JP2018065966A - Polyarylene sulfide resin composition, molded article and method for producing them - Google Patents

Polyarylene sulfide resin composition, molded article and method for producing them Download PDF

Info

Publication number
JP2018065966A
JP2018065966A JP2016206886A JP2016206886A JP2018065966A JP 2018065966 A JP2018065966 A JP 2018065966A JP 2016206886 A JP2016206886 A JP 2016206886A JP 2016206886 A JP2016206886 A JP 2016206886A JP 2018065966 A JP2018065966 A JP 2018065966A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
sulfide resin
resin composition
range
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016206886A
Other languages
Japanese (ja)
Other versions
JP6866609B2 (en
Inventor
啓一郎 深澤
Keiichiro Fukazawa
啓一郎 深澤
隆平 黒川
Ryuhei Kurokawa
隆平 黒川
豊 丸山
Yutaka Maruyama
豊 丸山
早織 奈良
Saori Nara
早織 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2016206886A priority Critical patent/JP6866609B2/en
Publication of JP2018065966A publication Critical patent/JP2018065966A/en
Application granted granted Critical
Publication of JP6866609B2 publication Critical patent/JP6866609B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a polyarylene sulfide resin composition capable of producing a molded article excellent in heat resistance while enabling molding on low temperature condition; a polyarylene sulfide resin molded article excellent in heat resistance; and a method for producing them with good productivity.SOLUTION: There are provided: a method for producing a polyarylene sulfide resin composition which includes blending a polyarylene sulfide resin having a sodium atom content in a range of 650 ppm or less and alkali earth metal salt of an organic carboxylic acid, and melt-kneading the substances; a polyarylene sulfide resin composition which is obtained by the production method, and has a high melting point and low re-crystallization temperature, a molded article using the resin composition and a method for producing the same; and a method for lowering a re-crystallization temperature (Tc2) of a polyarylene sulfide resin composition which includes blending a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and alkali earth metal salt of an organic carboxylic acid, and melt-kneading the substances.SELECTED DRAWING: None

Description

本発明は、低温条件での成形が可能でありながら、耐熱性にも優れるポリアリーレンスルフィド樹脂組成物に関する。   The present invention relates to a polyarylene sulfide resin composition that can be molded under low temperature conditions and is excellent in heat resistance.

ポリアリーレンスルフィド樹脂は、耐熱性や耐薬品性に優れる特徴を生かし、電気・電子機器部品や自動車部品等様々な用途に用いられている。ポリアリーレンスルフィド樹脂等の熱可塑性樹脂の成形には射出成形、押出成形、圧縮成形、ブロー成形等の様々な溶融加工法が採用されており、このうち射出成形法は複雑な形状の成形物を大量生産する場合に好適な成形法として広く利用されている。射出成形法では樹脂を融点以上の温度に加熱して流動性を高め、これを適切な温度に加熱した金型に射出充填し、冷却し固化させて成形物を得る。従来のポリアリーレンスルフィド樹脂の場合、適切な金型温度は130〜180℃程度と比較的高温であることから、成形サイクルにおいて金型の再加熱に要するエネルギーと時間とが生産効率に大きく影響していることから、再結晶化温度(Tc2)が低く、より低い金型温度で成形が可能なポリアリーレンスルフィド樹脂の開発が望まれていた。   Polyarylene sulfide resins are used in various applications such as electrical / electronic equipment parts and automobile parts, taking advantage of their excellent heat resistance and chemical resistance. Various melt processing methods such as injection molding, extrusion molding, compression molding, blow molding and the like are used for molding thermoplastic resins such as polyarylene sulfide resins. It is widely used as a molding method suitable for mass production. In the injection molding method, the resin is heated to a temperature equal to or higher than the melting point to improve fluidity, and this is injected and filled into a mold heated to an appropriate temperature, cooled and solidified to obtain a molded product. In the case of a conventional polyarylene sulfide resin, the appropriate mold temperature is relatively high, about 130 to 180 ° C., so the energy and time required for reheating the mold during the molding cycle greatly affect the production efficiency. Therefore, it has been desired to develop a polyarylene sulfide resin having a low recrystallization temperature (Tc2) and capable of being molded at a lower mold temperature.

ポリアリーレンスルフィド樹脂の再結晶化温度(Tc2)を低下させる方法として、有機カルボン酸アルカリ土類金属塩の存在下で、環式ポリアリーレンスルフィド樹脂を高重合度化させる方法が知られている(特許文献1参照)。しかしながら、この方法は、ポリアリーレンスルフィド樹脂を製造する際に生成されるオリゴマー成分を、ポリアリーレンスルフィド樹脂成分や、反応溶媒、水、ハロゲン化アルカリ金属塩を含む反応生成物から分離回収し、さらに得られたオリゴマー成分から線状ポリアリーレンスルフィドオリゴマーを除き、環式ポリアリーレンスフィドオリゴマーを高濃度化させる精製操作を経る必要があり、極めて生産性が低いものであった。   As a method for reducing the recrystallization temperature (Tc2) of the polyarylene sulfide resin, a method for increasing the degree of polymerization of the cyclic polyarylene sulfide resin in the presence of an alkaline earth metal salt of an organic carboxylic acid is known ( Patent Document 1). However, this method separates and recovers the oligomer component produced when the polyarylene sulfide resin is produced from the reaction product containing the polyarylene sulfide resin component, the reaction solvent, water, and the alkali metal halide, The linear polyarylene sulfide oligomer was removed from the obtained oligomer component, and it was necessary to go through a purification operation to increase the concentration of the cyclic polyarylene sulfide oligomer, and the productivity was extremely low.

また、ポリアリーレンスルフィド樹脂の再結晶化温度(Tc2)を低下させる他の方法として、パラジクロロベンゼンとメタジクロロベンゼンとを共重合させる方法が知られている(特許文献2参照)。しかしながら、この方法により得られる樹脂は再結晶化温度(Tc2)を低下させ、低温成形性に優れる一方で、耐熱性も著しく低下してしまい、低温成形性と耐熱性とを両立し得るものではなかった。   As another method for reducing the recrystallization temperature (Tc2) of the polyarylene sulfide resin, a method of copolymerizing paradichlorobenzene and metadichlorobenzene is known (see Patent Document 2). However, the resin obtained by this method lowers the recrystallization temperature (Tc2) and is excellent in low-temperature formability, while the heat resistance is remarkably lowered, and the low-temperature formability and heat resistance can be compatible. There wasn't.

WO2015/098748A1パンフレットWO2015 / 098748A1 brochure 特開2014−051655号公報JP 2014-051655 A

したがって本発明が解決しようとする課題は、低温条件での成形が可能でありながら、耐熱性に優れる成形品を製造可能なポリアリーレンスルフィド樹脂組成物、耐熱性に優れたポリアリーレンスルフィド樹脂成形品、およびこれらを生産性よく製造する方法を提供することにある。   Therefore, the problem to be solved by the present invention is that a polyarylene sulfide resin composition capable of producing a molded article having excellent heat resistance while being molded under low temperature conditions, and a polyarylene sulfide resin molded article having excellent heat resistance And providing a method for producing them with high productivity.

本発明者らは上記課題を解決する為、鋭意努力した結果、末端に結合するナトリウム原子量を低減したポリアリーレンスルフィド樹脂を用い、これをアルカリ土類金属塩に由来するアルカリ土類金属原子と配合するという簡便な方法により、低温条件での成形が可能でありながら、かつ、耐熱性に優れる成形品を製造可能なポリアリーレンスルフィド樹脂組成物、および、耐熱性に優れたポリアリーレンスルフィド樹脂成形品が得られることを見出し、本発明を完成するに至った。   As a result of diligent efforts to solve the above problems, the present inventors used a polyarylene sulfide resin having a reduced amount of sodium atoms bonded to the terminal, and blended it with an alkaline earth metal atom derived from an alkaline earth metal salt. A polyarylene sulfide resin composition capable of producing a molded article having excellent heat resistance while being moldable under low temperature conditions by a simple method, and a polyarylene sulfide resin molded article having excellent heat resistance Has been found, and the present invention has been completed.

すなわち、本発明は、ナトリウム原子含有量が650ppm以下の範囲であるポリアリーレンスルフィド樹脂と、有機カルボン酸のアルカリ土類金属塩とを配合し、溶融混練することを特徴とするポリアリーレンスルフィド樹脂組成物の製造方法に関する。   That is, the present invention provides a polyarylene sulfide resin composition comprising a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an alkaline earth metal salt of an organic carboxylic acid, and melt kneading. The present invention relates to a method for manufacturing a product.

また、本発明は、ナトリウム原子含有量が650ppm以下であるポリアリーレンスルフィド樹脂と、有機カルボン酸アルカリ土類金属塩とを必須成分として配合してなるポリアリーレンスルフィド樹脂組成物に関する。   The present invention also relates to a polyarylene sulfide resin composition comprising a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an organic carboxylic acid alkaline earth metal salt as essential components.

また、本発明は、前記ポリアリーレンスルフィド樹脂組成物を成形してなる成形品に関する。   Moreover, this invention relates to the molded article formed by shape | molding the said polyarylene sulfide resin composition.

また、本発明は、前記ポリアリーレンスルフィド樹脂組成物を金型内で成型する工程を有する成形品の製造方法であって、金型温度が40〜180℃の範囲であることを特徴とする成形品の製造方法に関する。   The present invention is also a method for producing a molded article comprising a step of molding the polyarylene sulfide resin composition in a mold, wherein the mold temperature is in the range of 40 to 180 ° C. The present invention relates to a method for manufacturing a product.

また、本発明は、ナトリウム原子含有量が650ppm以下であるポリアリーレンスルフィド樹脂と、有機カルボン酸アルカリ土類金属塩とを配合し、溶融混練することを特徴とするポリアリーレンスルフィド樹脂組成物の再結晶化温度(Tc2)の低下方法に関する。   In addition, the present invention provides a polyarylene sulfide resin composition characterized in that a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an alkaline earth metal salt of an organic carboxylic acid are blended and melt-kneaded. The present invention relates to a method for lowering the crystallization temperature (Tc2).

本発明によれば、低温条件での成形が可能でありながら、耐熱性に優れる成形品を製造可能なポリアリーレンスルフィド樹脂組成物、耐熱性に優れたポリアリーレンスルフィド樹脂成形品、およびこれらを生産性よく製造する方法を提供することができる。   According to the present invention, a polyarylene sulfide resin composition capable of producing a molded product having excellent heat resistance while being capable of being molded under low temperature conditions, a polyarylene sulfide resin molded product having excellent heat resistance, and production thereof It is possible to provide a method for manufacturing with good performance.

本発明のポリアリーレンスルフィド樹脂組成物の製造方法は、ナトリウム原子含有量が650ppm以下の範囲であるポリアリーレンスルフィド樹脂と、アルカリ土類金属塩とを必須成分として配合し、溶融混練することを特徴とする。   The method for producing a polyarylene sulfide resin composition of the present invention is characterized in that a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an alkaline earth metal salt are blended as essential components and melt-kneaded. And

本発明の製造方法の必須成分である、ポリアリーレンスルフィド樹脂は、芳香族環と硫黄原子とが結合した構造を繰り返し単位とする樹脂構造を有するものであり、具体的には、下記一般式(1)   The polyarylene sulfide resin, which is an essential component of the production method of the present invention, has a resin structure having a repeating unit of a structure in which an aromatic ring and a sulfur atom are bonded. Specifically, the polyarylene sulfide resin has the following general formula ( 1)

Figure 2018065966
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4の範囲のアルキル基、ニトロ基、アミノ基、フェニル基、メトキシ基、エトキシ基を表す。)で表される構造部位と、必要に応じてさらに下記一般式(2)
Figure 2018065966
(Wherein R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a nitro group, an amino group, a phenyl group, a methoxy group, or an ethoxy group). And, if necessary, the following general formula (2)

Figure 2018065966
で表される3官能性の構造部位と、を繰り返し単位とする樹脂である。式(2)で表される3官能性の構造部位は、他の構造部位との合計モル数に対して0.001〜3モル%の範囲が好ましく、特に0.01〜1モル%の範囲であることが好ましい。
Figure 2018065966
And a trifunctional structural moiety represented by formula (1). The trifunctional structural site represented by the formula (2) is preferably in the range of 0.001 to 3 mol%, particularly in the range of 0.01 to 1 mol%, based on the total number of moles with other structural sites. It is preferable that

ここで、前記一般式(1)で表される構造部位は、特に該式中のR及びRは、前記ポリアリーレンスルフィド樹脂の機械的強度の点から水素原子であることが好ましく、その場合、下記式(3)で表されるパラ位で結合するもの、及び下記式(4)で表されるメタ位で結合するものが挙げられる。 Here, in the structural part represented by the general formula (1), R 1 and R 2 in the formula are preferably hydrogen atoms from the viewpoint of the mechanical strength of the polyarylene sulfide resin. In this case, those bonded at the para position represented by the following formula (3) and those bonded at the meta position represented by the following formula (4) are exemplified.

Figure 2018065966
これらの中でも、特に繰り返し単位中の芳香族環に対する硫黄原子の結合は前記一般式(3)で表されるパラ位で結合した構造であることが前記ポリアリーレンスルフィド樹脂の耐熱性や結晶性の面で好ましい。
Figure 2018065966
Among these, in particular, the bond of the sulfur atom to the aromatic ring in the repeating unit is a structure bonded at the para-position represented by the general formula (3). In terms of surface.

また、前記ポリアリーレンスルフィド樹脂は、前記一般式(1)や(2)で表される構造部位のみならず、下記の構造式(5)〜(8)   Further, the polyarylene sulfide resin is not limited to the structural portion represented by the general formulas (1) and (2), but also includes the following structural formulas (5) to (8).

Figure 2018065966
で表される構造部位を、前記一般式(1)と一般式(2)で表される構造部位との合計の30モル%以下で含んでいてもよい。特に本発明では上記一般式(5)〜(8)で表される構造部位は10モル%以下であることが、ポリアリーレンスルフィド樹脂の耐熱性、機械的強度の点から好ましい。前記ポリアリーレンスルフィド樹脂中に、上記一般式(5)〜(8)で表される構造部位を含む場合、それらの結合様式としては、ランダム共重合体、ブロック共重合体の何れであってもよい。
Figure 2018065966
The structural site represented by the formula (1) and the structural site represented by the general formula (2) may be included at 30 mol% or less. In particular, in the present invention, the structural sites represented by the general formulas (5) to (8) are preferably 10 mol% or less from the viewpoint of heat resistance and mechanical strength of the polyarylene sulfide resin. In the case where the polyarylene sulfide resin contains a structural moiety represented by the above general formulas (5) to (8), the bonding mode thereof may be either a random copolymer or a block copolymer. Good.

また、前記ポリアリーレンスルフィド樹脂は、その分子構造中に、ナフチルスルフィド結合などを有していてもよいが、他の構造部位との合計モル数に対して、3モル%以下が好ましく、特に1モル%以下であることが好ましい。   Further, the polyarylene sulfide resin may have a naphthyl sulfide bond or the like in its molecular structure, but is preferably 3 mol% or less with respect to the total number of moles with other structural sites, particularly 1 It is preferable that it is below mol%.

(製造方法)
前記ポリアリーレンスルフィド樹脂の製造方法としては、特に限定されないが、例えば1)硫黄と炭酸ソーダの存在下でジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、2)極性溶媒中でスルフィド化剤等の存在下にジハロゲノ芳香族化合物を、必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加えて、重合させる方法、3)p−クロルチオフェノールを、必要ならばその他の共重合成分を加えて、自己縮合させる方法、等が挙げられる。これらの方法のなかでも、2)の方法が汎用的であり好ましい。反応の際に、重合度を調節するためにカルボン酸やスルホン酸のアルカリ金属塩や、水酸化アルカリを添加しても良い。上記2)方法のなかでも、加熱した有機極性溶媒とジハロゲノ芳香族化合物とを含む混合物に含水スルフィド化剤を水が反応混合物から除去され得る速度で導入し、有機極性溶媒中でジハロゲノ芳香族化合物とスルフィド化剤とを、必要に応じてポリハロゲノ芳香族化合物と加え、反応させること、及び反応系内の水分量を該有機極性溶媒1モルに対して0.02〜0.5モルの範囲にコントロールすることによりポリアリーレンスルフィド樹脂を製造する方法(特開平07−228699号公報参照。)や、固形のアルカリ金属硫化物及び非プロトン性極性有機溶媒の存在下でジハロゲノ芳香族化合物と必要ならばポリハロゲノ芳香族化合物ないしその他の共重合成分を加え、アルカリ金属水硫化物及び有機酸アルカリ金属塩を、硫黄源1モルに対して0.01〜0.9モルの範囲の有機酸アルカリ金属塩および反応系内の水分量を非プロトン性極性有機溶媒1モルに対して0.02モル以下の範囲にコントロールしながら反応させる方法(WO2010/058713号パンフレット参照。)で得られるものが特に好ましい。ジハロゲノ芳香族化合物の具体的な例としては、p−ジハロベンゼン、m−ジハロベンゼン、o−ジハロベンゼン、2,5−ジハロトルエン、1,4−ジハロナフタレン、1−メトキシ−2,5−ジハロベンゼン、4,4’−ジハロビフェニル、3,5−ジハロ安息香酸、2,4−ジハロ安息香酸、2,5−ジハロニトロベンゼン、2,4−ジハロニトロベンゼン、2,4−ジハロアニソール、p,p’−ジハロジフェニルエーテル、4,4’−ジハロベンゾフェノン、4,4’−ジハロジフェニルスルホン、4,4’−ジハロジフェニルスルホキシド、4,4’−ジハロジフェニルスルフィド、及び、上記各化合物の芳香環に炭素原子数1〜18の範囲のアルキル基を有する化合物が挙げられ、ポリハロゲノ芳香族化合物としては1,2,3−トリハロベンゼン、1,2,4−トリハロベンゼン、1,3,5−トリハロベンゼン、1,2,3,5−テトラハロベンゼン、1,2,4,5−テトラハロベンゼン、1,4,6−トリハロナフタレンなどが挙げられる。また、上記各化合物中に含まれるハロゲン原子は、塩素原子、臭素原子であることが望ましい。
(Production method)
The method for producing the polyarylene sulfide resin is not particularly limited. For example, 1) a dihalogenoaromatic compound in the presence of sulfur and sodium carbonate, and if necessary, a polyhalogenoaromatic compound or other copolymerization component is added, 2) A method of polymerizing a dihalogenoaromatic compound in a polar solvent in the presence of a sulfidizing agent, adding a polyhalogenoaromatic compound or other copolymerization component if necessary, and 3) p-chloro. Examples include a method in which ruthiophenol is self-condensed by adding other copolymerization components if necessary. Among these methods, the method 2) is versatile and preferable. In the reaction, an alkali metal salt of carboxylic acid or sulfonic acid or an alkali hydroxide may be added to adjust the degree of polymerization. Among the above methods 2), a hydrous sulfiding agent is introduced into a mixture containing a heated organic polar solvent and a dihalogenoaromatic compound at a rate at which water can be removed from the reaction mixture, and the dihalogenoaromatic compound in the organic polar solvent. And a sulfidizing agent, if necessary, with a polyhalogenoaromatic compound and reacting, and the amount of water in the reaction system is in the range of 0.02 to 0.5 mol with respect to 1 mol of the organic polar solvent. If necessary, a method for producing a polyarylene sulfide resin by controlling (see JP 07-228699 A), a dihalogenoaromatic compound in the presence of a solid alkali metal sulfide and an aprotic polar organic solvent, if necessary Polyhalogenoaromatic compound or other copolymerization component is added, and alkali metal hydrosulfide and organic acid alkali metal salt are added to sulfur source 1 While controlling the organic acid alkali metal salt in the range of 0.01 to 0.9 mol and the amount of water in the reaction system to 0.02 mol or less with respect to 1 mol of the aprotic polar organic solvent, What is obtained by the method of making it react (refer pamphlet of WO2010 / 058713) is especially preferable. Specific examples of the dihalogenoaromatic compound include p-dihalobenzene, m-dihalobenzene, o-dihalobenzene, 2,5-dihalotoluene, 1,4-dihalonaphthalene, 1-methoxy-2,5-dihalobenzene, 4, 4'-dihalobiphenyl, 3,5-dihalobenzoic acid, 2,4-dihalobenzoic acid, 2,5-dihalonitrobenzene, 2,4-dihalonitrobenzene, 2,4-dihaloanisole, p, p '-Dihalodiphenyl ether, 4,4'-dihalobenzophenone, 4,4'-dihalodiphenyl sulfone, 4,4'-dihalodiphenyl sulfoxide, 4,4'-dihalodiphenyl sulfide, and each of the above compounds A compound having an alkyl group having 1 to 18 carbon atoms in the aromatic ring, and 1,2,3-trimethyl as a polyhalogenoaromatic compound. Lobenzene, 1,2,4-trihalobenzene, 1,3,5-trihalobenzene, 1,2,3,5-tetrahalobenzene, 1,2,4,5-tetrahalobenzene, 1,4,6- And trihalonaphthalene. Moreover, it is desirable that the halogen atom contained in each compound is a chlorine atom or a bromine atom.

重合工程により得られたポリアリーレンスルフィド樹脂は、その分子末端がカルボキシ基又はカルボン酸ナトリウム塩となるが、所望のナトリウム原子の含有量になるまで重合工程により得られたポリアリーレンスルフィド樹脂を含む反応混合物を後処理工程として洗浄することが好ましい。後処理方法としては、公知慣用の方法でよく、特に制限されるものではないが、例えば、(1)重合反応終了後、先ず反応混合物をそのまま、あるいは酸または水素塩を加えた後、減圧下または常圧下で溶媒を留去し、次いで溶媒留去後の固形物を水、反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、更に中和、水洗、濾過および乾燥する方法、或いは、(2)重合反応終了後、反応混合物に水、アセトン、メチルエチルケトン、アルコール類、エーテル類、ハロゲン化炭化水素、芳香族炭化水素、脂肪族炭化水素などの溶媒(使用した重合溶媒に可溶であり、かつ少なくともポリアリーレンスルフィドに対しては貧溶媒である溶媒)を沈降剤として添加して、ポリアリーレンスルフィドや無機塩等の固体状生成物を沈降させ、これらを濾別、洗浄、乾燥する方法、或いは、(3)重合反応終了後、反応混合物に反応溶媒(又は低分子ポリマーに対して同等の溶解度を有する有機溶媒)を加えて撹拌し、濾過して低分子量重合体を除いた後、水、アセトン、メチルエチルケトン、アルコール類などの溶媒で1回または2回以上洗浄し、その後中和、水洗、濾過および乾燥をする方法、(4)重合反応終了後、反応混合物に水を加えて水洗浄、濾過、必要に応じて水洗浄の時に酸を加えて酸処理し、乾燥をする方法、(5)重合反応終了後、反応混合物を濾過し、必要に応じ、反応溶媒で1回または2回以上洗浄し、更に水洗浄、濾過および乾燥する方法、等が挙げられる。   The polyarylene sulfide resin obtained by the polymerization step is a reaction that includes the polyarylene sulfide resin obtained by the polymerization step until the molecular terminal is a carboxy group or a carboxylic acid sodium salt, but reaches the desired sodium atom content. It is preferable to wash the mixture as a post-treatment step. The post-treatment method may be a known and commonly used method, and is not particularly limited. For example, (1) after completion of the polymerization reaction, the reaction mixture is first left as it is, or an acid or a hydrogen salt is added, and then the pressure is reduced. Alternatively, the solvent is distilled off under normal pressure, and then the solid after the solvent is distilled off with a solvent such as water, a reaction solvent (or an organic solvent having an equivalent solubility in a low-molecular polymer), acetone, methyl ethyl ketone, alcohols, etc. A method of washing once or twice or more, further neutralization, washing with water, filtration and drying, or (2) after completion of the polymerization reaction, water, acetone, methyl ethyl ketone, alcohols, ethers, halogenated hydrocarbons in the reaction mixture , Solvents such as aromatic hydrocarbons and aliphatic hydrocarbons (soluble in the polymerization solvent used and poor solvent for at least polyarylene sulfide) Solvent) as a precipitating agent to precipitate solid products such as polyarylene sulfide and inorganic salts, and filter, wash and dry them, or (3) after completion of the polymerization reaction, A reaction solvent (or an organic solvent having an equivalent solubility in a low molecular weight polymer) is added, stirred, filtered to remove the low molecular weight polymer, and then once with a solvent such as water, acetone, methyl ethyl ketone, alcohols and the like. Alternatively, washing is performed twice or more, then neutralization, washing with water, filtration and drying. (4) After completion of the polymerization reaction, water is added to the reaction mixture, washing with water, filtering, and if necessary, washing with acid. In addition, acid treatment and drying, (5) after completion of the polymerization reaction, the reaction mixture is filtered, and if necessary, washed once or twice with a reaction solvent, and further washed with water, filtered and dried , Etc. That.

後処理方法で添加することができる酸としては、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、モノクロロ酢酸等の飽和脂肪酸、アクリル酸、クロトン酸、オレイン酸等の不飽和脂肪酸、安息香酸、フタル酸、サリチル酸等の芳香族カルボン酸、蓚酸、マレイン酸、フマル酸等のジカルボン酸、あるいはメタンスルホン酸、パラトルエンスルホン酸等のスルホン酸などの有機酸、塩酸、硫酸、亜硫酸、硝酸、亜硝酸又はリン酸等の無機酸が挙げられる。また、水素塩としては、例えば、硫酸水素ナトリウム、リン酸水素二ナトリウム、炭酸水素ナトリウム等が挙げられる。実機での使用においては、金属部材への腐食が少ない有機酸が好ましい。   Examples of acids that can be added in the post-treatment method include saturated fatty acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, and monochloroacetic acid, and unsaturated fatty acids such as acrylic acid, crotonic acid, and oleic acid. Aromatic carboxylic acids such as benzoic acid, phthalic acid and salicylic acid, dicarboxylic acids such as succinic acid, maleic acid and fumaric acid, or organic acids such as sulfonic acids such as methanesulfonic acid and paratoluenesulfonic acid, hydrochloric acid, sulfuric acid and sulfurous acid Inorganic acids such as nitric acid, nitrous acid or phosphoric acid. Examples of the hydrogen salt include sodium hydrogen sulfate, disodium hydrogen phosphate, sodium hydrogen carbonate and the like. For use in an actual machine, an organic acid that causes little corrosion to the metal member is preferable.

尚、上記(1)〜(5)に例示したような後処理方法において、ポリアリーレンスルフィド樹脂の乾燥は真空中で行なってもよいし、空気中あるいは窒素のような不活性ガス雰囲気中で行なってもよい。 In the post-treatment methods exemplified in the above (1) to (5), the polyarylene sulfide resin may be dried in a vacuum or in an inert gas atmosphere such as air or nitrogen. May be.

本発明で用いるポリアリーレンスルフィド樹脂の物性は、本発明の効果を損ねない限り特に限定されないが、以下の通りである。   The physical properties of the polyarylene sulfide resin used in the present invention are not particularly limited as long as the effects of the present invention are not impaired, but are as follows.

(ナトリウム含有量)
本発明に用いるポリアリーレンスルフィド樹脂は、原料のスルフィド化剤などに由来するナトリウム原子の含有量が650ppm以下の範囲であり、さらに500ppm以下の範囲であることが好ましく、特に250ppm以下の範囲であることが特に好ましい。一方、ナトリウム濃度の下限値は、検出限界以下まで低減させることが好ましいものの、過度な低減は生産性を低下させることがあるため40ppm以上の範囲であることが好ましく、さらに50ppm以上の範囲であることがより好ましく、さらに70ppm以上の範囲であることが特に好ましい。なお、ポリアリーレンスルフィド樹脂中に含まれるナトリウム原子含有量は、該樹脂を500℃で焼成し、次いで530℃で6時間焼成して得られた灰分を塩酸で溶解し、原子吸光光度計:AA−6300(島津製作所製)で測定した際のナトリウム原子の濃度(質量基準)を言うものとする。
(Sodium content)
In the polyarylene sulfide resin used in the present invention, the content of sodium atoms derived from the raw material sulfiding agent or the like is in the range of 650 ppm or less, more preferably in the range of 500 ppm or less, and particularly in the range of 250 ppm or less. It is particularly preferred. On the other hand, the lower limit of the sodium concentration is preferably reduced to the detection limit or less, but excessive reduction may reduce the productivity, so it is preferably in the range of 40 ppm or more, and more preferably in the range of 50 ppm or more. More preferably, it is particularly preferably in the range of 70 ppm or more. The sodium atom content contained in the polyarylene sulfide resin is determined by dissolving the ash obtained by baking the resin at 500 ° C. and then baking at 530 ° C. for 6 hours with hydrochloric acid. It shall mean the concentration (mass standard) of sodium atoms when measured with -6300 (manufactured by Shimadzu Corporation).

(溶融粘度)
本発明に用いるポリアリーレンスルフィド樹脂の溶融粘度は本発明の効果を損ねないものであれば特に制限されるものではないが、例えば、300℃で測定した溶融粘度(V6)が2〜1000〔Pa・s〕の範囲であることが好ましく、さらに流動性および機械的強度のバランスが良好となることから2〜500〔Pa・s〕の範囲がより好ましく、10〜200〔Pa・s〕の範囲であることが特に好ましい。本発明において、溶融粘度(V6)の測定は、ポリアリーレンスルフィド樹脂を島津製作所製フローテスター、CFT−500Dを用いて行い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)にて、6分間保持した後に測定した値とする。
(Melt viscosity)
The melt viscosity of the polyarylene sulfide resin used in the present invention is not particularly limited as long as it does not impair the effects of the present invention. For example, the melt viscosity (V6) measured at 300 ° C. is 2 to 1000 [Pa Is preferably in the range of s], and more preferably in the range of 2 to 500 [Pa · s], because the balance between fluidity and mechanical strength is improved. It is particularly preferred that In the present invention, the melt viscosity (V6) is measured using a polyarylene sulfide resin with a flow tester manufactured by Shimadzu Corporation, CFT-500D, at 300 ° C., load: 1.96 × 10 6 Pa, L / D = 10. A value measured after holding for 6 minutes at (mm) / 1 (mm).

(化学発光強度)
本発明に用いるポリアリーレンスルフィド樹脂は、窒素流通下、160℃で測定した化学発光強度の極大値が、該樹脂1gあたり5000〔カウント/秒〕以下の範囲であることが好ましく、さらに100〜3000〔カウント/秒〕の範囲であることがより好ましい。なお、化学発光強度の測定は化学発光測定装置を用いて行うことができる。ポリアリーレンスルフィド樹脂を加熱することで化学発光強度は徐々に上昇し、極大値を示した後徐々に減衰するのが一般的である。本発明では、測定開始から5分後までの間に極大値を示す加熱温度160℃における値を基準とした。本発明の効果を奏するメカニズムについてはいまだ解明できていないものの、当該範囲のポリアリーレンスルフィド樹脂を用いることで、有機カルボン酸のアルカリ土類金属塩の配合による、より優れた再結晶化温度(Tc2)の低温化を実現することができ好ましい。
(Chemiluminescence intensity)
The polyarylene sulfide resin used in the present invention preferably has a maximum value of chemiluminescence intensity measured at 160 ° C. under nitrogen flow in a range of 5000 [count / second] or less per 1 g of the resin, and more preferably 100 to 3000. A range of [count / second] is more preferable. The chemiluminescence intensity can be measured using a chemiluminescence measuring device. In general, the intensity of chemiluminescence is gradually increased by heating the polyarylene sulfide resin, and after the maximum value is exhibited, it is generally attenuated gradually. In the present invention, the value at a heating temperature of 160 ° C., which shows a maximum value between the start of measurement and 5 minutes later, was used as a reference. Although the mechanism that exerts the effects of the present invention has not yet been elucidated, by using a polyarylene sulfide resin in this range, a superior recrystallization temperature (Tc2) by blending an alkaline earth metal salt of an organic carboxylic acid can be used. ) Is preferable.

(熱的性質)
本発明で用いるポリアリーレンスルフィド樹脂の融点(Tm)は、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、280℃以上の範囲であることが好ましく、さらに280℃〜310℃の範囲にあることがより好ましい。また、前記ポリアリーレンスルフィド樹脂の再結晶化温度(Tc2)は、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、270℃以下の範囲であることが好ましく、210〜270℃の範囲であることがより好ましく、さら、220〜260℃の範囲であることが特に好ましい。
(Thermal properties)
The melting point (Tm) of the polyarylene sulfide resin used in the present invention is preferably in the range of 280 ° C. or higher, since it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength. More preferably in the range of ° C. Further, the recrystallization temperature (Tc2) of the polyarylene sulfide resin is preferably within a range of 270 ° C. or less because it becomes a polyarylene sulfide resin composition having excellent heat resistance and mechanical strength. It is more preferable that the temperature is in the range of ° C.

本発明のポリアリーレンスルフィド樹脂組成物の製造方法の必須成分である、有機カルボン酸のアルカリ土類金属塩は、有機カルボン酸に含まれている一つ以上の解離し得る水素イオンが、アルカリ土類金属で置換された化合物である。有機カルボン酸は、炭素原子数1〜20の範囲を有するアルキル基、シクロアルキル基、アリール基、アリールアルキル基またはアルキルアリール基にカルボキシル基が結合したカルボン酸であることが好ましい。カルボキシル基に結合するアルキル基、シクロアルキル基、アリール基、アリールアルキル基またはアルキルアリール基の炭素原子数はその上限値が20以下の範囲であることが好ましく、10以下の範囲であることがより好ましく、さらに、4以下の範囲であることが特に好ましい。一方、当該炭素原子数の下限値は1以上であることが好ましい。より具体的には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ステアリン酸、リノグリセリン酸、メリシン酸、クエン酸、安息香酸、フェニル酢酸、p−トルイル酸などが挙げられる。   The alkaline earth metal salt of an organic carboxylic acid, which is an essential component of the method for producing the polyarylene sulfide resin composition of the present invention, contains one or more dissociable hydrogen ions contained in the organic carboxylic acid. It is a compound substituted with a similar metal. The organic carboxylic acid is preferably a carboxylic acid in which a carboxyl group is bonded to an alkyl group, a cycloalkyl group, an aryl group, an arylalkyl group or an alkylaryl group having 1 to 20 carbon atoms. The upper limit of the number of carbon atoms of the alkyl group, cycloalkyl group, aryl group, arylalkyl group or alkylaryl group bonded to the carboxyl group is preferably 20 or less, more preferably 10 or less. More preferably, it is particularly preferably in the range of 4 or less. On the other hand, the lower limit of the number of carbon atoms is preferably 1 or more. More specifically, examples include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, stearic acid, linoglyceric acid, mellicic acid, citric acid, benzoic acid, phenylacetic acid, p-toluic acid, and the like.

一方、アルカリ土類金属としてはカルシウム、マグネシウム、バリウムまたはストロンチウムが挙げられるが、この中でカルシウムが好ましい。   On the other hand, examples of the alkaline earth metal include calcium, magnesium, barium and strontium, among which calcium is preferable.

本発明のポリアリーレンスルフィド樹脂組成物の製造方法において、前記ポリアリーレンスルフィド樹脂に対する前記有機カルボン酸のアルカリ土類金属塩の配合割合は、前記ポリアリーレンスルフィド樹脂中の硫黄原子1モル当たり(またはポリアリーレンスルフィド樹脂108g当たり)、前記有機カルボン酸アルカリ土類金属塩0.05〜15モルの範囲であることが好ましく、さらに0.5〜5モルの範囲であることがより好ましく、0.8〜2モルの範囲であることが特に好ましい。   In the method for producing a polyarylene sulfide resin composition of the present invention, the blending ratio of the alkaline earth metal salt of the organic carboxylic acid to the polyarylene sulfide resin is based on one mole of sulfur atom in the polyarylene sulfide resin (or poly Per 108 g of arylene sulfide resin), preferably in the range of 0.05 to 15 mol of the alkaline earth metal salt of organic carboxylic acid, more preferably in the range of 0.5 to 5 mol, 0.8 to A range of 2 moles is particularly preferred.

本発明のポリアリーレンスルフィド樹脂組成物の製造方法は、必要に応じて、熱可塑性エラストマーを任意成分として配合することができる。熱可塑性エラストマーとしては、ポリオレフィン系エラストマー、弗素系エラストマーまたはシリコーン系エラストマーが挙げられ、このうちポリオレフィン系エラストマーが好ましいものとして挙げられる。これらのエラストマーを添加する場合、本発明の効果を損ねなければその配合割合は特に限定されないが、ポリアリーレンスルフィド樹脂100質量部に対して、0.01〜10質量部の範囲であることが好ましく、さらに0.1〜5質量部の範囲であることがより好ましい。かかる範囲において、得られるポリアリーレンスルフィド樹脂組成物の靭性ないし耐衝撃性が向上するため好ましい。   In the production method of the polyarylene sulfide resin composition of the present invention, a thermoplastic elastomer can be blended as an optional component, if necessary. Examples of the thermoplastic elastomer include polyolefin-based elastomers, fluorine-based elastomers, and silicone-based elastomers. Among these, polyolefin-based elastomers are preferable. When these elastomers are added, the blending ratio is not particularly limited as long as the effects of the present invention are not impaired, but it is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. Furthermore, it is more preferable that it is the range of 0.1-5 mass parts. Within such a range, the polyarylene sulfide resin composition obtained is preferable because the toughness and impact resistance are improved.

前記ポリオレフィン系エラストマーは、例えば、α−オレフィンの単独重合または異なるα−オレフィン同士の共重合により、さらに、官能基を付与する場合には、α−オレフィンと官能基を有するビニル重合性化合物との共重合により得ることができる。α−オレフィンは、例えば、エチレン、プロピレン及びブテン−1等の炭素原子数2〜8の範囲のものが挙げられる。また、官能基としては、カルボキシ基、式−(CO)O(CO)−で表される酸無水物基、それらのエステル、エポキシ基、アミノ基、水酸基、メルカプト基、イソシアネート基、またはオキサゾリン基などが挙げられる。   When the polyolefin-based elastomer further imparts a functional group, for example, by homopolymerization of α-olefin or copolymerization of different α-olefins, the α-olefin and a vinyl polymerizable compound having a functional group It can be obtained by copolymerization. Examples of the α-olefin include those having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1. In addition, as the functional group, a carboxy group, an acid anhydride group represented by the formula-(CO) O (CO)-, an ester, an epoxy group, an amino group, a hydroxyl group, a mercapto group, an isocyanate group, or an oxazoline group Etc.

このような官能基を有するビニル重合性化合物の具体例としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα,β−不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4〜10のα,β−不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、上述したエポキシ基、カルボキシ基、及び、該酸無水物基からなる群から選ばれる少なくとも1種の官能基を有するエチレン−プロピレン共重合体及びエチレン−ブテン共重合体が、靭性及び耐衝撃性の向上の点から好ましい。   Specific examples of the vinyl polymerizable compound having such a functional group include, for example, α, β-unsaturated carboxylic acids such as (meth) acrylic acid and (meth) acrylic acid esters and alkyl esters thereof, maleic acid, fumaric acid. Examples thereof include acids, itaconic acid and other α, β-unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters and acid anhydrides thereof), and glycidyl (meth) acrylate. Among these, the ethylene-propylene copolymer and the ethylene-butene copolymer having at least one functional group selected from the group consisting of the epoxy group, the carboxy group, and the acid anhydride group described above are toughness and It is preferable from the viewpoint of improvement in impact resistance.

また本発明のポリアリーレンスルフィド樹脂組成物の製造方法は、その他にも充填剤、シランカップリング剤、着色剤、帯電防止剤、酸化防止剤、耐熱安定剤、紫外線安定剤、紫外線吸収剤、発泡剤、難燃剤、難燃助剤、滑剤、または防錆剤等の公知慣用の添加剤を必要に応じ、任意成分として配合することができる。これらの添加剤を配合する場合には、ポリアリーレンスルフィド樹脂100質量部に対して0.01〜1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。   In addition, the method for producing the polyarylene sulfide resin composition of the present invention includes other fillers, silane coupling agents, colorants, antistatic agents, antioxidants, heat stabilizers, UV stabilizers, UV absorbers, foams. A known and commonly used additive such as an agent, a flame retardant, a flame retardant aid, a lubricant, or a rust inhibitor may be blended as an optional component, if necessary. When these additives are blended, the content of 0.01 to 1000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin is appropriately adjusted according to the purpose and application so as not to impair the effects of the present invention. Use it.

前記充填剤は、繊維状、粒状、板状などいずれの形状でも良く、具体的には、ガラス繊維、炭素繊維、シランガラス繊維、セラミック繊維、アラミド繊維、金属繊維、チタン酸カリウム、炭化珪素、硫酸カルシウム、珪酸カルシウム等の繊維、ウォラストナイト等の天然繊維等の繊維状充填剤や、ガラスビーズ、ガラスフレーク、硫酸バリウム、硫酸カルシウム、クレー、パイロフィライト、ベントナイト、セリサイト、ゼオライト、マイカ、雲母、タルク、アタパルジャイト、フェライト、珪酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ガラスビーズ等の非繊維状充填剤が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。   The filler may be in any shape such as fibrous, granular, plate-like, specifically, glass fiber, carbon fiber, silane glass fiber, ceramic fiber, aramid fiber, metal fiber, potassium titanate, silicon carbide, Fibrous fillers such as fibers such as calcium sulfate and calcium silicate, natural fibers such as wollastonite, glass beads, glass flakes, barium sulfate, calcium sulfate, clay, pyrophyllite, bentonite, sericite, zeolite, mica And non-fibrous fillers such as mica, talc, attapulgite, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, and glass beads. These may be used alone or in combination of two or more.

前記シランカップリング剤は、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有アルコキシシラン化合物;γ−イソシアナトプロピルトリメトキシシラン、γ−イソシアナトプロピルトリエトキシシラン、γ−イソシアナトプロピルメチルジメトキシシラン、γ−イソシアナトプロピルメチルジエトキシシラン、γ−イソシアナトプロピルエチルジメトキシシラン、γ−イソシアナトプロピルエチルジエトキシシラン、γ−イソシアナトプロピルトリクロロシラン等のイソシアナト基含有アルコキシシラン化合物;γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン化合物;γ−ヒドロキシプロピルトリメトキシシラン、γ−ヒドロキシプロピルトリエトキシシラン等の水酸基含有アルコキシシラン化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。   Examples of the silane coupling agent include epoxy group-containing alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Compound: γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, γ-isocyanatopropylethyldimethoxysilane, γ- Isocyanato group-containing alkoxysilane compounds such as isocyanatopropylethyldiethoxysilane and γ-isocyanatopropyltrichlorosilane; γ- (2-aminoethyl) aminopropylmethyldimethoxysilane, γ- (2-aminoethyl) Le) aminopropyltrimethoxysilane, amino group-containing alkoxysilane compounds such as .gamma.-aminopropyltrimethoxysilane; .gamma.-hydroxypropyl trimethoxysilane, hydroxyl group-containing alkoxysilane compounds such as .gamma.-hydroxypropyl triethoxysilane and the like. These may be used alone or in combination of two or more.

更に、本発明のポリアリーレンスルフィド樹脂組成物の製造方法は、上記成分に加えて、さらに用途に応じて、適宜、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリアリーレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ四弗化エチレン樹脂、ポリ二弗化エチレン樹脂、ポリスチレン樹脂、ABS樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等の合成樹脂などを任意成分として配合することができる。また、これらの樹脂の配合割合は、それぞれの目的に応じて異なり、一概に規定することはできないが、ポリアリーレンスルフィド樹脂100質量部に対して0.01〜1000質量部の範囲で、本発明の効果を損なわないよう目的や用途に応じて適宜調整して用いればよい。   Furthermore, the method for producing the polyarylene sulfide resin composition according to the present invention includes a polyester resin, a polyamide resin, a polyimide resin, a polyetherimide resin, a polycarbonate resin, and a polyphenylene ether resin as appropriate in addition to the above components. , Polysulfone resin, polyether sulfone resin, polyether ether ketone resin, polyether ketone resin, polyarylene resin, polyethylene resin, polypropylene resin, polytetrafluoroethylene resin, polydifluoroethylene resin, polystyrene resin, ABS resin Synthetic resins such as phenol resins, urethane resins, and liquid crystal polymers can be blended as optional components. In addition, the blending ratio of these resins varies depending on the purpose and cannot be generally defined. However, the present invention is within a range of 0.01 to 1000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. In order not to impair the effect, it may be appropriately adjusted according to the purpose and use.

本発明のポリアリーレンスルフィド樹脂組成物の製造方法は特に制限なく、必須成分であるポリアリーレンスルフィド樹脂と、有機カルボン酸のアルカリ土類金属塩、さらに、必要に応じて加える上記の任意成分を、粉末、ペレット、細片など様々な形態でリボンブレンター、ヘンシェルミキサー、Vブレンダーなどに投入してドライブレンドした後、バンバリーミキサー、ミキシングロール、単軸または2軸の押出機およびニーダーなどの公知の溶融混練機に投入し、樹脂温度がポリアリーレンスルフィド樹脂の融点以上となる温度範囲、好ましくは該融点+10℃以上となる温度範囲、より好ましくは融点+10℃〜融点+100℃となる温度範囲、さらに好ましくは融点+20〜融点+50℃となる温度範囲で溶融混練する工程を経て製造することができる。溶融混練機への各成分の添加、混合は同時に行ってもよいし、分割して行っても良い。   The method for producing the polyarylene sulfide resin composition of the present invention is not particularly limited, and the polyarylene sulfide resin that is an essential component, an alkaline earth metal salt of an organic carboxylic acid, and the optional component that is added as necessary, Known in various forms such as powder, pellets, strips, ribbon blenders, Henschel mixers, V blenders, etc., dry blended, banbury mixers, mixing rolls, single or twin screw extruders and kneaders A temperature range in which the resin temperature is equal to or higher than the melting point of the polyarylene sulfide resin, preferably in the temperature range in which the melting point is + 10 ° C or higher, more preferably in the temperature range in which the melting point is + 10 ° C to the melting point + 100 ° C. Preferably through a melt kneading step in a temperature range of melting point +20 to melting point + 50 ° C. It is possible to elephants. Addition and mixing of each component to the melt kneader may be performed simultaneously or may be performed separately.

前記溶融混練機としては分散性や生産性の観点から二軸混練押出機が好ましく、例えば、樹脂成分の吐出量5〜500(kg/hr)の範囲と、スクリュー回転数50〜500(rpm)の範囲とを適宜調整しながら溶融混練することが好ましく、それらの比率(吐出量/スクリュー回転数)が0.02〜5(kg/hr/rpm)なる条件下に溶融混練することがさらに好ましい。また、前記成分のうち、充填剤や添加剤を添加する場合は、前記二軸混練押出機のサイドフィーダーから該押出機内に投入することが分散性の観点から好ましい。かかるサイドフィーダーの位置は、前記二軸混練押出機のスクリュー全長に対する、該押出機樹脂投入部から該サイドフィーダーまでの距離の比率が、0.1〜0.9であることが好ましい。中でも0.3〜0.7であることが特に好ましい。   The melt kneader is preferably a biaxial kneader / extruder from the viewpoint of dispersibility and productivity. For example, the resin component discharge rate is in the range of 5 to 500 kg / hr, and the screw rotation speed is 50 to 500 (rpm). It is preferable to melt-knead while appropriately adjusting the range of the above, more preferably melt-kneaded under the condition that the ratio (discharge amount / screw rotation number) is 0.02 to 5 (kg / hr / rpm). . Moreover, when adding a filler and an additive among the said components, it is preferable from a dispersible viewpoint to throw in into this extruder from the side feeder of the said biaxial kneading extruder. The position of the side feeder is preferably such that the ratio of the distance from the extruder resin charging part to the side feeder with respect to the total screw length of the biaxial kneading extruder is 0.1 to 0.9. Especially, it is especially preferable that it is 0.3-0.7.

このようにして得られる本発明のポリアリーレンスルフィド樹脂組成物は、必須成分であるポリアリーレンスルフィド樹脂と、有機カルボン酸のアルカリ土類金属塩と、必要に応じて加える任意成分とを配合してなる溶融混合物であり、該溶融混練後に、公知の方法でペレット、チップ、顆粒、粉末等の形態に加工してから、必要に応じて100〜150℃の温度で予備乾燥を施して、各種成形に供することが好ましい。   The polyarylene sulfide resin composition of the present invention thus obtained comprises a polyarylene sulfide resin that is an essential component, an alkaline earth metal salt of an organic carboxylic acid, and an optional component that is added as necessary. After the melt kneading, it is processed into a form of pellets, chips, granules, powders, etc. by a known method, and then pre-dried at a temperature of 100 to 150 ° C. as necessary, and various moldings are performed. It is preferable to use for.

上記各種製造方法により製造される本発明のポリアリーレンスルフィド樹脂組成物は、ポリアリーレンスルフィド樹脂をマトリックスとし、当該マトリックス中に、必須成分である有機カルボン酸のアルカリ土類金属塩に由来する成分、必要に応じて添加する任意成分が分散したモルフォロジーを形成することにより、低温条件での成形が可能でありながら、耐熱性に優れる成形品を製造可能なポリアリーレンスルフィド樹脂組成物が得られる。   The polyarylene sulfide resin composition of the present invention produced by the above various production methods has a polyarylene sulfide resin as a matrix, and the component is derived from an alkaline earth metal salt of an organic carboxylic acid as an essential component in the matrix, By forming a morphology in which optional components added as needed are dispersed, a polyarylene sulfide resin composition capable of producing a molded article having excellent heat resistance while being moldable under low temperature conditions is obtained.

このようにして得られた本発明のポリアリーレンスルフィド樹脂組成物の融点(Tm)は、耐熱性や機械的強度に優れることから、280℃以上の範囲であることが好ましく、さらに280℃〜310℃の範囲にあることがより好ましい。 The polyarylene sulfide resin composition of the present invention thus obtained has a melting point (Tm) that is excellent in heat resistance and mechanical strength, and is preferably in the range of 280 ° C. or higher, and further 280 ° C. to 310 ° C. More preferably in the range of ° C.

また、前記ポリアリーレンスルフィド樹脂組成物の再結晶化温度(Tc2)は、耐熱性や機械的強度に優れることから、260℃以下の範囲であることが好ましく、180〜250℃の範囲であることがより好ましく、190〜240℃の範囲であることがさらに好ましい。   Moreover, since the recrystallization temperature (Tc2) of the polyarylene sulfide resin composition is excellent in heat resistance and mechanical strength, it is preferably in the range of 260 ° C. or less, and in the range of 180 to 250 ° C. Is more preferable, and it is still more preferable that it is the range of 190-240 degreeC.

また、前記ポリアリーレンスルフィド樹脂の融点(Tm)と再結晶化温度(Tc2)との差(ΔT)は、耐熱性や機械的強度に優れるポリアリーレンスルフィド樹脂組成物となることから、20℃以上の範囲であることが好ましく、20〜75℃の範囲であることがより好ましく、さらに35〜55℃の範囲であることが特に好ましい。   Further, since the difference (ΔT) between the melting point (Tm) and the recrystallization temperature (Tc2) of the polyarylene sulfide resin is a polyarylene sulfide resin composition excellent in heat resistance and mechanical strength, it is 20 ° C. or higher. Is preferable, it is more preferable that it is the range of 20-75 degreeC, and it is especially preferable that it is the range of 35-55 degreeC.

このように本発明は、ナトリウム原子含有量が650ppm以下であるポリアリーレンスルフィド樹脂と、有機カルボン酸アルカリ土類金属塩とを配合し、溶融混練することによりポリアリーレンスルフィド樹脂組成物の再結晶化温度(Tc2)を、有機カルボン酸アルカリ土類金属塩を配合しなかった場合に比べて低下させることができ、その差、すなわち、原料の該ポリアリーレンスルフィド樹脂の再結晶化温度(Tc2)と、原料の該ポリアリーレンスルフィド樹脂と有機カルボン酸アルカリ土類金属塩とを配合し溶融混練して得られたポリアリーレンスルフィド樹脂組成物の再結晶化温度(Tc2)の差(ΔTc2)が、好ましくは100℃以下の範囲、より好ましくは40〜80℃の範囲、さらに好ましくは10〜50℃の範囲まで低下させることができる。   Thus, the present invention is to recrystallize a polyarylene sulfide resin composition by blending a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an organic carboxylic acid alkaline earth metal salt and melt-kneading them. The temperature (Tc2) can be lowered as compared with the case where the organic carboxylic acid alkaline earth metal salt is not blended, and the difference, that is, the recrystallization temperature (Tc2) of the polyarylene sulfide resin as a raw material, The difference (ΔTc2) in the recrystallization temperature (Tc2) of the polyarylene sulfide resin composition obtained by blending the raw material polyarylene sulfide resin and the organic carboxylic acid alkaline earth metal salt and melt-kneading is preferably Is in the range of 100 ° C. or lower, more preferably in the range of 40-80 ° C., still more preferably in the range of 10-50 ° C. It can be lowered.

本発明のポリアリーレンスルフィド樹脂組成物は、射出成形、圧縮成形、コンポジット、シート、パイプなどの押出成形、引抜成形、ブロー成形、トランスファー成形など各種成形に供することが可能である。中でも、低温条件での成形が可能である本願発明の効果を生かし、射出成形用途、さらには大型射出成形品用途に好適に用いることができる。   The polyarylene sulfide resin composition of the present invention can be used for various moldings such as injection molding, compression molding, extrusion molding of composites, sheets, pipes, pultrusion molding, blow molding, transfer molding and the like. Especially, it can use suitably for an injection molding use and also a large-sized injection-molded-product use taking advantage of the effect of this invention which can be shape | molded on low temperature conditions.

本発明のポリアリーレンスルフィド樹脂組成物を射出成形にて成形する場合の各種条件は特に限定されず、通常一般的な方法にて成形することができる。成形の前には、100〜150℃の温度で予備乾燥することにより、成形物の外観や機械物性が向上する。シリンダー温度は、シリンダー内の樹脂温度がポリアリーレンスルフィド樹脂組成物の融点以上、好ましくは該融点+10℃以上の温度範囲、より好ましくは融点+10℃〜融点+100℃の温度範囲、さらに好ましくは融点+20〜融点+50℃の温度範囲となるよう適宜設定する。その後、溶融された樹脂組成物は、樹脂吐出口より金型内に注入されて成形されればよい。その際の金型温度は通常、130〜160℃の範囲に設定されるが、本発明のポリアリーレンスルフィド樹脂組成物は低温成形性に優れる特徴を有することから、130℃未満の範囲であっても、より好ましくは120℃以下の範囲、さらに好ましくは115℃以下の範囲、かつ、40℃以上の範囲という比較的低温条件であっても外観や機械物性に優れる成形物を得ることができる。   Various conditions for molding the polyarylene sulfide resin composition of the present invention by injection molding are not particularly limited, and can be usually molded by a general method. Prior to molding, the appearance and mechanical properties of the molded product are improved by preliminary drying at a temperature of 100 to 150 ° C. The cylinder temperature is such that the resin temperature in the cylinder is equal to or higher than the melting point of the polyarylene sulfide resin composition, preferably in the temperature range of the melting point + 10 ° C., more preferably in the temperature range of melting point + 10 ° C. to melting point + 100 ° C., more preferably melting point +20. It sets suitably so that it may become the temperature range of-melting | fusing point +50 degreeC. Thereafter, the molten resin composition may be injected into the mold from the resin discharge port and molded. The mold temperature at that time is usually set in the range of 130 to 160 ° C., but the polyarylene sulfide resin composition of the present invention has a characteristic of excellent low-temperature moldability. However, a molded article having excellent appearance and mechanical properties can be obtained even under relatively low temperature conditions, more preferably in the range of 120 ° C. or lower, still more preferably in the range of 115 ° C. or lower, and in the range of 40 ° C. or higher.

前記複合成形体の主な用途例としては、各種家電製品、携帯電話、及びPC(Personal Computer)等の電子機器の筐体、箱型の電気・電子部品集積モジュール用保護・支持部材・複数の個別半導体またはモジュール、センサ、LEDランプ、コネクタ、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサ、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナ、スピーカ、マイクロフォン、ヘッドフォン、小型モータ、磁気ヘッドベース、パワーモジュール、端子台、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダ、パラボラアンテナ、コンピュータ関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤ、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザディスク・コンパクトディスク・DVDディスク・ブルーレイディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライタ部品、ワードプロセッサ部品、あるいは給湯機や風呂の湯量、温度センサなどの水回り機器部品等に代表される家庭、事務電気製品部品;オフィスコンピュータ関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライタ、タイプライタなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクタ、ブラシホルダー、スリップリング、ICレギュレータ、ライトディヤ用ポテンシオメーターベース、リレーブロック、インヒビタースイッチ、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディ、キャブレタースペーサ、排気ガスセンサ、冷却水センサ、油温センサ、ブレーキパットウェアーセンサ、スロットルポジションセンサ、クランクシャフトポジションセンサ、エアーフローメータ、ブレーキパッド摩耗センサ、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダ、ウォーターポンプインペラ、タービンベイン、ワイパーモーター関係部品、デュストリビュータ、スタータースイッチ、イグニッションコイルおよびそのボビン、モーターインシュレータ、モーターロータ、モーターコア、スターターリレ、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクタ、ホーンターミナル、電装部品絶縁板、ステップモーターロータ、ランプソケット、ランプリフレクタ、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルタ、点火装置ケース等の自動車・車両関連部品、その他各種用途にも適用可能である。   Examples of main applications of the composite molded body include various home appliances, mobile phones, and casings of electronic devices such as PCs (Personal Computers), protective / support members for box-shaped electrical / electronic component integrated modules, Individual semiconductor or module, sensor, LED lamp, connector, socket, resistor, relay case, switch, coil bobbin, capacitor, variable capacitor case, optical pickup, oscillator, various terminal boards, transformer, plug, printed circuit board, tuner, speaker , Microphones, headphones, small motors, magnetic head bases, power modules, terminal blocks, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders, parabolic antennas, computer-related parts and other electrical and electronic parts; VTR parts , TV parts, iron, hair dry , Rice cooker parts, microwave oven parts, acoustic parts, audio / video equipment parts such as audio / laser disc / compact disc / DVD disc / Blu-ray disc, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, word processor parts, or Household appliances such as water heaters, bath water volume, temperature sensors, etc., office electrical appliance parts; office computer related parts, telephone related parts, facsimile related parts, copying machine related parts, cleaning jigs Mechanical parts such as motor parts, writers, typewriters, etc .: Optical equipment such as microscopes, binoculars, cameras, watches, etc., precision machine parts; Alternator terminals, alternator connectors, brush holders, slip rings, ICs Regulator and light dial Various valves such as a nichiometer base, relay block, inhibitor switch, exhaust gas valve, various pipes related to fuel, exhaust system and intake system, air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor Spacer, exhaust gas sensor, coolant sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake pad wear sensor, thermostat base for air conditioner, heating hot air flow control valve, radiator motor Brush holder, water pump impeller, turbine vane, wiper motor related parts, distributor, starter switch, Ignition coil and its bobbin, motor insulator, motor rotor, motor core, starter relay, transmission wire harness, window washer nozzle, air conditioner panel switch board, coil for fuel related electromagnetic valve, connector for fuse, horn terminal, electrical component insulation It can also be applied to automotive and vehicle related parts such as plates, step motor rotors, lamp sockets, lamp reflectors, lamp housings, brake pistons, solenoid bobbins, engine oil filters, ignition device cases, and other various applications.

本発明を以下の実施例により更に詳細に説明するが、本発明はこれらの例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(測定方法)
・溶融粘度
実施例においてポリアリーレンスルフィド樹脂及びポリアリーレンスルフィド樹脂組成物の300℃での溶融粘度(V6)は、島津製作所製フローテスター「CFT−500D」を用い、300℃、荷重:1.96×10Pa、L/D=10(mm)/1(mm)の条件にて、6分間保持した後に測定した。
(Measuring method)
Melt viscosity In the examples, the melt viscosity (V6) at 300 ° C. of the polyarylene sulfide resin and the polyarylene sulfide resin composition is 300 ° C. under a load of 1.96 using a flow tester “CFT-500D” manufactured by Shimadzu Corporation. It measured after hold | maintaining for 6 minutes on the conditions of * 10 < 6 > Pa, L / D = 10 (mm) / 1 (mm).

・融点および再結晶化温度(Tc2)
ポリアリーレンスルフィド樹脂及びポリアリーレンスルフィド樹脂組成物の融点(Tm)および再結晶化温度(Tc2)は、示差走査熱量計(Perkin Elmer社製「DSC8500」)を用いて測定した。
Melting point and recrystallization temperature (Tc2)
The melting point (Tm) and recrystallization temperature (Tc2) of the polyarylene sulfide resin and the polyarylene sulfide resin composition were measured using a differential scanning calorimeter (“DSC8500” manufactured by Perkin Elmer).

融点は、該樹脂又は樹脂組成物を50mL/minの窒素流下、20℃/minの昇温条件で40℃から400℃までの範囲を測定し、融解による吸熱ピーク温度を求めた。   Melting | fusing point measured the range from 40 degreeC to 400 degreeC on the temperature rising condition of 20 degree-C / min under 50 mL / min nitrogen flow, and calculated | required the endothermic peak temperature by melting | fusing.

再結晶化温度(Tc2)は、該樹脂又は樹脂組成物を350℃まで一旦加熱し(昇温速度:20℃/min)、溶融状態にした後(保持時間:3min)、当該樹脂又は組成物を20℃/minの降温速度で120℃まで冷却した時に発現する樹脂又は組成物の再結晶化ピーク温度を測定し、評価した。   The recrystallization temperature (Tc2) is such that the resin or resin composition is once heated to 350 ° C. (temperature increase rate: 20 ° C./min) and then melted (holding time: 3 min). Was measured and evaluated for the recrystallization peak temperature of the resin or composition that was developed when the solution was cooled to 120 ° C. at a temperature decrease rate of 20 ° C./min.

・ナトリウム原子の含有量
各合成例で製造したポリフェニレンスルフィド樹脂を500℃で焼成し、次いで530℃で6時間焼成して得られた灰分を塩酸で溶解し、原子吸光光度計:AA−6300(島津製作所製)で測定した。
-Content of sodium atom The polyphenylene sulfide resin produced in each synthesis example was calcined at 500 ° C, and then the ash obtained by calcining at 530 ° C for 6 hours was dissolved in hydrochloric acid, and the atomic absorption photometer: AA-6300 ( (Manufactured by Shimadzu Corporation).

・化学発光強度
化学発光測定装置(東北電子産業、形式名:ケミルミネッセンスアナライザーCLA−ID3)を用いて、各合成例で製造したポリフェニレンスルフィド樹脂(試料4g)を試料室に入れて、窒素流通下、加熱温度160℃で化学発光強度の計測を行い、計測開始から5分後までの間に観測される化学発光強度の極大値を測定値とした。なお、測定値は該樹脂1gあたり、1秒間に測定されるカウントとして表記した。
・ Chemiluminescence intensity
Using a chemiluminescence measuring device (Tohoku Electronics Industry, model name: Chemiluminescence analyzer CLA-ID3), the polyphenylene sulfide resin (sample 4 g) produced in each synthesis example was placed in the sample chamber, and the heating temperature was 160 under nitrogen flow. The chemiluminescence intensity was measured at 0 ° C., and the maximum value of chemiluminescence intensity observed between 5 minutes after the start of measurement was taken as the measured value. In addition, the measured value was described as a count measured per second per 1 g of the resin.

〔合成例1〕(低Na含有PPSの合成)
150リットルオートクレーブに、フレーク状硫化ソーダ(60.81重量%NaS)15.400kg(120モル)と、N−メチル−2−ピロリドン(NMP)38.0kg(383モル)を仕込んだ。窒素気流下攪拌しながら216℃まで昇温して、水3.843kgを留出させた。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(p−DCB)17.640kg(120モル)、トリクロロベンゼン(TCB)0.017kg(0.096モル)、及びNMP16.0kg(161モル)を仕込んだ。液温150℃で窒素ガスを用いて0.098MPa(ゲージ圧)に加圧して昇温を開始した。液温260℃まで4時間かけて昇温し、液温が260℃になった時点でオートクレーブ上部への散水を開始した。該温度で2時間保持して反応を行った。反応終了後冷却し、液温が150℃になった時点で、シュウ酸二水和物0.151kg(1.20モル)を加圧注入ポンプでオートクレーブ中に圧入し、次に150℃で30分間攪拌して酸処理した後、冷却した。該処理時のスラリーのpHは、8.9であった。
[Synthesis Example 1] (Synthesis of low Na-containing PPS)
A 150-liter autoclave was charged with 15.400 kg (120 mol) of flaky sodium sulfide (60.81 wt% Na 2 S) and 38.0 kg (383 mol) of N-methyl-2-pyrrolidone (NMP). While stirring under a nitrogen stream, the temperature was raised to 216 ° C. to distill 3.843 kg of water. Thereafter, the autoclave was sealed and cooled to 180 ° C., and paradichlorobenzene (p-DCB) 17.640 kg (120 mol), trichlorobenzene (TCB) 0.017 kg (0.096 mol), and NMP 16.0 kg (161 mol). ). The temperature was increased by pressurizing to 0.098 MPa (gauge pressure) using nitrogen gas at a liquid temperature of 150 ° C. The temperature was raised to 260 ° C. over 4 hours, and when the liquid temperature reached 260 ° C., watering to the top of the autoclave was started. The reaction was carried out at this temperature for 2 hours. After completion of the reaction, the mixture was cooled and when the liquid temperature reached 150 ° C., 0.151 kg (1.20 mol) of oxalic acid dihydrate was injected into the autoclave with a pressure injection pump, and then 30 ° C. at 30 ° C. The mixture was stirred for minutes and acid-treated, and then cooled. The pH of the slurry during the treatment was 8.9.

得られたスラリーを濾過して溶媒を除去し、次に含溶媒濾過ケーキを窒素気流中、220℃で約6時間加熱し溶媒を除去した。この混合物に70℃のイオン交換水360gを加えて10分間攪拌した後にろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み150℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み160℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。その後、120℃で4時間乾燥し、溶融粘度(V6)80Pa・s、融点289℃、再結晶化温度(Tc2)242℃、Na含有量200ppm、化学発光強度1265カウント/秒のPPS樹脂(PPS−1)を得た。   The resulting slurry was filtered to remove the solvent, and then the solvent-containing filter cake was heated in a nitrogen stream at 220 ° C. for about 6 hours to remove the solvent. To this mixture, 360 g of ion exchanged water at 70 ° C. was added and stirred for 10 minutes, followed by filtration. To the cake after filtration, 480 g of ion exchanged water at 70 ° C. was added to perform cake washing. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 150 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 160 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. Then, it was dried at 120 ° C. for 4 hours, PPS resin (PPS) having a melt viscosity (V6) of 80 Pa · s, a melting point of 289 ° C., a recrystallization temperature (Tc2) of 242 ° C., a Na content of 200 ppm, and a chemiluminescence intensity of 1265 counts / second. -1) was obtained.

〔合成例2〕(低Na含有PPSの合成)
150リットルオートクレーブに、フレーク状硫化ソーダ(60.81重量%NaS)15.400kg(120モル)と、N−メチル−2−ピロリドン(NMP)38.0kg(383モル)を仕込んだ。窒素気流下攪拌しながら216℃まで昇温して、水3.843kgを留出させた。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(p−DCB)17.640kg(120モル)、及びNMP16.0kg(161モル)を仕込んだ。液温150℃で窒素ガスを用いて0.098MPa(ゲージ圧)に加圧して昇温を開始した。液温260℃まで4時間かけて昇温し、液温が260℃になった時点でオートクレーブ上部への散水を開始した。該温度で2時間保持して反応を行った。反応終了後冷却し、液温が150℃になった時点で、シュウ酸二水和物0.151kg(1.20モル)を加圧注入ポンプでオートクレーブ中に圧入し、次に150℃で30分間攪拌して酸処理した後、冷却した。該処理時のスラリーのpHは、8.9であった。
[Synthesis Example 2] (Synthesis of low Na-containing PPS)
A 150-liter autoclave was charged with 15.400 kg (120 mol) of flaky sodium sulfide (60.81 wt% Na 2 S) and 38.0 kg (383 mol) of N-methyl-2-pyrrolidone (NMP). While stirring under a nitrogen stream, the temperature was raised to 216 ° C. to distill 3.843 kg of water. Thereafter, the autoclave was sealed and cooled to 180 ° C., and 17.640 kg (120 mol) of paradichlorobenzene (p-DCB) and 16.0 kg (161 mol) of NMP were charged. The temperature was increased by pressurizing to 0.098 MPa (gauge pressure) using nitrogen gas at a liquid temperature of 150 ° C. The temperature was raised to 260 ° C. over 4 hours, and when the liquid temperature reached 260 ° C., watering to the top of the autoclave was started. The reaction was carried out at this temperature for 2 hours. After completion of the reaction, the mixture was cooled and when the liquid temperature reached 150 ° C., 0.151 kg (1.20 mol) of oxalic acid dihydrate was injected into the autoclave with a pressure injection pump, and then 30 ° C. at 30 ° C. The mixture was stirred for minutes and acid-treated, and then cooled. The pH of the slurry during the treatment was 8.9.

得られたスラリーを濾過して溶媒を除去し、次に含溶媒濾過ケーキを窒素気流中、220℃で約6時間加熱し溶媒を除去した。この混合物に70℃のイオン交換水360gを加えて10分間攪拌した後にろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み150℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み160℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。その後、120℃で4時間乾燥し、溶融粘度(V6)270Pa・s、融点287℃、再結晶化温度(Tc2)242℃、Na含有量23ppm、化学発光強度2538カウント/秒のPPS樹脂(PPS−2)を得た。   The resulting slurry was filtered to remove the solvent, and then the solvent-containing filter cake was heated in a nitrogen stream at 220 ° C. for about 6 hours to remove the solvent. To this mixture, 360 g of ion exchanged water at 70 ° C. was added and stirred for 10 minutes, followed by filtration. To the cake after filtration, 480 g of ion exchanged water at 70 ° C. was added to perform cake washing. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 150 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 160 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. Then, it was dried at 120 ° C. for 4 hours, and PPS resin (PPS) having a melt viscosity (V6) of 270 Pa · s, a melting point of 287 ° C., a recrystallization temperature (Tc2) of 242 ° C., an Na content of 23 ppm and a chemiluminescence intensity of 2538 counts / second. -2) was obtained.

〔合成例3〕(低Na含有PPSの合成)
150リットルオートクレーブに、フレーク状硫化ソーダ(60.81重量%NaS)15.400kg(120モル)と、N−メチル−2−ピロリドン(NMP)38.0kg(383モル)を仕込んだ。窒素気流下攪拌しながら216℃まで昇温して、水3.843kgを留出させた。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(p−DCB)17.534kg(119モル)、トリクロロベンゼン(TCB)0.131kg(0.724モル)、及びNMP16.0kg(161モル)を仕込んだ。液温150℃で窒素ガスを用いて0.098MPa(ゲージ圧)に加圧して昇温を開始した。液温260℃まで4時間かけて昇温し、液温が260℃になった時点でオートクレーブ上部への散水を開始した。該温度で2時間保持して反応を行った。反応終了後冷却し、液温が150℃になった時点で、シュウ酸二水和物0.151kg(1.20モル)を加圧注入ポンプでオートクレーブ中に圧入し、次に150℃で30分間攪拌して酸処理した後、冷却した。該処理時のスラリーのpHは、8.9であった。
[Synthesis Example 3] (Synthesis of low Na-containing PPS)
A 150-liter autoclave was charged with 15.400 kg (120 mol) of flaky sodium sulfide (60.81 wt% Na 2 S) and 38.0 kg (383 mol) of N-methyl-2-pyrrolidone (NMP). While stirring under a nitrogen stream, the temperature was raised to 216 ° C. to distill 3.843 kg of water. Then, the autoclave was sealed and cooled to 180 ° C., and paradichlorobenzene (p-DCB) 17.534 kg (119 mol), trichlorobenzene (TCB) 0.131 kg (0.724 mol), and NMP 16.0 kg (161 mol). ). The temperature was increased by pressurizing to 0.098 MPa (gauge pressure) using nitrogen gas at a liquid temperature of 150 ° C. The temperature was raised to 260 ° C. over 4 hours, and when the liquid temperature reached 260 ° C., watering to the top of the autoclave was started. The reaction was carried out at this temperature for 2 hours. After completion of the reaction, the mixture was cooled and when the liquid temperature reached 150 ° C., 0.151 kg (1.20 mol) of oxalic acid dihydrate was injected into the autoclave with a pressure injection pump, and then 30 ° C. at 30 ° C. The mixture was stirred for minutes and acid-treated, and then cooled. The pH of the slurry during the treatment was 8.9.

得られたスラリーを濾過して溶媒を除去し、次に含溶媒濾過ケーキを窒素気流中、220℃で約6時間加熱し溶媒を除去した。この混合物に70℃のイオン交換水360gを加えて10分間攪拌した後にろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み150℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み160℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。その後、120℃で4時間乾燥し、溶融粘度(V6)1100Pa・s、融点280℃、再結晶化温度(Tc2)238℃、Na含有量23ppm、化学発光強度3653カウント/秒のPPS樹脂(PPS−3)を得た。   The resulting slurry was filtered to remove the solvent, and then the solvent-containing filter cake was heated in a nitrogen stream at 220 ° C. for about 6 hours to remove the solvent. To this mixture, 360 g of ion exchanged water at 70 ° C. was added and stirred for 10 minutes, followed by filtration. To the cake after filtration, 480 g of ion exchanged water at 70 ° C. was added to perform cake washing. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 150 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 160 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. Then, it was dried at 120 ° C. for 4 hours, PPS resin (PPS) having a melt viscosity (V6) of 1100 Pa · s, a melting point of 280 ° C., a recrystallization temperature (Tc2) of 238 ° C., an Na content of 23 ppm, and a chemiluminescence intensity of 3653 counts / second. -3) was obtained.

〔比較合成例1〕(高Na含有PPSの合成)
150リットルオートクレーブに、フレーク状硫化ソーダ(60.81重量%NaS)15.400kg(120モル)と、N−メチル−2−ピロリドン(NMP)38.0kg(383モル)を仕込んだ。窒素気流下攪拌しながら216℃まで昇温して、水3.843kgを留出させた。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(p−DCB)17.534kg(119モル)、トリクロロベンゼン(TCB)0.131kg(0.724モル)、及びNMP16.0kg(161モル)を仕込んだ。液温150℃で窒素ガスを用いて0.098MPa(ゲージ圧)に加圧して昇温を開始した。液温260℃まで4時間かけて昇温し、液温が260℃になった時点でオートクレーブ上部への散水を開始した。該温度で2時間保持して反応を行った。反応終了後冷却し、液温が150℃になった時点で、シュウ酸二水和物0.151kg(1.20モル)を加圧注入ポンプでオートクレーブ中に圧入し、次に150℃で30分間攪拌して酸処理した後、冷却した。該処理時のスラリーのpHは、8.9であった。
[Comparative Synthesis Example 1] (Synthesis of high Na content PPS)
A 150-liter autoclave was charged with 15.400 kg (120 mol) of flaky sodium sulfide (60.81 wt% Na 2 S) and 38.0 kg (383 mol) of N-methyl-2-pyrrolidone (NMP). While stirring under a nitrogen stream, the temperature was raised to 216 ° C. to distill 3.843 kg of water. Then, the autoclave was sealed and cooled to 180 ° C., and paradichlorobenzene (p-DCB) 17.534 kg (119 mol), trichlorobenzene (TCB) 0.131 kg (0.724 mol), and NMP 16.0 kg (161 mol). ). The temperature was increased by pressurizing to 0.098 MPa (gauge pressure) using nitrogen gas at a liquid temperature of 150 ° C. The temperature was raised to 260 ° C. over 4 hours, and when the liquid temperature reached 260 ° C., watering to the top of the autoclave was started. The reaction was carried out at this temperature for 2 hours. After completion of the reaction, the mixture was cooled and when the liquid temperature reached 150 ° C., 0.151 kg (1.20 mol) of oxalic acid dihydrate was injected into the autoclave with a pressure injection pump, and then 30 ° C. at 30 ° C. The mixture was stirred for minutes and acid-treated, and then cooled. The pH of the slurry during the treatment was 8.9.

得られたスラリーを濾過して溶媒を除去し、次に含溶媒濾過ケーキを窒素気流中、220℃で約6時間加熱し溶媒を除去した。この混合物に70℃のイオン交換水360gを加えて10分間攪拌した後にろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み150℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み160℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。その後、120℃で4時間乾燥した後、250℃で30分間熱処理し、溶融粘度(V6)70Pa・s、融点286℃、再結晶化温度(Tc)227℃、Na含有量1000ppm、化学発光強度26068カウント/秒のPPS樹脂(PPS−C1)を得た。 The resulting slurry was filtered to remove the solvent, and then the solvent-containing filter cake was heated in a nitrogen stream at 220 ° C. for about 6 hours to remove the solvent. To this mixture, 360 g of ion exchanged water at 70 ° C. was added and stirred for 10 minutes, followed by filtration. To the cake after filtration, 480 g of ion exchanged water at 70 ° C. was added to perform cake washing. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 150 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 160 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. Then, after drying at 120 ° C. for 4 hours, heat treatment at 250 ° C. for 30 minutes, melt viscosity (V6) 70 Pa · s, melting point 286 ° C., recrystallization temperature (Tc 2 ) 227 ° C., Na content 1000 ppm, chemiluminescence A PPS resin (PPS-C1) having a strength of 26068 counts / second was obtained.

〔比較合成例2〕(高Na含有PPSの合成)
150リットルオートクレーブに、フレーク状硫化ソーダ(60.81重量%NaS)15.400kg(120モル)と、N−メチル−2−ピロリドン(NMP)38.0kg(383モル)を仕込んだ。窒素気流下攪拌しながら216℃まで昇温して、水3.843kgを留出させた。その後、オートクレーブを密閉して180℃まで冷却し、パラジクロロベンゼン(p−DCB)17.640kg(120モル)、及びNMP16.0kg(161モル)を仕込んだ。液温150℃で窒素ガスを用いて0.098MPa(ゲージ圧)に加圧して昇温を開始した。液温260℃まで4時間かけて昇温し、液温が260℃になった時点でオートクレーブ上部への散水を開始した。該温度で2時間保持して反応を行った。反応終了後冷却した。
[Comparative Synthesis Example 2] (Synthesis of high Na content PPS)
A 150-liter autoclave was charged with 15.400 kg (120 mol) of flaky sodium sulfide (60.81 wt% Na 2 S) and 38.0 kg (383 mol) of N-methyl-2-pyrrolidone (NMP). While stirring under a nitrogen stream, the temperature was raised to 216 ° C. to distill 3.843 kg of water. Thereafter, the autoclave was sealed and cooled to 180 ° C., and 17.640 kg (120 mol) of paradichlorobenzene (p-DCB) and 16.0 kg (161 mol) of NMP were charged. The temperature was increased by pressurizing to 0.098 MPa (gauge pressure) using nitrogen gas at a liquid temperature of 150 ° C. The temperature was raised to 260 ° C. over 4 hours, and when the liquid temperature reached 260 ° C., watering to the top of the autoclave was started. The reaction was carried out at this temperature for 2 hours. It cooled after reaction completion.

得られたスラリーを濾過して溶媒を除去し、次に含溶媒濾過ケーキを窒素気流中、220℃で約6時間加熱し溶媒を除去した。この混合物に70℃のイオン交換水360gを加えて10分間攪拌した後にろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み150℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み160℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。その後、120℃で4時間乾燥し、溶融粘度(V6)30Pa・s、融点288℃、再結晶化温度(Tc2)202℃、Na含有量1200ppm、化学発光強度6397〔カウント/秒〕のPPS樹脂(PPS−C2)を得た。   The resulting slurry was filtered to remove the solvent, and then the solvent-containing filter cake was heated in a nitrogen stream at 220 ° C. for about 6 hours to remove the solvent. To this mixture, 360 g of ion exchanged water at 70 ° C. was added and stirred for 10 minutes, followed by filtration. To the cake after filtration, 480 g of ion exchanged water at 70 ° C. was added to perform cake washing. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 150 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. The obtained water-containing cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 160 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. Thereafter, the PPS resin was dried at 120 ° C. for 4 hours, and had a melt viscosity (V6) of 30 Pa · s, a melting point of 288 ° C., a recrystallization temperature (Tc 2) of 202 ° C., a Na content of 1200 ppm, and a chemiluminescence intensity of 6397 [counts / second]. (PPS-C2) was obtained.

〔比較合成例3〕(高Na含有PPSの合成)
撹拌機付きのステンレス製反応器1に48%水硫化ナトリウム水溶液1169kg(10kmol)、48%水酸化ナトリウム水溶液841kg(10.1kmol)、N−メチル−2−ピロリドン(以下、NMPと略する場合もある)を1,983kg(20kmol)、50%酢酸ナトリウム水溶液322kg(1.96kmol)を仕込み、常圧で窒素を通じながら240℃まで3時間かけて徐々に加熱し、精留塔を介して水1200kgおよびNMP26kgを留出した。なお、この脱液操作の間に仕込んだイオウ成分1モル当たり0.02モルの硫化水素が系外に飛散した。
[Comparative Synthesis Example 3] (Synthesis of high Na content PPS)
In a stainless steel reactor 1 equipped with a stirrer, 1169 kg (10 kmol) of 48% aqueous sodium hydrosulfide solution, 841 kg (10.1 kmol) of 48% aqueous sodium hydroxide solution, N-methyl-2-pyrrolidone (hereinafter sometimes abbreviated as NMP) A) was charged with 1,983 kg (20 kmol) and 322 kg (1.96 kmol) of 50% aqueous sodium acetate solution, gradually heated to 240 ° C. over 3 hours while passing nitrogen at normal pressure, and 1200 kg of water was passed through the rectification tower. And 26 kg of NMP were distilled off. In addition, 0.02 mol of hydrogen sulfide per 1 mol of the sulfur component charged during this liquid removal operation was scattered out of the system.

次いで、200℃まで冷却した後、内容物を別の攪拌機付きのステンレス製反応器2に移送した。反応器1にNMP932kgを仕込み内部を洗浄し、洗浄液を反応器2に移した。次に、p−ジクロロベンゼン1,477kg(10.0kmol)を反応器2に加え、窒素ガス下に密封し、撹拌しながら200℃まで昇温した。次いで200℃から270℃まで0.6℃/分の速度で昇温し、この温度で140分保持した。水353kg(19.6kmol)を15分かけて圧入しながら250℃まで1.3℃/分の速度で冷却した。その後220℃まで0.4℃/分の速度で冷却してから、80℃まで急冷し、スラリー(A)を得た。このスラリー(A)を2,623kgのNMPで希釈しスラリー(B)を得た。80℃に加熱したスラリー(B)をふるい(80mesh、目開き0.175mm)で濾別し、メッシュオン成分としてスラリーを含んだ顆粒状PPS樹脂を、濾液成分としてスラリー(C)を得た。   Subsequently, after cooling to 200 degreeC, the content was transferred to the stainless steel reactor 2 with another stirrer. The reactor 1 was charged with 932 kg of NMP, the inside was washed, and the washing liquid was transferred to the reactor 2. Next, 1,477 kg (10.0 kmol) of p-dichlorobenzene was added to the reactor 2, sealed under nitrogen gas, and heated to 200 ° C. with stirring. Next, the temperature was raised from 200 ° C. to 270 ° C. at a rate of 0.6 ° C./min, and held at this temperature for 140 minutes. While 353 kg (19.6 kmol) of water was injected over 15 minutes, the mixture was cooled to 250 ° C. at a rate of 1.3 ° C./min. Thereafter, it was cooled to 220 ° C. at a rate of 0.4 ° C./min, and then rapidly cooled to 80 ° C. to obtain a slurry (A). This slurry (A) was diluted with 2,623 kg of NMP to obtain a slurry (B). The slurry (B) heated to 80 ° C. was filtered through a sieve (80 mesh, opening 0.175 mm) to obtain a granular PPS resin containing the slurry as a mesh-on component, and a slurry (C) as a filtrate component.

メッシュオン成分として得られた、スラリーを含んだ顆粒状PPS樹脂100kgにNMP250kgを加えて85℃で30分間洗浄し、ふるい(80mesh、目開き0.175mm)で濾別した。得られた固形物を500kgのイオン交換水で希釈して、70℃で30分撹拌後、80メッシュふるいで濾過して固形物を回収する操作を合計5回繰り返した。このようにして得られた固形物を、窒素雰囲気下130℃で乾燥し、顆粒状ポリフェニレンスルフィドを得た。   250 kg of NMP was added to 100 kg of granular PPS resin containing slurry obtained as a mesh-on component, washed at 85 ° C. for 30 minutes, and filtered through a sieve (80 mesh, opening 0.175 mm). The operation of diluting the obtained solid with 500 kg of ion-exchanged water, stirring at 70 ° C. for 30 minutes, and filtering through an 80 mesh sieve to collect the solid was repeated 5 times in total. The solid material thus obtained was dried at 130 ° C. in a nitrogen atmosphere to obtain granular polyphenylene sulfide.

得られた顆粒状PPS樹脂は溶融粘度(V6)70Pa・s、融点290℃、再結晶化温度(Tc2)225℃、Na含有量1000ppm、化学発光強度8132カウント/秒のPPS樹脂(PPS−C3)であった。    The obtained granular PPS resin was a PPS resin (PPS-C3) having a melt viscosity (V6) of 70 Pa · s, a melting point of 290 ° C., a recrystallization temperature (Tc2) of 225 ° C., a Na content of 1000 ppm, and a chemiluminescence intensity of 8132 counts / second. )Met.

Figure 2018065966
Figure 2018065966

〔実施例1〕
PPS−1を20g、酢酸カルシウムを0.2g秤量し、各材料をタンブラーで均一に混合した。その後、二軸押出機(DSM Explore社製「Compounder15」)に前記材料の混合物を投入し、設定温度320 ℃、回転数150rpm、滞留時間3分にて溶融混練を行った。
[Example 1]
20 g of PPS-1 and 0.2 g of calcium acetate were weighed, and each material was uniformly mixed with a tumbler. Thereafter, the mixture of the above materials was put into a twin screw extruder (“Compounder 15” manufactured by DSM Explorer), and melt kneading was performed at a set temperature of 320 ° C., a rotation speed of 150 rpm, and a residence time of 3 minutes.

続いて、前記二軸押出機に取り付けたヘッドから溶融混練物をストランド状に押出し、ペレットを得た。   Subsequently, the melt-kneaded product was extruded in a strand form from a head attached to the twin-screw extruder to obtain pellets.

得られたペレットを用いて融点、再結晶化温度(Tc2)を測定し、PPS−1と実施例1で得られたペレットの再結晶化温度の差(ΔTc2)を算出した。その結果を表2に示した。   The melting point and recrystallization temperature (Tc2) were measured using the obtained pellets, and the difference (ΔTc2) between the recrystallization temperatures of PPS-1 and the pellets obtained in Example 1 was calculated. The results are shown in Table 2.

〔実施例2〕
PPS−1の代わりにPPS−2を用いたこと以外は実施例1と同様に実施した。その結果を表2に示した。
[Example 2]
The same operation as in Example 1 was performed except that PPS-2 was used instead of PPS-1. The results are shown in Table 2.

〔実施例3〕
PPS−1の代わりにPPS−3を用いたこと以外は実施例1と同様に実施した。その結果を表2に示した。
Example 3
The same operation as in Example 1 was performed except that PPS-3 was used instead of PPS-1. The results are shown in Table 2.

[実施例4]
酢酸カルシウムの変わりに次亜りん酸カルシウムを用いたこと以外は実施例1と同様に実施した。その結果を表2に示した。
[Example 4]
It implemented like Example 1 except having used calcium hypophosphite instead of calcium acetate. The results are shown in Table 2.

[比較例1]
PPS−1の代わりにPPS−C1を用いたこと以外は実施例1と同様に実施した。その結果を表3に示した。
[Comparative Example 1]
It implemented like Example 1 except having used PPS-C1 instead of PPS-1. The results are shown in Table 3.

[比較例2]
PPS−1の代わりにPPS−C2を用いたこと以外は実施例1と同様に実施した。その結果を表3に示した。
[Comparative Example 2]
It implemented like Example 1 except having used PPS-C2 instead of PPS-1. The results are shown in Table 3.

[比較例3]
PPS−1の代わりにPPS−C3を用いたこと以外は実施例1と同様に実施した。その結果を表3に示した。
[Comparative Example 3]
The same operation as in Example 1 was performed except that PPS-C3 was used instead of PPS-1. The results are shown in Table 3.

[比較例4]
酢酸カルシウムの変わりにステアリン酸カルシウムを用いたこと以外は、比較例3と同様に実施した。その結果を表3に示した。
[Comparative Example 4]
It carried out similarly to the comparative example 3 except having used calcium stearate instead of calcium acetate. The results are shown in Table 3.

Figure 2018065966
Figure 2018065966

Figure 2018065966
Figure 2018065966

Claims (16)

ナトリウム原子含有量が650ppm以下の範囲であるポリアリーレンスルフィド樹脂と、有機カルボン酸のアルカリ土類金属塩とを配合し、溶融混練することを特徴とするポリアリーレンスルフィド樹脂組成物の製造方法。 A method for producing a polyarylene sulfide resin composition comprising blending a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an alkaline earth metal salt of an organic carboxylic acid, and melt-kneading the mixture. 前記ポリアリーレンスルフィド樹脂が、有機アミド系溶媒中でアルカリ金属硫化物とジハロ芳香族化合物とを重合反応させてポリアリーレンスルフィド樹脂を製造する工程(1)、重合反応により得られたポリアリーレンスルフィド樹脂を含むスラリーに酸又は水素塩を添加して酸処理する工程(2)、を経て得られたポリアリーレンスルフィド樹脂である請求項1記載のポリアリーレンスルフィド樹脂組成物の製造方法。 The polyarylene sulfide resin is a process (1) for producing a polyarylene sulfide resin by polymerizing an alkali metal sulfide and a dihaloaromatic compound in an organic amide solvent, and the polyarylene sulfide resin obtained by the polymerization reaction The method for producing a polyarylene sulfide resin composition according to claim 1, which is a polyarylene sulfide resin obtained through an acid treatment (2) in which an acid or hydrogen salt is added to a slurry containing. 前記ポリアリーレンスルフィド樹脂は、窒素流通下、160℃で測定した化学発光強度の極大値が、該樹脂1gあたり5000カウント/秒以下の範囲である、請求項1または2記載のポリアリーレンスルフィド樹脂組成物の製造方法。 The polyarylene sulfide resin composition according to claim 1 or 2, wherein the polyarylene sulfide resin has a maximum value of chemiluminescence intensity measured at 160 ° C under nitrogen flow in a range of 5000 counts / second or less per 1 g of the resin. Manufacturing method. 前記ポリアリーレンスルフィド樹脂に対する前記有機カルボン酸アルカリ土類金属塩の割合が、前記ポリアリーレンスルフィド樹脂中の硫黄原子1モル当たり、前記有機カルボン酸アルカリ土類金属塩0.05〜15モルの範囲であるの範囲である請求項1〜3のいずれか一項記載のポリアリーレンスルフィド樹脂組成物の製造方法。 The ratio of the organic carboxylic acid alkaline earth metal salt to the polyarylene sulfide resin is in the range of 0.05 to 15 mol of the organic carboxylic acid alkaline earth metal salt per mol of sulfur atom in the polyarylene sulfide resin. It is a certain range, The manufacturing method of the polyarylene sulfide resin composition as described in any one of Claims 1-3. ナトリウム原子含有量が650ppm以下であるポリアリーレンスルフィド樹脂と、有機カルボン酸アルカリ土類金属塩とを必須成分として配合してなるポリアリーレンスルフィド樹脂組成物。 A polyarylene sulfide resin composition comprising, as essential components, a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an organic carboxylic acid alkaline earth metal salt. 前記ポリアリーレンスルフィド樹脂に対する前記有機カルボン酸アルカリ土類金属塩の割合が、前記ポリアリーレンスルフィド樹脂中の硫黄原子1モル当たり、前記有機カルボン酸アルカリ土類金属塩0.05〜15モルの範囲である請求項5記載のポリアリーレンスルフィド樹脂組成物。 The ratio of the organic carboxylic acid alkaline earth metal salt to the polyarylene sulfide resin is in the range of 0.05 to 15 mol of the organic carboxylic acid alkaline earth metal salt per mol of sulfur atom in the polyarylene sulfide resin. The polyarylene sulfide resin composition according to claim 5. 前記ポリアリーレンスルフィド樹脂は、窒素流通下、160℃で測定した化学発光強度の極大値が、該樹脂1gあたり5000カウント/秒以下の範囲である、請求項5または6記載のポリアリーレンスルフィド樹脂組成物。 7. The polyarylene sulfide resin composition according to claim 5, wherein the polyarylene sulfide resin has a maximum value of chemiluminescence intensity measured at 160 ° C. under nitrogen flow in a range of 5000 counts / second or less per 1 g of the resin. object. 融点(Tm)が270℃以上であり、かつ、再結晶化温度(Tc2)が160〜210℃の範囲である請求項5〜7の何れか一項記載のポリアリーレンスルフィド樹脂組成物。 The polyarylene sulfide resin composition according to any one of claims 5 to 7, which has a melting point (Tm) of 270 ° C or higher and a recrystallization temperature (Tc2) of 160 to 210 ° C. 請求項5〜8の何れか一項記載のポリアリーレンスルフィド樹脂組成物を成形してなる成形品。 A molded article formed by molding the polyarylene sulfide resin composition according to any one of claims 5 to 8. 請求項5〜8の何れか一つに記載のポリアリーレンスルフィド樹脂組成物を金型内で成型する工程を有する成形品の製造方法であって、金型温度が40〜180℃の範囲であることを特徴とする成形品の製造方法。 It is a manufacturing method of the molded article which has the process of shape | molding the polyarylene sulfide resin composition as described in any one of Claims 5-8 within a metal mold | die, Comprising: Mold temperature is the range of 40-180 degreeC. A method for producing a molded product characterized by the above. 前記金型温度が、40〜120℃の範囲であることを特徴とする請求項10記載の成形品の製造方法。   The method for producing a molded product according to claim 10, wherein the mold temperature is in the range of 40 to 120 ° C. ナトリウム原子含有量が650ppm以下であるポリアリーレンスルフィド樹脂と、有機カルボン酸アルカリ土類金属塩とを配合し、溶融混練することを特徴とするポリアリーレンスルフィド樹脂組成物の再結晶化温度(Tc2)の低下方法。 A recrystallization temperature (Tc2) of a polyarylene sulfide resin composition comprising a polyarylene sulfide resin having a sodium atom content of 650 ppm or less and an alkaline earth metal salt of an organic carboxylic acid which are melt-kneaded. Method of lowering. 前記ポリアリーレンスルフィド樹脂が、有機アミド系溶媒中でアルカリ金属硫化物とジハロ芳香族化合物とを重合反応させてポリアリーレンスルフィド樹脂を製造する工程(1)、重合反応後のポリアリーレンスルフィド樹脂のスラリーに酸又は水素塩を添加して酸処理する工程(2)、を経て得られたポリアリーレンスルフィド樹脂である請求項12記載の再結晶化温度(Tc2)の低下方法。 Step (1) in which the polyarylene sulfide resin is produced by polymerizing an alkali metal sulfide and a dihaloaromatic compound in an organic amide solvent, and a slurry of the polyarylene sulfide resin after the polymerization reaction The method for lowering the recrystallization temperature (Tc2) according to claim 12, which is a polyarylene sulfide resin obtained through the step (2) of adding an acid or a hydrogen salt to the acid treatment. 下記式で表される非ニュートリアル指数が、0.90〜1.50の範囲である請求項12又は13記載の再結晶化温度(Tc2)の低下方法。 The method for lowering the recrystallization temperature (Tc2) according to claim 12 or 13, wherein the non-neutral index represented by the following formula is in the range of 0.90 to 1.50. 前記ポリアリーレンスルフィド樹脂に対する前記有機カルボン酸アルカリ土類金属塩の割合が、前記ポリアリーレンスルフィド樹脂中の硫黄原子1モル当たり、前記有機カルボン酸アルカリ土類金属塩0.05〜15モルの範囲である請求項12〜14のいずれか一項記載の再結晶化温度(Tc2)の低下方法。 The ratio of the organic carboxylic acid alkaline earth metal salt to the polyarylene sulfide resin is in the range of 0.05 to 15 mol of the organic carboxylic acid alkaline earth metal salt per mol of sulfur atom in the polyarylene sulfide resin. The method for lowering the recrystallization temperature (Tc2) according to any one of claims 12 to 14. 前記ポリアリーレンスルフィド樹脂は、窒素流通下、160℃で測定した化学発光強度の極大値が、該樹脂1gあたり5000カウント/秒以下の範囲である、請求項12〜15のいずれか一項記載の再結晶化温度(Tc2)の低下方法。 16. The polyarylene sulfide resin according to claim 12, wherein the maximum value of the chemiluminescence intensity measured at 160 ° C. under a nitrogen flow is in the range of 5000 counts / second or less per 1 g of the resin. A method for lowering the recrystallization temperature (Tc2).
JP2016206886A 2016-10-21 2016-10-21 Polyarylene sulfide resin compositions, molded articles and methods for producing them Active JP6866609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016206886A JP6866609B2 (en) 2016-10-21 2016-10-21 Polyarylene sulfide resin compositions, molded articles and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206886A JP6866609B2 (en) 2016-10-21 2016-10-21 Polyarylene sulfide resin compositions, molded articles and methods for producing them

Publications (2)

Publication Number Publication Date
JP2018065966A true JP2018065966A (en) 2018-04-26
JP6866609B2 JP6866609B2 (en) 2021-04-28

Family

ID=62085747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206886A Active JP6866609B2 (en) 2016-10-21 2016-10-21 Polyarylene sulfide resin compositions, molded articles and methods for producing them

Country Status (1)

Country Link
JP (1) JP6866609B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223232A (en) * 1986-03-24 1987-10-01 Toto Kasei Kk Purification of polyphenylene sulfide
JPH05320507A (en) * 1992-05-27 1993-12-03 Mitsubishi Rayon Co Ltd Polyphenylene sulfide-based resin composition
JPH093327A (en) * 1995-06-22 1997-01-07 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition for low-temperature molding and its molding method
JPH0967439A (en) * 1995-09-01 1997-03-11 Tonen Chem Corp Production of modified polyarylene sulfide
JPH10212408A (en) * 1997-01-29 1998-08-11 Tosoh Corp Polyphenylene sulfide resin composition
JP2014065841A (en) * 2012-09-26 2014-04-17 Toray Ind Inc Polyphenylene sulfide resin composition and injection molding article
JP2016074872A (en) * 2014-02-25 2016-05-12 東レ株式会社 Polyphenylene sulfide resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223232A (en) * 1986-03-24 1987-10-01 Toto Kasei Kk Purification of polyphenylene sulfide
JPH05320507A (en) * 1992-05-27 1993-12-03 Mitsubishi Rayon Co Ltd Polyphenylene sulfide-based resin composition
JPH093327A (en) * 1995-06-22 1997-01-07 Dainippon Ink & Chem Inc Polyarylene sulfide resin composition for low-temperature molding and its molding method
JPH0967439A (en) * 1995-09-01 1997-03-11 Tonen Chem Corp Production of modified polyarylene sulfide
JPH10212408A (en) * 1997-01-29 1998-08-11 Tosoh Corp Polyphenylene sulfide resin composition
JP2014065841A (en) * 2012-09-26 2014-04-17 Toray Ind Inc Polyphenylene sulfide resin composition and injection molding article
JP2016074872A (en) * 2014-02-25 2016-05-12 東レ株式会社 Polyphenylene sulfide resin composition

Also Published As

Publication number Publication date
JP6866609B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP5982824B2 (en) Method for producing thermoplastic resin composition, thermoplastic resin composition and molded article
JP2018053004A (en) Polyarylene sulfide resin composition, molded product and method for producing them
JPWO2017069109A1 (en) Polyarylene sulfide resin composition, molded article, and production method thereof
JP7047248B2 (en) Polyarylene sulfide resin composition, molded product and manufacturing method
JP6797360B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6828414B2 (en) Polyarylene sulfide resin composition, molded article and manufacturing method
JP6701877B2 (en) Polyphenylene sulfide resin composition
JP2009275197A (en) Polyphenylene sulfide resin composition and molding
KR102499526B1 (en) Resin composition and molded product thereof
JP6866609B2 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
KR20230028762A (en) Polyarylene sulfide resin composition, molded article and manufacturing method thereof
JP7136394B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7311051B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
WO2020080289A1 (en) Resin composition and molded article thereof
JP7136372B2 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7197066B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7070811B1 (en) Polyarylene sulfide resin compositions, molded articles and methods for producing them
JP7136381B1 (en) Polyarylene sulfide resin composition, method for producing polyarylene sulfide resin composition, molded article, method for producing molded article
JP7298797B1 (en) Polyarylene sulfide resin composition, molded article and method for producing the same
JP7334873B1 (en) Polyarylene sulfide resin mixture, resin composition, molded article, and method for producing the same
WO2023157411A1 (en) Polyarylene sulfide resin composition, molded article, and production methods for same
JP2017088878A (en) Polyarylene sulfide resin composition and molded article
WO2022215395A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article
WO2023074035A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing these
WO2023218850A1 (en) Polyarylene sulfide resin composition, molded article, and methods for producing said polyarylene sulfide resin composition and molded article

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R151 Written notification of patent or utility model registration

Ref document number: 6866609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250