定作業の概念図を示すように、測長器によるスキャン平面6に対して、略垂直となるように、作業者が支持部材を動かすことにより(図5(b))、支持部材4の一端(測定基準点5)から、対象平面の測定される面(測定対象平面10)内の任意の範囲を、測長器が走査(スィープ)して測定することができる。このとき走査して測定した範囲を測定対象平面上のスィープ面32と呼ぶ。この時、測長器によるスキャン平面6が、対象物に垂直に配置されれば、対象物間の最短距離が求められる。すなわち、この時に対象物間の距離が求められる。
[Example of distance measurement work and guide device]
The operator can work while confirming the shortest distance displayed on the display unit.
The distance to the target plane is measured when the reference axis is arranged so as to be perpendicular to the measurement target plane. In actual measurement work, it is difficult to place the reference axis strictly perpendicular to the target plane. However, as shown in the conceptual diagram of the measurement operation in FIG. 5, when the operator moves the support member so as to be substantially perpendicular to the scan plane 6 by the length measuring device (FIG. 5B), The length measuring device can scan (sweep) and measure an arbitrary range within the surface (measurement target plane 10) of the target plane from one end (measurement reference point 5) of the support member 4. The range measured by scanning at this time is referred to as a sweep surface 32 on the measurement target plane. At this time, if the scanning plane 6 by the length measuring device is arranged perpendicular to the object, the shortest distance between the objects is obtained. That is, the distance between the objects is obtained at this time.

つまり、スキャン平面6が測定対象平面10に垂直に配置されたとき、支持部材4の基準軸2’は、図1では基準軸2に一致し、測定基準点5から測定対象平面10に下した垂線31は、図1の測定対象平面に下した垂線31に一致する。したがって、それらのなす角度(図1でのθi)から、測定基準点5と測定対象平面10との最短距離を算出することができる。
そのため、支持部材4の一端に測定部がある場合は、他方の一端(測定基準点5)を一方の対象物に固定し、支持部材4と測長部3を、例えば図5(b)の探索方向33のように、測長部3のスキャン平面6と略垂直になるように動かすことで、逐次変化する得られた距離の最小値をもって、効率的に対象物間の最短距離を判断することができる。
That is, when the scan plane 6 is arranged perpendicular to the measurement target plane 10, the reference axis 2 ′ of the support member 4 coincides with the reference axis 2 in FIG. 1 and is lowered from the measurement reference point 5 to the measurement target plane 10. The perpendicular line 31 coincides with the perpendicular line 31 drawn on the measurement target plane in FIG. Therefore, the shortest distance between the measurement reference point 5 and the measurement target plane 10 can be calculated from the angle formed by them (θi in FIG. 1).
Therefore, when there is a measurement part at one end of the support member 4, the other end (measurement reference point 5) is fixed to one object, and the support member 4 and the length measurement part 3 are, for example, shown in FIG. By moving the length measuring unit 3 so as to be substantially perpendicular to the scan plane 6 as in the search direction 33, the shortest distance between the objects is efficiently determined with the minimum value of the obtained distance that changes sequentially. be able to.

図6を用いて、少し具体的に説明する。図6(a)に示すように、スキャン平面6と測定対象平面10が垂直になったときは、測定基準点5から測定対象平面10に下した垂線31と基準軸2を含む平面と、スキャン平面6とが重なる場合である。このときに、測長器により測定した距離が最小値になることは容易に分かる。この時の状況を真上から見た図が図6(b)である。測長器3により測定した距離の最小値di、当該最小値diをスキャンした時の測定方向(すなわち、測長部3から測定対象平面10に下した垂線31’)と、測長部の基本軸(すなわち、支持部材の基準軸2)とがなす測長角θi、支持部材長さLから、対象物間の最短距離Diを前述の式1で求める。
Di=di+L・cos(θi) ・・・(式1)
A more specific description will be given with reference to FIG. As shown in FIG. 6A, when the scan plane 6 and the measurement target plane 10 are perpendicular to each other, the plane including the perpendicular line 31 and the reference axis 2 drawn from the measurement reference point 5 to the measurement target plane 10 and the scan This is a case where the plane 6 overlaps. At this time, it is easily understood that the distance measured by the length measuring device becomes the minimum value. FIG. 6B shows the situation at this time as viewed from directly above. The minimum distance di measured by the length measuring device 3, the measurement direction when the minimum value di is scanned (that is, the vertical line 31 'drawn from the length measuring section 3 to the measurement target plane 10), and the basics of the length measuring section From the measurement angle θi formed by the axis (that is, the reference axis 2 of the support member) and the support member length L, the shortest distance Di between the objects is obtained by the above-described Expression 1.
Di = di + L · cos (θi) (Formula 1)

図6(b)から分かるように、この時得られるDiは、支持部材の一端(測定基準点5)から測定対象平面10までの距離と等しくなることが分かる。即ち、スキャン平面6が測定対象平面10に対して垂直になれば、測定対象平面10までの距離を得ることができるのである。   As can be seen from FIG. 6B, it can be seen that Di obtained at this time is equal to the distance from one end of the support member (measurement reference point 5) to the measurement object plane 10. That is, if the scan plane 6 is perpendicular to the measurement target plane 10, the distance to the measurement target plane 10 can be obtained.

そのため、支持部材の片端に測長部を有する場合に、支持部材4と測長部3を、測長部3のスキャン平面6と略垂直になるように動かすようにするため、例えば支持部材4の一端(測定基準点)にガイド装置41を配置してもよい(図7)。図7に示すガイド装置41は、支持部材の端部(測定基準点)を中心に支持部材が一平面内を回転可能になるように配置されたものであり、その回転面が測長器3のスキャン平面6と略垂直になるよう、支持部材を固定するように構成されているとよい。これにより、スキャン平面に略垂直になるように測長器を走査(スィープ)することが簡便にできる。   Therefore, in the case where the length measuring unit is provided at one end of the support member, the support member 4 and the length measuring unit 3 are moved so as to be substantially perpendicular to the scan plane 6 of the length measuring unit 3, for example, the support member 4 A guide device 41 may be disposed at one end (measurement reference point) (FIG. 7). The guide device 41 shown in FIG. 7 is arranged so that the support member can rotate in one plane around the end portion (measurement reference point) of the support member, and the rotation surface thereof is the length measuring device 3. The support member may be fixed so as to be substantially perpendicular to the scan plane 6. This makes it easy to scan (sweep) the length measuring device so as to be substantially perpendicular to the scan plane.

支持部材の両端に測長部がある場合は、前述したように、それぞれの測長部での測定結果を足し合わせ、演算することにより、測定対象平面の間の距離を求めることができる。
ここで、図8に示すように、両端の測長部がスキャンする平面が同一平面内にあるときや、図9に示すように、支持部材の基準軸上の1点を固定して、測長部が測定するときについて説明する。つまり、図8、図9に示すように、スキャン平面6、6’と測定対象平面10、10’が垂直になったときは、各測長器3、3’の測定基準点(図8の場合は、それぞれの他方の端、すなわち、それぞれ測長器3’、3になる。また図9の場合は、基準軸上の1点45になる。)から測定対象平面10、10’に下した垂線31、31’、31’’と基準軸2を含む平面と、スキャン平面6、6’とが重なる場合である。このときに、それぞれの測長器により測定した距離が、それぞれの最小値になることは容易に分かる。この時の状況を真上から見た図(スキャン平面6、6’に対して、略垂直な方向から見たときの概念図)が図8、図9である。それぞれの測長部による距離の求め方は、前述したとおりである。
When there are length measuring units at both ends of the support member, as described above, the distance between the measurement target planes can be obtained by adding and calculating the measurement results of the respective length measuring units.
Here, as shown in FIG. 8, when the planes scanned by the length measuring units at both ends are within the same plane, or as shown in FIG. 9, one point on the reference axis of the support member is fixed and measured. The case where the long part is measured will be described. That is, as shown in FIGS. 8 and 9, when the scan planes 6 and 6 ′ and the measurement target planes 10 and 10 ′ are perpendicular to each other, the measurement reference points of the length measuring devices 3 and 3 ′ (see FIG. 8). In this case, the other ends, that is, the length measuring devices 3 ′ and 3, respectively, and in the case of FIG. This is the case where the perpendicular lines 31, 31 ′, 31 ″ and the plane including the reference axis 2 overlap the scan planes 6, 6 ′. At this time, it is easily understood that the distance measured by each length measuring device becomes the minimum value. FIGS. 8 and 9 are views of the situation at this time as viewed from directly above (conceptual views when viewed from a direction substantially perpendicular to the scan planes 6 and 6 ′). The method for obtaining the distance by each length measuring unit is as described above.

支持部材の両端に測長部がある場合は、支持部材4と測長部3、3’が、支持部材4の基準軸上の一点(図9の基準軸上の1点45に相当する点。)を中心に、同一平面内を回転できるようなガイド装置(冶具)42を用いてもよい(図10)。図10に示すように、ガイド装置42は、その回転面が測長部3、3’のスキャン平面6、6’と略垂直になるよう、支持部材を基準軸上の一点45で支持するように構成されているとよい。これにより、スキャン平面に略垂直になるように測長部を走査(スィープ)することが簡便にできる。   When there are length measuring portions at both ends of the support member, the support member 4 and the length measuring portions 3 and 3 ′ are a point on the reference axis of the support member 4 (a point corresponding to one point 45 on the reference axis in FIG. 9). .) May be used as a guide device (a jig) 42 that can rotate in the same plane (FIG. 10). As shown in FIG. 10, the guide device 42 supports the support member at a point 45 on the reference axis so that the rotation surface thereof is substantially perpendicular to the scan planes 6 and 6 ′ of the length measuring units 3 and 3 ′. It is good to be configured. Thereby, it is possible to easily scan the sweeping unit so as to be substantially perpendicular to the scan plane.

また、両端の測長部がスキャンする平面が同一平面内にあるときには、支持部材の基準軸上の1点を中心に回転させることなく、支持部材4と測長部3、3’が、同一平面内で可動(傾動)できるようなガイド装置(冶具)43を用いてもよい(図11)。図11に示すガイド装置42は、その可動(傾動)面が測長部3、3’のスキャン平面6、6’と略垂直になるよう、支持部材を支持するように構成されているとよい。これにより、スキャン平面に略垂直になるように測長部を走査(スィープ)することが簡便にできる。   Further, when the planes scanned by the length measuring units at both ends are in the same plane, the support member 4 and the length measuring units 3, 3 ′ are the same without rotating around one point on the reference axis of the support member. A guide device (jig) 43 that can move (tilt) in a plane may be used (FIG. 11). The guide device 42 shown in FIG. 11 may be configured to support the support member so that the movable (tilting) surface thereof is substantially perpendicular to the scan planes 6 and 6 ′ of the length measuring units 3 and 3 ′. . Thereby, it is possible to easily scan the sweeping unit so as to be substantially perpendicular to the scan plane.

例えば、測定対象平面に垂直な面として水平面を仮想できる場合、支持部材の一方の端に対して、他方の端を鉛直方向上方の位置から下方の位置に、もしくは下方の位置から上方の位置に動かせばよい。これを簡便に認識できるように、例えば、支持部材に水平器を配置してもよい。そして、水平器は、基準軸に平行に支持部材に配置されているとよい。水平器により、支持部材の傾きが水平を基準に逆向きになることを簡単に確認することができるからである。この場合、水平器が水平を示す状態のとき、基準軸も水平になっていることが容易に分かる。これは、測長部が片端のみに配置される場合にも、両端に配置される場合にも適用することができる。   For example, when the horizontal plane can be virtually assumed as a plane perpendicular to the measurement target plane, the other end is moved from the upper position in the vertical direction to the lower position or from the lower position to the upper position with respect to one end of the support member. Move it. For example, a level may be arranged on the support member so that this can be easily recognized. The level is preferably arranged on the support member in parallel to the reference axis. This is because it can be easily confirmed by the level device that the inclination of the support member is reversed with respect to the horizontal. In this case, it can be easily seen that the reference axis is also horizontal when the level is in the horizontal state. This can be applied to the case where the length measuring unit is arranged only at one end or both ends.

[記憶部および最小値判断部(記憶ステップおよび最小値判断ステップ)]
作業者が、作業をしながら表示部を確認し、最小値を確認することは容易ではない。そこで、作業者の確認作業に代わり、得られた距離の測定データを逐次記憶し、それらの中から最小値を求めるとよい。
記憶部(記憶ステップ)(記憶部は図示せず。)は、演算部にて得られた測定データを記憶する機能を有する。具体的な記憶手段(記憶方法)は特に限定されない。例えば、フラッシュメモリーなどに逐次記憶させることができる。
[Storage Unit and Minimum Value Determination Unit (Storage Step and Minimum Value Determination Step)]
It is not easy for the operator to check the display unit while checking the minimum value while working. Therefore, instead of the operator's confirmation work, it is preferable to sequentially store the obtained distance measurement data and obtain the minimum value from them.
The storage unit (storage step) (the storage unit is not shown) has a function of storing measurement data obtained by the calculation unit. Specific storage means (storage method) is not particularly limited. For example, it can be stored sequentially in a flash memory or the like.

最小値判断部(最小値判断ステップ)は、前記記憶部にて記憶した測定した測定データのうち、最小値を選択する機能を有する。具体的な最小値判断手段(最小値判断方法)は特に限定されない。例えば、マイクロプロセッサーの記憶部に記憶した測定データのうち最小値を選択するようプログラムしておくとよい。
こうして求められた測定データの最小値を対象物間の距離と判断することができる。
The minimum value determination unit (minimum value determination step) has a function of selecting the minimum value from the measured measurement data stored in the storage unit. A specific minimum value determining means (minimum value determining method) is not particularly limited. For example, it may be programmed to select the minimum value from the measurement data stored in the storage unit of the microprocessor.
The minimum value of the measurement data obtained in this way can be determined as the distance between the objects.

さらに作業の効率化の観点から、例えば、測定しながら最小値判断部で測定された測定データの最小値を判断し、一定期間最小値が更新されない場合は、既に対象物間の距離(この値が最小値になる)が得られたとして、作業者に通知するとよい。通知の方法は特に限定されないが、例えば、アラーム音を発生させるとよい。これにより、一連の測定時間を短縮しつつ、精度の高い測定ができる。   Further, from the viewpoint of improving work efficiency, for example, when the minimum value of the measurement data measured by the minimum value determination unit while measuring is determined and the minimum value is not updated for a certain period of time, the distance between the objects (this value is already set). It is better to notify the operator that the minimum value is obtained. The notification method is not particularly limited. For example, an alarm sound may be generated. Thereby, it is possible to perform highly accurate measurement while shortening a series of measurement times.

[実施例1]
直線状の支持部材を有し、その一端に、測長角測定機能付きレーザー式測長器を配置した本発明に係る距離測定装置にて、圧延機のハウジングにおける補助ロール・チョック支持面間の距離を測定した。
測長部:キーエンス社のLJ−V7080型(レーザー式平面スキャン型測長器)
距離の測定範囲が80±23mm
スキャン幅は32±7mm
スキャン周期は0.001秒
測定頻度は10000回/スキャン
支持部材:不変鋼(Fe−36Ni鋼(インバー合金))製
L1620mm×φ30mm
被測定対象:圧延機ハウジングの補助ロール・チョック支持板間距離(約1700mm)
測定方法:補助ロール・チョック支持面内の任意の9点での測定を1回とし、チョック支持面間距離を測定した。この測定を、5基の圧延機において行い、測定精度と、平均測定時間を求めた。
表1にその結果を示すように、本発明に係る距離測定装置は、従来のダイヤルゲージによる測定に比較し、測定精度で10倍向上し、測定時間は従来の20%(5分の1)になった。
[Example 1]
In the distance measuring device according to the present invention, which has a linear support member and has a laser length measuring device with a measuring angle measuring function at one end thereof, between the auxiliary roll and chock support surface in the housing of the rolling mill. The distance was measured.
Length measuring section: Keyence Corporation LJ-V7080 type (laser type plane scan type length measuring device)
Distance measurement range is 80 ± 23mm
Scan width is 32 ± 7mm
Scan cycle is 0.001 sec. Measurement frequency is 10,000 times / scan support member: made of invariant steel (Fe-36Ni steel (Invar alloy)) L1620mm × φ30mm
Object to be measured: Distance between auxiliary roll and chock support plate of rolling mill housing (about 1700mm)
Measurement method: Auxiliary roll / chock support surface was measured at any 9 points, and the distance between the chock support surfaces was measured. This measurement was performed in five rolling mills, and the measurement accuracy and average measurement time were determined.
As shown in Table 1, the distance measuring device according to the present invention improves measurement accuracy by 10 times compared with the measurement using the conventional dial gauge, and the measurement time is 20% (1/5) of the conventional measurement. Became.

[実施例2]
直線状の支持部材の両端に、実施例1で用いたレーザー式測長器を配置した本発明に係る距離測定装置にて、圧延機のハウジングにおける補助ロール・チョック支持面間の距離を測定した。支持部材、被測定対象は、実施例1と同じである。測定方法も、実施例1と同様にして行った。
表2にその結果を示す。支持部材の両端に測長部を配置した本発明に係る距離測定装置は、従来のダイヤルゲージによる測定に比較し、測定精度で10倍以上向上し、測定時間は従来の20%以下になった。
[Example 2]
The distance between the auxiliary roll and chock support surface in the housing of the rolling mill was measured with the distance measuring device according to the present invention in which the laser length measuring device used in Example 1 was arranged at both ends of the linear support member. . The support member and the measurement target are the same as those in the first embodiment. The measurement method was the same as in Example 1.
Table 2 shows the results. The distance measuring device according to the present invention in which the length measuring parts are arranged at both ends of the support member improves the measurement accuracy by 10 times or more compared with the measurement by the conventional dial gauge, and the measurement time is 20% or less than the conventional. .

本発明に係る測定装置および測定方法は、あらゆる設備、建築物などの互いに平行に対向する平面を有する平行柱間の距離測定に利用することができる。   INDUSTRIAL APPLICABILITY The measuring apparatus and measuring method according to the present invention can be used for measuring the distance between parallel columns having flat surfaces facing each other in parallel, such as all equipment and buildings.

1 本発明に係る測定装置
2 基準軸
3、3’ 測長部(測長器)
4 支持部材
5 測定基準点(測長部が配置されたとは反対側の端)
6、6’ スキャン平面
6’’ スキャン空間
7、7’ 平行柱(平行対向する面)
8 スキャン平面の中心角
9、9’ 基本軸
10、10’ 測定対象平面
21 圧延機ハウジング
22 補助ロール・チョック
23 補助ロール
24 作業ロール
25 作業ロール・チョック
26、26’ 作業ロール・チョック支持面
27、27’ 補助ロール・チョック支持面
31、31’、31’’ 測定対象平面の垂線
32 測定対象平面上のスィープ面
33 探索方向
41 ガイド装置(片端に測長部を配置した場合)
42 ガイド装置(両端に測長部を配置した場合)
43 ガイド装置(両端に測長部を配置した場合)
45 基準軸上の1点
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 based on this invention Reference | standard axis | shaft 3, 3 'Length measuring part (length measuring device)
4 Supporting member 5 Measurement reference point (end opposite to where the length measuring section is arranged)
6, 6 'scan plane 6 "scan space 7, 7' parallel column (parallel facing surfaces)
8 Scanning plane center angle 9, 9 'Basic axis 10, 10' Measuring plane 21 Rolling mill housing 22 Auxiliary roll / chock 23 Auxiliary roll 24 Work roll 25 Work roll / chock 26, 26 'Work roll / chock support surface 27 , 27 'Auxiliary roll / chock support surfaces 31, 31', 31 '' Vertical line of measurement target plane 32 Sweep surface on measurement target plane 33 Search direction 41 Guide device (when measuring part is arranged at one end)
42 Guide device (when measuring part is arranged at both ends)
43 Guide device (when measuring part is arranged at both ends)
45 One point on the reference axis

Claims (36)

測定対象となる平面までの距離を測定する距離測定装置であって、直線状の基準軸上に両端を有する支持部材と、前記支持部材の少なくとも一端に配置され、少なくとも前記基準軸を含む平面内をスキャンしつつ、測定対象平面との間の距離を非接触で測定する測長部と、前記測長部に付随して測定している方向と前記基準軸とがなす角度を測定する測長角測定部と、前記測定対象平面までの距離を演算する演算部と、前記演算部で演算した結果を表示する表示部とを有し、
前記演算部が、前記測長部により測定した距離と前記測長角測定部で測定した角度と前記支持部材の両端間の長さから、前記測定対象平面までの距離を演算することを特徴とする距離測定装置。
A distance measuring device for measuring a distance to a plane to be measured, a support member having both ends on a linear reference axis, and at least one end of the support member, and in a plane including at least the reference axis Measuring the distance between the measurement target plane and the measuring axis, and measuring the angle formed by the reference axis and the direction measured along with the length measuring section. An angle measurement unit, a calculation unit that calculates a distance to the measurement target plane, and a display unit that displays a result calculated by the calculation unit,
The calculation unit calculates the distance to the measurement target plane from the distance measured by the length measurement unit, the angle measured by the measurement angle measurement unit, and the length between both ends of the support member, Distance measuring device.
前記測長部が前記支持部材の一端に配置され、前記演算部が、前記支持部材の両端のうち前記測長部が配置された端とは反対側の端である測定基準点と、前記測定対象平面との距離を演算することを特徴とする請求項1に記載の距離測定装置。
The length measurement unit is disposed at one end of the support member, and the calculation unit is a measurement reference point that is an end opposite to an end of the support member on which the length measurement unit is disposed, and the measurement The distance measuring apparatus according to claim 1, wherein a distance from the target plane is calculated.
前記測長部が前記支持部材の両端に配置され、前記演算部が、前記測定対象平面の間の距離を演算することを特徴とする請求項1に記載の距離測定装置。
The distance measuring device according to claim 1, wherein the length measuring units are arranged at both ends of the support member, and the calculation unit calculates a distance between the measurement target planes.
前記演算部が、前記測長部が1スキャンする間に得られた距離のうち最小値diと、前記測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の両端間の長さLと、下記式1から、
前記測定基準点と前記測定対象平面との間の距離Diを求め、前記測長部が測定中に得られたDiの最小値を、前記測定基準点と前記測定対象平面との距離とすることを特徴とする請求項2に記載の距離測定装置。
Di=di+L・cos(θi) ・・・・・・(式1)
Among the distances obtained while the length measurement unit performs one scan, the calculation unit scans the minimum value di and the measurement direction and the reference axis obtained by the measurement angle measurement unit. And a length L between both ends of the support member, and the following formula 1,
A distance Di between the measurement reference point and the measurement target plane is obtained, and a minimum value of Di obtained by the length measurement unit during measurement is set as a distance between the measurement reference point and the measurement target plane. The distance measuring device according to claim 2.
Di = di + L · cos (θi) (Equation 1)
前記演算部が、前記支持部材の一方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値diと、前記一方の端の前記測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、
前記支持部材の前記基準軸上の1点を固定して、前記測長部が測定するときの、前記支持部材の前記基準軸上の固定した点から前記支持部材の一方の端までの距離Liと、
前記支持部材の他方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値djと、前記他方の端の前記測長角測定部で得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、
前記支持部材の前記基準軸上の固定した点から前記支持部材の他方の端までの距離Ljと、下記式2、式3から、前記支持部材の前記基準軸上の固定した点と前記測定対象平面との距離Di、Djを求め、前記測長部が測定中に得られたDiの最小値とDjの最小値を合計したものを、
前記測定対象平面の間の距離とすることを特徴とする請求項3に記載の距離測定装置。
Di=di+Li・cos(θi) ・・・・・・(式2)
Dj=dj+Lj・cos(θj) ・・・・・・(式3)
The calculation unit obtains the minimum value di among the distances obtained while the length measurement unit provided at one end of the support member performs one scan, and the length measurement angle measurement unit at the one end. A measurement angle θi formed by the measurement direction and the reference axis when scanning the minimum value di,
A distance Li from the fixed point on the reference axis of the support member to one end of the support member when the length measuring unit measures by fixing one point on the reference axis of the support member When,
Among the distances obtained while the length measuring unit provided at the other end of the support member performs one scan, the minimum value dj and the minimum value obtained by the length measuring angle measuring unit at the other end. a measurement angle θj formed by a measurement direction and a reference axis when dj is scanned;
The distance Lj from the fixed point on the reference axis of the support member to the other end of the support member, and the fixed point on the reference axis of the support member and the measurement object from the following formulas 2 and 3 The distances Di and Dj with respect to the plane are obtained, and the length measuring unit sums the minimum value of Di and the minimum value of Dj obtained during measurement.
The distance measuring device according to claim 3, wherein the distance is a distance between the measurement target planes.
Di = di + Li · cos (θi) (Equation 2)
Dj = dj + Lj · cos (θj) (Equation 3)
前記演算部が、前記支持部材の一方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値diと、前記一方の端の前記測長角測定部で得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の他方の端に備えられた前記測長部が1スキャンする間に得られた距離のうち最小値djと、前記他方の端の前記測長角測定部で得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、さらに前記支持部材の両端間の長さLと、下記式4から、
前記測定対象平面の間の距離Dkを求め、両端に配置された前記測長部がスキャンする平面が同一平面内にあるときに、前記測長部が測定中に得られたDkの最小値を前記測定対象平面の間の距離とすることを特徴とする請求項3に記載の距離測定装置。
Dk=di+dj+(L・cos(θi)+ L・cos(θj))/2 ・・・・・・(式4)
The calculation unit obtains the minimum value di among the distances obtained while the length measurement unit provided at one end of the support member performs one scan, and the length measurement angle measurement unit at the one end. And the distance obtained during one scan of the length measuring portion θi formed by the measurement direction and the reference axis when the minimum value di is scanned and the other end of the support member. , The measurement angle θj formed by the measurement direction when the minimum value dj is scanned and the reference axis, obtained by the measurement angle measurement unit at the other end, and the support member From the length L between both ends and the following formula 4,
The distance Dk between the measurement target planes is obtained, and when the planes scanned by the length measuring units arranged at both ends are in the same plane, the minimum value of Dk obtained by the length measuring unit during measurement is calculated. The distance measuring device according to claim 3, wherein the distance is a distance between the measurement target planes.
Dk = di + dj + (L · cos (θi) + L · cos (θj)) / 2 (Expression 4)
前記測定基準点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置を備えることを特徴とする請求項2または4に記載の距離測定装置。
The distance measuring device according to claim 2, further comprising a guide device that allows the support member to rotate in the same plane around the measurement reference point.
前記支持部材の前記基準軸上の1点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置を備えることを特徴とする請求項3または5に記載の距離測定装置。
The distance measuring device according to claim 3, further comprising a guide device that allows the support member to rotate in the same plane around one point on the reference axis of the support member.
前記支持部材が同一平面内を傾動できるようにするガイド装置を備えることを特徴とする請求項3または6に記載の距離測定装置。
The distance measuring device according to claim 3, further comprising a guide device that allows the support member to tilt in the same plane.
前記支持部材が回転または傾動したときの前記同一平面と、前記測長部がスキャンする平面とが垂直であることを特徴とする請求項7〜9のいずれか1項に記載の距離測定装置。
The distance measuring device according to claim 7, wherein the same plane when the support member rotates or tilts and a plane scanned by the length measuring unit are perpendicular to each other.
前記測定基準点が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面内上にあり、前記測定対象平面が、他方のライナー面であることを特徴とする請求項2、4、7のいずれか1項に記載の距離測定装置。
The measurement reference point is on one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the measurement target plane is the other liner surface. The distance measuring device according to any one of claims 2, 4, and 7, wherein:
前記測定対象平面の一方が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面であり、前記測定対象平面の他方が、他方のライナー面であることを特徴とする請求項3、5、6、8、9のいずれか1項に記載の距離測定装置。
One of the measurement target planes is one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the other measurement target plane is the other liner surface. The distance measuring device according to any one of claims 3, 5, 6, 8, and 9.
水平器が、前記基準軸に平行に前記支持部材に配置されていることを特徴とする請求項1〜12のいずれか1項に記載の距離測定装置。
The distance measuring device according to claim 1, wherein a leveling device is disposed on the support member in parallel with the reference axis.
前記測長部が、超音波またはレーザーを用いて測定することを特徴とする請求項1〜13のいずれか1項に記載の距離測定装置。
The distance measuring device according to any one of claims 1 to 13, wherein the length measuring unit measures using an ultrasonic wave or a laser.
前記演算部により得られた距離を記憶する記憶部と、記憶した距離のうち最小値を判断する最小値判断部とを有し、得られた最小値を前記表示部に表示することを特徴とする請求項1〜14のいずれか1項に記載の距離測定装置。
A storage unit that stores the distance obtained by the calculation unit; and a minimum value determination unit that determines a minimum value of the stored distances, and the obtained minimum value is displayed on the display unit. The distance measuring device according to any one of claims 1 to 14.
前記支持部材が、不変鋼からなることを特徴とする請求項1〜15のいずれか1項に記載の距離測定装置。
The distance measuring apparatus according to claim 1, wherein the support member is made of invariant steel.
前記支持部材が、前記基準軸方向に伸縮調整可能であることを特徴とする請求項1〜16のいずれか1項に記載の距離測定装置。
The distance measuring device according to claim 1, wherein the support member is adjustable in expansion and contraction in the reference axis direction.
前記測長部のスキャン周期が0.001秒以下であることを特徴とする請求項1〜17のいずれか1項に記載の距離測定装置。
The distance measuring device according to claim 1, wherein a scan cycle of the length measuring unit is 0.001 second or less.
測定対象となる平面までの距離を測定する距離測定方法であって、直線状の基準軸上に両端を有する支持部材の少なくとも一端において、少なくとも前記基準軸を含む平面内をスキャンしつつ、測定対象平面との間の距離を非接触で測定する測長ステップと、前記測長ステップに付随して測定している方向と前記基準軸とがなす角度を測定する測長角測定ステップと、前記測定対象平面までの距離を演算する演算ステップと、前記演算ステップで演算した結果を表示する表示ステップとを有し、
前記演算ステップが、前記測長ステップにより測定した距離と前記測長角測定ステップで測定した角度と前記支持部材の両端間の長さから、前記測定対象平面までの距離を演算することを特徴とする距離測定方法。
A distance measurement method for measuring a distance to a plane to be measured, wherein at least one end of a support member having both ends on a linear reference axis is scanned while scanning at least the plane including the reference axis. A length measuring step for measuring the distance between the flat surface in a non-contact manner, a length measuring angle measuring step for measuring an angle formed by a direction measured along with the length measuring step and the reference axis, and the measurement A calculation step for calculating the distance to the target plane; and a display step for displaying the result calculated in the calculation step,
The calculating step calculates a distance to the measurement target plane from the distance measured in the length measuring step, the angle measured in the length measuring angle measuring step, and the length between both ends of the support member. How to measure distance.
前記測長ステップが、前記支持部材の一端において、前記測定対象平面との間の距離を非接触で測定し、
前記演算ステップが、前記支持部材の他端である測定基準点と前記測定対象平面との距離を演算することを特徴とする請求項19に記載の距離測定方法。
The length measurement step measures the distance between the measurement target plane at one end of the support member in a non-contact manner,
The distance measuring method according to claim 19, wherein the calculating step calculates a distance between a measurement reference point that is the other end of the support member and the measurement target plane.
前記測長ステップが、前記支持部材の両端のそれぞれにおいて、前記測定対象平面との間の距離を非接触で測定し、
前記演算ステップが、前記測定対象平面の間の距離を算出することを特徴とする請求項19に記載の距離測定方法。
The length measuring step measures the distance between the measurement target planes at each end of the support member in a non-contact manner,
The distance measuring method according to claim 19, wherein the calculating step calculates a distance between the measurement target planes.
前記演算ステップが、前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値diと、前記測長角測定ステップで得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の両端間の長さLと、下記式1から、
前記測定基準点と前記測定対象平面との間の距離Diを求め、前記測定ステップにより測定中に得られたDiの最小値を、前記測定基準点と前記測定対象平面との距離とすることを特徴とする請求項20に記載の距離測定方法。
Di=di+L・cos(θi) ・・・・・・(式1)
Among the distances obtained during one scan in the length measurement step, the calculation step is the minimum value di, and the measurement direction and the reference axis obtained when the minimum value di is scanned in the length measurement angle measurement step. And a length L between both ends of the support member, and the following formula 1,
A distance Di between the measurement reference point and the measurement target plane is obtained, and a minimum value of Di obtained during the measurement by the measurement step is set as a distance between the measurement reference point and the measurement target plane. 21. A distance measuring method according to claim 20, wherein
Di = di + L · cos (θi) (Equation 1)
前記演算ステップが、前記支持部材の一方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値diと、前記一方の端での前記測長角測定ステップで得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、
前記支持部材の前記基準軸上の1点を固定して、前記測長ステップで測定するときの、前記支持部材の前記基準軸上の固定した点から前記支持部材の一方の端までの距離Liと、
前記支持部材の他方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値djと、前記他方の端での測長角測定ステップで得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、
前記支持部材の前記基準軸上の固定した点から前記支持部材の他方の端までの距離Ljと、下記式2、式3から、前記支持部材の前記基準軸上の固定した点と前記測定対象平面との距離Di、Djを求め、前記測長ステップで測定中に得られたDiの最小値とDjの最小値を合計したものを、
前記測定対象平面の間の距離とすることを特徴とする請求項21に記載の距離測定方法。
Di=di+Li・cos(θi) ・・・・・・(式2)
Dj=dj+Lj・cos(θj) ・・・・・・(式3)
The calculation step is obtained by the minimum value di among the distances obtained during one scan in the length measurement step at one end of the support member and the length measurement angle measurement step at the one end. , The measurement angle θi formed by the measurement direction and the reference axis when scanning the minimum value di,
A distance Li from the fixed point on the reference axis of the support member to one end of the support member when one point on the reference axis of the support member is fixed and measured in the length measuring step When,
Among the distances obtained during one scan in the length measuring step at the other end of the support member, the minimum value dj obtained in the length measuring angle measuring step at the other end Measurement angle θj formed by the measurement direction and the reference axis when scanned,
The distance Lj from the fixed point on the reference axis of the support member to the other end of the support member, and the fixed point on the reference axis of the support member and the measurement object from the following formulas 2 and 3 The distances Di and Dj with respect to the plane are obtained, and the sum of the minimum value of Di and the minimum value of Dj obtained during the measurement in the length measurement step,
The distance measurement method according to claim 21, wherein the distance is a distance between the measurement target planes.
Di = di + Li · cos (θi) (Equation 2)
Dj = dj + Lj · cos (θj) (Equation 3)
前記演算ステップが、前記支持部材の一方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値diと、前記一方の端での前記測長角測定ステップで得られる、当該最小値diをスキャンした時の測定方向と基準軸とがなす測長角θiと、前記支持部材の他方の端での前記測長ステップにおいて1スキャンする間に得られた距離のうち最小値djと、前記他方の端での前記測長角測定ステップで得られる、当該最小値djをスキャンした時の測定方向と基準軸とがなす測長角θjと、さらに前記支持部材の両端間の長さLと、下記式4から、
前記測定対象平面の間の距離Dkを求め、両端での測長ステップにおいてスキャンする平面が同一平面内にあるときに、前記測長ステップにおいて測定中に得られたDkの最小値を前記測定対象平面の間の距離とすることを特徴とする請求項21に記載の距離測定方法。
Dk=di+dj+(L・cos(θi)+ L・cos(θj))/2 ・・・・・・(式4)
The calculation step is obtained by the minimum value di among the distances obtained during one scan in the length measurement step at one end of the support member and the length measurement angle measurement step at the one end. , The measurement angle θi formed by the measurement direction and the reference axis when the minimum value di is scanned, and the minimum distance among the distances obtained during one scan in the measurement step at the other end of the support member The value dj, the measurement angle θj formed by the measurement direction when the minimum value dj is scanned and the reference axis, obtained in the measurement angle measurement step at the other end, and between both ends of the support member From the length L and the following formula 4,
The distance Dk between the measurement target planes is obtained, and when the planes to be scanned in the length measurement steps at both ends are in the same plane, the minimum value of Dk obtained during the measurement in the length measurement step is determined as the measurement target. The distance measuring method according to claim 21, wherein the distance is a distance between planes.
Dk = di + dj + (L · cos (θi) + L · cos (θj)) / 2 (Expression 4)
前記測定基準点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置により、前記支持部材が、前記測定基準点を中心に同一平面内を回転することを特徴とする請求項20または22に記載の距離測定方法。
The guide member that allows the support member to rotate in the same plane around the measurement reference point, wherein the support member rotates in the same plane around the measurement reference point. The distance measuring method according to 20 or 22.
前記支持部材の前記基準軸上の1点を中心に、前記支持部材が同一平面内を回転できるようにするガイド装置により、前記支持部材が、前記支持部材の前記基準軸上の1点を中心に同一平面内を回転することを特徴とする請求項21または23に記載の距離測定方法。
With the guide device that allows the support member to rotate within the same plane around one point on the reference axis of the support member, the support member is centered on one point on the reference axis of the support member. 24. The distance measuring method according to claim 21, wherein the distance is rotated in the same plane.
前記支持部材が同一平面内を傾動できるようにするガイド装置により、前記支持部材が、同一平面内を傾動することを特徴とする請求項21または24に記載の距離測定方法。
The distance measuring method according to claim 21 or 24, wherein the support member is tilted in the same plane by a guide device that allows the support member to tilt in the same plane.
前記支持部材が回転または傾動したときの前記同一平面と、前記測長ステップにおいてスキャンする平面とが垂直であることを特徴とする請求項25〜27のいずれか1項に記載の距離測定方法。
The distance measuring method according to any one of claims 25 to 27, wherein the same plane when the support member rotates or tilts and a plane scanned in the length measuring step are perpendicular to each other.
前記測定基準点が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面内上にあり、前記測定対象平面が、他方のライナー面であることを特徴とする請求項20、22、25のいずれか1項に記載の距離測定方法。
The measurement reference point is on one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the measurement target plane is the other liner surface. The distance measuring method according to any one of claims 20, 22, and 25.
前記測定対象平面の一方が、圧延機のハウジングに設置され圧延方向に相互に対向した一対のライナー面の内、一方のライナー面であり、前記測定対象平面の他方が、他方のライナー面であることを特徴とする請求項21、23、24、26、27のいずれか1項に記載の距離測定方法。
One of the measurement target planes is one liner surface of a pair of liner surfaces installed in a rolling mill housing and facing each other in the rolling direction, and the other measurement target plane is the other liner surface. The distance measuring method according to any one of claims 21, 23, 24, 26, and 27.
前記基準軸に平行に前記支持部材に配置された水平器により、一方の端が、他方の端に対し、少なくとも鉛直方向上方から下方もしくは鉛直方向下方から上方になるように、前記支持部材を動かすことを特徴とする請求項19〜30のいずれか1項に記載の距離測定方法。
The support member is moved by a leveler arranged on the support member in parallel with the reference axis so that one end thereof is at least from the upper side in the vertical direction or the lower side in the vertical direction relative to the other end. The distance measuring method according to any one of claims 19 to 30, wherein
前記測長ステップが、超音波またはレーザーを用いて測定することを特徴とする請求項19〜31のいずれか1項に記載の距離測定方法。
The distance measuring method according to any one of claims 19 to 31, wherein the length measuring step uses ultrasonic waves or a laser.
前記演算ステップにより得られた距離を記憶する記憶ステップと、記憶した距離のうち最小値を判断する最小値判断ステップとを有し、前記表示ステップが得られた最小値を表示することを特徴とする請求項19〜32のいずれか1項に記載の距離測定方法。
A storage step for storing the distance obtained by the calculation step; and a minimum value determination step for determining a minimum value among the stored distances, wherein the minimum value obtained by the display step is displayed. The distance measuring method according to any one of claims 19 to 32.
前記支持部材が、不変鋼からなることを特徴とする請求項19〜33のいずれか1項に記載の距離測定方法。
The distance measuring method according to any one of claims 19 to 33, wherein the support member is made of invariant steel.
前記支持部材が、前記基準軸方向に伸縮調整可能であることを特徴とする請求項19〜34のいずれか1項に記載の距離測定方法。
The distance measuring method according to any one of claims 19 to 34, wherein the support member is adjustable in expansion and contraction in the reference axis direction.
前記測長ステップでのスキャン周期が0.001秒以下であることを特徴とする請求項19〜35のいずれか1項に記載の距離測定方法。   36. The distance measuring method according to any one of claims 19 to 35, wherein a scan cycle in the length measuring step is 0.001 second or less.
JP2017079874A 2016-10-19 2017-04-13 Distance measuring device and distance measuring method Active JP6834735B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205290 2016-10-19
JP2016205290 2016-10-19

Publications (2)

Publication Number Publication Date
JP2018066718A true JP2018066718A (en) 2018-04-26
JP6834735B2 JP6834735B2 (en) 2021-02-24

Family

ID=62086048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017079874A Active JP6834735B2 (en) 2016-10-19 2017-04-13 Distance measuring device and distance measuring method

Country Status (1)

Country Link
JP (1) JP6834735B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552584A (en) * 2020-11-03 2021-10-26 M·H·帕诺蒂安 Dual laser measuring device and online ordering system using same
JP2022113661A (en) * 2021-01-23 2022-08-04 エイチ. パノシアン,マイケル Laser distance measurement device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110107U (en) * 1983-01-17 1984-07-25 川崎製鉄株式会社 Rolling mill housing-roll chock clearance monitoring device
JPS6443711A (en) * 1987-08-11 1989-02-16 Fujitec Kk Surface strain measuring instrument
JP2001264025A (en) * 2000-03-15 2001-09-26 Kawasaki Steel Corp Method and instrument for measuring distance between rolls
US20070185681A1 (en) * 2006-02-08 2007-08-09 Honeywell International Inc. Mapping systems and methods
US20140007442A1 (en) * 2011-03-23 2014-01-09 Hexagon Technology Center Gmbh Working tool positioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110107U (en) * 1983-01-17 1984-07-25 川崎製鉄株式会社 Rolling mill housing-roll chock clearance monitoring device
JPS6443711A (en) * 1987-08-11 1989-02-16 Fujitec Kk Surface strain measuring instrument
JP2001264025A (en) * 2000-03-15 2001-09-26 Kawasaki Steel Corp Method and instrument for measuring distance between rolls
US20070185681A1 (en) * 2006-02-08 2007-08-09 Honeywell International Inc. Mapping systems and methods
US20140007442A1 (en) * 2011-03-23 2014-01-09 Hexagon Technology Center Gmbh Working tool positioning system
JP2014514170A (en) * 2011-03-23 2014-06-19 ヘキサゴン・テクノロジー・センター・ゲーエムベーハー Machine tool positioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552584A (en) * 2020-11-03 2021-10-26 M·H·帕诺蒂安 Dual laser measuring device and online ordering system using same
JP2022113661A (en) * 2021-01-23 2022-08-04 エイチ. パノシアン,マイケル Laser distance measurement device
TWI811969B (en) * 2021-01-23 2023-08-11 麥克 H 潘納森 Electronic device, system and method for distance measurement using laser
JP7426420B2 (en) 2021-01-23 2024-02-01 エイチ. パノシアン,マイケル laser distance measuring device

Also Published As

Publication number Publication date
JP6834735B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
EP3093611B1 (en) Measuring method and device to measure the straightness error of bars and pipes
US6442857B1 (en) Portable surface inspector
Summan et al. Spatial calibration of large volume photogrammetry based metrology systems
KR20080044873A (en) Optical device, and method of measuring the dimension of object using optical device
CN105157606A (en) Non-contact type high-precision three-dimensional measurement method and measurement device for complex optical surface shapes
TW201022623A (en) Apparatus and method for measuring displacement of a curved surface using dual laser beams
JP6834735B2 (en) Distance measuring device and distance measuring method
JP2009092419A5 (en)
US20140240716A1 (en) Apparatus, system and method for measuring straightness of components of rotating assemblies
JP4705792B2 (en) Inter-axis angle correction method
JP2012058057A (en) Gage for three-dimensional coordinate measuring instrument and precision evaluation method for three-dimensional coordinate measuring instrument
Leach et al. Dimensional metrology
JP2018161666A (en) Rotor profile measuring method
Kainat et al. Identifying initial imperfection patterns of energy pipes using a 3D laser scanner
JP2019152681A (en) Device and method for inspecting cracks
JP6170385B2 (en) Measuring device, measuring method, and article manufacturing method
RU182390U1 (en) DEVICE FOR DETERMINING THE DEVIATIONS FROM THE PLANE OF THE SURFACE OF THE PRODUCTS
JP6596221B2 (en) Crack inspection apparatus and crack inspection method
JP2009066611A (en) Device and method for measuring diameter of rolling roll of grinding machine
JP2018077065A (en) Survey method and location survey device
JP2010185804A (en) Shape measuring apparatus, shape measuring method, and program
Wendel Measurement of freeforms and complex geometries by use of tactile profilometry and multi-wavelength interferometry
JP7201208B2 (en) Calibration gauge and calibration method
JP5051567B2 (en) Surface shape displacement measuring device and measuring method
JP6599137B2 (en) Plane shape measuring apparatus and plane shape calculating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R151 Written notification of patent or utility model registration

Ref document number: 6834735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151