JP2018064377A - Power supply monitoring system for vehicle using satellite board - Google Patents

Power supply monitoring system for vehicle using satellite board Download PDF

Info

Publication number
JP2018064377A
JP2018064377A JP2016201509A JP2016201509A JP2018064377A JP 2018064377 A JP2018064377 A JP 2018064377A JP 2016201509 A JP2016201509 A JP 2016201509A JP 2016201509 A JP2016201509 A JP 2016201509A JP 2018064377 A JP2018064377 A JP 2018064377A
Authority
JP
Japan
Prior art keywords
thermistor
power supply
battery
circuit
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016201509A
Other languages
Japanese (ja)
Other versions
JP6639367B2 (en
Inventor
宏昌 田中
Hiromasa Tanaka
宏昌 田中
溝口 朝道
Asamichi Mizoguchi
朝道 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2016201509A priority Critical patent/JP6639367B2/en
Publication of JP2018064377A publication Critical patent/JP2018064377A/en
Application granted granted Critical
Publication of JP6639367B2 publication Critical patent/JP6639367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine electrical short circuit between a high-voltage power supply and a thermistor, in a power supply monitoring system for a vehicle, in which a monitoring circuit is mounted on a satellite board.SOLUTION: A power supply monitoring system 10 for a vehicle using a satellite board 50 comprises: a monitoring circuit 52 mounted on the satellite board 50 independent of a main control board 12; a high-voltage power supply 30; and a plurality of thermistors 42. Further, the system comprises a path switching unit 60 provided among one end 46 and the other end 48 of the thermistor, a detection terminal of the monitoring circuit 52, and a negative electrode bus 34. The path switching unit 60 switches a path between a first path and a second path. The system comprises a short circuit determination unit 64 which determines that any one of the one end 46 and the other end 48 of the thermistor 42 is electrically short-circuited with a battery can 38, when a difference in voltages between terminals of the thermistor 42 before and after the path switching, exceeds a predetermined value.SELECTED DRAWING: Figure 1

Description

本開示は、サテライト基板を用いた車両用電源監視システムに係り、特に、サテライト基板を用い、高電圧電源の温度を監視する車両用電源監視システムに関する。   The present disclosure relates to a vehicle power supply monitoring system using a satellite substrate, and more particularly to a vehicle power supply monitoring system that uses a satellite substrate and monitors the temperature of a high-voltage power supply.

複数の電池セルによって構成される高電圧電源の各電池セルの状態を監視する監視回路には、5V等の低電圧電源で動作するメイン基板に実装されるタイプと、例えば数100Vの高電圧電源側のサテライト基板に実装されるタイプとがある。   The monitoring circuit for monitoring the state of each battery cell of a high voltage power source constituted by a plurality of battery cells includes a type mounted on a main board that operates with a low voltage power source such as 5 V, and a high voltage power source of several hundreds V, for example. There is a type that is mounted on the satellite substrate on the side.

例えば、特許文献1には、サテライト基板に実装される監視回路を駆動するための電力は、低電圧電源からトランス等の絶縁電源を介して供給される例を述べている。このように絶縁電源をメイン基板に設けると、サテライト基板の数が変更になる度に、メイン基板上の絶縁基板の数も変更になることを指摘し、サテライト基板に絶縁電源を設けることを開示している。   For example, Patent Document 1 describes an example in which power for driving a monitoring circuit mounted on a satellite substrate is supplied from a low-voltage power source via an insulated power source such as a transformer. It is pointed out that when the insulation power supply is provided on the main board in this way, the number of the insulation boards on the main board changes whenever the number of satellite boards changes, and it is disclosed that the insulation power supply is provided on the satellite board. doing.

本開示に関連する技術として、特許文献2には、高電圧電源の正極母線及び負極母線は、メイン基板の回路接地である車体とフローティングであり、高電圧電源の正極母線及び負極母線と車体との間の漏電を検出する漏電検出回路を開示している。   As a technique related to the present disclosure, Patent Document 2 discloses that the positive and negative buses of the high voltage power supply are floating with the vehicle body that is the circuit ground of the main board, and the positive and negative buses of the high voltage power supply and the vehicle body. An earth leakage detection circuit for detecting earth leakage during the period is disclosed.

特開2015―079585号公報Japanese Patent Application Laid-Open No. 2015-079585 特開2004−347372号公報JP 2004-347372 A

複数の電池セルで構成される高電圧電源に複数の温度センサとしてのサーミスタを設け、電池温度の監視を行う監視回路をサテライト基板に実装すれば、複数のサーミスタからの信号線をメイン基板に実装される主制御装置まで引き回さなくて済む。   If a thermistor as multiple temperature sensors is installed in a high-voltage power supply consisting of multiple battery cells and a monitoring circuit that monitors the battery temperature is mounted on the satellite board, the signal lines from multiple thermistors are mounted on the main board There is no need to route to the main controller.

一方で、メイン基板に監視回路を実装する場合には、仮に、高電圧電源とサーミスタとが電気的に短絡しても、車体に対しフローティングの高電圧電源と車体が接地電位であるメイン基板との間の漏電として検出できる(特許文献2)。サテライト基板に監視回路を実装する場合は、仮に、高電圧電源とサーミスタとが電気的に短絡すると、車体に対しフローティングの高電圧電源と車体が接地電位であるメイン基板との間の絶縁は保たれているので、特許文献2の漏電検出回路が使えない。   On the other hand, when the monitoring circuit is mounted on the main board, even if the high-voltage power supply and the thermistor are electrically short-circuited, (Patent Document 2). When a monitoring circuit is mounted on a satellite board, if the high-voltage power supply and the thermistor are electrically short-circuited, the insulation between the floating high-voltage power supply and the main board where the car body is at ground potential is maintained. Therefore, the leakage detection circuit disclosed in Patent Document 2 cannot be used.

そこで、サテライト基板に監視回路を実装した車両用電源監視システムにおいて、高電圧電源とサーミスタとの間の電気的な短絡を判定することが要望される。   Therefore, in a vehicle power supply monitoring system in which a monitoring circuit is mounted on a satellite substrate, it is desired to determine an electrical short circuit between the high voltage power supply and the thermistor.

本開示に係るサテライト基板を用いた車両用電源監視システムは、電池缶に収納された電池セルの所定の複数個を直列に接続し、正極母線と負極母線が車体から絶縁抵抗を介してフローティング電位にある高電圧電源と、複数の電池缶について定められた測定位置に絶縁体を介して配置され、一端及び他端がそれぞれ引き出される複数のサーミスタと、メイン制御基板とは独立のサテライト基板に実装され、負極母線を接地電位とし、サーミスタの一端と他端の間の端子間電圧に基づいて電池温度を監視する監視回路と、予め設定された基準電圧に一方端が接続され、他方端が監視回路の検出端子に接続され、各サーミスタごとに設けられた所定の直列抵抗と、サーミスタの一端、他端、監視回路の検出端子、及び負極母線の間に設けられる経路切替部であって、サーミスタの一端を監視回路の検出端子へ接続し、かつサーミスタの他端を負極母線へ接続する第1の経路、サーミスタの他端を監視回路の検出端子へ接続し、かつサーミスタの一端を負極母線へ接続する第2の経路との間で、経路を切り替える経路切替部と、経路切替前後で、サーミスタの端子間電圧の差が所定値を超えるときに、サーミスタの一端または他端のいずれか1が電池缶と電気的に短絡していると判定する短絡判定部と、を備える。   A vehicle power supply monitoring system using a satellite substrate according to the present disclosure connects a predetermined plurality of battery cells housed in a battery can in series, and a positive bus and a negative bus are connected to a floating potential via an insulation resistance from a vehicle body. Mounted on a satellite board independent of the main control board, and a plurality of thermistors that are placed through insulators at the measurement positions defined for the high-voltage power supply and the battery cans, and one end and the other end are drawn out respectively. A monitoring circuit that monitors the battery temperature based on the voltage across the terminals between one end and the other end of the thermistor, with one end connected to a preset reference voltage and the other end monitored. Connected to the detection terminal of the circuit and provided between a predetermined series resistance provided for each thermistor and one end and the other end of the thermistor, the detection terminal of the monitoring circuit, and the negative bus A path switching unit, connecting one end of the thermistor to the detection terminal of the monitoring circuit and connecting the other end of the thermistor to the negative bus, connecting the other end of the thermistor to the detection terminal of the monitoring circuit; When the difference between the thermistor terminals exceeds a predetermined value before and after the path switching, the path switching unit that switches the path between the second path connecting one end of the thermistor to the negative electrode bus, and one end of the thermistor Alternatively, a short-circuit determining unit that determines that any one of the other ends is electrically short-circuited with the battery can.

上記構成によれば、サテライト基板に監視回路を実装した車両用電源監視システムにおいて、高電圧電源とサーミスタとの間の電気的な短絡を判定できる。   According to the above configuration, in the vehicle power supply monitoring system in which the monitoring circuit is mounted on the satellite substrate, it is possible to determine an electrical short circuit between the high voltage power supply and the thermistor.

実施の形態に係るサテライト基板を用いた車両用電源監視システムの構成図である。(a)は全体構成図であり、(b)は、(a)においてBで示す経路切替部の内部構成図である。1 is a configuration diagram of a vehicle power supply monitoring system using a satellite substrate according to an embodiment. (A) is a whole block diagram, (b) is an internal block diagram of the path | route switching part shown by B in (a). 経路切替部において、従来技術の経路である第1の経路に切り替えたときのサテライト基板を用いた車両用電源監視システムの構成図である。It is a block diagram of the vehicle power supply monitoring system using the satellite board | substrate when it switches to the 1st path | route which is a path | route of a prior art in a path | route switching part. 図2のサテライト基板を用いた車両用電源監視システムにおいて、監視回路が検出するするサーミスタの端子間電圧と電池温度との関係を示す図である。FIG. 3 is a diagram showing a relationship between a terminal voltage of a thermistor detected by a monitoring circuit and a battery temperature in the vehicle power supply monitoring system using the satellite substrate of FIG. 2. 図2のサテライト基板を用いた車両用電源監視システムにおいて、電池缶とサーミスタの一端とが電気的に短絡したときの短絡電流を示す図である。FIG. 3 is a diagram showing a short-circuit current when the battery can and one end of the thermistor are electrically short-circuited in the vehicle power supply monitoring system using the satellite substrate of FIG. 2. 図4の場合において、監視回路が検出するサーミスタの端子間電圧と電池温度との関係を示す図である。In the case of FIG. 4, it is a figure which shows the relationship between the voltage between terminals of the thermistor which a monitoring circuit detects, and battery temperature. 図4に対比して、電池缶とサーミスタの他端とが電気的に短絡したときの短絡電流を示す図である。FIG. 5 is a diagram showing a short-circuit current when the battery can and the other end of the thermistor are electrically short-circuited as compared with FIG. 4. 図6の場合において、監視回路が検出するするサーミスタの端子間電圧と電池温度との関係を示す図である。In the case of FIG. 6, it is a figure which shows the relationship between the voltage between terminals of the thermistor which a monitoring circuit detects, and battery temperature. 実施の形態に係るサテライト基板を用いた車両用電源監視システムにおいて、高電圧電源とサーミスタとの間の電気的な短絡の判定方法の手順を示すフローチャートである。4 is a flowchart showing a procedure of a method for determining an electrical short circuit between a high voltage power supply and a thermistor in the vehicle power supply monitoring system using the satellite substrate according to the embodiment. 図8において、経路切替部が第1の経路に切り替えたときの短絡電流を示す図である。In FIG. 8, it is a figure which shows a short circuit current when a path | route switch part switches to the 1st path | route. 図8において、経路切替部が第2の経路に切り替えたときの短絡電流を示す図である。In FIG. 8, it is a figure which shows a short circuit current when a path | route switch part switches to the 2nd path | route. 図9及び図10の場合において、監視回路が検出するするサーミスタの端子間電圧と電池温度との関係を示す図である。In the case of FIG.9 and FIG.10, it is a figure which shows the relationship between the voltage between terminals of the thermistor which a monitoring circuit detects, and battery temperature. 比較例として、サテライト基板を用いない車両用電源監視システムの構成を示す図である。It is a figure which shows the structure of the power supply monitoring system for vehicles which does not use a satellite board | substrate as a comparative example.

以下に図面を用いて、本実施の形態に付き詳細に説明する。以下で述べる電池セルの個数、電圧、抵抗等は、説明のための例示であって、サテライト基板を用いた車両用電源監視システムの仕様に応じて適宜変更が可能である。 以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, this embodiment will be described in detail with reference to the drawings. The number, voltage, resistance, and the like of the battery cells described below are illustrative examples, and can be appropriately changed according to the specifications of the vehicle power supply monitoring system using the satellite substrate. Below, the same code | symbol is attached | subjected to the same element in all the drawings, and the overlapping description is abbreviate | omitted.

図1は、実施の形態に係るサテライト基板を用いた車両用電源監視システム10の構成図である。以下では、特に断らない限り、サテライト基板を用いた車両用電源監視システム10を、電源監視システム10と呼ぶ。(a)は全体構成図であり、(b)は、経路切替部60の詳細図である。   FIG. 1 is a configuration diagram of a vehicle power supply monitoring system 10 using a satellite substrate according to an embodiment. Hereinafter, unless otherwise specified, the vehicle power supply monitoring system 10 using the satellite substrate is referred to as a power supply monitoring system 10. (A) is an overall configuration diagram, and (b) is a detailed diagram of the path switching unit 60.

電源監視システム10は、車両に搭載される高電圧電源30の状態を監視するシステムである。監視される高電圧電源30の状態としては、電池電圧、電池電流があるが、ここでは、高電圧電源30の電池温度についてサーミスタ42を用いて監視する電源監視システム10について述べる。高電圧電源30を搭載する車両には、回転電機で駆動される電気自動車や、エンジンと回転電機とを搭載するハイブリッド車両を含む。   The power supply monitoring system 10 is a system that monitors the state of the high voltage power supply 30 mounted on the vehicle. The state of the high voltage power supply 30 to be monitored includes battery voltage and battery current. Here, the power supply monitoring system 10 that monitors the battery temperature of the high voltage power supply 30 using the thermistor 42 will be described. The vehicle equipped with the high voltage power supply 30 includes an electric vehicle driven by a rotating electrical machine and a hybrid vehicle equipped with an engine and a rotating electrical machine.

電源監視システム10は、メイン制御基板12に実装される部分と、サテライト基板50に実装される部分とを含む。以下では、特に断らない限り、メイン制御基板12をメイン基板12と呼ぶ。メイン基板12には、車体14を接地電位とし、図示しない低電圧電源から生成される低電圧VCCによって動作する複数の回路が実装される。低電圧電源は、公称端子間電圧が約14.4Vの鉛蓄電池等で、低電圧VCCの一例は約5Vである。メイン基板12に実装される回路としては、例えば、車両のランプ点灯回路、ステアリング駆動回路、空調回路、オーディオ回路等を含むが、図1では、主制御装置16と漏電検出回路18とを示す。 The power supply monitoring system 10 includes a part mounted on the main control board 12 and a part mounted on the satellite board 50. Hereinafter, the main control board 12 is referred to as a main board 12 unless otherwise specified. A plurality of circuits that are operated by a low voltage V CC generated from a low voltage power source (not shown) are mounted on the main board 12 with the vehicle body 14 as a ground potential. The low voltage power source is a lead storage battery having a nominal terminal voltage of about 14.4V, and an example of the low voltage V CC is about 5V. The circuit mounted on the main board 12 includes, for example, a vehicle lamp lighting circuit, a steering drive circuit, an air conditioning circuit, an audio circuit, and the like. FIG. 1 shows the main control device 16 and the leakage detection circuit 18.

主制御装置16は、サテライト基板50に実装される監視回路52とデータ通信線70を介して交信し、監視回路52から高電圧電源30の状態の監視データを取得し、その結果に基づいて監視回路52に対する指示、車両の他の制御要素へ指示を行う装置である。主制御装置16は、車載に適したマイクロコンピュータ等で構成される。   The main control device 16 communicates with the monitoring circuit 52 mounted on the satellite board 50 via the data communication line 70, acquires monitoring data of the state of the high voltage power supply 30 from the monitoring circuit 52, and monitors based on the result. This is an apparatus for instructing the circuit 52 and instructing other control elements of the vehicle. The main control device 16 is composed of a microcomputer suitable for in-vehicle use.

漏電検出回路18は、高電圧電源30の正極母線32及び負極母線34と、車体14との間の漏電を検出する回路である。以下では、特に断らない限り、高電圧電源30の正極母線32、高電圧電源30の負極母線34を、それぞれ正極母線32、負極母線34と呼ぶ。高電圧電源30は、約100V〜約300Vの端子間電圧を有するので、感電防止等から、その正極母線32、負極母線34は、車体14に対しフローティング電位にある。正極母線32及び負極母線34と車体14との間は、絶縁材や空間等で絶縁されるが、その絶縁抵抗が何らかの理由で劣化や損傷を受けると、正極母線32、負極母線34と車体14との間に漏電が生じる。漏電検出回路18は、車体14と高電圧電源30との間の漏電を監視する。漏電の可能性があるときは、車両全体を制御する車両制御部の作用によって、車両の駆動が停止され、高電圧電源30と車両の他の構成要素との間を電気的に分離する等の処置が行われる。   The leakage detection circuit 18 is a circuit that detects a leakage between the positive electrode bus 32 and the negative electrode bus 34 of the high-voltage power supply 30 and the vehicle body 14. Hereinafter, unless otherwise specified, the positive electrode bus 32 of the high voltage power supply 30 and the negative electrode bus 34 of the high voltage power supply 30 are referred to as a positive electrode bus 32 and a negative electrode bus 34, respectively. Since the high voltage power supply 30 has a terminal voltage of about 100 V to about 300 V, the positive bus 32 and the negative bus 34 are at a floating potential with respect to the vehicle body 14 in order to prevent electric shock. The positive electrode bus 32 and the negative electrode bus 34 are insulated from the vehicle body 14 by an insulating material, space, or the like. If the insulation resistance is deteriorated or damaged for some reason, the positive electrode bus 32, the negative electrode bus 34 and the vehicle body 14 are insulated. Leakage occurs between the two. The leakage detection circuit 18 monitors the leakage between the vehicle body 14 and the high voltage power supply 30. When there is a possibility of electric leakage, the driving of the vehicle is stopped by the action of the vehicle control unit that controls the entire vehicle, and the high voltage power supply 30 and other components of the vehicle are electrically separated. Treatment is performed.

高電圧電源30は、車両の回転電機の駆動電力源となる大電流高電圧の直流電源である。高電圧電源30は、所定の複数個の電池セル36を直列接続して所定の高電圧を出力する。図1では、所定の複数個をn=24とし、24個の各電池セル36は、それぞれの負極端子を負極母線34側、正極端子を正極母線32側とし、隣接する電池セル36の間で一方側の電池セル36の正極端子を他方の電池セル36の負極端子に接続する。図1では、24個の電池セル36を区別して、負極母線34側から正極母線32側に向かって、n=1からn=24の番号を付した。n=1の電池セル36の負極端子の電位は、負極母線34の電位であり、n=24の電池セル36の正極端子の電位は、正極母線32の電位である。   The high-voltage power supply 30 is a high-current high-voltage DC power supply that serves as a driving power source for a rotating electrical machine of a vehicle. The high voltage power supply 30 connects a predetermined plurality of battery cells 36 in series and outputs a predetermined high voltage. In FIG. 1, a predetermined number n is 24, and each of the 24 battery cells 36 has a negative electrode terminal on the negative electrode bus 34 side and a positive electrode terminal on the positive electrode bus 32 side, and between adjacent battery cells 36. The positive terminal of one battery cell 36 is connected to the negative terminal of the other battery cell 36. In FIG. 1, 24 battery cells 36 are distinguished and numbered from n = 1 to n = 24 from the negative electrode bus 34 side toward the positive electrode bus 32 side. The potential of the negative electrode terminal of the battery cell 36 with n = 1 is the potential of the negative electrode bus 34, and the potential of the positive electrode terminal of the battery cell 36 with n = 24 is the potential of the positive electrode bus 32.

電池セル36の種類としては、公称の端子間電圧が約3.6Vのリチウムイオン電池や、公称の端子間電圧が約1.2Vのニッケル水素電池が用いられる。ここでは、電池セル36をリチウムイオン電池とし、端子間電圧として公称の端子間電圧の3.6Vを用いる。図1では、高電圧電源30として、24個の電池セル36を直列接続しているので、高電圧電源30の端子間電圧は、(3.6V×24)=86.4Vである。これは説明のための例示であり、n=24以外の直列接続数であってよい。例えば、n=96とすると、高電圧電源30の端子間電圧は、345.6Vである。図1の例では、直列接続の各段は1個の電池セル36としたが、複数の電池セル36を並列接続してこれを1段として、24段を直列接続してもよい。例えば、15個の電池セル36を互いに並列接続したものを1段として24段を直列接続してもよい。各段の端子間電圧は3.6Vであるが、出力電流は、1段が1個の電池セル36の場合に比べ、15倍になる。このように、各段の並列接続数と、直列接続される段数とを適当に設定して、所定の大電流高電圧を出力できる高電圧電源30となる。以下では、図1に示すように、1段の個数=1とし、直列接続される段数=24とする。   As the type of the battery cell 36, a lithium ion battery having a nominal terminal voltage of about 3.6V or a nickel metal hydride battery having a nominal terminal voltage of about 1.2V is used. Here, the battery cell 36 is a lithium ion battery, and a nominal inter-terminal voltage of 3.6 V is used as the inter-terminal voltage. In FIG. 1, since 24 battery cells 36 are connected in series as the high voltage power supply 30, the voltage between the terminals of the high voltage power supply 30 is (3.6V × 24) = 86.4V. This is an illustrative example, and the number of series connections other than n = 24 may be used. For example, when n = 96, the voltage between the terminals of the high voltage power supply 30 is 345.6V. In the example of FIG. 1, each stage connected in series is one battery cell 36. However, a plurality of battery cells 36 may be connected in parallel to form one stage, and 24 stages may be connected in series. For example, a configuration in which 15 battery cells 36 are connected in parallel to each other may be one stage and 24 stages may be connected in series. The voltage between terminals of each stage is 3.6 V, but the output current is 15 times that of the case where one stage is one battery cell 36. Thus, the high-voltage power supply 30 can output a predetermined large current and high voltage by appropriately setting the number of stages connected in parallel and the number of stages connected in series. In the following, as shown in FIG. 1, it is assumed that the number of one stage = 1 and the number of stages connected in series = 24.

リチウムイオン電池の電池セル36は、セパレータを介して配置される正極活物質層と負極活物質層とを有する。セパレータは、電解質を吸収保持ないし担持するポリマーからなる多孔性シートである。多孔性シートに代えて不織布シートを用いてもよい。電解液は、有機溶媒にリチウム塩が溶解された液状電解液が用いられる。有機溶媒としては、カーボネート類、リチウム塩としては、無機酸陰イオン塩や有機酸陰イオン塩が用いられる。これらの材料については公知であるので、さらなる説明を省略する。   The battery cell 36 of a lithium ion battery has a positive electrode active material layer and a negative electrode active material layer disposed via a separator. The separator is a porous sheet made of a polymer that holds or supports an electrolyte. A nonwoven fabric sheet may be used instead of the porous sheet. As the electrolytic solution, a liquid electrolytic solution in which a lithium salt is dissolved in an organic solvent is used. Examples of the organic solvent include carbonates, and examples of the lithium salt include inorganic acid anion salts and organic acid anion salts. Since these materials are known, further description is omitted.

電池セル36は、電池缶38の内部に収納され、正極端子と負極端子が電池缶38と絶縁されて外部に突き出す。電池缶38の内部は電解液で満たされるので、正極端子は電解液抵抗40を介して電池缶38と電気的に接続され、負極端子は電解液抵抗41を介して電池缶38と電気的に接続される。単体の電池セル36を取り出すと、電池缶38の電位は、正極端子と負極端子から電解液抵抗40,41を介したフローティング電位となり、電解液抵抗40と電解液抵抗41をほぼ同じとして、(3.6V/2)=1.8Vである。電池缶38は、絶縁フィルムや絶縁チューブによって外周面が覆われる。   The battery cell 36 is housed inside a battery can 38, and the positive terminal and the negative terminal are insulated from the battery can 38 and project outside. Since the inside of the battery can 38 is filled with the electrolytic solution, the positive electrode terminal is electrically connected to the battery can 38 via the electrolytic solution resistor 40, and the negative electrode terminal is electrically connected to the battery can 38 via the electrolytic solution resistor 41. Connected. When the single battery cell 36 is taken out, the potential of the battery can 38 becomes a floating potential from the positive electrode terminal and the negative electrode terminal through the electrolytic solution resistors 40 and 41, and the electrolytic solution resistor 40 and the electrolytic solution resistor 41 are substantially the same. 3.6V / 2) = 1.8V. The outer surface of the battery can 38 is covered with an insulating film or an insulating tube.

サーミスタ42は、温度変化に対して電気抵抗の変化の大きい抵抗体で、この現象を利用し、電池温度を検出する温度センサとして用いる。サーミスタ42は、温度上昇と共に抵抗が減少するが、これとは逆に、温度上昇と共に抵抗が増大するポジスタ(村田製作所の登録商標)も知られている。以下では、温度上昇と共に抵抗が減少する抵抗体をサーミスタ42として用いる。温度θ0におけるサーミスタ42の抵抗をR(θ0)とし、温度θにおけるサーミスタ42の抵抗をR(θ)とすると、R(θ)=R(θ0)×exp[B{(1/θ)−(1/θ0)}で与えられる。Bは、温度変化に対するサーミスタ42の抵抗の変化の割合を表す物性値で、B定数とよばれる。上式において、温度の単位は絶対温度Kで、B定数の単位も絶対温度Kである。 The thermistor 42 is a resistor having a large electrical resistance change with respect to a temperature change, and is used as a temperature sensor for detecting the battery temperature by utilizing this phenomenon. The thermistor 42 decreases in resistance as the temperature rises. On the other hand, a positiver (registered trademark of Murata Manufacturing Co., Ltd.) whose resistance increases as the temperature rises is also known. In the following, a resistor whose resistance decreases with increasing temperature is used as the thermistor 42. If the resistance of the thermistor 42 at temperature θ 0 is R (θ 0 ), and the resistance of the thermistor 42 at temperature θ is R (θ), then R (θ) = R (θ 0 ) × exp [B {(1 / θ ) − (1 / θ 0 )}. B is a physical property value indicating the rate of change in resistance of the thermistor 42 with respect to temperature change, and is referred to as B constant. In the above equation, the unit of temperature is absolute temperature K, and the unit of B constant is also absolute temperature K.

サーミスタ42は、高電圧電源30の複数の電池缶38について定められた測定位置に絶縁体44を介して配置される。絶縁体44は、サーミスタ42の導電体である抵抗体と電池缶38との間を電気的に絶縁しながら温度を伝達するフィルムである。絶縁体44としては、サーミスタ42の外周を覆う絶縁フィルム、絶縁チューブ、絶縁塗装等が用いられる。電池缶38の外周面を覆う絶縁フィルム等を絶縁体44として用いてもよい。   The thermistor 42 is disposed via an insulator 44 at a measurement position determined for the plurality of battery cans 38 of the high voltage power supply 30. The insulator 44 is a film that transmits temperature while electrically insulating the resistor, which is a conductor of the thermistor 42, and the battery can 38. As the insulator 44, an insulating film, an insulating tube, an insulating coating or the like covering the outer periphery of the thermistor 42 is used. An insulating film or the like that covers the outer peripheral surface of the battery can 38 may be used as the insulator 44.

サーミスタ42の配置方法としては、高電圧電源30の全体を収納するパックケースに取り付けられたサーミスタ保持具にサーミスタ42を固定して電池缶38に接触させる方法を用いることができる。これは一例であって、その他の方法を用いてもよい。図1の例では、nが偶数の電池缶38にそれぞれ1つのサーミスタ42が割り当てられ、合計12個のサーミスタ42が配置される。これも説明のための例示であって、各電池缶38毎に1つのサーミスタ42を配置してもよく、あるいは、高電圧電源30の適当な数カ所の位置にサーミスタ42を配置してもよい。   As a method for arranging the thermistor 42, a method can be used in which the thermistor 42 is fixed to a thermistor holder attached to a pack case that houses the entire high-voltage power supply 30 and brought into contact with the battery can 38. This is an example, and other methods may be used. In the example of FIG. 1, one thermistor 42 is assigned to each battery can 38 having an even number n, and a total of twelve thermistors 42 are arranged. This is also an illustrative example, and one thermistor 42 may be arranged for each battery can 38, or the thermistors 42 may be arranged at several appropriate positions of the high-voltage power supply 30.

各サーミスタ42からは、温度を感知する抵抗体の一端46と他端48からそれぞれ信号線が引き出され、サテライト基板50に導かれる。   From each thermistor 42, a signal line is drawn out from one end 46 and the other end 48 of the resistor that senses temperature, and led to the satellite substrate 50.

サテライト基板50は、メイン基板12とは独立の基板で、高電圧電源30に付属して配置される回路基板である。高電圧電源30に付属して、とは、高電圧電源30のパックケースの内部、あるいはパックケースの外側に取り付けられて配置されることを指す。サテライト基板50は、サーミスタ42を用いて高電圧電源30の所定の電池缶38の温度を検出する温度検出回路基板である。サテライト基板50には、監視回路52、マルチプレクサ54,55、サーミスタ42に接続される直列抵抗58、経路切替部60等が実装して配置される。   The satellite board 50 is a circuit board that is independent of the main board 12 and is arranged attached to the high voltage power supply 30. Being attached to the high voltage power supply 30 means being attached to the inside of the pack case of the high voltage power supply 30 or the outside of the pack case. The satellite substrate 50 is a temperature detection circuit substrate that detects the temperature of a predetermined battery can 38 of the high voltage power supply 30 using the thermistor 42. On the satellite substrate 50, a monitoring circuit 52, multiplexers 54 and 55, a series resistor 58 connected to the thermistor 42, a path switching unit 60, and the like are mounted and arranged.

監視回路52は、負極母線34を接地電位とし、所定の低電圧Vref1によって動作し、サーミスタ42の一端46と他端48との間の端子間電圧に基づいて電池温度を監視し、主制御装置16とデータ通信線70で交信する回路である。ここでは、特に、高電圧電源30とサーミスタ42との間の電気的な短絡の有無を判定する短絡判定部64を含む。 The monitoring circuit 52 operates with a predetermined low voltage V ref1 with the negative electrode bus 34 as a ground potential, monitors the battery temperature based on the voltage across the terminals between the one end 46 and the other end 48 of the thermistor 42, and performs main control. It is a circuit that communicates with the device 16 via the data communication line 70. Here, in particular, a short-circuit determining unit 64 that determines the presence or absence of an electrical short between the high-voltage power supply 30 and the thermistor 42 is included.

所定の低電圧Vref1の一例は約5Vであり、これは、主制御装置16の所定の低電圧Vccとほぼ同じである。相違するのは、メイン基板12における所定の低電圧Vccの基準電位は車体14の電位であるのに対し、サテライト基板50における所定の低電圧Vref1の基準電位は車体14からフローティングの負極母線34の電位である。サーミスタ42の一端46と他端48との間の端子間電圧は、マルチプレクサ54,55から伝送される検出データを検出端子62,63で取得する。検出端子62,63が取得する検出データは、負極母線34を基準電位とする電圧である。 An example of the predetermined low voltage V ref1 is about 5V, which is substantially the same as the predetermined low voltage V cc of the main controller 16. The difference is that the reference potential of the predetermined low voltage V cc in the main board 12 is the potential of the vehicle body 14, whereas the reference potential of the predetermined low voltage V ref1 in the satellite board 50 is a floating negative electrode bus from the vehicle body 14. 34 potentials. As for the inter-terminal voltage between the one end 46 and the other end 48 of the thermistor 42, the detection data transmitted from the multiplexers 54 and 55 is acquired by the detection terminals 62 and 63. The detection data acquired by the detection terminals 62 and 63 is a voltage having the negative electrode bus 34 as a reference potential.

マルチプレクサ54,55は、12個のサーミスタ42から伝送される検出データであるVOUTの内の1つを順次選択して監視回路52の検出端子62,63に伝送する順次選択回路である。マルチプレクサ54は、n=2,4,6,8,10,12の6つの電池缶38に対応する6つのサーミスタ42からのVOUTの内の1つを順次選択して監視回路52の検出端子62に伝送する。マルチプレクサ55は、n=14,16,18,20,22,14の6つの電池缶38に対応する6つのサーミスタ42からのVOUTの内の1つを順次選択して監視回路52の検出端子63に伝送する。 The multiplexers 54 and 55 are sequential selection circuits that sequentially select one of V OUT as detection data transmitted from the twelve thermistors 42 and transmit it to the detection terminals 62 and 63 of the monitoring circuit 52. The multiplexer 54 sequentially selects one of V OUT from the six thermistors 42 corresponding to the six battery cans 38 of n = 2, 4, 6, 8, 10, and 12 and detects the detection terminal of the monitoring circuit 52. 62. The multiplexer 55 sequentially selects one of V OUT from the six thermistors 42 corresponding to the six battery cans 38 of n = 14, 16, 18, 20, 22, and 14 and detects the detection terminal of the monitoring circuit 52. 63.

図1では、VOUT(n=2),VOUT(n=4),VOUT(n=20),VOUT(n=22),VOUT(n=24)を示し、他の図示を省略した。マルチプレクサ54,55を用いることで、監視回路52における検出端子の数を少なくすることができる。図1の例では、12個のVOUTのデータを取得するのに、2つの検出端子62,63で済む。 FIG. 1 shows V OUT (n = 2), V OUT (n = 4), V OUT (n = 20), V OUT (n = 22), V OUT (n = 24), and other illustrations. Omitted. By using the multiplexers 54 and 55, the number of detection terminals in the monitoring circuit 52 can be reduced. In the example of FIG. 1, only two detection terminals 62 and 63 are required to acquire 12 V OUT data.

マルチプレクサ54,55は、監視回路52の検出端子の数を少なくする回路であり、機能的には、マルチプレクサ54,55に入力されるサーミスタ42からのVOUTのデータは、監視回路52の検出端子62,63が取得するデータと同じである。そこで、以下では、特に断らない限り、マルチプレクサ54,55の順次選択機能を広義の監視回路52に含むものとし、各サーミスタ42からのVOUTがそれぞれ監視回路52の検出端子に入力されるものとする。 The multiplexers 54 and 55 are circuits that reduce the number of detection terminals of the monitoring circuit 52, and functionally, the V OUT data from the thermistor 42 input to the multiplexers 54 and 55 is detected by the detection terminals of the monitoring circuit 52. 62 and 63 are the same as the acquired data. Therefore, hereinafter, unless otherwise specified, it is assumed that the sequential selection function of the multiplexers 54 and 55 is included in the broad monitoring circuit 52, and V OUT from each thermistor 42 is input to the detection terminal of the monitoring circuit 52. .

直列抵抗58は、予め設定された基準電圧Vref2に一方端が接続され、他方端が監視回路52の検出端子に接続される抵抗体で、12個のサーミスタ42のそれぞれについて設けられる。基準電圧Vref2の電圧値と直列抵抗58の抵抗R0とは、サーミスタ42の感度を示すB定数を考慮して設定される。これらの設定例については後述する。 The series resistor 58 is a resistor having one end connected to a preset reference voltage V ref2 and the other end connected to the detection terminal of the monitoring circuit 52, and is provided for each of the twelve thermistors. The voltage value of the reference voltage V ref2 and the resistance R 0 of the series resistor 58 are set in consideration of the B constant indicating the sensitivity of the thermistor 42. Examples of these settings will be described later.

経路切替部60は、各サーミスタ42毎に1つずつ設けられ、サーミスタ42の一端46、他端48、監視回路52の検出端子、及び負極母線34の間に設けられ、信号の流れ経路を切り替えるスイッチ群である。   One path switching unit 60 is provided for each thermistor 42, and is provided between one end 46 and the other end 48 of the thermistor 42, the detection terminal of the monitoring circuit 52, and the negative electrode bus 34, and switches the signal flow path. It is a switch group.

図1(b)は、(a)においてBと示す経路切替部60の内部構成図である。経路切替部60は、4つのスイッチSW1,SW2,SW3,SW4を含む。かかるスイッチSW1,SW2,SW3,SW4は、監視回路52の制御の下で動作するスイッチングトランジスタで構成される。   FIG.1 (b) is an internal block diagram of the path | route switching part 60 shown as B in (a). The path switching unit 60 includes four switches SW1, SW2, SW3, SW4. The switches SW1, SW2, SW3, SW4 are constituted by switching transistors that operate under the control of the monitoring circuit 52.

経路切替部60は、SW1,SW2を共にオンすると共に、SW3,SW4を共にオフして形成される第1の経路と、SW1,SW2を共にオフすると共に、SW3,SW4を共にオンして形成される第2の経路との間で経路を変更する。第1の経路は、サーミスタ42の一端46を監視回路52の検出端子へ接続し、かつサーミスタ42の他端48を負極母線34へ接続する経路である。第2の経路は、サーミスタ42の他端48を監視回路52の検出端子へ接続し、かつサーミスタ42の一端46を負極母線34へ接続する経路である。   The path switching unit 60 turns on both SW1 and SW2 and turns off both SW3 and SW4, and turns off both SW1 and SW2 and turns on both SW3 and SW4. The route is changed with the second route to be performed. The first path is a path that connects one end 46 of the thermistor 42 to the detection terminal of the monitoring circuit 52 and connects the other end 48 of the thermistor 42 to the negative electrode bus 34. The second path is a path for connecting the other end 48 of the thermistor 42 to the detection terminal of the monitoring circuit 52 and connecting one end 46 of the thermistor 42 to the negative electrode bus 34.

短絡判定部64は、経路切替部60が第1の経路から第2の経路に切り替えるときに、、経路切替前後で監視回路52の検出端子が検出するVOUTの変化に基づいて、高電圧電源30とサーミスタ42との間の短絡の有無を判定する。経路切替部60は各サーミスタ42毎に設けられるので、監視回路52の検出端子が検出するVOUTは、当該経路切替部60によって経路が切り替えられる1つのサーミスタ42の端子間電圧である。したがって、短絡判定部64は、当該経路切替部60に対応する1つのサーミスタ42が高電圧電源30に電気的に短絡したか否かを判定する。 When the path switching unit 60 switches from the first path to the second path, the short-circuit determination unit 64 uses a high-voltage power supply based on the change in VOUT detected by the detection terminal of the monitoring circuit 52 before and after the path switching. The presence or absence of a short circuit between 30 and the thermistor 42 is determined. Since the path switching unit 60 is provided for each thermistor 42, V OUT detected by the detection terminal of the monitoring circuit 52 is an inter-terminal voltage of one thermistor 42 whose path is switched by the path switching unit 60. Therefore, the short circuit determination unit 64 determines whether one thermistor 42 corresponding to the path switching unit 60 is electrically short-circuited to the high voltage power supply 30.

図1(a)において一例を示すと、n=20のサーミスタ42に対応する経路切替部60が監視回路52の制御によって第1の経路に切り替えられているときのVOUT(n=20)が監視回路52によって取得される。これを、第1のVOUT(n=20)とする。次に、n=20のサーミスタ42に対応する経路切替部60が監視回路52の制御によって第2の経路に切り替えられる。そのときに監視回路52によって取得される。VOUT(n=20)を第2のVOUT(n=20)とする。第1のVOUT(n=20)と第2のVOUT(n=20)との電圧差の絶対値が予め定めた所定値未満であるときに、短絡判定部64は、n=20のサーミスタ42と、高電圧電源30のn=20の電池缶38との間に電気的な短絡が生じていないと判定する。換言すれば、第1のVOUT(n=20)と第2のVOUT(n=20)との電圧差の絶対値が所定値以下であるときに、短絡判定部64は、n=20のサーミスタ42と、高電圧電源30のn=20の電池缶38との間に電気的な短絡が生じていると判定する。このように、短絡判定部64は、各サーミスタ42のそれぞれについて、高電圧電源30において対応する電池缶38との間の電気的な短絡の有無を判定する。経路切替を行う必要性については後述する。 As an example in FIG. 1A, V OUT (n = 20) when the path switching unit 60 corresponding to the thermistor 42 with n = 20 is switched to the first path under the control of the monitoring circuit 52. Obtained by the monitoring circuit 52. This is the first V OUT (n = 20). Next, the path switching unit 60 corresponding to the n = 20 thermistor 42 is switched to the second path under the control of the monitoring circuit 52. At that time, it is acquired by the monitoring circuit 52. Let V OUT (n = 20) be the second V OUT (n = 20). When the absolute value of the voltage difference between the first V OUT (n = 20) and the second V OUT (n = 20) is less than a predetermined value, the short circuit determination unit 64 determines that n = 20 It is determined that there is no electrical short circuit between the thermistor 42 and the n = 20 battery can 38 of the high voltage power supply 30. In other words, when the absolute value of the voltage difference between the first V OUT (n = 20) and the second V OUT (n = 20) is equal to or less than a predetermined value, the short circuit determination unit 64 determines that n = 20 It is determined that an electrical short circuit has occurred between the thermistor 42 and the n = 20 battery can 38 of the high voltage power supply 30. Thus, the short circuit determination unit 64 determines the presence or absence of an electrical short circuit between each thermistor 42 and the corresponding battery can 38 in the high voltage power supply 30. The necessity of performing route switching will be described later.

図2は、各経路切替部60がそれぞれ第1の経路に切り替えたときの電源監視システム10の構成を示す図である。第1の経路に切り替えたときは、サーミスタ42の一端46は監視回路52の検出端子に接続され、サーミスタ42の他端48は負極母線34に接続される。この状態は、経路切替部60を設けない従来技術の電源監視システムと同じ状態で、監視回路52の検出端子は、サーミスタ42の他端48の電位である負極母線34の電位を基準電位として、サーミスタ42の一端の電位をVOUTとして取得する。 FIG. 2 is a diagram illustrating a configuration of the power supply monitoring system 10 when each path switching unit 60 switches to the first path. When switching to the first path, one end 46 of the thermistor 42 is connected to the detection terminal of the monitoring circuit 52, and the other end 48 of the thermistor 42 is connected to the negative electrode bus 34. This state is the same as that of the conventional power supply monitoring system without the path switching unit 60, and the detection terminal of the monitoring circuit 52 uses the potential of the negative electrode bus 34, which is the potential of the other end 48 of the thermistor 42, as a reference potential. The potential at one end of the thermistor 42 is acquired as V OUT .

図3は、高電圧電源30と各サーミスタ42との間が電気的に絶縁されている正常時について、図2の監視回路52が取得するVOUTと、サーミスタ42の検出温度との関係の一例を示す図である。図3の横軸はサーミスタ42の温度、縦軸はVOUTである。VOUTは、基準電圧Vref2と負極母線34との間に直列抵抗58とサーミスタ42とが直列接続されたときのサーミスタ42の端子間電圧である。 FIG. 3 shows an example of the relationship between V OUT acquired by the monitoring circuit 52 in FIG. 2 and the detected temperature of the thermistor 42 when the high voltage power supply 30 and each thermistor 42 are electrically insulated. FIG. The horizontal axis in FIG. 3 is the temperature of the thermistor 42, and the vertical axis is V OUT . V OUT is the voltage across the thermistor 42 when the series resistor 58 and the thermistor 42 are connected in series between the reference voltage V ref2 and the negative electrode bus 34.

図3は、基準電圧Vref2と負極母線34との間に直列抵抗58とサーミスタ42とが直列接続されたときのサーミスタ42の温度特性図に相当する。サーミスタ42として、25℃における抵抗が10kΩ、B定数が3435(K)のごく一般的な特性のものを用いる。このとき、極低温で数100kΩの抵抗となり、高温下では数Ωの抵抗となる。直列抵抗58の抵抗R0を適切に設定することで、例えば、25℃を中心として、温度の変化に対するVOUTの変化を直線的変化とできる。計算によれば、直線的変化の範囲をできるだけ広く取れるようにするには、基準電圧Vref2を測定回路として標準的な5.0Vとして、直列抵抗58の抵抗R0は、25℃におけるサーミスタ42の抵抗と同じ10kΩとすることがよいことが分かる。この設定による計算結果が図3である。この例では、25℃を中心として、約0℃から約50℃の範囲で、温度の変化に対するVOUTの変化がほぼ直線的変化とできる。以下では、Vref2=5.0V、直列抵抗58の抵抗R0=10kΩとする。 FIG. 3 corresponds to a temperature characteristic diagram of the thermistor 42 when the series resistor 58 and the thermistor 42 are connected in series between the reference voltage V ref2 and the negative electrode bus 34. As the thermistor 42, a thermistor having a general characteristic of a resistance of 10 kΩ at 25 ° C. and a B constant of 3435 (K) is used. At this time, the resistance becomes several hundreds kΩ at a very low temperature, and becomes several Ω at a high temperature. By appropriately setting the resistance R 0 of the series resistor 58, for example, a change in V OUT with respect to a change in temperature can be made a linear change around 25 ° C., for example. According to the calculation, in order to make the range of the linear change as wide as possible, the reference voltage V ref2 is set to 5.0 V which is standard as a measurement circuit, and the resistance R 0 of the series resistor 58 is the thermistor 42 at 25 ° C. It can be seen that 10 kΩ, which is the same as the resistance, is good. The calculation result of this setting is shown in FIG. In this example, a change in VOUT with respect to a change in temperature can be a substantially linear change in a range from about 0 ° C. to about 50 ° C. with 25 ° C. as the center. In the following, it is assumed that V ref2 = 5.0 V and the resistance R 0 of the series resistor 58 is 10 kΩ.

図3に示すように、高電圧電源30と各サーミスタ42との間の電気的な絶縁が維持されている正常時のときは、各サーミスタ42のそれぞれのVOUTの温度特性は、すべて同じとなる。すなわち、−50℃の極低温では、VOUTはほぼVref2と同じ値となり、25℃では、VOUTは約2.3V、300℃の高温下では、VOUTはほぼ0Vとなる。 As shown in FIG. 3, when the electrical insulation between the high voltage power supply 30 and each thermistor 42 is maintained at normal time, the temperature characteristics of the respective VOUT of each thermistor 42 are all the same. Become. That is, at an extremely low temperature of −50 ° C., V OUT is almost the same value as V ref2 , at 25 ° C., V OUT is about 2.3 V, and at a high temperature of 300 ° C., V OUT is almost 0 V.

つぎに、サテライト基板を用いる電源監視システム10における経路切替部60の必要性について、図4から図6を用いて説明する。図4と図6は、n=n番目の電池缶38と、これに対応するサーミスタ42との間の電気的な絶縁が劣化あるいは損傷して、電池缶38とサーミスタ42との間が電気的に短絡したときの短絡電流の流れ方を示す図である。図4は、サーミスタ42の一端46が電池缶38と電気的に短絡した場合を示し、図6は、サーミスタ42の他端48が電池缶38と電気的に短絡した場合を示す。なお、図4、図6に示すZDは、監視回路52の過電圧防止等のために設けられるツェナーダイオードである。 Next, the necessity of the path switching unit 60 in the power supply monitoring system 10 using a satellite substrate will be described with reference to FIGS. 4 and 6 show that the electrical insulation between the n = n-th battery can 38 and the corresponding thermistor 42 is deteriorated or damaged, and the battery can 38 and the thermistor 42 are electrically connected. It is a figure which shows how the short circuit current flows when short-circuited. 4 shows a case where one end 46 of the thermistor 42 is electrically short-circuited with the battery can 38, and FIG. 6 shows a case where the other end 48 of the thermistor 42 is electrically short-circuited with the battery can 38. Note that Z D shown in FIGS. 4 and 6 is a Zener diode provided for preventing overvoltage of the monitoring circuit 52 and the like.

図4に、サーミスタ42の一端46と電池缶38との間が、短絡路72によって電気的に短絡するときの短絡電流74を矢印付き太線で示す。短絡電流74は、電池セル36からrと示す電解液抵抗40を介し、電池缶38と短絡路72を経由してサーミスタ42の一端46からサーミスタ42の他端48を通り、負極母線34に向かって流れる。サーミスタ42の端子間電圧であるVOUTは、サーミスタ42を流れる短絡電流74と、基準電圧Vref2と直列抵抗58を介して流れる電流との電流和にサーミスタ42の抵抗を乗じた値となる。電気回路解析で用いられるキルヒホフの法則と重ね合わせの原理等を用いて計算した結果を図5に示す。 In FIG. 4, a short-circuit current 74 when the one end 46 of the thermistor 42 and the battery can 38 are electrically short-circuited by the short-circuit path 72 is indicated by a thick line with an arrow. The short-circuit current 74 passes from the battery cell 36 to the negative electrode bus 34 through the electrolyte resistor 40 indicated by r, the battery can 38 and the short-circuit path 72, the one end 46 of the thermistor 42, the other end 48 of the thermistor 42. Flowing. V OUT which is a voltage across the thermistor 42 is a value obtained by multiplying the sum of the short-circuit current 74 flowing through the thermistor 42 and the reference voltage V ref2 and the current flowing through the series resistor 58 by the resistance of the thermistor 42. FIG. 5 shows the result of calculation using Kirchhoff's law and superposition principle used in electrical circuit analysis.

図5の縦軸と横軸は図3と同じである。図3で述べた正常時における特性を破線で示す。実線は、短絡路72によって電気的に短絡状態となる電池缶38とサーミスタ42の位置をnで示すときに、そのnの位置のサーミスタ42の端子間電圧をVOUTとしてその温度特性をn=2からn=24について計算した結果である。例えば、n=2の位置で、電池缶38とサーミスタ42の一端46とが短絡路72で電気的に短絡した場合は、n=2の位置のサーミスタ42のVOUTの温度特性が図5のn=2の特性で示される。n=2の位置のサーミスタ42のVOUTは、温度が−50℃の極低温において約5.2V、25℃で約5.0V、300℃の高温下で約0.1Vである。このとき、n=2以外の位置におけるサーミスタ42のVOUTは、その位置における電池缶38との電気的な短絡が無ければ、破線で示す正常時における特性を示す。このように、サーミスタ42の一端46と電池缶38との間が、短絡路72によって電気的に短絡するときのサーミスタ42のVOUTは、温度が同じであれば、破線で示す正常時のVOUTよりも大きめの電圧となる。 The vertical and horizontal axes in FIG. 5 are the same as those in FIG. The characteristic at normal time described in FIG. 3 is indicated by a broken line. When the position of the battery can 38 and the thermistor 42 which are electrically short-circuited by the short circuit 72 is indicated by n, the solid line indicates the voltage characteristic between the terminals of the thermistor 42 at the position n as V OUT , and its temperature characteristic is n = It is the result of calculation for n = 24 from 2. For example, when the battery can 38 and one end 46 of the thermistor 42 are electrically short-circuited by the short circuit 72 at the position n = 2, the temperature characteristic of VOUT of the thermistor 42 at the position n = 2 is shown in FIG. It is shown by the characteristic of n = 2. V OUT of the thermistor 42 at the position of n = 2 is about 5.2 V at a very low temperature of −50 ° C., about 5.0 V at 25 ° C., and about 0.1 V at a high temperature of 300 ° C. At this time, V OUT of the thermistor 42 at a position other than n = 2 indicates a normal characteristic indicated by a broken line if there is no electrical short circuit with the battery can 38 at that position. As described above, when the temperature of the V OUT of the thermistor 42 is electrically short-circuited between the one end 46 of the thermistor 42 and the battery can 38 by the short circuit 72, the normal V V indicated by the broken line is used. The voltage is larger than OUT .

次に、図6において、n=nの位置におけるサーミスタ42の他端48と電池缶38との間が短絡路76によって電気的に短絡するときの短絡電流78を矢印付き太線で示す。短絡電流78は、電池セル36から電解液抵抗41を介し、電池缶38と短絡路76を経由してサーミスタ42の他端48から負極母線34に向かって流れる。このとき、短絡電流78が流れるのと同時に、短絡路76を通ってサーミスタ42の一端46に向かう電流79が流れる。電流79は、サーミスタの一端46からさらに直列抵抗58を通って監視回路52に向かって流れる。この電流79は、サーミスタ42と直列抵抗58を流れる電流であるので、監視回路52が検出するVOUTに影響を与えない。したがって、サーミスタ42の端子間電圧であるVOUTには、短絡電流78が反映されず、あたかも短絡がないときの正常時と同じ温度特性となる。図7に、サーミスタ42の他端48と電池缶38との間が短絡路76によって電気的に短絡するときのサーミスタ42のVOUTの温度特性を示すが、これは正常時のVOUTの温度特性を示す図3と同じである。図3は、従来技術において電気的な短絡がない正常なVOUTの温度特性であるのに対し、図7は、サーミスタ42の他端48と電池缶38との間が電気的に短絡している異常時のサーミスタ42のVOUTの温度特性である。n=nの位置以外の位置におけるサーミスタ42のVOUTは、その位置における電池缶38との電気的な短絡が無ければ、やはり図7に示す温度特性を示す。このように、サーミスタ42の他端48と電池缶38との間が、短絡路76によって電気的に短絡してもしなくても、サーミスタ42のVOUTは、図3と同じ温度特性を示し、短絡を検出できない。 Next, in FIG. 6, the short-circuit current 78 when the other end 48 of the thermistor 42 and the battery can 38 are electrically short-circuited by the short circuit 76 at the position of n = n is indicated by a thick line with an arrow. The short-circuit current 78 flows from the battery cell 36 through the electrolytic solution resistor 41, the battery can 38 and the short-circuit path 76, and the other end 48 of the thermistor 42 toward the negative electrode bus 34. At this time, at the same time as the short circuit current 78 flows, a current 79 flows through the short circuit 76 toward one end 46 of the thermistor 42. A current 79 flows from one end 46 of the thermistor through the series resistor 58 toward the monitoring circuit 52. Since the current 79 is a current flowing through the thermistor 42 and the series resistor 58, it does not affect V OUT detected by the monitoring circuit 52. Therefore, the short-circuit current 78 is not reflected in V OUT , which is the voltage across the thermistor 42, and it has the same temperature characteristics as when normal when there is no short circuit. Figure 7 shows a temperature characteristic of V OUT of the thermistor 42 when the electrically short-circuited by a short circuit path 76 between the second end 48 and the battery can 38 of the thermistor 42, which is the temperature of V OUT in the normal This is the same as FIG. 3 showing the characteristics. FIG. 3 shows normal VOUT temperature characteristics without electrical short-circuit in the prior art, whereas FIG. 7 shows that the other end 48 of the thermistor 42 and the battery can 38 are electrically short-circuited. This is a temperature characteristic of V OUT of the thermistor 42 when there is an abnormality. V OUT of the thermistor 42 at a position other than the position of n = n also exhibits the temperature characteristics shown in FIG. 7 if there is no electrical short circuit with the battery can 38 at that position. Thus, V OUT of the thermistor 42 shows the same temperature characteristics as in FIG. 3, whether or not the other end 48 of the thermistor 42 and the battery can 38 are electrically short-circuited by the short circuit 76. A short circuit cannot be detected.

図4の短絡電流74や、図6の短絡電流78が生じると、高電圧電源30は短絡路72または短絡路76を介して負極母線34に向かって放電し、そのまま放置すると過放電状態になる。短絡電流74,78は、メイン基板12における接地電位である車体14に向かって流れないので、漏電検出回路18で検出することができない。   When the short-circuit current 74 in FIG. 4 or the short-circuit current 78 in FIG. 6 occurs, the high-voltage power supply 30 discharges toward the negative electrode bus 34 via the short circuit 72 or the short circuit 76 and is left in an overdischarge state if left as it is. . Since the short-circuit currents 74 and 78 do not flow toward the vehicle body 14 that is the ground potential in the main board 12, it cannot be detected by the leakage detection circuit 18.

サテライト基板50における監視回路52は、電池缶38とサーミスタ42の一端46とが電気的に短絡する場合に、図5で述べたように、短絡電流74が流れるときのサーミスタ42のVOUTの温度特性が正常時のVOUTの温度特性と異なることを利用し得る。しかし、電池缶38とサーミスタ42の他端48とが電気的に短絡する場合には、図7で述べたように、短絡電流78が流れるときのサーミスタ42のVOUTの温度特性が正常時のVOUTの温度特性と同じであるため、短絡路76の発生を検出できない。 When the battery can 38 and the one end 46 of the thermistor 42 are electrically short-circuited, the monitoring circuit 52 in the satellite substrate 50 has a temperature of V OUT of the thermistor 42 when the short-circuit current 74 flows as described in FIG. It can be used that the characteristic is different from the temperature characteristic of V OUT during normal operation. However, when the battery can 38 and the other end 48 of the thermistor 42 are electrically short-circuited, as described in FIG. 7, the temperature characteristic of VOUT of the thermistor 42 when the short-circuit current 78 flows is normal. Since it is the same as the temperature characteristic of V OUT , the occurrence of the short circuit 76 cannot be detected.

図8は、経路切替部60によって短絡電流の流れる経路を切り替えることで、電池缶38とサーミスタ42の一端46または他端48のいずれかが電気的に短絡したことを検出する手順を示すフローチャートである。この手順は、監視回路52がソフトウェアを実行することで実現でき、具体的には、高電圧電源の短絡判定プログラムを監視回路52が実行することで実現できる。図8の各手順は、高電圧電源の短絡判定プログラムの各処理手順に対応する。図8の手順の一部をハードウェアで実現してもよい。   FIG. 8 is a flowchart showing a procedure for detecting that one of the battery can 38 and one end 46 or the other end 48 of the thermistor 42 is electrically short-circuited by switching the path through which the short-circuit current flows by the path switching unit 60. is there. This procedure can be realized by the monitoring circuit 52 executing software, and specifically, can be realized by the monitoring circuit 52 executing a short-circuit determination program for the high-voltage power supply. Each procedure in FIG. 8 corresponds to each processing procedure of the short-circuit determination program for the high-voltage power supply. A part of the procedure of FIG. 8 may be realized by hardware.

図8の各手順は、各サーミスタ42について順次実行されるので、最初は、nの最も少ないサーミスタ42から始める。図1の例では、12個のサーミスタ42は、n=2,4,6,8,10,12,14,16,18,20,22,24であるので、最初はn=2に設定する(S10)。以下では、n=2の位置のサーミスタ42からn=24の位置のサーミスタ42についての手順がS26に進むまで、特に断らない限り、各位置におけるサーミスタ42を、単に、サーミスタ42と示す。   Since each procedure in FIG. 8 is sequentially executed for each thermistor 42, the procedure starts with the thermistor 42 having the smallest n. In the example of FIG. 1, twelve thermistors 42 are n = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, so that n = 2 is initially set. (S10). In the following, the thermistor 42 at each position is simply indicated as the thermistor 42 unless otherwise specified until the procedure from the thermistor 42 at the n = 2 position to the thermistor 42 at the n = 24 position proceeds to S26.

ここで、サーミスタ42に対応する経路切替部60を第1の経路に設定する。具体的には、SW1,SW2をオンし、SW3,SW4をオフする(S12)。そして、そのときのサーミスタ42のVOUTを、第1のVOUT(n=n)として取得する(S14)。ここで、(n=n)は一般的に示すもので、今の場合に限ればn=2である。以下においても同様である。 Here, the path switching unit 60 corresponding to the thermistor 42 is set as the first path. Specifically, SW1 and SW2 are turned on, and SW3 and SW4 are turned off (S12). Then, V OUT of the thermistor 42 at that time is acquired as the first V OUT (n = n) (S14). Here, (n = n) is generally indicated, and n = 2 in the present case. The same applies to the following.

S14におけるサーミスタ42のVOUTは、高電圧電源30とサーミスタ42との間で電気的な短絡が無い場合には、図3で述べた正常時の温度特性となる。高電圧電源30の電池缶38とサーミスタ42の一端46とが短絡路72で電気的に短絡するときは図4で述べた状態であるので、サーミスタ42のVOUTは、図5で述べた温度特性となる。今の場合n=2であるので、図5のn=2の実線の温度特性となる。高電圧電源30の電池缶38とサーミスタ42の一端46とが短絡路76で電気的に短絡するときは図6で述べた状態であるので、サーミスタ42のVOUTは、図7で述べた正常時の温度特性となる。 The V OUT of the thermistor 42 in S14 has the normal temperature characteristics described with reference to FIG. 3 when there is no electrical short circuit between the high voltage power supply 30 and the thermistor 42. Because when the one end 46 of the battery can 38 and the thermistor 42 of the high voltage power supply 30 is electrically short-circuited by the short-circuit path 72 is in a state described in Fig. 4, V OUT of the thermistor 42, the temperature as described in FIG. 5 It becomes a characteristic. In this case, since n = 2, the temperature characteristic of the solid line of n = 2 in FIG. 5 is obtained. When the battery can 38 of the high-voltage power supply 30 and the one end 46 of the thermistor 42 are electrically short-circuited by the short circuit 76, the state described in FIG. 6 is in effect, so that V OUT of the thermistor 42 is normal as described in FIG. It becomes the temperature characteristic of the hour.

第1のVOUT(n=n)を取得すると、次に、サーミスタ42に対応する経路切替部60を第2の経路に設定する。具体的には、SW1,SW2をオフし、SW3,SW4をオンする(S16)。そして、そのときのサーミスタ42のVOUTを、第2のVOUT(n=n)として取得する(S18)。 When the first V OUT (n = n) is acquired, the path switching unit 60 corresponding to the thermistor 42 is set to the second path. Specifically, SW1 and SW2 are turned off, and SW3 and SW4 are turned on (S16). Then, V OUT of the thermistor 42 at that time is acquired as the second V OUT (n = n) (S18).

S18におけるサーミスタ42のVOUTは、高電圧電源30とサーミスタ42との間で電気的な短絡が無い場合には、図3で述べた正常時の温度特性となる。高電圧電源30とサーミスタ42との間で電気的な短絡がある場合については、電池缶38とサーミスタ42の一端46とが短絡路72で短絡したときと、電池缶38とサーミスタ42の他端48とが短絡路76で短絡したときとに分けて説明する。 The V OUT of the thermistor 42 in S18 has the normal temperature characteristics described with reference to FIG. 3 when there is no electrical short circuit between the high voltage power supply 30 and the thermistor 42. When there is an electrical short circuit between the high voltage power supply 30 and the thermistor 42, the battery can 38 and one end 46 of the thermistor 42 are short-circuited by the short circuit 72, and the other end of the battery can 38 and the thermistor 42. 48 will be described separately when they are short-circuited by the short circuit 76.

図9は、サーミスタ42の一端46が電池缶38と電気的に短絡した場合を示す図である。図9において、n=nの位置におけるサーミスタ42の一端46と電池缶38との間が短絡路72によって電気的に短絡するときの短絡電流80を矢印付き太線で示す。短絡電流80は、電池セル36から電解液抵抗40を介し、電池缶38と短絡路72を経由してサーミスタ42の一端46から経路切替部60における第2の経路を通り、負極母線34に向かって流れる。このとき、短絡電流80は、サーミスタ42の他端48に向かっては流れない。サーミスタ42の他端48と一端46との間には、基準電圧Vref2と直列抵抗58を介して負極母線34に向かう電流のみが流れる。したがって、第2の経路におけるサーミスタ42のVOUTである第2のVOUT(n=n)には、短絡電流80が反映されず、図3で述べた正常時の温度特性を示す。 FIG. 9 is a diagram illustrating a case where one end 46 of the thermistor 42 is electrically short-circuited with the battery can 38. In FIG. 9, the short circuit current 80 when the one end 46 of the thermistor 42 and the battery can 38 are electrically short-circuited by the short circuit 72 at the position of n = n is indicated by a thick line with an arrow. The short-circuit current 80 passes from the battery cell 36 through the electrolytic solution resistor 40, through the battery can 38 and the short-circuit path 72, through the second path in the path switching unit 60 from the one end 46 of the thermistor 42 to the negative electrode bus 34. Flowing. At this time, the short-circuit current 80 does not flow toward the other end 48 of the thermistor 42. Between the other end 48 and one end 46 of the thermistor 42, only a current directed to the negative electrode bus 34 flows through the reference voltage V ref2 and the series resistor 58. Therefore, the short-circuit current 80 is not reflected in the second V OUT (n = n), which is V OUT of the thermistor 42 in the second path, and shows the normal temperature characteristics described in FIG.

図10は、サーミスタ42の他端48が電池缶38と電気的に短絡した場合を示す図である。図10において、n=nの位置におけるサーミスタ42の他端48と電池缶38との間が短絡路76によって電気的に短絡するときの短絡電流82を矢印付き太線で示す。短絡電流82は、電池セル36から電解液抵抗41を介し、電池缶38と短絡路76を経由してサーミスタ42の他端48から一端46に流れ、経路切替部60の第2の経路を通り、負極母線34に向かって流れる。サーミスタ42の端子間電圧であるVOUTは、サーミスタ42を流れる短絡電流82と、基準電圧Vref2と直列抵抗58を介して流れる電流との電流和にサーミスタ42の抵抗を乗じた値となる。これについて電気回路解析で用いられるキルヒホフの法則と重ね合わせの原理等を用いて計算した結果を図11に示す。図11の内容は、図5と同じであるので、詳細な説明を省略する。このように、第2の経路におけるサーミスタ42のVOUTである第2のVOUT(n=n)は、図11における実線の温度特性を示す。今の場合n=2であるので、図11のn=2の実線の温度特性となる。 FIG. 10 is a diagram showing a case where the other end 48 of the thermistor 42 is electrically short-circuited with the battery can 38. In FIG. 10, the short circuit current 82 when the other end 48 of the thermistor 42 and the battery can 38 are electrically short-circuited by the short circuit 76 at the position of n = n is indicated by a thick line with an arrow. The short-circuit current 82 flows from the battery cell 36 through the electrolyte resistor 41, the battery can 38 and the short-circuit path 76 to the other end 48 of the thermistor 42 to the one end 46, and passes through the second path of the path switching unit 60. Flows toward the negative electrode bus 34. V OUT which is a voltage across the thermistor 42 is a value obtained by multiplying the sum of the short-circuit current 82 flowing through the thermistor 42 and the reference voltage V ref2 and the current flowing through the series resistor 58 by the resistance of the thermistor 42. FIG. 11 shows the result of calculation using Kirchhoff's law and superposition principle used in electric circuit analysis. The contents of FIG. 11 are the same as those of FIG. Thus, the second V OUT (n = n), which is the V OUT of the thermistor 42 in the second path, shows the temperature characteristic of the solid line in FIG. In this case, since n = 2, the temperature characteristic of the solid line of n = 2 in FIG. 11 is obtained.

第2のVOUT(n=n)を取得すると、次に、第1のVOUT(n=n)と第2のVOUT(n=n)の間の電圧差の絶対値を求め、予め定めた所定値ΔVth未満か否かが判定される(S20)。この処理手順は、監視回路52の短絡判定部64の機能によって実行される。 Once the second V OUT (n = n) is obtained, the absolute value of the voltage difference between the first V OUT (n = n) and the second V OUT (n = n) is then obtained in advance. It is determined whether it is less than a predetermined value ΔV th (S20). This processing procedure is executed by the function of the short circuit determination unit 64 of the monitoring circuit 52.

S20の判定について、3つの場合に分けて説明する。第1の場合は、高電圧電源30とサーミスタ42との間で電気的な短絡が無い場合である。このとき、経路切替部60の第1の経路における第1のVOUT(n=n)は、図3で述べた正常時の温度特性であり、経路切替部60の第2の経路における第2のVOUT(n=n)も、図3で述べた正常時の温度特性である。これらは、同じサーミスタ42についてのVOUTで、単に、第1の経路か第2の経路かの相違であるので、同じ温度状態である。したがって、第1のVOUT(n=n)と第2のVOUT(n=n)の間の電圧差の絶対値は、測定誤差範囲でゼロであり、ΔVthを測定誤差上限の0.1Vとすることで、S20の判定は肯定される。 The determination of S20 will be described in three cases. The first case is a case where there is no electrical short circuit between the high voltage power supply 30 and the thermistor 42. At this time, the first V OUT (n = n) in the first route of the route switching unit 60 is the normal temperature characteristic described with reference to FIG. 3, and the second V OUT in the second route of the route switching unit 60. V OUT (n = n) is also a normal temperature characteristic described in FIG. These are the same temperature conditions because V OUT for the same thermistor 42 is simply the difference between the first path and the second path. Therefore, the absolute value of the voltage difference between the first V OUT (n = n) and the second V OUT (n = n) is zero in the measurement error range, and ΔV th is set to 0. By setting it to 1V, the determination of S20 is affirmed.

第2の場合は、電池缶38とサーミスタ42の一端46とが短絡路72で電気的に短絡する場合である。このとき、経路切替部60の第1の経路における第1のVOUT(n=n)は、図5の実線の温度特性となる。これに対し、経路切替部60の第2の経路における第2のVOUT(n=n)は、図9で述べたように、図3の正常時の温度特性となる。図3、図5に代えて図11を用い、n=2とすると、第1のVOUT(n=2)は、図11のn=2の実線の温度特性であり、第2のVOUT(n=2)は、図11の破線の温度特性である。n=2のサーミスタ42の温度を、例えば50℃とすると、第1のVOUT(n=2)は、図11の(a)点で、約4.5V、第2のVOUT(n=2)は、図11の(b)点で、約1.5Vとなる。したがって、第1のVOUT(n=n)と第2のVOUT(n=n)の間の電圧差の絶対値は、約3.0Vであり、測定誤差範囲を大幅に超える値となる。ΔVthを測定誤差上限の0.1Vとすると、S20の判定は否定される。ΔVthを0.1Vとするのは、説明のための例示であって、これ以外の数値を用いてもよい。 In the second case, the battery can 38 and the one end 46 of the thermistor 42 are electrically short-circuited by the short circuit 72. At this time, the first V OUT (n = n) in the first route of the route switching unit 60 becomes the temperature characteristic of the solid line in FIG. On the other hand, the second V OUT (n = n) in the second route of the route switching unit 60 has the normal temperature characteristic of FIG. 3 as described in FIG. 11 is used instead of FIGS. 3 and 5, and when n = 2, the first V OUT (n = 2) is the temperature characteristic of the solid line of n = 2 in FIG. 11, and the second V OUT (N = 2) is the temperature characteristic of the broken line in FIG. If the temperature of the thermistor 42 with n = 2 is 50 ° C., for example, the first V OUT (n = 2) is about 4.5 V and the second V OUT (n = 2) at the point (a) in FIG. 2) is about 1.5 V at the point (b) in FIG. Therefore, the absolute value of the voltage difference between the first V OUT (n = n) and the second V OUT (n = n) is about 3.0 V, which is a value that greatly exceeds the measurement error range. . If ΔV th is 0.1 V which is the upper limit of measurement error, the determination in S20 is negative. Setting ΔV th to 0.1 V is an example for explanation, and other numerical values may be used.

第3の場合は、電池缶38とサーミスタ42の他端48とが短絡路76で電気的に短絡する場合である。このとき、経路切替部60の第1の経路における第1のVOUT(n=n)は、図3の正常時の温度特性となる。これに対し、経路切替部60の第2の経路における第2のVOUT(n=n)は、図10で述べたように、図11の実線の温度特性となる。n=2とすると、第1のVOUT(n=2)は、図11の破線の温度特性であり、第2のVOUT(n=2)は、図11におけるn=2の実線の温度特性である。n=2のサーミスタ42の温度を、例えば50℃とすると、第1のVOUT(n=2)は、図11の(b)点で、約1.5V、第2のVOUT(n=2)は、図11の(a)点で、約4.5Vとなる。したがって、第1のVOUT(n=n)と第2のVOUT(n=n)の間の電圧差の絶対値は、約3.0Vであり、測定誤差範囲を大幅に超える値となる。ΔVthを測定誤差上限の0.1Vとすると、S20の判定は否定される。 The third case is a case where the battery can 38 and the other end 48 of the thermistor 42 are electrically short-circuited by a short circuit 76. At this time, the first V OUT (n = n) in the first path of the path switching unit 60 becomes the normal temperature characteristic of FIG. On the other hand, the second V OUT (n = n) in the second route of the route switching unit 60 becomes the temperature characteristic of the solid line in FIG. 11, as described in FIG. If n = 2, the first V OUT (n = 2) is the temperature characteristic of the broken line in FIG. 11, and the second V OUT (n = 2) is the temperature of the solid line of n = 2 in FIG. It is a characteristic. If the temperature of the thermistor 42 with n = 2 is, for example, 50 ° C., the first V OUT (n = 2) is about 1.5 V and the second V OUT (n = 2) at the point (b) in FIG. 2) is about 4.5 V at the point (a) in FIG. Therefore, the absolute value of the voltage difference between the first V OUT (n = n) and the second V OUT (n = n) is about 3.0 V, which is a value that greatly exceeds the measurement error range. . If ΔV th is 0.1 V which is the upper limit of measurement error, the determination in S20 is negative.

このように、経路切替部60の作用によって、電池缶38がサーミスタ42の一端46と短絡路72で電気的に短絡する場合も、電池缶38がサーミスタ42の他端48と短絡路76で電気的に短絡する場合も、S20の判定が否定される。これによって、経路切替部60を設けない場合に相当する図2の電源監視システム10では検出できなかった電池缶38とサーミスタ42の他端48とが電気的に短絡することを検出できる。   Thus, even when the battery can 38 is electrically short-circuited with the one end 46 of the thermistor 42 and the short-circuit path 72 by the action of the path switching unit 60, the battery can 38 is electrically connected with the other end 48 of the thermistor 42 and the short-circuit path 76. Even if a short circuit occurs, the determination of S20 is denied. Thereby, it is possible to detect that the battery can 38 and the other end 48 of the thermistor 42 which are not detected by the power supply monitoring system 10 of FIG. 2 corresponding to the case where the path switching unit 60 is not provided are electrically short-circuited.

なお、S20では、同じサーミスタ42についての第1のVOUT(n=n)と第2のVOUT(n=n)との比較を行った。これに代えて、異なるサーミスタ42の間のVOUTを比較して、その電圧差がΔVthを超えるときに、大きいVOUTを示すサーミスタ42が電池缶38との間で電気的に短絡していると判定することも考えられる。この案は、図5で述べたように、サーミスタ42が電池缶38との間で電気的に短絡しているときのVOUTが実線の温度特性を示し、サーミスタ42が電池缶38との間で電気的に短絡していないときのVOUTが破線の温度特性を示すことを利用するものである。この案は、異なるサーミスタ42のVOUTを比較するので、比較するサーミスタ42の温度が同じのときに用いることが可能である。 In S20, the first V OUT (n = n) and the second V OUT (n = n) for the same thermistor 42 were compared. Instead, V OUT between different thermistors 42 is compared, and when the voltage difference exceeds ΔV th , the thermistor 42 showing a large V OUT is electrically short-circuited with the battery can 38. It is also possible to determine that it is present. As shown in FIG. 5, this proposal shows the temperature characteristic of the solid line V OUT when the thermistor 42 is electrically short-circuited to the battery can 38, and the thermistor 42 is connected to the battery can 38. In this case, it is used that V OUT when not electrically short-circuited shows a temperature characteristic indicated by a broken line. Since this scheme compares V OUT of different thermistors 42, it can be used when the temperatures of the thermistors 42 to be compared are the same.

例えば、図5と同じ内容の図11において、n=2のサーミスタ42のVOUTが実線の温度特性とし、他の正常時を示すサーミスタ42のVOUTが破線の温度特性とする。温度が共に50℃であれば、n=2のサーミスタ42のVOUTは(a)点の約4.5Vで、正常時にあるサーミスタ42のVOUTは(b)点の約1.5Vであり、その電圧差はΔVthを超える。したがって、VOUTが大きい値を示すn=2のサーミスタ42が電池缶38と電気的に短絡していると判定できる。共通の温度が50℃でなくても、同様の判定が可能である。例えば、共通の温度が150℃のときは、n=2のサーミスタ42のVOUTは(c)点の約1.5Vで、正常時にあるサーミスタ42のVOUTは(d)点の約0.1Vであり、その電圧差はΔVthを超える。 For example, in FIG. 11 having the same contents as FIG. 5, V OUT of the thermistor 42 with n = 2 is a solid temperature characteristic, and V OUT of the thermistor 42 indicating other normal conditions is a broken line temperature characteristic. If the temperature is both 50 ° C., V OUT of n = 2 of the thermistor 42 is about 4.5V in point (a), V OUT of the thermistor 42 in the normal is about 1.5V in point (b) The voltage difference exceeds ΔV th . Therefore, it can be determined that the n = 2 thermistor 42 showing a large value of V OUT is electrically short-circuited with the battery can 38. Even if the common temperature is not 50 ° C., the same determination can be made. For example, when the common temperature is 150 ° C., V OUT of the thermistor 42 with n = 2 is about 1.5 V at the point (c), and V OUT of the thermistor 42 at normal time is about 0. 1V, and the voltage difference exceeds ΔV th .

しかし、高電圧電源30の各電池缶38の温度は必ずしも同じでなく、場合によっては、大きな温度差を有する場合がある。図11の例で、n=2のサーミスタ42の温度が150℃、正常時にあるサーミスタ42の温度が50℃とすると、n=2のサーミスタ42のVOUTは(c)点の約1.5V、正常時にあるサーミスタ42のVOUTは(b)点の約1.5Vである。この例では、電圧差はほぼゼロとなり、ΔVth未満となって、n=2のサーミスタ42が電池缶38と電気的に短絡しているとは判定できない。これに対し、S20では、同一サーミスタ42において、経路切替部60によって経路を切り替えたときのVOUTの電圧差の絶対値を見るので、温度の影響を受けず、正確な判定ができる。 However, the temperature of each battery can 38 of the high voltage power supply 30 is not necessarily the same, and in some cases, there may be a large temperature difference. In the example of FIG. 11, if the temperature of the thermistor 42 with n = 2 is 150 ° C. and the temperature of the thermistor 42 under normal conditions is 50 ° C., V OUT of the thermistor 42 with n = 2 is about 1.5 V at the point (c). The V OUT of the thermistor 42 in a normal state is about 1.5 V at the point (b). In this example, the voltage difference is almost zero and less than ΔV th, and it cannot be determined that the n = 2 thermistor 42 is electrically short-circuited with the battery can 38. On the other hand, in S20, since the absolute value of the voltage difference of V OUT when the path switching unit 60 switches the path in the same thermistor 42, the accurate determination can be made without being influenced by the temperature.

図8に戻り、S20の判定が肯定されると、n=nのサーミスタ42と高電圧電源30との間に電気的な短絡がない(S22)とされる。S22の判定が否定されると、n=nのサーミスタ42と高電圧電源30との間に電気的な短絡がある(S24)とされる。S24の場合は、今のところ、n=2のサーミスタ42と高電圧電源30との間に短絡電流が生じているので、n=2のサーミスタ42に対応する経路切替部60の全てのスイッチをオフにする(S26)。これによって、高電圧電源30からn=nのサーミスタ42を経由して短絡電流が負極母線34に流れることを防止し、高電圧電源30の過放電を防止できる。このように、経路切替部60は、高電圧電源30とサーミスタ42との間の短絡電流を遮断する働きも有する。   Returning to FIG. 8, if the determination in S20 is affirmative, there is no electrical short circuit between the n = n thermistor 42 and the high voltage power supply 30 (S22). If the determination in S22 is negative, it is determined that there is an electrical short between the n = n thermistor 42 and the high voltage power supply 30 (S24). In the case of S24, since a short-circuit current is currently generated between the n = 2 thermistor 42 and the high voltage power supply 30, all the switches of the path switching unit 60 corresponding to the n = 2 thermistor 42 are turned on. Turn off (S26). As a result, it is possible to prevent a short-circuit current from flowing from the high voltage power supply 30 to the negative electrode bus 34 via the n = n thermistor 42 and to prevent overdischarge of the high voltage power supply 30. Thus, the path switching unit 60 also has a function of interrupting a short-circuit current between the high voltage power supply 30 and the thermistor 42.

S22,S26までの処理手順で、n=2のサーミスタ42における短絡判定が終了するので、S28に進み、全てのサーミスタ42についての短絡判定が終了したか否かの判定が行われる。すなわち、nが24に達したか否かが判定される。今の場合、サーミスタ42は12個あり、n=2のサーミスタ42における短絡判定が終了しただけなので、判定が否定される。nが24に達したか否かが判定される。S28の判定が否定されると、nを(+2)だけ増加させ(S30)、S12の処理手順に戻り、上記の処理手順が繰り返される。S28の判定が肯定されると、全部のサーミスタ42についての短絡判定が終了しているので、全ての処理手順を終了する。   Since the short-circuit determination in the n = 2 thermistor 42 is completed in the processing procedure up to S22 and S26, the process proceeds to S28, and it is determined whether or not the short-circuit determination for all the thermistors 42 has been completed. That is, it is determined whether n has reached 24. In this case, there are twelve thermistors 42, and the determination is denied because the short-circuit determination in the n = 2 thermistor 42 has only been completed. It is determined whether n has reached 24. If the determination in S28 is negative, n is increased by (+2) (S30), the process returns to S12, and the above process is repeated. If the determination in S28 is affirmed, the short-circuit determination for all the thermistors 42 has been completed, and all processing procedures are ended.

図12は、実施の形態の電源監視システム10と比較するために、サテライト基板50を用いない従来技術の電源監視システム11の構成を示す図である。サテライト基板50を用いないとき、高電圧側と低電圧側の境界は、高電圧電源30の各電池缶38と、各サーミスタ42との間になる。メイン基板12は、高電圧電源30が収納されるパックケースから離れたところに配置されるので、各サーミスタ42の一端46と他端48から引き出される信号線49は、引き回されて、メイン基板12に接続される。メイン基板12には、高電圧電源30の正極母線32及び負極母線34と、車体14との間の漏電を検出する漏電検出回路18が設けられる。高電圧電源30と各サーミスタ42との間に電気的な短絡が生じると、その短絡電流は、車体14に向かって流れるので、漏電検出回路18によって検出される。   FIG. 12 is a diagram illustrating a configuration of a conventional power supply monitoring system 11 that does not use the satellite substrate 50 for comparison with the power supply monitoring system 10 of the embodiment. When the satellite substrate 50 is not used, the boundary between the high voltage side and the low voltage side is between each battery can 38 of the high voltage power supply 30 and each thermistor 42. Since the main board 12 is disposed away from the pack case in which the high-voltage power supply 30 is housed, the signal lines 49 drawn from one end 46 and the other end 48 of each thermistor 42 are routed to the main board. 12 is connected. The main board 12 is provided with a leakage detection circuit 18 that detects a leakage between the positive and negative buses 32 and 34 of the high-voltage power supply 30 and the vehicle body 14. When an electrical short circuit occurs between the high voltage power supply 30 and each thermistor 42, the short circuit current flows toward the vehicle body 14 and is detected by the leakage detection circuit 18.

このように、従来技術の電源監視システム10によれば、高電圧電源30と各サーミスタ42との間の電気的な短絡は、漏電検出回路18によって検出できる。その反面、各サーミスタ42の一端46と他端48から引き出される多数の信号線49をメイン基板12まで引き回す必要がある。本実施の形態の電源監視システム10では、サテライト基板50を用いるので、図12に示す多数の信号線49の引き回しが不要となる。高電圧電源30と各サーミスタ42との間に電気的な短絡が生じるときは、漏電検出回路18が利用できないが、経路切替部60と、短絡判定部64の作用によって、その電気的な短絡の検出が行われる。本実施の形態の電源監視システム10によれば、従来技術の電源監視システム11に比較して、小型で扱いやすい構成となる。   Thus, according to the power supply monitoring system 10 of the prior art, an electrical short circuit between the high voltage power supply 30 and each thermistor 42 can be detected by the leakage detection circuit 18. On the other hand, it is necessary to route a large number of signal lines 49 drawn from one end 46 and the other end 48 of each thermistor 42 to the main board 12. In the power supply monitoring system 10 of the present embodiment, since the satellite substrate 50 is used, it is not necessary to route a large number of signal lines 49 shown in FIG. When an electrical short circuit occurs between the high-voltage power supply 30 and each thermistor 42, the leakage detection circuit 18 cannot be used. However, due to the action of the path switching unit 60 and the short circuit determination unit 64, the electrical short circuit Detection is performed. According to the power monitoring system 10 of the present embodiment, the configuration is smaller and easier to handle than the power monitoring system 11 of the prior art.

本実施の形態のサテライト基板を用いた車両用電源監視システム10は、電池缶38に収納された電池セル36の所定の複数個を直列に接続し、正極母線32と負極母線34が車体14から絶縁抵抗を介してフローティング電位にある高電圧電源30を含む。また、複数の電池缶38について定められた測定位置に絶縁体44を介して配置され、一端46及び他端48がそれぞれ引き出される複数のサーミスタ42を含む。そして、メイン制御基板12とは独立のサテライト基板50を有する。サテライト基板50には、負極母線34を接地電位とし、サーミスタ42の一端46と他端48の間の端子間電圧に基づいて電池温度を監視する監視回路52が実装される。そして、予め設定された基準電圧Vref2に一方端が接続され、他方端が監視回路52の検出端子に接続され、各サーミスタ42ごとに設けられた所定の直列抵抗58を含む。さらに、サーミスタ42の一端46、他端48、監視回路52の検出端子、及び負極母線34の間に設けられる経路切替部60を含む。経路切替部60は、第1の経路と第2の経路との間で経路を切り替える。第1の経路は、サーミスタ42の一端46を監視回路52の検出端子62,63へ接続し、かつサーミスタ42の他端48を負極母線34へ接続する。第2の経路は、サーミスタ42の他端48を監視回路52の検出端子へ接続し、かつサーミスタ42の一端46を負極母線34へ接続する。そして、経路切替前後で、サーミスタ42の端子間電圧の差が所定値を超えるときに、サーミスタ42の一端46または他端48のいずれか1が電池缶38と電気的に短絡していると判定する短絡判定部64を備える。 In the vehicle power supply monitoring system 10 using the satellite substrate of the present embodiment, a predetermined plurality of battery cells 36 housed in a battery can 38 are connected in series, and the positive bus 32 and the negative bus 34 are connected from the vehicle body 14. It includes a high voltage power supply 30 that is at a floating potential through an insulation resistor. In addition, it includes a plurality of thermistors 42 which are arranged at the measurement positions determined for the plurality of battery cans 38 via the insulator 44 and from which one end 46 and the other end 48 are drawn out. The satellite board 50 is independent from the main control board 12. A monitoring circuit 52 that monitors the battery temperature based on the voltage across the terminals between one end 46 and the other end 48 of the thermistor 42 is mounted on the satellite substrate 50 with the negative electrode bus 34 as the ground potential. One end is connected to a preset reference voltage V ref2 , the other end is connected to a detection terminal of the monitoring circuit 52, and a predetermined series resistor 58 provided for each thermistor 42 is included. Furthermore, a path switching unit 60 provided between one end 46 and the other end 48 of the thermistor 42, a detection terminal of the monitoring circuit 52, and the negative electrode bus 34 is included. The route switching unit 60 switches the route between the first route and the second route. In the first path, one end 46 of the thermistor 42 is connected to the detection terminals 62 and 63 of the monitoring circuit 52, and the other end 48 of the thermistor 42 is connected to the negative electrode bus 34. The second path connects the other end 48 of the thermistor 42 to the detection terminal of the monitoring circuit 52, and connects one end 46 of the thermistor 42 to the negative electrode bus 34. Then, before and after the path switching, when the difference between the terminals of the thermistor 42 exceeds a predetermined value, it is determined that one of the one end 46 and the other end 48 of the thermistor 42 is electrically short-circuited with the battery can 38. A short-circuit determining unit 64 is provided.

上記構成によれば、サテライト基板50に監視回路52を実装した車両用電源監視システム10において、高電圧電源30とサーミスタ42との間の電気的な短絡を判定できる。   According to the above configuration, in the vehicle power supply monitoring system 10 in which the monitoring circuit 52 is mounted on the satellite board 50, an electrical short circuit between the high voltage power supply 30 and the thermistor 42 can be determined.

10 (サテライト基板を用いた車両用)電源監視システム、11 (従来技術の)電源監視システム、12 メイン(制御)基板、14 車体、16 主制御装置、18 漏電検出回路、30 高電圧電源、32 (高電圧電源の)正極母線、34 (高電圧電源の)負極母線、36 電池セル、38 電池缶、40,41 電解液抵抗、42 サーミスタ、44 絶縁体、46 (サーミスタの)一端、48 (サーミスタの)他端、49 信号線、50 サテライト基板、52 監視回路、54,55 マルチプレクサ、58 直列抵抗、60 経路切替部、62,63 検出端子、64 短絡判定部、70 データ通信線、72,76 短絡路、74,78,80,82 短絡電流、79 電流。   10 (for vehicle using satellite board) power supply monitoring system, 11 (prior art) power supply monitoring system, 12 main (control) board, 14 vehicle body, 16 main controller, 18 leakage detection circuit, 30 high voltage power supply, 32 (High voltage power supply) positive electrode bus, 34 (high voltage power supply) negative electrode bus, 36 battery cell, 38 battery can, 40, 41 electrolyte resistance, 42 thermistor, 44 insulator, 46 (thermistor) one end, 48 ( The other end of the thermistor, 49 signal line, 50 satellite board, 52 monitoring circuit, 54,55 multiplexer, 58 series resistance, 60 path switching unit, 62,63 detection terminal, 64 short circuit determination unit, 70 data communication line, 72, 76 Short circuit, 74, 78, 80, 82 Short circuit current, 79 Current.

Claims (1)

電池缶に収納された電池セルの所定の複数個を直列に接続し、正極母線と負極母線が車体から絶縁抵抗を介してフローティング電位にある高電圧電源と、
複数の前記電池缶について定められた測定位置に絶縁体を介して配置され、一端及び他端がそれぞれ引き出される複数のサーミスタと、
メイン制御基板とは独立のサテライト基板に実装され、前記負極母線を接地電位とし、前記サーミスタの前記一端と前記他端の間の端子間電圧に基づいて電池温度を監視する監視回路と、
予め設定された基準電圧に一方端が接続され、他方端が前記監視回路の検出端子に接続され、前記サーミスタのそれぞれに設けられた所定の直列抵抗と、
前記サーミスタの前記一端、前記他端、前記監視回路の前記検出端子、及び前記負極母線の間に設けられる経路切替部であって、前記サーミスタの前記一端を前記監視回路の前記検出端子へ接続し、かつ前記サーミスタの前記他端を前記負極母線へ接続する第1の経路、前記サーミスタの前記他端を前記監視回路の前記検出端子へ接続し、かつ前記サーミスタの前記一端を前記負極母線へ接続する第2の経路との間で、経路を切り替える経路切替部と、
経路切替前後で、前記サーミスタの前記端子間電圧の差が所定値を超えるときに、前記サーミスタの前記一端または前記他端のいずれか1が前記電池缶と電気的に短絡していると判定する短絡判定部と、
を備える、サテライト基板を用いた車両用電源監視システム。
A high voltage power source in which a predetermined plurality of battery cells housed in a battery can are connected in series, and a positive bus and a negative bus are at a floating potential from the vehicle body via an insulation resistance;
A plurality of thermistors that are arranged via insulators at the measurement positions defined for the plurality of battery cans, and one end and the other end are each drawn out;
A monitoring circuit that is mounted on a satellite board independent of the main control board, sets the negative electrode bus to ground potential, and monitors the battery temperature based on the voltage between the terminals between the one end and the other end of the thermistor;
One end is connected to a preset reference voltage, the other end is connected to a detection terminal of the monitoring circuit, a predetermined series resistance provided in each of the thermistors,
A path switching unit provided between the one end of the thermistor, the other end, the detection terminal of the monitoring circuit, and the negative bus, and connecting the one end of the thermistor to the detection terminal of the monitoring circuit. A first path for connecting the other end of the thermistor to the negative electrode bus; connecting the other end of the thermistor to the detection terminal of the monitoring circuit; and connecting the one end of the thermistor to the negative electrode bus. A path switching unit that switches a path between the second path and
It is determined that one of the one end and the other end of the thermistor is electrically short-circuited with the battery can when the voltage difference between the terminals of the thermistor exceeds a predetermined value before and after path switching. A short circuit determination unit;
A vehicle power supply monitoring system using a satellite substrate.
JP2016201509A 2016-10-13 2016-10-13 Vehicle power supply monitoring system using satellite substrates Active JP6639367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016201509A JP6639367B2 (en) 2016-10-13 2016-10-13 Vehicle power supply monitoring system using satellite substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016201509A JP6639367B2 (en) 2016-10-13 2016-10-13 Vehicle power supply monitoring system using satellite substrates

Publications (2)

Publication Number Publication Date
JP2018064377A true JP2018064377A (en) 2018-04-19
JP6639367B2 JP6639367B2 (en) 2020-02-05

Family

ID=61968147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016201509A Active JP6639367B2 (en) 2016-10-13 2016-10-13 Vehicle power supply monitoring system using satellite substrates

Country Status (1)

Country Link
JP (1) JP6639367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824269A (en) * 2019-09-26 2020-02-21 中国空间技术研究院 Power supply and distribution joint test verification system and method based on comprehensive electronic system
CN115561563A (en) * 2022-11-23 2023-01-03 成都国星宇航科技股份有限公司 Satellite power supply testing method, device, equipment and medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084015A (en) * 2001-09-11 2003-03-19 Denso Corp Flying capacitor battery pack voltage detecting circuit and driving method for it
JP2004325110A (en) * 2003-04-22 2004-11-18 Nec Lamilion Energy Ltd Method and apparatus for detecting failure of temperature sensor
WO2008016179A1 (en) * 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Insulation resistance determining system, insulation resistance determining apparatus and insulation resistance determining method
JP2009099473A (en) * 2007-10-19 2009-05-07 Panasonic Ev Energy Co Ltd Abnormality detecting device for power storage device
US20120068545A1 (en) * 2010-09-16 2012-03-22 Samsung Sdi Co., Ltd. Energy storage system
JP2015079585A (en) * 2013-10-15 2015-04-23 株式会社デンソー Battery monitoring device, and power supply device having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084015A (en) * 2001-09-11 2003-03-19 Denso Corp Flying capacitor battery pack voltage detecting circuit and driving method for it
JP2004325110A (en) * 2003-04-22 2004-11-18 Nec Lamilion Energy Ltd Method and apparatus for detecting failure of temperature sensor
WO2008016179A1 (en) * 2006-08-04 2008-02-07 Toyota Jidosha Kabushiki Kaisha Insulation resistance determining system, insulation resistance determining apparatus and insulation resistance determining method
JP2009099473A (en) * 2007-10-19 2009-05-07 Panasonic Ev Energy Co Ltd Abnormality detecting device for power storage device
US20120068545A1 (en) * 2010-09-16 2012-03-22 Samsung Sdi Co., Ltd. Energy storage system
JP2015079585A (en) * 2013-10-15 2015-04-23 株式会社デンソー Battery monitoring device, and power supply device having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110824269A (en) * 2019-09-26 2020-02-21 中国空间技术研究院 Power supply and distribution joint test verification system and method based on comprehensive electronic system
CN115561563A (en) * 2022-11-23 2023-01-03 成都国星宇航科技股份有限公司 Satellite power supply testing method, device, equipment and medium
CN115561563B (en) * 2022-11-23 2023-02-07 成都国星宇航科技股份有限公司 Satellite power supply testing method, device, equipment and medium

Also Published As

Publication number Publication date
JP6639367B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
US9046584B2 (en) Battery voltage detector having pull-up resistor
US10611243B2 (en) Ground fault detection apparatus
JP5443327B2 (en) Battery assembly
US20150077124A1 (en) Assembled battery module and disconnection detecting method
US10436853B2 (en) Failure detection apparatus
US7705605B2 (en) Voltage detecting apparatus
US20140035594A1 (en) Electric leakage detecting appratus
US9647301B2 (en) Battery monitoring apparatus
JP5274110B2 (en) Power supply for vehicle
JP2010091520A (en) Battery module abnormality detection circuit, and detection method therefor
JP5974849B2 (en) Battery monitoring device
US20120253716A1 (en) Battery voltage detector
JP2007259612A (en) Power supply controller
US20170244259A1 (en) Voltage detecting device
JP2015083960A (en) Abnormality detection device
JP2014183671A (en) Abnormality detection device for battery pack
US11762029B2 (en) Insulation resistance detection apparatus
JP6639367B2 (en) Vehicle power supply monitoring system using satellite substrates
KR20170007156A (en) Method and apparatus for locating a battery module among multiple battery modules of a traction battery that are electrically connected to one another
WO2017068874A1 (en) On-vehicle power source device
WO2014034153A1 (en) Electrical leak detection circuit, battery circuit board, and battery power source device
JP6137073B2 (en) Voltage monitoring device
KR101795075B1 (en) Method for controlling cell balancing of high voltage battery
JP2020098142A (en) Ground fault detector
EP3901640A1 (en) Apparatus for measuring insulation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191224

R151 Written notification of patent or utility model registration

Ref document number: 6639367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250