JP2018065902A - Porous composite film, and production method of porous composite film - Google Patents

Porous composite film, and production method of porous composite film Download PDF

Info

Publication number
JP2018065902A
JP2018065902A JP2016204377A JP2016204377A JP2018065902A JP 2018065902 A JP2018065902 A JP 2018065902A JP 2016204377 A JP2016204377 A JP 2016204377A JP 2016204377 A JP2016204377 A JP 2016204377A JP 2018065902 A JP2018065902 A JP 2018065902A
Authority
JP
Japan
Prior art keywords
composite film
porous composite
porous
fluorine
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016204377A
Other languages
Japanese (ja)
Other versions
JP6937502B2 (en
Inventor
山田 宗紀
Munenori Yamada
宗紀 山田
健太 柴田
Kenta Shibata
健太 柴田
朗 繁田
Akira Shigeta
朗 繁田
良彰 越後
Yoshiaki Echigo
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2016204377A priority Critical patent/JP6937502B2/en
Publication of JP2018065902A publication Critical patent/JP2018065902A/en
Application granted granted Critical
Publication of JP6937502B2 publication Critical patent/JP6937502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous composite film excellent in heat resistance, mechanical properties, dimensional stability, and gas permeability, and a production method thereof.SOLUTION: <1> A porous composite film is composed of a fluorine-containing polymer and a nonthermoplastic PI, wherein the nonthermoplastic PI is 15-30 mass% relative to the porous composite film. The porous composite film has a Gurley value based on JIS P-8117 of 3,000 seconds or less. <2> A production method of the porous composite film includes a step for impregnating a porous fluorine-containing polymer film with a nonthermoplastic PI precursor solution containing an amide-based solvent and an ether-based solvent followed by drying and thermal hardening.SELECTED DRAWING: None

Description

本発明は、多孔質複合フィルムおよびその製造方法に関するものである。 The present invention relates to a porous composite film and a method for producing the same.

含フッ素ポリマの中で、ポリテトラフルオロエチレン(PTFE)からなる多孔質フィルムは、その優れた耐熱性と高い気孔率を利用して、電子材料、光学材料、リチウム二次電池用セパレータ、フィルタ、分離膜、電線被覆等の産業用材料、医療材料の素材、液体用フィルタ、気体用フィルタ等の分野で利用されている。 多孔質PTFEフィルムを製造する方法としては、延伸による多孔質化を利用した方法が、広く実用化されている。 この方法により得られる多孔質PTFEフィルムは、力学的強度には優れるものの、高温での寸法安定性に乏しい。この寸法安定性を向上させる方法として、特許文献1、2には、ポリイミド(PI)、ポリウレタン等の耐熱性高分子溶液を、多孔質PTFEフィルムに含浸、乾燥して、PTFEセル表面の一部または全部を耐熱性高分子で被覆することにより、複合化する方法が提案されている。 Among the fluorine-containing polymers, a porous film made of polytetrafluoroethylene (PTFE) is an electronic material, an optical material, a separator for a lithium secondary battery, a filter, using its excellent heat resistance and high porosity. It is used in the fields of industrial materials such as separation membranes, wire coatings, medical materials, liquid filters, gas filters and the like. As a method for producing a porous PTFE film, a method utilizing porous formation by stretching has been widely put into practical use. The porous PTFE film obtained by this method is excellent in mechanical strength but poor in dimensional stability at high temperatures. As a method for improving the dimensional stability, Patent Documents 1 and 2 disclose that a porous PTFE film is impregnated with a heat-resistant polymer solution such as polyimide (PI) or polyurethane, and dried to obtain a part of the surface of the PTFE cell. Alternatively, a method of forming a composite by covering the whole with a heat-resistant polymer has been proposed.

米国公開特許20160075914号US Published Patent No. 20160075914 米国公開特許20160075915号US Published Patent No. 20160075915

しかしながら、前記文献で開示された多孔質複合フィルムでも、高温、例えば300℃程度の高温に晒された場合の寸法変化率が1%を超え、寸法安定性としては、充分なものではなかった。 However, even with the porous composite film disclosed in the above document, the dimensional change rate when exposed to a high temperature, for example, about 300 ° C., exceeds 1%, and the dimensional stability is not sufficient.

そこで本発明は、上記課題を解決するものであり、通気性が良好であり、かつ300℃以上の高温での寸法安定性に優れた耐熱性の多孔質複合フィルムおよびその製造方法を提供することを目的とする。 Accordingly, the present invention solves the above-described problems, and provides a heat-resistant porous composite film having good air permeability and excellent dimensional stability at a high temperature of 300 ° C. or higher, and a method for producing the same. With the goal.

本発明者らは、多孔質複合フィルムの構成を特定のものとした上で、多孔質複合フィルムの通気性を特定することで、上記課題が解決されることを見出し、本発明の完成に至った。 The inventors of the present invention have found that the above-mentioned problems can be solved by specifying the air permeability of the porous composite film after specifying the configuration of the porous composite film, and have completed the present invention. It was.

本発明は下記を趣旨とするものである。
<1> 含フッ素ポリマと非熱可塑性PIとからなる多孔質複合フィルムであって、非熱可塑性PI含有量が、多孔質複合フィルム質量に対し、15〜30質量%であり、JIS P−8117に基づくガーレ値が、3000秒以下であることを特徴とする多孔質複合フィルム。
<2> アミド系溶媒とエーテル系溶媒とを含有する非熱可塑性PI前駆体溶液を、多孔質含フッ素ポリマフィルムに含浸後、乾燥、熱硬化する工程を含む請求項1記載の多孔質複合フィルムの製造方法。
The present invention has the following objects.
<1> A porous composite film comprising a fluorine-containing polymer and a non-thermoplastic PI, wherein the non-thermoplastic PI content is 15 to 30% by mass relative to the mass of the porous composite film, and JIS P-8117 A porous composite film characterized in that the Gurley value based on the above is 3000 seconds or less.
<2> The porous composite film according to claim 1, further comprising a step of impregnating a porous fluorine-containing polymer film with a non-thermoplastic PI precursor solution containing an amide solvent and an ether solvent, followed by drying and thermosetting. Manufacturing method.

本発明の多孔質複合フィルムは、高温での寸法安定性に優れ、高い通気性を有するので、電子材料、光学材料、リチウム二次電池用セパレータ、フィルタ、分離膜、電線被覆等の産業用材料、医療材料の素材、液体用フィルタ、気体用フィルタ等の分野で好適に用いることができる。 Since the porous composite film of the present invention has excellent dimensional stability at high temperatures and high air permeability, it is an industrial material such as an electronic material, an optical material, a separator for a lithium secondary battery, a filter, a separation membrane, and a wire coating. It can be suitably used in the fields of medical materials, liquid filters, gas filters and the like.

本発明の多孔質複合フィルムは、含フッ素ポリマと非熱可塑性PIとからなり、多孔質含フッ素ポリマフィルム中の気孔の一部に非熱可塑性PIが充填されているものである。ここで用いられる多孔質含フッ素ポリマフィルムは、PTFE、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、エチレン−テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)等の含フッ素ポリマからなるものであり、耐薬品性、耐熱性の点から、PTFE製であることが好ましい。多孔質PTFEフィルムは、PTFE樹脂から延伸法や湿式抄造法等で製造され、市販品を用いることができる。市販品の具体例としては、住友電工ファインケミカル社製「ポアフロン」、日東電工社製「TEMISH」、日本ゴア社製「ゴアマイクロフィルトレーションメディア」、巴川製紙社製「トミーファイレック」等を挙げることができる。これらの多孔質PTFEフィルムは、PIに対する密着性を向上させるために、シランカップリング剤処理、プラズマ処理、界面活性剤等による親水化処理等、公知の表面処理がなされていることが好ましい。 The porous composite film of the present invention comprises a fluorine-containing polymer and a non-thermoplastic PI, and a part of pores in the porous fluorine-containing polymer film is filled with the non-thermoplastic PI. The porous fluorine-containing polymer film used here is PTFE, polyvinylidene fluoride (PVDF), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), It is made of a fluorine-containing polymer such as ethylene-tetrafluoroethylene copolymer (ETFE) or polychlorotrifluoroethylene (PCTFE), and is preferably made of PTFE from the viewpoint of chemical resistance and heat resistance. The porous PTFE film is produced from a PTFE resin by a stretching method or a wet papermaking method, and a commercially available product can be used. Specific examples of commercially available products include “Poreflon” manufactured by Sumitomo Electric Fine Chemical Co., “TEMISH” manufactured by Nitto Denko Corporation, “Goa Microfiltration Media” manufactured by Gore Japan, and “Tomy Filec” manufactured by Yodogawa Paper Co., Ltd. be able to. These porous PTFE films are preferably subjected to a known surface treatment such as a silane coupling agent treatment, a plasma treatment, a hydrophilization treatment with a surfactant or the like in order to improve the adhesion to PI.

多孔質含フッ素ポリマフィルムは、厚みが10〜200μm、平均気孔径が0.05〜5μm、通気度が、JIS P−8117に基づくガーレ値として、1〜200秒のものを用いることが好ましい。 これらの多孔質含フッ素ポリマフィルムは、PIに対する密着性を向上させるために、シランカップリング剤処理、プラズマ処理等による公知の表面処理がなされていることが好ましい。 It is preferable to use a porous fluorine-containing polymer film having a thickness of 10 to 200 μm, an average pore diameter of 0.05 to 5 μm, and an air permeability of 1 to 200 seconds as a Gurley value based on JIS P-8117. These porous fluorine-containing polymer films are preferably subjected to a known surface treatment such as silane coupling agent treatment or plasma treatment in order to improve adhesion to PI.

多孔質複合フィルムを構成する非熱可塑性PIとは、イミド環を有する耐熱性高分子であり、350℃未満の温度で射出成形、押出成形等の熱成形性を示さないPIをいう。非熱可塑性PIは、通常、DSCによるガラス転移温度を示さないが、ガラス転移温度を示す場合であっても、250℃以上である。 このような、非熱可塑性PIを、多孔質複合フィルム質量に対し、15〜30質量%、好ましくは、16〜25質量%充填して複合化することにより、良好な通気性と、高温における良好な寸法安定性を同時に確保した多孔質複合フィルムとすることができる。 ここで、多孔質複合フィルムの通気度は、JIS P−8117に基づくガーレ値として、3000秒以下であり、1000秒以下とすることが好ましく、500秒以下とすることがより好ましい。ガーレ値の下限に制限はないが、通常10秒以上であり、50秒以上とすることが好ましく、100秒以上とすることがより好ましい。 The non-thermoplastic PI constituting the porous composite film is a heat-resistant polymer having an imide ring and refers to PI that does not exhibit thermoformability such as injection molding or extrusion molding at a temperature of less than 350 ° C. The non-thermoplastic PI usually does not show a glass transition temperature by DSC, but even when it shows a glass transition temperature, it is 250 ° C. or higher. By filling the non-thermoplastic PI with 15 to 30% by mass, preferably 16 to 25% by mass, based on the mass of the porous composite film, good air permeability and high temperature are obtained. It can be set as the porous composite film which ensured dimensional stability simultaneously. Here, the air permeability of the porous composite film is 3000 seconds or less, preferably 1000 seconds or less, and more preferably 500 seconds or less as a Gurley value based on JIS P-8117. The lower limit of the Gurley value is not limited, but is usually 10 seconds or longer, preferably 50 seconds or longer, and more preferably 100 seconds or longer.

本発明の多孔質複合フィルムは、例えば、非熱可塑性PIの前駆体であるポリアミック酸(以下、「PAA」と略記することがある)溶液を、多孔質含フッ素ポリマフィルムに含浸後、乾燥、熱硬化することにより得ることができる。このようにすることにより、多孔質含フッ素ポリマフィルムを構成する含フッ素ポリマセル表面の一部または全部を非熱可塑性PIで被覆することができる。この非熱可塑性PIは、多孔質であっても、非多孔質であってもよいが、寸法安定性向上の観点から非多孔質であることが好ましい。 The porous composite film of the present invention is, for example, impregnated in a porous fluorine-containing polymer film with a polyamic acid (hereinafter sometimes abbreviated as “PAA”) which is a precursor of non-thermoplastic PI, and then dried. It can be obtained by thermosetting. By doing in this way, a part or all of the fluorine-containing polymer cell surface which comprises a porous fluorine-containing polymer film can be coat | covered with non-thermoplastic PI. The non-thermoplastic PI may be porous or non-porous, but is preferably non-porous from the viewpoint of improving dimensional stability.

PAAは、略等モルのテトラカルボン酸二無水物(TA)とジアミン(DA)との反応生成物である。 PAA is a reaction product of approximately equimolar tetracarboxylic dianhydride (TA) and diamine (DA).

TAの具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸無水物、および3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、PMDA、BPDAが好ましい。 Specific examples of TA include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 2,3,3 ′, 4′-biphenyltetra. Carboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic acid A dianhydride etc. are mentioned. These may be used alone or in combination of two or more. Of these, PMDA and BPDA are preferable.

DAの具体例としては、4,4’−ジアミノジフェニルエーテル(DADE)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、p−フェニレンジアミン(PDA)、m−フェニレンジアミン、2,4−ジアミノトルエン、4,4’−ジアミノビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、3,3’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルメタン3,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]スルフォン、ビス[4−(3−アミノフェノキシ)フェニル]スルフォン等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、DADE、BAPP、PDAが好ましい。 Specific examples of DA include 4,4′-diaminodiphenyl ether (DADE), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), p-phenylenediamine (PDA), m-phenylene. Diamine, 2,4-diaminotoluene, 4,4′-diaminobiphenyl, 4,4′-diamino-2,2′-bis (trifluoromethyl) biphenyl, 3,3′-diaminodiphenylsulfone, 4,4 ′ -Diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylmethane 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3 Aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, and the like. . These may be used alone or in combination of two or more. Of these, DADE, BAPP, and PDA are preferable.

PAA溶液の溶媒としては、溶質であるPAAを溶解する良溶媒と、PAAには貧溶媒となる溶媒とを混合した混合溶媒を用いることが好ましい。ここで、良溶媒とは、25℃において、PAAに対する溶解度が1質量%以上の溶媒をいい、貧溶媒とは、25℃において、PAAに対する溶解度が1質量%未満の溶媒をいう。 As a solvent for the PAA solution, it is preferable to use a mixed solvent obtained by mixing a good solvent that dissolves PAA as a solute and a solvent that becomes a poor solvent for PAA. Here, the good solvent refers to a solvent having a solubility in PAA of 1% by mass or more at 25 ° C., and the poor solvent refers to a solvent having a solubility in PAA of less than 1% by mass at 25 ° C.

良溶媒としては、PAAに対する溶解性が良好なアミド系溶媒が好ましく用いられる。アミド系溶媒としては、例えば、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the good solvent, an amide solvent having good solubility in PAA is preferably used. Examples of the amide solvent include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) and the like. These may be used alone or in combination of two or more.

貧溶媒としては、MEK等のケトン系溶媒よりも、多孔質含フッ素ポリマフィルムに対する浸透性が良好なエーテル系溶媒が好ましく用いられる。エーテル系溶媒としては、例えば、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、ジオキサン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、THF、DMEが好ましい。これらのエーテル系溶媒を用いることにより、多孔質含フッ素ポリマフィルムに対するPAA溶液の良好な含浸性が得られ、均一な多孔質複合フィルムを得ることができる。 As the poor solvent, an ether solvent having better permeability to the porous fluorine-containing polymer film is preferably used than a ketone solvent such as MEK. Examples of the ether solvent include tetrahydrofuran (THF), dimethoxyethane (DME), dioxane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like. These may be used alone or in combination of two or more. Of these, THF and DME are preferable. By using these ether solvents, good impregnation of the PAA solution into the porous fluorine-containing polymer film can be obtained, and a uniform porous composite film can be obtained.

混合溶媒中における貧溶媒の配合量としては、混合溶媒質量に対し、50〜95質量%とすることが好ましく、60〜90質量%とすることがより好ましい。このようにすることにより、PAA溶液の多孔質含フッ素ポリマフィルムに対する良好な含浸性を確保することができる。 As a compounding quantity of the poor solvent in a mixed solvent, it is preferable to set it as 50-95 mass% with respect to mixed solvent mass, and it is more preferable to set it as 60-90 mass%. By doing in this way, the favorable impregnation property with respect to the porous fluorine-containing polymer film of a PAA solution is securable.

PAA溶液は、例えば、前記混合溶媒中、略等モルのTAとDAとを、100℃以下の温度で反応させることにより得ることができる。 PAA溶液は、良溶媒中で重合反応して溶液を得た後、これに貧溶媒を加える方法や、貧溶媒中で重合反応して懸濁液を得た後、これに良溶媒を加える方法で得ることもできる。 The PAA solution can be obtained, for example, by reacting substantially equimolar TA and DA at a temperature of 100 ° C. or lower in the mixed solvent. The PAA solution is obtained by polymerization reaction in a good solvent to obtain a solution, and then a poor solvent is added thereto, or a suspension is obtained by polymerization reaction in the poor solvent and then a good solvent is added thereto. Can also be obtained.

PAA溶液におけるPAAの濃度は、3〜30質量%が好ましく、5〜15質量%がより好ましい。 The concentration of PAA in the PAA solution is preferably 3 to 30% by mass, and more preferably 5 to 15% by mass.

PAA溶液の30℃における粘度は0.01〜100Pa・sの範囲が好ましく、0.1〜50Pa・sがより好ましい。 The viscosity of the PAA solution at 30 ° C. is preferably in the range of 0.01 to 100 Pa · s, more preferably 0.1 to 50 Pa · s.

PAA溶液には、必要に応じて、各種界面活性剤やシランカップリング剤のような公知の添加物を、本発明の効果を損なわない範囲で添加してもよい。また、必要に応じて、PAA溶液に、PAA以外の他の高分子を、本発明の効果を損なわない範囲で添加してもよい。 You may add well-known additives, such as various surfactants and a silane coupling agent, to a PAA solution in the range which does not impair the effect of this invention as needed. Moreover, you may add other polymers other than PAA to PAA solution in the range which does not impair the effect of this invention as needed.

多孔質複合フィルムは、例えば、多孔質含フッ素ポリマフィルムに、PAA溶液を含浸し、これを100〜170℃で乾燥後、窒素ガス雰囲気下、200〜350℃で熱処理を行うことにより得ることができる。 The porous composite film can be obtained, for example, by impregnating a porous fluorine-containing polymer film with a PAA solution, drying it at 100 to 170 ° C., and then performing a heat treatment at 200 to 350 ° C. in a nitrogen gas atmosphere. it can.

多孔質含フッ素ポリマフィルムへのPI溶液の含浸は、多孔質含フッ素ポリマフィルムの表面にPI溶液を塗布または浸漬することにより行うことができる。塗布機としては、ダイコーター、リップコーター、グラビアコーター、バーコーター、ドクターブレードコーター、コンマコーター、リバースロールコーター、バーリバースロールコーター等を用いることができる。また、浸漬法を用いる場合は、多孔質含フッ素ポリマフィルムをPI溶液に浸漬後、ロールプレス、マングル等を用いて、表面に付着した剰余のPI溶液を除去すればよい。 The impregnation of the porous fluorine-containing polymer film with the PI solution can be performed by applying or dipping the PI solution on the surface of the porous fluorine-containing polymer film. As the coating machine, a die coater, a lip coater, a gravure coater, a bar coater, a doctor blade coater, a comma coater, a reverse roll coater, a bar reverse roll coater or the like can be used. Moreover, when using an immersion method, what is necessary is just to remove the excess PI solution adhering to the surface using a roll press, a mangle, etc. after immersing a porous fluorine-containing polymer film in PI solution.

以下に、実施例を挙げて、本発明をさらに詳細に説明する。なお本発明は実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples.

<実施例1>
ガラス製反応容器に、窒素雰囲気下、DADE:0.96モル、DMAcおよびDMEからなる混合溶媒(DMAc/DMEの混合比率は質量比で20/80とした)を投入して攪拌し、DADEを溶解した。この溶液をジャケットで30℃以下に冷却しながら、PMDA:1.00モルを徐々に加えた後、50℃で5時間重合反応させ、固形分濃度が6質量%のPAA溶液を得た。この溶液を、プラズマ処理したPTFEフィルム(住友電工ファインポリマー社製「ポアフロン」 厚み:30μm ガーレ値:23秒)の表面に塗布して含浸した。 しかる後、このフィルムの周囲を金属製フレームで固定して、130℃で10分、150℃で20分乾燥後、窒素ガス雰囲気下、300℃で60分処理して、熱硬化することによりPAAを非熱可塑性PIに転換し、多孔質複合フィルム(C−1)を得た。C−1の非熱可塑性PI含有量は、C−1質量に対し、16.8質量%であった。C−1のガーレ値をJIS P−8117に基づき測定したところ、260秒であった。 また、C−1を5cm角に切り出し、これを300℃の熱板上に30秒置くことにより、寸法変化率(縦および横方向の収縮率の平均値)を測定した所、1%以下であった。
<Example 1>
In a glass reaction vessel, under a nitrogen atmosphere, DADE: 0.96 mol, a mixed solvent composed of DMAc and DME (the mixing ratio of DMAc / DME was set to 20/80 by mass) was stirred, and DADE was stirred. Dissolved. While gradually cooling this solution to 30 ° C. or less with a jacket, PMDA: 1.00 mol was gradually added, followed by polymerization at 50 ° C. for 5 hours to obtain a PAA solution having a solid content concentration of 6% by mass. This solution was applied to and impregnated on the surface of a plasma-treated PTFE film (“PORFLON” manufactured by Sumitomo Electric Fine Polymer Co., Ltd., thickness: 30 μm Gurley value: 23 seconds). Thereafter, the periphery of the film is fixed with a metal frame, dried at 130 ° C. for 10 minutes and at 150 ° C. for 20 minutes, treated at 300 ° C. for 60 minutes in a nitrogen gas atmosphere, and thermally cured to form PAA. Was converted to non-thermoplastic PI to obtain a porous composite film (C-1). The non-thermoplastic PI content of C-1 was 16.8% by mass relative to C-1 mass. It was 260 seconds when the Gurley value of C-1 was measured based on JIS P-8117. Further, when C-1 was cut into 5 cm squares and placed on a hot plate at 300 ° C. for 30 seconds to measure the dimensional change rate (average value of contraction rate in the vertical and horizontal directions), it was 1% or less. there were.

<実施例2>
「PMDA:1.00モル」を「BPDA:1.00モル」、「DADE:0.96モル」を「DADE:0.20モルおよびPDA:0.76モルの混合物」としたこと以外は、実施例1と同様に行い、非熱可塑性PI含有量が、21.5質量%の多孔質複合フィルム(C−2)を得た。実施例1と同様にして、C−2のガ−レ値および300℃での寸法変化率を測定した所、ガ−レ値は、570秒、寸法変化率は、1%以下であった。
<Example 2>
“PMDA: 1.00 mol” was changed to “BPDA: 1.00 mol” and “DADE: 0.96 mol” was changed to “a mixture of DADE: 0.20 mol and PDA: 0.76 mol”. It carried out similarly to Example 1 and obtained the porous composite film (C-2) whose non-thermoplastic PI content is 21.5 mass%. When the C-2 galley value and the dimensional change rate at 300 ° C. were measured in the same manner as in Example 1, the galley value was 570 seconds, and the dimensional change rate was 1% or less.

<比較例1>
非熱可塑性PI含有量を、13.5質量%としたこと以外は、実施例1と同様に行い、多孔質複合フィルム(R−1)を得た。実施例1と同様にして、R−1のガ−レ値および300℃での寸法変化率を測定した所、ガ−レ値は、210秒であったが、寸法変化率は、1%を超えていた。
<Comparative Example 1>
A porous composite film (R-1) was obtained in the same manner as in Example 1 except that the non-thermoplastic PI content was 13.5% by mass. In the same manner as in Example 1, when the R-1 galley value and the dimensional change rate at 300 ° C. were measured, the galley value was 210 seconds, but the dimensional change rate was 1%. It was over.

<比較例2>
非熱可塑性PI含有量を、11.6質量%としたこと以外は、実施例1と同様に行い、多孔質複合フィルム(R−2)を得た。実施例1と同様にして、R−2のガ−レ値および300℃での寸法変化率を測定した所、ガ−レ値は、150秒であったが、寸法変化率は、1%を超えていた。
<Comparative example 2>
A porous composite film (R-2) was obtained in the same manner as in Example 1 except that the non-thermoplastic PI content was 11.6% by mass. In the same manner as in Example 1, when the galley value of R-2 and the dimensional change rate at 300 ° C. were measured, the galley value was 150 seconds, but the dimensional change rate was 1%. It was over.

<比較例3>
非熱可塑性PI含有量を、33.5質量%としたこと以外は、実施例1と同様に行い、多孔質複合フィルム(R−3)を得た。実施例1と同様にして、R−3のガ−レ値および300℃での寸法変化率を測定した所、寸法変化率は、1%以下であったが、ガーレ値は、3000秒を超えていた。
<Comparative Example 3>
A porous composite film (R-3) was obtained in the same manner as in Example 1 except that the non-thermoplastic PI content was 33.5% by mass. In the same manner as in Example 1, when the G-3 value of R-3 and the dimensional change rate at 300 ° C. were measured, the dimensional change rate was 1% or less, but the Gurley value exceeded 3000 seconds. It was.

実施例で示したように、非熱可塑性PIの含有量を所定範囲とした本発明の多孔質複合フィルムは、優れた耐熱性、良好な通気性に加え、良好な寸法安定性を有していることが判る。 As shown in the examples, the porous composite film of the present invention in which the content of non-thermoplastic PI is in a predetermined range has good dimensional stability in addition to excellent heat resistance and good air permeability. I know that.

本発明の多孔質複合フィルムは、電子材料、光学材料、リチウム二次電池用セパレータ、フィルタ、分離膜、電線被覆等の産業用材料、医療材料の素材、液体用フィルタ、気体用フィルタ等の分野で好適に用いることができる。
The porous composite film of the present invention is used in fields such as electronic materials, optical materials, lithium secondary battery separators, filters, separation membranes, electric wire coatings and other industrial materials, medical materials, liquid filters, gas filters, etc. Can be suitably used.

Claims (2)

含フッ素ポリマと非熱可塑性ポリイミドとからなる多孔質複合フィルムであって、非熱可塑性ポリイミド含有量が、多孔質複合フィルム質量に対し、15〜30質量%であり、JIS P−8117に基づくガーレ値が、3000秒以下であることを特徴とする多孔質複合フィルム。 A porous composite film comprising a fluorine-containing polymer and a non-thermoplastic polyimide, wherein the non-thermoplastic polyimide content is 15 to 30% by mass with respect to the mass of the porous composite film, and a galley based on JIS P-8117. A porous composite film having a value of 3000 seconds or less. アミド系溶媒とエーテル系溶媒とを含有する非熱可塑性ポリイミド前駆体溶液を、多孔質含フッ素フィルムに含浸後、乾燥、熱硬化する工程を含む請求項1記載の多孔質複合フィルムの製造方法。
The method for producing a porous composite film according to claim 1, further comprising a step of impregnating the porous fluorine-containing film with a non-thermoplastic polyimide precursor solution containing an amide solvent and an ether solvent, followed by drying and thermosetting.
JP2016204377A 2016-10-18 2016-10-18 Porous Composite Film and Method for Producing Porous Composite Film Active JP6937502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204377A JP6937502B2 (en) 2016-10-18 2016-10-18 Porous Composite Film and Method for Producing Porous Composite Film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204377A JP6937502B2 (en) 2016-10-18 2016-10-18 Porous Composite Film and Method for Producing Porous Composite Film

Publications (2)

Publication Number Publication Date
JP2018065902A true JP2018065902A (en) 2018-04-26
JP6937502B2 JP6937502B2 (en) 2021-09-22

Family

ID=62085727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204377A Active JP6937502B2 (en) 2016-10-18 2016-10-18 Porous Composite Film and Method for Producing Porous Composite Film

Country Status (1)

Country Link
JP (1) JP6937502B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327633A (en) * 2004-05-14 2005-11-24 Tomoegawa Paper Co Ltd Separator for electronic components, and its manufacturing method
JP2007523247A (en) * 2004-02-19 2007-08-16 ゴア エンタープライズ ホールディングス,インコーポレイティド Low friction and wear resistant materials and articles made therefrom
CN102275341A (en) * 2011-05-06 2011-12-14 广东生益科技股份有限公司 Flexible double-sided copper-clad board and manufacturing method thereof
JP2013040250A (en) * 2011-08-12 2013-02-28 Nitto Denko Corp Heat-resistant film and production method and sticking method thereof
WO2013084368A1 (en) * 2011-12-09 2013-06-13 公立大学法人首都大学東京 Lithium secondary battery separator and method of manufacturing same
JP2014231570A (en) * 2013-05-29 2014-12-11 宇部興産株式会社 Method of producing polymer porous membrane and polymer porous membrane
WO2016040632A2 (en) * 2014-09-12 2016-03-17 W.L. Gore & Associates, Inc. Porous air permeable polytetrafluoroethylene composites with improved mechanical and thermal properties

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007523247A (en) * 2004-02-19 2007-08-16 ゴア エンタープライズ ホールディングス,インコーポレイティド Low friction and wear resistant materials and articles made therefrom
JP2005327633A (en) * 2004-05-14 2005-11-24 Tomoegawa Paper Co Ltd Separator for electronic components, and its manufacturing method
CN102275341A (en) * 2011-05-06 2011-12-14 广东生益科技股份有限公司 Flexible double-sided copper-clad board and manufacturing method thereof
JP2013040250A (en) * 2011-08-12 2013-02-28 Nitto Denko Corp Heat-resistant film and production method and sticking method thereof
WO2013084368A1 (en) * 2011-12-09 2013-06-13 公立大学法人首都大学東京 Lithium secondary battery separator and method of manufacturing same
JP2014231570A (en) * 2013-05-29 2014-12-11 宇部興産株式会社 Method of producing polymer porous membrane and polymer porous membrane
WO2016040632A2 (en) * 2014-09-12 2016-03-17 W.L. Gore & Associates, Inc. Porous air permeable polytetrafluoroethylene composites with improved mechanical and thermal properties

Also Published As

Publication number Publication date
JP6937502B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP5944613B1 (en) Porous polyimide film and method for producing the same
JP6425760B2 (en) Polyamideimide solution, porous polyamideimide film, and method for producing the same
JP5900868B2 (en) Porous polyimide and method for producing the same
JP6218931B2 (en) Laminated porous film and method for producing the same
JP6790678B2 (en) Polyimide gel-like composition, polyimide porous body, its manufacturing method, heat insulating material
TWI629095B (en) Polyimide composition and preparation method of separation membrane
JP6577182B2 (en) Imide polymer solution, porous imide polymer film, and production method thereof
JP6330261B2 (en) Method for producing polymer porous membrane and polymer porous membrane
JP2012111790A (en) Dry type polyimide-based porous film and method for producing the same
JP6937502B2 (en) Porous Composite Film and Method for Producing Porous Composite Film
JP6777308B2 (en) Polyimide solution for forming a porous polyimide film, a method for producing a porous polyimide film, and a porous polyimide film
JP6878808B2 (en) Method for manufacturing polyimide porous body
JP6815024B2 (en) Method for manufacturing porous laminated film and porous laminated film
JPS5837024A (en) Composite membrane for gas separation
KR101317641B1 (en) Manufacturing method of polyamideimide-based porous membrane
JP6509779B2 (en) Aromatic amide polymer solution and porous aromatic amide film
JP2007169661A (en) Polyimide porous film
JP2018003010A (en) Polyimide solution for forming porous polyimide film, process for producing porous polyimide film, and porous polyimide film
JP6557846B1 (en) Porous polyimide film and method for producing the same
JP2012223712A (en) Dry polyimide-based separation membrane for water treatment, and method for producing the same
JP2004168971A (en) Method for preserving polyamic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210824

R150 Certificate of patent or registration of utility model

Ref document number: 6937502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250