JP2014231570A - Method of producing polymer porous membrane and polymer porous membrane - Google Patents

Method of producing polymer porous membrane and polymer porous membrane Download PDF

Info

Publication number
JP2014231570A
JP2014231570A JP2013113468A JP2013113468A JP2014231570A JP 2014231570 A JP2014231570 A JP 2014231570A JP 2013113468 A JP2013113468 A JP 2013113468A JP 2013113468 A JP2013113468 A JP 2013113468A JP 2014231570 A JP2014231570 A JP 2014231570A
Authority
JP
Japan
Prior art keywords
polymer
porous
polymer solution
bis
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013113468A
Other languages
Japanese (ja)
Other versions
JP6330261B2 (en
Inventor
啓太 番場
Keita Banba
啓太 番場
有一 藤井
Yuichi Fujii
有一 藤井
大矢 修生
Nobuo Oya
修生 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2013113468A priority Critical patent/JP6330261B2/en
Publication of JP2014231570A publication Critical patent/JP2014231570A/en
Application granted granted Critical
Publication of JP6330261B2 publication Critical patent/JP6330261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method and a polymer porous membrane very useful in a variety of applications, which have a variety of combinations of production conditions upon producing an asymmetric membrane.SOLUTION: A method of producing a polymer porous membrane includes a step of flow-casting, with lamination, two polymer solutions (A) and (B) into a film form and immersing the resultant flow-casted body in a solidification liquid after flow casting. The polymer solution (B) and the polymer solution (A) are subjected, in order, to the lamination flow casting, and at least one of (A) and (B) is a polymer solution based on a polyamic acid.

Description

本発明は、ポリマー多孔質膜の製造方法及びポリマー多孔質膜に関するものである。 The present invention relates to a method for producing a polymer porous membrane and a polymer porous membrane.

ポリマー多孔質膜は、電池用セパレータや電解コンデンサ用隔膜用、集塵、精密濾過、分離などに用いられており、種々の方法での製造が検討されている。ポリマー多孔質膜の製造方法の一つとして、高分子溶液の相変化を利用する相分離法があり、さらに非対称なポリマー多孔質膜の製造方法として、ポリマー溶液を積層流延する工程を含む製造方法が提案されている。 Polymer porous membranes are used for battery separators, diaphragms for electrolytic capacitors, dust collection, microfiltration, separation, and the like, and production by various methods is being studied. One of the methods for producing a polymer porous membrane is a phase separation method using phase change of a polymer solution. Further, as a method for producing an asymmetric polymer porous membrane, a production method including a step of laminating and casting a polymer solution. A method has been proposed.

特許文献1には、a)複数のラッカーを調製するステップ、b)前記ラッカーを共注型して多層液体シートを作成するステップ及びc)共注型した多層液体シートを液体浴/凝固浴に浸漬して連続層順序で相分離するステップを含む多層微孔質構造物の製造方法が開示されている。特許文献2には、少なくとも2種の非対称膜の材料樹脂をそれぞれ有機溶媒に溶解して製膜溶液とし、前記製膜溶液を少なくとも2層に積層形成し、次いで非対称膜材料樹脂を溶解しないが、上記有機溶媒と相溶性を有する溶剤(B)中に浸漬することを特徴とする積層非対称膜の製造方法が開示されている。特許文献3には、緻密層形成用ポリイミドのドープ(a)と、多孔質支持層形成用重合体のドープ(b)とを、多重円環ノズルを用いて、同時に多層構造の中空糸状に共押し出しを行い、次いで凝固液と接触させて凝固させた後、乾燥することを特徴とするポリイミド中空糸複合膜の製造方法が開示されている。 In Patent Document 1, a) a step of preparing a plurality of lacquers, b) a step of co-casting the lacquers to form a multilayer liquid sheet, and c) a co-casting multilayer liquid sheet into a liquid bath / coagulation bath. Disclosed is a method for producing a multilayer microporous structure comprising the steps of dipping and phase separation in a continuous layer sequence. In Patent Document 2, at least two kinds of asymmetric membrane material resins are dissolved in an organic solvent to form a film-forming solution, the film-forming solution is laminated in at least two layers, and then the asymmetric membrane material resin is not dissolved. A method for producing a laminated asymmetric membrane is disclosed, which is immersed in a solvent (B) having compatibility with the organic solvent. Patent Document 3 discloses that a dope (a) of a polyimide for forming a dense layer and a dope (b) of a polymer for forming a porous support layer are simultaneously formed into a hollow fiber having a multilayer structure using a multi-ring nozzle. A method for producing a polyimide hollow fiber composite membrane is disclosed, which comprises extruding, then bringing into contact with a coagulating liquid, coagulating, and drying.

特表2003−534408Special table 2003-534408 特開平9−225273JP-A-9-225273 特開平9−70523JP-A-9-70523

非対称のポリマー多孔質膜において、積層流延される界面の密着性は非常に重要であり、製造条件によっては製造工程の途中でそれら界面が剥離するという問題があった。しかしながら、前述した先行文献に開示されたポリマー多孔質膜は、特許文献1には得られたポリマー多孔質膜が一体化していることを示しており、特許文献2には剥離性についてはほとんど触れておらず、特許文献3には組成により層間の剥離性が議論されているように、限られた製造条件の範囲内でのみ剥離性が議論されており、実用的な製造条件の検討としては、それら検討は必ずしも十分ではなかった。 In an asymmetric polymer porous membrane, the adhesion of the interface to be laminated and cast is very important, and there is a problem that the interface peels off during the manufacturing process depending on the manufacturing conditions. However, the polymer porous film disclosed in the above-mentioned prior art document shows that the obtained polymer porous film is integrated in Patent Document 1, and Patent Document 2 hardly mentions the peelability. However, as disclosed in Patent Document 3, the releasability between layers is discussed only within a limited range of production conditions, as the delamination between layers is discussed depending on the composition. Those reviews were not always sufficient.

我々は、実用的にさまざまな製造条件下で非対称のポリマー多孔質膜の剥離性について鋭意研究を重ねた結果、ポリマー溶液の粘度の組合せと凝固浴への浸漬時間の関係に剥離の有無を分ける境界条件がある事を発見し、本発明に至った。 As a result of extensive research on the peelability of asymmetric polymer porous membranes under practically various production conditions, we divided the presence or absence of peeling into the relationship between the combination of the viscosity of the polymer solution and the immersion time in the coagulation bath. It was discovered that there was a boundary condition, and the present invention was reached.

即ち本発明は、2つのポリマー溶液(A)及びポリマー溶液(B)を、フィルム状に積層流延し、流延後に凝固液へ浸漬する工程を含むポリマー多孔質膜の製造方法において、ポリマー溶液を(B)、(A)の順に積層流延することと、(A)又は(B)の少なくとも1つがポリアミック酸を主成分とするポリマー溶液であることを特徴とするポリマー多孔質膜の製造方法であり、ポリマー溶液(A)が積層流延されてから凝固液へ浸漬されるまでの放置時間S分が、2つのポリマー溶液(A)及びポリマー溶液(B)の溶液粘度(μA)poise及び(μB)poiseから(式1)で算出される(t)分以上20分以内に、凝固液へ浸漬することを特徴とするポリマー多孔質膜の製造方法に関する。
t=0.9×(μA/μB)(−1) ・・(式1)
That is, the present invention relates to a method for producing a porous polymer membrane comprising a step of laminating two polymer solutions (A) and a polymer solution (B) into a film and immersing them in a coagulation liquid after casting. And (B) and (A) in the order of lamination, and at least one of (A) or (B) is a polymer solution containing a polyamic acid as a main component. In this method, the standing time S from the time when the polymer solution (A) is laminated and dipped into the coagulating liquid is equal to the solution viscosity (μA) of the two polymer solutions (A) and the polymer solution (B). And (μB) a method for producing a porous polymer membrane characterized by immersing in a coagulating liquid within (t) minutes or more and 20 minutes calculated from (Equation 1) from Poise.
t = 0.9 × (μA / μB) (−1) (1)

本発明によって、さまざまな状況を想定した製造条件において、製造工程の途中でそれらフィルム状に積層流延されたポリマー溶液(A)とポリマー溶液(B)の界面が剥離することが無く、非対称なポリマー多孔質膜が得られた。非対称膜の製造において、製造条件の組合せは多種多様であり、本発明によりえられた製造方法とポリマー多孔質膜は、種々の用途において極めて有用である。 According to the present invention, in the production conditions assuming various situations, the interface between the polymer solution (A) and the polymer solution (B) laminated and cast into a film shape during the production process does not peel off and is asymmetric. A polymer porous membrane was obtained. In the production of asymmetric membranes, there are a wide variety of combinations of production conditions, and the production method and polymer porous membrane obtained according to the present invention are extremely useful in various applications.

本発明の境界線である(式1)を表す図である。It is a figure showing (Formula 1) which is a boundary line of this invention.

本発明は、2つのポリマー溶液(A)及びポリマー溶液(B)を、フィルム状に積層流延し、流延後に凝固液へ浸漬する工程を含むポリマー多孔質膜の製造方法にあって、ポリマー溶液を(B)、(A)の順に積層流延することと、(A)又は(B)の少なくとも1つがポリアミック酸を主成分とするポリマー溶液であることを特徴とするポリマー多孔質膜の製造方法であり、ポリマー溶液(A)が積層流延されてから凝固液へ浸漬されるまでの放置時間S分が、2つのポリマー溶液(A)及びポリマー溶液(B)の溶液粘度(μA)poise及び(μB)poiseから下記の式で算出される(t)分よりも大きいことを特徴とするポリマー多孔質膜の製造方法を提供する。
t=0.9×(μA/μB)(−1)・・(式1)
The present invention relates to a method for producing a porous polymer membrane comprising a step of laminating two polymer solutions (A) and a polymer solution (B) into a film and immersing them in a coagulation liquid after casting. A porous polymer membrane characterized in that the solution is laminated and cast in the order of (B) and (A), and at least one of (A) or (B) is a polymer solution containing polyamic acid as a main component. In the production method, the standing time S from the time when the polymer solution (A) is laminated and immersed in the coagulating liquid is the solution viscosity (μA) of the two polymer solutions (A) and the polymer solution (B). Provided is a method for producing a porous polymer membrane characterized by being larger than (t) calculated by the following formula from poise and (μB) poise.
t = 0.9 × (μA / μB) (−1) (1)

ポリマー溶液(B)を、フィルム状に流延する方法は、特に制限はないが、該ポリマー溶液を基材となるガラス板、金属板、高分子フィルム、回転ドラム、可動式エンドレスベルトなどの基板上に、スプレ−法あるいはドクタ−ブレ−ド法により流延する方法、該ポリマー溶液をT型ダイスから押し出す方法などの手法を用いることができる。あるいは塗布、スピンキャスト法でもよい。 The method for casting the polymer solution (B) into a film is not particularly limited, but the polymer solution is a substrate such as a glass plate, a metal plate, a polymer film, a rotating drum, or a movable endless belt. Furthermore, techniques such as a method of casting by a spray method or a doctor blade method, a method of extruding the polymer solution from a T-die, and the like can be used. Alternatively, coating or spin casting may be used.

基材は表面が平滑であり且つ析出した多孔質膜を容易に剥がすことができる剥離性を有するものが好ましい。また、有機溶剤と接触しても耐久性が優れたものである必要があるので、金属製の場合は特にステンレス製であることが好ましい。また、高分子フィルムや回転ドラム、エンドレスベルトなどの搬送や回転が可能な基材は、速度を変えることが出来るものであって、且つ、駆動中は変動が少なく定速度になるものが好適である。 The substrate preferably has a smooth surface and a releasability capable of easily peeling the deposited porous film. Moreover, since it needs to be excellent in durability even when it comes into contact with an organic solvent, it is particularly preferable that the metal is made of stainless steel. In addition, a substrate that can be conveyed and rotated, such as a polymer film, a rotating drum, and an endless belt, is capable of changing the speed, and preferably has a constant speed while driving with little fluctuation. is there.

ポリマー溶液(A)をフィルム状に流延する方法は、特に制限はないが、該ポリマー溶液を、予めフィルム状に流延されたポリマー溶液(B)上に、スプレ−法あるいはドクタ−ブレ−ド法により流延する方法、該ポリマー溶液をT型ダイスから押し出す方法などの手法を用いることができる。あるいは塗布、スピンキャスト法でもよい。 The method of casting the polymer solution (A) in a film form is not particularly limited, but the polymer solution (B) is cast on the polymer solution (B) previously cast into a film form by a spray method or a doctor-blur. Techniques such as a method of casting by a die method and a method of extruding the polymer solution from a T-shaped die can be used. Alternatively, coating or spin casting may be used.

ポリマー溶液(A)及びポリマー溶液(B)を、(B)、(A)の順に積層流延する方法は、上述した流延方法のうち同じ流延方法を用いて逐次積層流延しても良いし、異なる流延方法を組み合わせて逐次積層流延してもよい。T型ダイスから押し出す方法において、T型ダイスの構造が2層押し出し構造である場合は、同時積層流延してもよい。 The method of laminating and casting the polymer solution (A) and the polymer solution (B) in the order of (B) and (A) may be performed by sequentially laminating and casting using the same casting method among the above-described casting methods. It is good, and you may carry out lamination | stacking casting sequentially combining a different casting method. In the method of extruding from a T-shaped die, when the structure of the T-shaped die is a two-layer extruded structure, simultaneous lamination casting may be performed.

ポリマー溶液(B)が流延されてから、ポリマー溶液(A)が流延されるまでの放置時間Fは、本発明の課題である剥離性に特段影響は無く、実用的に工業的な視点から10分以内、好ましくは5分以内、特に好ましくは2分以内である。 The standing time F from the casting of the polymer solution (B) to the casting of the polymer solution (A) has no particular influence on the peelability, which is the subject of the present invention, and is a practically industrial viewpoint. Within 10 minutes, preferably within 5 minutes, particularly preferably within 2 minutes.

均一な膜厚を得るためには前記ポリマー溶液は一定流量で基材上に供給されることが好適である。ポリマー溶液の流延装置への供給方法としては供給装置内に貯えられたポリマー溶液を気体特に乾燥空気あるいは不活性ガスなどを用いて加圧によって押し出す方法で定量的に、気泡などの混入を防げるので好ましい。またはギア−ポンプにより供給するも好ましい。ポリマー溶液は例えばT型ダイスによって基材の幅方向に一定の幅を持って一定流量で供給されることが好ましい。 In order to obtain a uniform film thickness, the polymer solution is preferably supplied onto the substrate at a constant flow rate. As a method for supplying the polymer solution to the casting apparatus, the polymer solution stored in the supply apparatus can be quantitatively prevented by mixing with a gas, particularly dry air or an inert gas, by pressurization, thereby preventing mixing of bubbles and the like. Therefore, it is preferable. Or it is also preferable to supply with a gear pump. The polymer solution is preferably supplied at a constant flow rate with a constant width in the width direction of the substrate by, for example, a T-shaped die.

ポリマー積層流延膜厚は1〜3000μm、特に好ましくは10〜1000μmに調整される。流延膜厚が1μmより小さいと得られる多孔質膜の強度が十分でなくなり好ましくない。また、膜厚が3000μmを越えると得られる多孔質膜の膜厚方向の孔構造の均一性が悪くなって孔径、空孔率、孔形状などの多孔質特性を均質に制御することが難しくなるので好ましくない。 The polymer laminated cast film thickness is adjusted to 1 to 3000 μm, particularly preferably 10 to 1000 μm. If the cast film thickness is less than 1 μm, the strength of the resulting porous film is not sufficient, which is not preferable. In addition, when the film thickness exceeds 3000 μm, the uniformity of the pore structure in the film thickness direction of the obtained porous film is deteriorated, and it becomes difficult to uniformly control the porous properties such as the pore diameter, the porosity and the pore shape. Therefore, it is not preferable.

ポリマー積層流延膜に対するポリマー溶液(A)及びポリマー溶液(B)の各流延膜厚の厚み構成は、非対称膜を製造する目的により適宜選択すれば良く、ポリマー溶液(A)の構成に対して、ポリマー溶液(B)が厚くても良く、ポリマー溶液(B)の構成に対して、ポリマー溶液(A)が厚くても良く、ポリマー溶液(A)、ポリマー溶液(B)の構成が同じ厚みでも良い。 The thickness configuration of each cast film thickness of the polymer solution (A) and the polymer solution (B) with respect to the polymer laminated cast membrane may be appropriately selected depending on the purpose of producing the asymmetric membrane. The polymer solution (B) may be thick, and the polymer solution (A) may be thicker than the polymer solution (B). The polymer solution (A) and the polymer solution (B) have the same structure. Thickness may be used.

ポリマー溶液(A)及びポリマー溶液(B)の少なくとも1つは、ポリアミック酸を主成分とするポリマー溶液である。ポリアミック酸を主成分とするポリマー溶液を用いてポリマー多孔質膜を製造する場合、ポリアミック酸の多孔質膜を熱処理してイミド化することができる。イミド化されたポリマー多孔質膜は耐溶剤性、寸法安定性、耐熱性に優れる。 At least one of the polymer solution (A) and the polymer solution (B) is a polymer solution containing polyamic acid as a main component. In the case of producing a polymer porous film using a polymer solution containing polyamic acid as a main component, the polyamic acid porous film can be imidized by heat treatment. The imidized polymer porous membrane is excellent in solvent resistance, dimensional stability, and heat resistance.

ポリマー溶液(A)又はポリマー溶液(B)のどちらを、ポリアミック酸を主成分とするポリマー溶液とするかは、非対称膜を製造する目的により適宜選択すれば良く、ポリマー溶液(A)がポリアミック酸を主成分とするポリマー溶液でも良く、ポリマー溶液(B)がポリアミック酸を主成分とするポリマー溶液でも良く、ポリマー溶液(A)、ポリマー溶液(B)がどちらもがポリアミック酸を主成分とするポリマー溶液であっても良い。ポリマー多孔質膜の厚み構成及び、ポリマー溶液(A)及びポリマー溶液(B)のポリアミック酸を主成分とするポリマー溶液であるかどうかは、使用される非対称膜の耐溶剤性、寸法安定性、耐溶剤性に応じて適宜選択して使用できる。 Whether the polymer solution (A) or the polymer solution (B) is a polymer solution containing a polyamic acid as a main component may be appropriately selected depending on the purpose of producing an asymmetric membrane. The polymer solution (A) is a polyamic acid. May be a polymer solution containing as a main component, the polymer solution (B) may be a polymer solution containing a polyamic acid as a main component, and both of the polymer solution (A) and the polymer solution (B) have a polyamic acid as a main component. It may be a polymer solution. The thickness constitution of the polymer porous membrane and whether the polymer solution (A) and the polymer solution (B) are polymer solutions mainly composed of polyamic acid are determined depending on the solvent resistance, dimensional stability of the asymmetric membrane used, It can be appropriately selected and used depending on the solvent resistance.

ポリアミック酸を主成分とするポリマー溶液とは、テトラカルボン酸成分とジアミン成分、好ましくは芳香族モノマ−を重合して得られたポリアミック酸或いはその部分的にイミド化したものであり、熱イミド化あるいは化学イミド化することで閉環してポリイミド樹脂とすることができるものである。ポリイミド樹脂とは、イミド化率が約80%以上、好適には約95%以上の耐熱性ポリマーである。 The polymer solution containing polyamic acid as a main component is a polycarboxylic acid obtained by polymerizing a tetracarboxylic acid component and a diamine component, preferably an aromatic monomer, or a partially imidized product thereof. Alternatively, it can be closed by chemical imidization to obtain a polyimide resin. The polyimide resin is a heat-resistant polymer having an imidization ratio of about 80% or more, preferably about 95% or more.

イミド化は、化学イミド化でも熱イミド化でもできる。組み合わせるポリマーの種類によって、イミド化の方法は適宜選択することが好ましい。熱をかけることが困難なポリマーの場合は、化学イミド化を選択することが好ましく、熱をかけることが可能なポリマーの場合は、熱イミド化を選択することが好ましい。熱イミドのほうが、工程が複雑にならないのに加え、得られる膜の強度が大きくなる傾向があるので好適である。熱イミド化は、大気中にて250〜500℃で5〜60分間熱処理することによって好適におこなうことができる。 The imidization can be either chemical imidization or thermal imidization. It is preferable to select the imidization method appropriately depending on the type of polymer to be combined. In the case of a polymer that is difficult to apply heat, it is preferable to select chemical imidation, and in the case of a polymer that can be heated, it is preferable to select thermal imidization. Thermal imide is preferred because the process is not complicated and the strength of the resulting film tends to increase. The thermal imidization can be suitably performed by heat treatment at 250 to 500 ° C. for 5 to 60 minutes in the air.

ポリアミック酸を溶解する事ができる良溶媒は任意の有機極性溶媒を用いることができる。特にポリアミック酸、ポリイミドを溶解する有機極性溶剤としてp−クロロフェノール、o−クロルフェノール、N−メチル−2−ピロリドン(NMP)、ピリジン、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、フェノール、クレゾールなどの有機極性溶媒などを用いることができる。 As the good solvent capable of dissolving the polyamic acid, any organic polar solvent can be used. Especially as organic polar solvents for dissolving polyamic acid and polyimide, p-chlorophenol, o-chlorophenol, N-methyl-2-pyrrolidone (NMP), pyridine, N, N-dimethylacetamide (DMAc), N, N-dimethyl Organic polar solvents such as formamide, dimethyl sulfoxide, tetramethylurea, phenol and cresol can be used.

前記のテトラカルボン酸成分とジアミン成分は、上記の有機溶媒中に大略等モル溶解し重合して、対数粘度(30℃、濃度;0.5g/100mL NMP)が0.3以上、特に0.5〜7であるポリアミック酸が製造される。また、重合を約80℃以上の温度でおこなった場合は、部分的に閉環してイミド化したポリアミック酸が製造される。 The tetracarboxylic acid component and the diamine component are dissolved and polymerized in approximately equimolar amounts in the above organic solvent, and have a logarithmic viscosity (30 ° C., concentration: 0.5 g / 100 mL NMP) of 0.3 or more, particularly 0.8. A polyamic acid of 5-7 is produced. Moreover, when superposition | polymerization is performed at the temperature of about 80 degreeC or more, the polyamic acid which partially ring-closed and was imidated is manufactured.

前記テトラカルボン酸成分のモノマーであるテトラカルボン酸二無水物は、任意のテトラカルボン酸二無水物を用いることができ、所望の特性などに応じて適宜選択することができる。テトラカルボン酸二無水物の具体例として、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)などのビフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホン−3,4,3’,4’−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、p−ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、p−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、1,3−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ビフェニル二無水物、2,2−ビス〔(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等を挙げることができる。これらは単独でも、2種以上を組み合わせて用いることもできる。 As the tetracarboxylic dianhydride that is a monomer of the tetracarboxylic acid component, any tetracarboxylic dianhydride can be used, and can be appropriately selected according to desired characteristics. Specific examples of tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,3,3 ′, 4 ′. -Biphenyltetracarboxylic dianhydride such as biphenyltetracarboxylic dianhydride (a-BPDA), oxydiphthalic dianhydride, diphenylsulfone-3,4,3 ', 4'-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfide dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, 2, 3,3 ′, 4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) methane dianhydride 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, p-phenylenebis (trimellitic acid monoester acid anhydride), p-biphenylenebis (trimellitic acid monoester acid anhydride), m-terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, p-terphenyl-3,4,3 ′, 4′-tetracarboxylic dianhydride, 1,3-bis ( 3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) biphenyl dianhydride 2,2-bis [(3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetra Carboxylic acid dianhydride, 4,4 '- (2,2-hexafluoroisopropylidene) may be mentioned diphthalic dianhydride and the like. These can be used alone or in combination of two or more.

ジアミンは、任意のジアミンを用いることができる。ジアミンの具体例として、以下のものを挙げることができる。 1)1,4−ジアミノベンゼン(パラフェニレンジアミン)、1,3−ジアミノベンゼン、2,4−ジアミノトルエン、2,6−ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン、2)4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、ビス(4−アミノフェニル)スルフィド、4,4’−ジアミノベンズアニリド、3,3’−ジクロロベンジジン、3,3’−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノ−4,4’−ジクロロベンゾフェノン、3,3’−ジアミノ−4,4’−ジメトキシベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン、3)1,3−ビス(3−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)−4−トリフルオロメチルベンゼン、3,3’−ジアミノ−4−(4−フェニル)フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジ(4−フェニルフェノキシ)ベンゾフェノン、1,3−ビス(3−アミノフェニルスルフィド)ベンゼン、1,3−ビス(4−アミノフェニルスルフィド)ベンゼン、1,4−ビス(4−アミノフェニルスルフィド)ベンゼン、1,3−ビス(3−アミノフェニルスルホン)ベンゼン、1,3−ビス(4−アミノフェニルスルホン)ベンゼン、1,4−ビス(4−アミノフェニルスルホン)ベンゼン、1,3−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(3−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン、4)3,3’−ビス(3−アミノフェノキシ)ビフェニル、3,3’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス〔3−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(3−アミノフェノキシ)フェニル〕メタン、ビス〔3−(4−アミノフェノキシ)フェニル〕メタン、ビス〔4−(3−アミノフェノキシ)フェニル〕メタン、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。これらは単独でも、2種以上を混合して用いることもできる。用いるジアミンは、所望の特性などに応じて適宜選択することができる。 Arbitrary diamine can be used for diamine. Specific examples of diamines include the following. 1) One benzene nucleus such as 1,4-diaminobenzene (paraphenylenediamine), 1,3-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, etc. 2) 4,4′- Diaminodiphenyl ether, diaminodiphenyl ether such as 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'- Diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminodiphenylmethane, 3,3′-dicarboxy-4,4 ′ -Diaminodiphenylmethane, 3,3 ', 5,5'-tetramethyl-4,4'-diaminodiphenyl Tan, bis (4-aminophenyl) sulfide, 4,4'-diaminobenzanilide, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine, 2,2'-dimethylbenzidine, 3,3'-dimethoxy Benzidine, 2,2'-dimethoxybenzidine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl Sulfide, 4,4′-diaminodiphenylsulfide, 3,3′-diaminodiphenylsulfone, 3,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminobenzophenone, 3,3 ′ -Diamino-4,4'-dichlorobenzopheno 3,3′-diamino-4,4′-dimethoxybenzophenone, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 2,2-bis (3-aminophenyl) ) Propane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis ( 4-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 3,3′-diaminodiphenyl sulfoxide, 3,4′-diaminodiphenyl sulfoxide, 4,4′-diaminodiphenyl sulfoxide, etc. Benzene nucleus 2 diamines, 3) 1,3-bis (3-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benze 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-amino) Phenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) -4-trifluoromethylbenzene, 3,3′-diamino-4- (4-phenyl) Phenoxybenzophenone, 3,3′-diamino-4,4′-di (4-phenylphenoxy) benzophenone, 1,3-bis (3-aminophenyl sulfide) benzene, 1,3-bis (4-aminophenyl sulfide) Benzene, 1,4-bis (4-aminophenyl sulfide) benzene, 1,3-bis (3-aminophenylsulfone) benzene, 1,3-bis 4-aminophenylsulfone) benzene, 1,4-bis (4-aminophenylsulfone) benzene, 1,3-bis [2- (4-aminophenyl) isopropyl] benzene, 1,4-bis [2- (3 -Aminophenyl) isopropyl] benzene, three diamine diamines such as 1,4-bis [2- (4-aminophenyl) isopropyl] benzene, 4) 3,3'-bis (3-aminophenoxy) biphenyl, 3 , 3′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [3- (3-aminophenoxy) ) Phenyl] ether, bis [3- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) pheny ] Ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [3- (3-aminophenoxy) phenyl] ketone, bis [3- (4-aminophenoxy) phenyl] ketone, bis [4- ( 3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] ketone, bis [3- (3-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl] sulfide Bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (4-aminophenoxy) phenyl] sulfide, bis [3- (3-aminophenoxy) phenyl] sulfone, bis [3- (4- Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [ 4- (4-aminophenoxy) phenyl] sulfone, bis [3- (3-aminophenoxy) phenyl] methane, bis [3- (4-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) Phenyl] methane, bis [4- (4-aminophenoxy) phenyl] methane, 2,2-bis [3- (3-aminophenoxy) phenyl] propane, 2,2-bis [3- (4-aminophenoxy) Phenyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3 -Aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [3- (4-aminophenoxy) phenyl] -1,1 1,3,3,3-hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane and other benzene nucleus four diamines. These may be used alone or in combination of two or more. The diamine to be used can be appropriately selected according to desired characteristics.

これらの中でも、芳香族ジアミン化合物が好ましく、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル及びパラフェニレンジアミン、1,3−ビス(3−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼンを好適に用いることができる。特に、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンが好ましい。 Among these, aromatic diamine compounds are preferable, and 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether and paraphenylenediamine, 1,3-bis (3-aminophenyl) Benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-amino) Phenoxy) benzene and 1,4-bis (3-aminophenoxy) benzene can be preferably used. In particular, at least one diamine selected from the group consisting of benzenediamine, diaminodiphenyl ether and bis (aminophenoxy) phenyl is preferred.

テトラカルボン酸二無水物とジアミンの組み合わせとしては、前記に記載された各々の組み合わせが多数考えられ、好ましくは、芳香族テトラカルボン酸二無水物と芳香族ジアミンの組合せであり、特にこの好ましくはビフェニルテトラカルボン酸二無水物又はオキシジフタル酸二無水物と芳香族ジアミンの組合せである。 As the combination of the tetracarboxylic dianhydride and the diamine, a large number of the combinations described above can be considered, and preferably a combination of an aromatic tetracarboxylic dianhydride and an aromatic diamine, particularly preferably this combination. A combination of biphenyltetracarboxylic dianhydride or oxydiphthalic dianhydride and an aromatic diamine.

前記のポリアミック酸は、前記有機溶媒に0.3〜60重量%、好ましくは1〜30重量%の割合で溶解してポリアミック酸溶液に調製される(有機溶媒を加えてもよくあるいは重合溶液をそのまま用いてもよい)。ポリアミック酸の割合が0.3重量%より小さいと、製造した多孔質膜のフィルム強度が低下するので適当でなく、60重量%より大きいと溶液粘度調整が難しく溶液粘度が高くなって流延が難しくなるし、多孔質膜析出の制御が難しくなるので好ましくないため上記の範囲が好適である。 The polyamic acid is prepared in a polyamic acid solution by dissolving in the organic solvent at a ratio of 0.3 to 60% by weight, preferably 1 to 30% by weight (an organic solvent may be added or a polymerization solution may be added). May be used as is). If the ratio of polyamic acid is less than 0.3% by weight, the film strength of the produced porous membrane is lowered, which is not suitable. If it is more than 60% by weight, it is difficult to adjust the solution viscosity, and the solution viscosity becomes high and casting is difficult. The above range is preferable because it becomes difficult and control of the deposition of the porous film becomes difficult.

また、前記のポリアミック酸溶液には、界面活性剤、離型剤、接着剤、カップリング剤、難燃剤、着色剤などの添加剤、あるいはガラス繊維、炭素繊維、ケイ素繊維などの補強材が含まれてもよい。これらの添加剤および補強材は上記ポリアミック酸に添加してもよく、あるいは、流延後の流延膜に添加してもよい。 In addition, the polyamic acid solution includes additives such as surfactants, mold release agents, adhesives, coupling agents, flame retardants, and colorants, or reinforcing materials such as glass fibers, carbon fibers, and silicon fibers. May be. These additives and reinforcing materials may be added to the polyamic acid or may be added to the cast film after casting.

ポリアミック酸ではないポリマー溶液は、ポリマーと該ポリマーを溶解する事ができる良溶媒からなる。 The polymer solution that is not a polyamic acid is composed of a polymer and a good solvent capable of dissolving the polymer.

ポリマーを溶解する事ができる良溶媒は任意の有機極性溶媒を用いることができる。例としてp−クロロフェノール、o−クロルフェノール、N−メチル−2−ピロリドン(NMP)、ピリジン、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、フェノール、クレゾールなどの有機極性溶媒などを用いることができる。ポリマー溶液(A)及びポリマー溶液(B)の良溶媒は、積層流延される際の界面の馴染み易さから同じ溶媒であることが好ましい。 As the good solvent capable of dissolving the polymer, any organic polar solvent can be used. Examples include p-chlorophenol, o-chlorophenol, N-methyl-2-pyrrolidone (NMP), pyridine, N, N-dimethylacetamide (DMAc), N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, phenol An organic polar solvent such as cresol can be used. It is preferable that the good solvent of the polymer solution (A) and the polymer solution (B) is the same solvent from the viewpoint of easy conformity of the interface when being laminated and cast.

ポリマーは、任意のポリマーを用いることができ、有機溶剤に溶解でき、水に不溶であればよく適宜選択することができる。ポリマーの具体例として、可溶性ポリイミド、ポリフッ化ビニリデン、ポリテトラフルオロエチレン系共重合体、トリフルオロエチレン等のフッ素系重合体、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリエーテルイミド、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリブチル(メタ)アクリレート等のポリ(メタ)アクリル酸エステル、ポリアクリロニトリル、酢酸セルロース、硝酸セルロース等のセルロースエステル類、ポリエチレン、ポリ−4−メチル−1−ぺ/テン、ポリブタジェン等のポリオレフィン、ポリ酢酸ビニル、ポリスチレン、ポリ−α−メチルスチレン、ポリ−4−ビニルピリジン、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、シリコン系ポリマー ポリフェニレンオキサイド等を挙げることができる。これらは単独でも、2種以上を組み合わせて用いることもできる。 Any polymer can be used as long as it can be dissolved in an organic solvent and insoluble in water. Specific examples of polymers include soluble polyimides, polyvinylidene fluoride, polytetrafluoroethylene copolymers, fluoropolymers such as trifluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyetherimide, polyethylene terephthalate, polymethyl methacrylate. , Poly (meth) acrylates such as polybutyl (meth) acrylate, cellulose esters such as polyacrylonitrile, cellulose acetate, cellulose nitrate, polyolefins such as polyethylene, poly-4-methyl-1-pe / ten, polybutadiene, poly Vinyl acetate, polystyrene, poly-α-methylstyrene, poly-4-vinylpyridine, polyvinylpyrrolidone, polyvinyl chloride, polyvinylidene chloride, silicon-based polymer polyphenylene An oxide etc. can be mentioned. These can be used alone or in combination of two or more.

ポリマー溶液(A)及びポリマー溶液(B)の溶液粘度(μA)及び(μB)poiseは、各々10〜30000ポイズ、好ましくは10〜10000ポイズ、特に好ましくは10〜5000ポイズである。溶液粘度が30000ポイズを越えると基板上に流延させることや膜厚を均一に調整することが困難になる。また凝固液へ浸漬による溶媒置換速度の制御が難しくなって孔径、空孔率、孔形状などの多孔質特性を均質に制御することが困難になるので適当ではない。溶液粘度が10ポイズ未満では流延膜としての形状を保持できなくなり厚みムラが生じ易くなるのでるので適当ではない。 The solution viscosity (μA) and (μB) poise of the polymer solution (A) and the polymer solution (B) are 10 to 30000 poise, preferably 10 to 10000 poise, particularly preferably 10 to 5000 poise, respectively. When the solution viscosity exceeds 30000 poise, it becomes difficult to cast the solution on the substrate and to adjust the film thickness uniformly. In addition, it is not appropriate because it is difficult to control the solvent replacement rate by immersion in the coagulation liquid, and it is difficult to control the porous properties such as the pore diameter, porosity, and pore shape uniformly. If the solution viscosity is less than 10 poise, the shape as a cast film cannot be maintained and thickness unevenness is likely to occur.

フィルム状に流延されたポリマー溶液(B)上に、ポリマー溶液(A)が積層流延されてから、凝固液へ浸漬されるまでの放置時間(S)分は、2つのポリマー溶液(A)及びポリマー溶液(B)の溶液粘度(μA)poise及び(μB)poiseから、(式1)で算出される時間(t)分経過の後、凝固液へ浸漬することができる。凝固液へ浸漬されるまでの放置時間(S)分は、時間(t)分経過以上20分以内、好ましくは時間(t)分経過以上15分以内、より好ましくは時間(t)分経過以上10分以内である。凝固液へ浸漬されるまでの時間(S)分が、時間(t)分未満の場合、フィルム状に積層流延されたポリマー溶液(A)とポリマー溶液(B)の界面で剥離する恐れがあるため適切ではない。凝固液へ浸漬されるまでの時間が20分より長いことは、実用的に工業的な視点から製造ラインが長くなることから適切ではない。 On the polymer solution (B) cast into a film, the standing time (S) from when the polymer solution (A) is laminated and cast to the coagulating liquid is equal to two polymer solutions (A ) And the solution viscosity (μA) poise and (μB) poise of the polymer solution (B), and after lapse of time (t) calculated by (Equation 1), the polymer solution (B) can be immersed in the coagulation liquid. The standing time (S) until dipping in the coagulation liquid is not less than 20 minutes, but preferably not less than 15 minutes, more preferably not less than 15 minutes, more preferably not less than (t) minutes. Within 10 minutes. If the time (S) until dipping in the coagulation liquid is less than the time (t), there is a risk of peeling at the interface between the polymer solution (A) and the polymer solution (B) laminated and cast into a film. It is not appropriate because there are. It is not appropriate that the time until dipping in the coagulation liquid is longer than 20 minutes because the production line becomes longer from a practical and industrial viewpoint.

本発明の境界線である(式1)には、物理的な意味は無く、鋭意検討を積み重ねた結果得られた経験的なものであるが、(式1)は(図1)に示すとおり、ポリマー溶液(B)に対してポリマー溶液(A)の粘度が低い場合は、凝固液へ浸漬されるまでの放置時間を長く設けること意味している。反対に、ポリマー溶液(B)に対してポリマー溶液(A)の粘度が高い場合は、凝固液へ浸漬されるまでの放置時間を短く設けること意味している。
t=0.9×(μA/μB)(−1) ・・(式1)
(Formula 1), which is the boundary line of the present invention, has no physical meaning and is an empirical result obtained as a result of intensive studies, but (Formula 1) is as shown in (FIG. 1). When the viscosity of the polymer solution (A) is lower than that of the polymer solution (B), it means that the standing time until the polymer solution (A) is immersed in the coagulating liquid is long. On the other hand, when the viscosity of the polymer solution (A) is higher than that of the polymer solution (B), it means that the standing time until the polymer solution (A) is immersed in the coagulating liquid is short.
t = 0.9 × (μA / μB) (−1) (1)

積層流延されたポリマー溶液を浸漬する凝固液は、水を必須成分とする。凝固液は、水または水とポリアミック酸の良溶媒からなる。良溶媒は、ポリアミック酸に用いられている良溶媒を用いる事が好ましい。凝固浴の水濃度は40%以上、好ましくは50%、より好ましくは60%以上である。相分離は、温度や溶媒の組成によって影響を受けるので凝固液槽は温度や溶媒組成などの管理が十分おこなわれるようになっていることが好ましい。 The coagulating liquid that immerses the polymer solution that has been layered and cast contains water as an essential component. The coagulation liquid consists of water or a good solvent of water and polyamic acid. The good solvent is preferably a good solvent used for polyamic acid. The water concentration of the coagulation bath is 40% or more, preferably 50%, more preferably 60% or more. Since phase separation is affected by the temperature and the composition of the solvent, it is preferable that the coagulating liquid tank is sufficiently controlled for the temperature and the solvent composition.

本発明によって得られるポリマー多孔質膜の少なくとも片面の開口率は、10〜80%、好ましくは30〜80%、特に好ましくは30〜70%である。ここで、開口率とはポリマー多孔質膜の表面から観察できる単位面積あたりの開口の割合を示す。開口率が10〜80%であると、各種電池用セパレータ、液体・気体フィルター、印刷基板などとして適当である。また片面の開口率が適切な範囲にあるだけでも良く、両面の開口率が適切な範囲に入っていても良い。 The opening ratio of at least one surface of the porous polymer membrane obtained by the present invention is 10 to 80%, preferably 30 to 80%, particularly preferably 30 to 70%. Here, the aperture ratio indicates the ratio of openings per unit area that can be observed from the surface of the polymer porous membrane. When the aperture ratio is 10 to 80%, it is suitable for various battery separators, liquid / gas filters, printed boards and the like. Further, the aperture ratio on one side may be in an appropriate range, and the aperture ratio on both sides may be in an appropriate range.

本発明によって得られるポリマー多孔質膜の空孔率は、20〜80%、好ましくは30〜80%、特に好ましくは35〜80%である。ここで、空孔率とは、ポリマー多孔質膜の単位体積あたりの空間の占める割合を示す。空孔率が20〜80%であると、低誘電率基板、振動吸収フィルム、断熱シート、電池用セパレータ、フィリング基材などとして適当である。 The porosity of the polymer porous membrane obtained by the present invention is 20 to 80%, preferably 30 to 80%, particularly preferably 35 to 80%. Here, the porosity indicates the ratio of the space per unit volume of the polymer porous membrane. When the porosity is 20 to 80%, it is suitable as a low dielectric constant substrate, a vibration absorbing film, a heat insulating sheet, a battery separator, a filling base material and the like.

本発明によって得られるポリマー多孔質膜のガーレー値は、0〜2000秒/100ccであることが好ましい。ガーレー値が0〜2000秒/100ccであると、電池用セパレータ、液体・気体フィルター、エアベントなどとして適当である。 The Gurley value of the polymer porous membrane obtained by the present invention is preferably 0 to 2000 seconds / 100 cc. When the Gurley value is 0 to 2000 seconds / 100 cc, it is suitable as a battery separator, a liquid / gas filter, an air vent, and the like.

本発明によって得られるポリマー多孔質膜の平均孔径は、0.01〜10μmが好ましい。平均孔径が0.01〜10μmであると、エアベント、防塵膜、各種電池用セパレータ印刷基板などとして適当である。 The average pore size of the polymer porous membrane obtained by the present invention is preferably 0.01 to 10 μm. When the average pore diameter is 0.01 to 10 μm, it is suitable as an air vent, a dust-proof film, various battery separator printed boards and the like.

本発明によって得られるポリマー多孔質膜の開口率及び空孔率が適切な範囲に入っていると、機能材料をフィリングする基材の観点でよく、開口率・空孔率・ガーレー値・平均孔径がすべて適切な範囲に入っていると、さらに電池用セパレータ、エアベント、防水・防塵膜などに利用する観点で良い。 When the aperture ratio and porosity of the polymer porous membrane obtained by the present invention are within appropriate ranges, it may be from the viewpoint of the base material for filling the functional material, and the aperture ratio, porosity, Gurley value, average pore diameter If all are within the appropriate range, it may be used for battery separators, air vents, waterproof / dustproof membranes and the like.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

(ポリマー溶液の粘度)
溶液粘度の測定は、E型回転粘度計で行った。以下に測定手順を示す。
(i)製造例で調製したポリアミック酸溶液を密閉容器に入れ、25℃の恒温槽に10時間保持した。
(ii)E型粘度計(東京計器製、高粘度用(EHD型)円錐平板型回転式、コーンローター:1°34’)を用い、(i)で準備したポリアミック酸溶液を測定溶液として、温度25±0.1℃、回転数1rpmの条件で測定した。
(Viscosity of polymer solution)
The solution viscosity was measured with an E-type rotational viscometer. The measurement procedure is shown below.
(I) The polyamic acid solution prepared in Production Example was put in a sealed container and kept in a thermostatic bath at 25 ° C. for 10 hours.
(Ii) Using an E-type viscometer (manufactured by Tokyo Keiki Co., Ltd., high-viscosity (EHD type) conical plate type rotary type, cone rotor: 1 ° 34 ′), using the polyamic acid solution prepared in (i) as a measurement solution, The measurement was performed under the conditions of a temperature of 25 ± 0.1 ° C. and a rotation speed of 1 rpm.

(ポリマー多孔質膜の評価)
1)膜厚
膜厚みの測定は、接触式の厚み計で行った。
2)空孔率
所定の大きさに切り取った多孔質フィルムの膜厚及び質量を測定し、目付質量から空孔率を下式(2)によって求めた。
(Evaluation of polymer porous membrane)
1) Film thickness
The film thickness was measured with a contact-type thickness meter.
2) Porosity
The film thickness and mass of the porous film cut out to a predetermined size were measured, and the porosity was determined from the basis weight by the following formula (2).

空孔率=S×d×D/w×100 ・・(式2)
(式中、Sは多孔質フィルムの面積、dは膜厚、wは測定した質量、Dはポリイミドの密度をそれぞれ意味する。ポリイミドの密度は1.34g/cm3とする。)
3)通気抵抗
ガーレー値(0.879g/m2の圧力下で100ccの空気が膜を透過するのに要する秒数)の測定は、JIS P8117に準拠して行った。
Porosity = S × d × D / w × 100 (Equation 2)
(In the formula, S is the area of the porous film, d is the film thickness, w is the measured mass, and D is the polyimide density. The polyimide density is 1.34 g / cm 3. )
3) The measurement of the ventilation resistance Gurley value (seconds required for 100 cc of air to permeate the membrane under a pressure of 0.879 g / m 2 ) was performed in accordance with JIS P8117.

製造例1
(ポリマー溶液(A)1、2、3の調製)
500mlのセパラブルフラスコに、N−メチル−2−ピロリドン(NMP)を溶媒として用いて、酸無水物とジアミンのモル比が1:1で、ポリマー濃度が8質量%になるように、ジアミンとして4,4’−ジアミノジフェニルエーテル(ODA)を測り取って投入した。次に、ジアミンに対する酸無水物のモル比が約1となるように、酸無水物として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)を測り取って投入した。その後、撹拌羽、窒素導入管、排気管を取り付けたセパラブルカバーで蓋をし、撹拌を開始した。溶液粘度が任意の粘度となるまで、適宜s−BPDAを測りとって投入した。任意の粘度に到達して、粘度が安定したところで安息香酸をポリアミック酸100質量部に対して30質量部の量を計り取って投入して撹拌操作を継続した。30時間後に撹拌を終了し、フラスコ内のドープを加圧ろ過器(濾紙:アドバンテック東洋(株)製:粘稠液用濾紙No.60)でろ過して、ポリアミック酸溶液組成物1、2、3を得た。それぞれの粘度は230、630、880poise(25℃)であった。
Production Example 1
(Preparation of polymer solution (A) 1, 2, 3)
In a 500 ml separable flask, using N-methyl-2-pyrrolidone (NMP) as a solvent, the molar ratio of acid anhydride to diamine is 1: 1 and the polymer concentration is 8% by mass as diamine. 4,4′-Diaminodiphenyl ether (ODA) was measured and charged. Next, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) was measured and introduced as the acid anhydride so that the molar ratio of acid anhydride to diamine was about 1. did. Thereafter, the lid was covered with a separable cover equipped with a stirring blade, a nitrogen introduction pipe, and an exhaust pipe, and stirring was started. S-BPDA was measured and added as appropriate until the solution viscosity reached an arbitrary viscosity. When an arbitrary viscosity was reached and the viscosity was stabilized, benzoic acid was weighed out and added in an amount of 30 parts by mass with respect to 100 parts by mass of the polyamic acid, and the stirring operation was continued. After 30 hours, stirring was terminated, and the dope in the flask was filtered with a pressure filter (filter paper: manufactured by Advantech Toyo Co., Ltd .: filter paper for viscous liquid No. 60), and polyamic acid solution compositions 1, 2, 3 was obtained. Respective viscosities were 230, 630, and 880 poise (25 ° C.).

製造例2
(ポリマー溶液(B)1、2、3の調製)
500mlのセパラブルフラスコに、NMPを溶媒として用いて、酸無水物をジアミンのモル比が1:1で、ポリマー濃度が8質量%になり、ジアミンとしてモル比が1:1となるようにODAと1、3ビス(−アミノフェノキシ)ベンゼン(TPE−R)を測り取って投入した。次に、ジアミンに対する酸無水物のモル比が約1となるように、酸無水物としてs−BPDAを測り取って投入した。その後、撹拌羽、窒素導入管、排気管を取り付けたセパラブルカバーで蓋をし、撹拌を開始した。溶液粘度が任意の粘度となるまで、適宜s−BPDAを測りとって投入した。任意の粘度に到達して、粘度が安定したところで安息香酸をポリアミック酸100質量部に対して30質量部の量を計り取って投入して撹拌操作を継続した。30時間後に撹拌を終了し、フラスコ内のドープを加圧ろ過器(濾紙:アドバンテック東洋(株)製:粘稠液用濾紙No.60)でろ過して、ポリアミック酸溶液組成物4、5、6を得た。それぞれの粘度は240、550、820poise(25℃)であった。
Production Example 2
(Preparation of polymer solution (B) 1, 2, 3)
In a 500 ml separable flask, using NMP as a solvent, the acid anhydride is a diamine molar ratio of 1: 1, the polymer concentration is 8% by mass, and the diamine has a molar ratio of 1: 1. And 1,3 bis (-aminophenoxy) benzene (TPE-R) were measured and added. Next, s-BPDA was measured and added as an acid anhydride so that the molar ratio of acid anhydride to diamine was about 1. Thereafter, the lid was covered with a separable cover equipped with a stirring blade, a nitrogen introduction pipe, and an exhaust pipe, and stirring was started. S-BPDA was measured and added as appropriate until the solution viscosity reached an arbitrary viscosity. When an arbitrary viscosity was reached and the viscosity was stabilized, benzoic acid was weighed out and added in an amount of 30 parts by mass with respect to 100 parts by mass of the polyamic acid, and the stirring operation was continued. Stirring was terminated after 30 hours, and the dope in the flask was filtered with a pressure filter (filter paper: manufactured by Advantech Toyo Co., Ltd .: filter paper for viscous liquid No. 60), and polyamic acid solution compositions 4, 5, 6 was obtained. The respective viscosities were 240, 550 and 820 poise (25 ° C.).

実施例1
表面に鏡面研磨を施したステンレス製の20cm角の基板上に、製造例2で調製したポリマー溶液(B)1を厚さ約100μmで、均一に流延塗布した。次に、1分間、温度23℃、湿度40%の大気中に放置した後、流延塗布されたポリマー溶液(B)1上に、製造例1で調製したポリマー溶液(A)1を厚さ約50μmで均一に流延塗布した。次に1分間、温度23℃、湿度40%の大気中に放置した後、凝固浴(水87質量部/NMP13質量部、室温)中に基板全体を投入した。投入後、8分間静置し、基板上にポリアミック酸膜を析出させた。その後、基板を浴中から取りだし、基板上に析出したポリアミック酸膜を剥離した後に、純水中に3分間浸漬し、ポリアミック酸膜を得た。このポリアミック酸膜を温度23℃、湿度40%の大気中で乾燥させた後、10cm角のピンテンターに張りつけて電気炉内にセットした。約10℃/分の昇温速度で150℃まで加熱し、その後20℃/分の昇温速度で380℃まで加熱し、そのまま3分間保持する温度プロファイルで熱処理を行い、多孔質ポリイミド膜を得た。
Example 1
The polymer solution (B) 1 prepared in Production Example 2 was uniformly cast-applied at a thickness of about 100 μm on a stainless 20 cm square substrate whose surface was mirror-polished. Next, the polymer solution (A) 1 prepared in Production Example 1 is deposited on the polymer solution (B) 1 that has been cast-coated after being left in the atmosphere at a temperature of 23 ° C. and a humidity of 40% for 1 minute. The film was uniformly cast and applied at about 50 μm. Next, the substrate was left in the atmosphere at a temperature of 23 ° C. and a humidity of 40% for 1 minute, and then the entire substrate was put into a coagulation bath (87 parts by mass of water / 13 parts by mass of NMP, room temperature). After the addition, the mixture was allowed to stand for 8 minutes to deposit a polyamic acid film on the substrate. Thereafter, the substrate was taken out from the bath, the polyamic acid film deposited on the substrate was peeled off, and then immersed in pure water for 3 minutes to obtain a polyamic acid film. The polyamic acid film was dried in the atmosphere at a temperature of 23 ° C. and a humidity of 40%, and then attached to a 10 cm square pin tenter and set in an electric furnace. Heat to 150 ° C. at a rate of temperature increase of about 10 ° C./min, then heat to 380 ° C. at a rate of temperature increase of 20 ° C./min and heat-treat with a temperature profile held for 3 minutes to obtain a porous polyimide film It was.

実施例2〜13
ポリマー溶液の種類、ポリマー溶液(B)を流延塗布してからポリマー溶液(A)を流延塗布するまで放置時間F及びポリマー溶液(A)を流延塗布してから凝固浴へ浸漬するまでの放置時間Sを表1に示したように変更したこと以外は実施例1と同様にして、多孔質ポリイミド膜を得た。
得られた多孔質ポリイミド膜の剥離の有無、膜厚み、通気抵抗を表2に示す。表1、表2において、(t)分は式1より算出した値である。
実施例1〜13においてポリマー溶液(A)とポリマー溶液(B)の界面における剥離は観察されなかった。
実施例1で得られた多孔質ポリイミド膜の空孔率を測定したところ78%であることを確認した。実施例5で得られた多孔質ポリイミド膜の表面を走査型電子顕微鏡で観察したところ、ポリマー溶液(A)側の表面には連通する孔を多数有する多孔質構造であり、平均孔径が10μmであり、表面開口率は40%であることを確認した。また、実施例10で得られた多孔質ポリイミド膜の断面を走査型電子顕微鏡で観察したところ、剥離界面は確認されなかった。断面には膜横方向の長さ10μm以上のマクロボイドが多数確認できた。
Examples 2-13
Kind of polymer solution, from casting application of polymer solution (B) to casting application of polymer solution (A), standing time F and from casting application of polymer solution (A) to immersion in the coagulation bath A porous polyimide film was obtained in the same manner as in Example 1 except that the standing time S was changed as shown in Table 1.
Table 2 shows presence / absence of peeling of the obtained porous polyimide film, film thickness, and airflow resistance. In Tables 1 and 2, (t) is a value calculated from Equation 1.
In Examples 1 to 13, peeling at the interface between the polymer solution (A) and the polymer solution (B) was not observed.
When the porosity of the porous polyimide film obtained in Example 1 was measured, it was confirmed to be 78%. When the surface of the porous polyimide film obtained in Example 5 was observed with a scanning electron microscope, the surface on the polymer solution (A) side had a porous structure having many communicating pores, and the average pore diameter was 10 μm. It was confirmed that the surface aperture ratio was 40%. Moreover, when the cross section of the porous polyimide film obtained in Example 10 was observed with the scanning electron microscope, the peeling interface was not confirmed. Many macrovoids having a length of 10 μm or more in the transverse direction of the film were confirmed in the cross section.

比較例1〜5
ポリマー溶液の種類、ポリマー溶液(B)を流延塗布してからポリマー溶液(A)を流延塗布するまで放置時間F及びポリマー溶液(A)を流延塗布してから凝固浴へ浸漬するまでの放置時間Sを表1に示したように変更したこと以外は実施例1と同様にして、多孔質ポリイミド膜を得た。
比較例1〜5において、凝固液に浸漬した際に、ポリマー溶液(A)とポリマー溶液(B)の界面において、水脹れや剥離が発生した。ポリアミック酸膜を乾燥した際、剥離が原因となる皺が多数観察され、剥離のないポリマー多孔質膜は得られなかった。
Comparative Examples 1-5
Kind of polymer solution, from casting application of polymer solution (B) to casting application of polymer solution (A), standing time F and from casting application of polymer solution (A) to immersion in the coagulation bath A porous polyimide film was obtained in the same manner as in Example 1 except that the standing time S was changed as shown in Table 1.
In Comparative Examples 1 to 5, when immersed in the coagulation liquid, blistering or peeling occurred at the interface between the polymer solution (A) and the polymer solution (B). When the polyamic acid film was dried, many wrinkles caused by peeling were observed, and a polymer porous film without peeling was not obtained.

Figure 2014231570
Figure 2014231570

Figure 2014231570
Figure 2014231570

Claims (8)

2つのポリマー溶液(A)及び(B)を、フィルム状に積層流延し、流延後に凝固液へ浸漬する工程を含むポリマー多孔質膜の製造方法にあって、
ポリマー溶液を(B)、(A)の順に積層流延することと、(A)又は(B)の少なくとも1つがポリアミック酸を主成分とするポリマー溶液であることを特徴とするポリマー多孔質膜の製造方法。
In a method for producing a porous polymer membrane comprising a step of laminating and casting two polymer solutions (A) and (B) into a film, and immersing in a coagulation liquid after casting,
A polymer porous membrane characterized by laminating and casting a polymer solution in the order of (B) and (A), and at least one of (A) or (B) being a polymer solution containing polyamic acid as a main component Manufacturing method.
ポリマー溶液(A)が積層流延されてから凝固液へ浸漬されるまでの放置時間(S)分が、2つのポリマー溶液(A)及び(B)の溶液粘度(μA)poise及び(μB)poiseから(式1)で算出される時間(t)分以上20分以内に、凝固液へ浸漬することを特徴とする請求項1に記載のポリマー多孔質膜の製造方法。
t=0.9×(μA/μB)(−1) ・・(式1)
The standing time (S) from the time when the polymer solution (A) is laminated and immersed in the coagulation liquid is the solution viscosity (μA) of the two polymer solutions (A) and (B) and (μB). 2. The method for producing a porous polymer membrane according to claim 1, wherein the polymer porous membrane is immersed in a coagulating liquid within a time period (t) or more and 20 minutes calculated from (Equation 1) from a position.
t = 0.9 × (μA / μB) (−1) (1)
ポリアミック酸を主成分とするポリマー溶液が、テトラカルボン酸単位及びジアミン単位からなるポリアミック酸0.3〜60質量%と有機極性溶媒40〜99.7質量%とからなることを特徴とする請求項1又は請求項2に記載のポリマー多孔質膜の製造方法。 The polymer solution containing polyamic acid as a main component is composed of 0.3 to 60% by mass of a polyamic acid composed of a tetracarboxylic acid unit and a diamine unit and 40 to 99.7% by mass of an organic polar solvent. A method for producing a porous polymer membrane according to claim 1 or 2. 凝固液が水を必須成分とすることを特徴とする請求項1〜3のいずれかに記載のポリマー多孔質膜の製造方法。 The method for producing a porous polymer membrane according to any one of claims 1 to 3, wherein the coagulation liquid contains water as an essential component. 凝固液の水濃度が40%以上であることを特徴とする請求項1〜4のいずれかに記載のポリマー多孔質膜の製造方法。 The method for producing a porous polymer membrane according to any one of claims 1 to 4, wherein the water concentration of the coagulation liquid is 40% or more. ポリアミック酸の多孔質膜を熱処理してイミド化する工程を含む請求項1〜5のいずれかに記載のポリマー多孔質膜の製造方法。 The method for producing a porous polymer membrane according to any one of claims 1 to 5, comprising a step of heat-treating the porous membrane of polyamic acid to imidize. 請求項1〜6のいずれかに記載の製造方法で得られるポリマー多孔質膜が、
1)少なくても片面の開口率が10−80%
2)空孔率が20−80%
であることを特徴とするポリマー多孔質膜。
A polymer porous membrane obtained by the production method according to claim 1,
1) At least the opening ratio of one side is 10-80%
2) Porosity is 20-80%
A porous polymer membrane characterized by the following.
請求項1〜6のいずれかに記載の製造方法で得られるポリマー多孔質膜が、
1)両表面の開口率が10−80%
2)空孔率が20−80%
3)ガーレー値(通気抵抗)が、0−2000秒/100cc
4)平均細孔径が0.01−10μm
であることを特徴とのポリマー多孔質膜。
A polymer porous membrane obtained by the production method according to claim 1,
1) Opening ratio of both surfaces is 10-80%
2) Porosity is 20-80%
3) Gurley value (venting resistance) is 0-2000 seconds / 100cc
4) Average pore diameter of 0.01-10 μm
A porous polymer membrane characterized by being.
JP2013113468A 2013-05-29 2013-05-29 Method for producing polymer porous membrane and polymer porous membrane Active JP6330261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113468A JP6330261B2 (en) 2013-05-29 2013-05-29 Method for producing polymer porous membrane and polymer porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113468A JP6330261B2 (en) 2013-05-29 2013-05-29 Method for producing polymer porous membrane and polymer porous membrane

Publications (2)

Publication Number Publication Date
JP2014231570A true JP2014231570A (en) 2014-12-11
JP6330261B2 JP6330261B2 (en) 2018-05-30

Family

ID=52125164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113468A Active JP6330261B2 (en) 2013-05-29 2013-05-29 Method for producing polymer porous membrane and polymer porous membrane

Country Status (1)

Country Link
JP (1) JP6330261B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194025A (en) * 2015-04-02 2016-11-17 宇部興産株式会社 Method for producing polyimide film
KR101778739B1 (en) 2016-01-22 2017-09-14 에스케이씨 주식회사 Anisotropic thermally conductive film, laminate sheet using same and method of preparing same
JP2018062104A (en) * 2016-10-12 2018-04-19 ユニチカ株式会社 Porous laminated film and method for producing porous laminated film
JP2018065902A (en) * 2016-10-18 2018-04-26 ユニチカ株式会社 Porous composite film, and production method of porous composite film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092078A (en) * 2006-11-27 2007-04-12 Ube Ind Ltd Preparation process for polyimide porous film
JP2008056934A (en) * 2007-09-19 2008-03-13 Ube Ind Ltd Polyimide porous film composite material and proton conductive film
JP2009162297A (en) * 2008-01-07 2009-07-23 Ube Ind Ltd Oil supply member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092078A (en) * 2006-11-27 2007-04-12 Ube Ind Ltd Preparation process for polyimide porous film
JP2008056934A (en) * 2007-09-19 2008-03-13 Ube Ind Ltd Polyimide porous film composite material and proton conductive film
JP2009162297A (en) * 2008-01-07 2009-07-23 Ube Ind Ltd Oil supply member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194025A (en) * 2015-04-02 2016-11-17 宇部興産株式会社 Method for producing polyimide film
KR101778739B1 (en) 2016-01-22 2017-09-14 에스케이씨 주식회사 Anisotropic thermally conductive film, laminate sheet using same and method of preparing same
JP2018062104A (en) * 2016-10-12 2018-04-19 ユニチカ株式会社 Porous laminated film and method for producing porous laminated film
JP2018065902A (en) * 2016-10-18 2018-04-26 ユニチカ株式会社 Porous composite film, and production method of porous composite film

Also Published As

Publication number Publication date
JP6330261B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
JP5641042B2 (en) Porous polyimide membrane and method for producing the same
JP5636960B2 (en) Porous polyimide membrane and method for producing the same
JP5577803B2 (en) Porous polyimide membrane and method for producing the same
JP5577804B2 (en) Porous polyimide membrane and method for producing the same
JP5720574B2 (en) Colored polyimide molded body and method for producing the same
CN109563300B (en) Method for producing porous polyimide film and porous polyimide film produced by the method
WO2016104309A1 (en) Porous polyimide film and method for producing same
JP6330261B2 (en) Method for producing polymer porous membrane and polymer porous membrane
JP3963765B2 (en) Porous film and method for producing the same
JP6403389B2 (en) Method for producing imide-based porous film and imide-based porous film
JP2012111790A (en) Dry type polyimide-based porous film and method for producing the same
JP2011001434A (en) Method for manufacturing porous polyimide body, and porous polyimide body
JP2009162297A (en) Oil supply member
JP7326785B2 (en) Porous polyimide membrane and its manufacturing method
JP6554760B2 (en) Method for producing polymer porous membrane, method for producing polyimide porous membrane, and polyimide porous membrane
JP6923913B2 (en) Polyimide solution for forming a porous polyimide film, a method for producing a porous polyimide film, and a porous polyimide film
JP6937502B2 (en) Porous Composite Film and Method for Producing Porous Composite Film
JP6815024B2 (en) Method for manufacturing porous laminated film and porous laminated film
JP2004168971A (en) Method for preserving polyamic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R150 Certificate of patent or registration of utility model

Ref document number: 6330261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250