JP2009099473A - Abnormality detecting device for power storage device - Google Patents

Abnormality detecting device for power storage device Download PDF

Info

Publication number
JP2009099473A
JP2009099473A JP2007271960A JP2007271960A JP2009099473A JP 2009099473 A JP2009099473 A JP 2009099473A JP 2007271960 A JP2007271960 A JP 2007271960A JP 2007271960 A JP2007271960 A JP 2007271960A JP 2009099473 A JP2009099473 A JP 2009099473A
Authority
JP
Japan
Prior art keywords
potential
power storage
storage device
abnormality detection
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007271960A
Other languages
Japanese (ja)
Other versions
JP5059543B2 (en
Inventor
Toshiaki Nakanishi
利明 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Panasonic EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic EV Energy Co Ltd filed Critical Panasonic EV Energy Co Ltd
Priority to JP2007271960A priority Critical patent/JP5059543B2/en
Publication of JP2009099473A publication Critical patent/JP2009099473A/en
Application granted granted Critical
Publication of JP5059543B2 publication Critical patent/JP5059543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a precision in detecting failures of a thermistor to detect the temperature of a power storage device. <P>SOLUTION: A voltage detection part 12 detects potential Vt from a reference potential of a block B. A voltage detection part 14 calculates a temperature of the block B based on the potential Vs from the reference potential of a thermistor 42 installed on the surface of the block B constituting the battery pack 20. An abnormality determination part 16 detects abnormality of liquid leakage of the block B based on at least any of the potential Vs of the thermistor and the potential Vt of the block B. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蓄電装置を備えたシステムにおける異常検出技術に関する。   The present invention relates to an abnormality detection technique in a system including a power storage device.

二次電池やキャパシタなどの蓄電装置が充電あるいは放電を長期間繰り返すと、徐々に劣化が進行してケース内部から電解液が外部に漏れ出す現象を起こすことがある。このような現象を放置しておくと、蓄電装置の入出力の低下や、漏電を招くおそれがある。よって、蓄電装置の液漏れを早期に発見し、処置することが望ましい。   When a power storage device such as a secondary battery or a capacitor is repeatedly charged or discharged for a long period of time, the deterioration gradually proceeds and the electrolyte may leak out from the inside of the case. If such a phenomenon is left unattended, there is a risk of a decrease in input / output of the power storage device or an electric leakage. Therefore, it is desirable to detect and treat liquid leakage of the power storage device at an early stage.

特許文献1には、バッテリから漏れ出た液の導電性を利用して、液を伝って流れる電流の有無によって液漏れを検出する技術が開示されている。具体的には、液漏れを検出する回路に漏電遮断器を使用して液漏れを検出している。あるいは、バッテリ全体を金属ケースの外箱で覆い、液漏れが発生してバッテリの一部が金属ケースと電解液を介して短絡すると、金属ケース外部に設けたトランジスタなどを介して液漏れを検出している。   Patent Document 1 discloses a technique for detecting a liquid leak based on the presence or absence of a current flowing through the liquid using the conductivity of the liquid leaking from the battery. Specifically, the leakage is detected by using a leakage breaker in a circuit for detecting the leakage. Alternatively, if the entire battery is covered with an outer box of a metal case, and if a liquid leak occurs and a part of the battery is short-circuited via the metal case and the electrolyte, the liquid leak is detected via a transistor provided outside the metal case. is doing.

また、二次電池やキャパシタなどの蓄電装置の充電や放電を制御する制御装置は、制御パラメータとして蓄電装置の温度情報を利用することがある。蓄電装置の温度の検出は、例えば、特許文献2に開示されているように、蓄電装置の表面に配置されたサーミスタなどの温度抵抗素子を利用して行われる。ここで、上記のように蓄電装置が液漏れした場合、温度抵抗素子と蓄電装置との間で短絡が生じることがある。この場合、短絡の影響により、温度抵抗素子が異常な温度を検出することがある。しかし、温度抵抗素子が異常な温度を検出する原因としては、蓄電装置の液漏れ以外にも、温度抵抗素子自体の不具合の場合もある。したがって、温度抵抗素子が検出した温度が異常であったとしても、その原因を特定することは容易ではない。   In addition, a control device that controls charging and discharging of a power storage device such as a secondary battery or a capacitor may use temperature information of the power storage device as a control parameter. The temperature of the power storage device is detected using, for example, a temperature resistance element such as a thermistor disposed on the surface of the power storage device as disclosed in Patent Document 2. Here, when the power storage device leaks as described above, a short circuit may occur between the temperature resistance element and the power storage device. In this case, the temperature resistance element may detect an abnormal temperature due to the influence of the short circuit. However, the cause of the temperature resistance element detecting an abnormal temperature may be a malfunction of the temperature resistance element itself in addition to the liquid leakage of the power storage device. Therefore, even if the temperature detected by the temperature resistance element is abnormal, it is not easy to specify the cause.

特開平5−326032号公報JP-A-5-326032 特開平5−15078号公報Japanese Patent Laid-Open No. 5-15078

ところで、特許文献1のように、バッテリ本体の外側に設けた漏電遮断器やトランジスタなどによって液漏れを検出する方法では、液漏れの初期段階で検出することは困難である。また、複数の電池ブロックを直列接続した組電池の場合、どのブロックで液漏れが発生したか特定することは困難である。   By the way, it is difficult to detect at the initial stage of a liquid leak by the method of detecting a liquid leak with the earth-leakage circuit breaker, transistor, etc. which were provided in the outer side of the battery main body like patent document 1. FIG. Further, in the case of an assembled battery in which a plurality of battery blocks are connected in series, it is difficult to specify in which block the liquid leakage has occurred.

さらに、特許文献1に示すような蓄電装置の液漏れの検知が、蓄電装置の温度を検出するサーミスタなどの温度抵抗素子の不具合の検知とは独立して行われる場合には、温度抵抗素子の不具合の検知する手段が、本来、蓄電装置の液漏れが原因にも拘わらず温度抵抗素子の異常と誤って検知する可能性がある。   Furthermore, when the detection of the liquid leakage of the power storage device as shown in Patent Document 1 is performed independently of the detection of the malfunction of the temperature resistance element such as a thermistor that detects the temperature of the power storage device, There is a possibility that the means for detecting the malfunction may erroneously detect that the temperature resistance element is abnormal in spite of the liquid leakage of the power storage device.

本発明は、蓄電装置の液漏れを初期段階で検出することを1つの目的とする。   An object of the present invention is to detect liquid leakage from a power storage device at an initial stage.

本発明に係る蓄電装置の異常検出装置は、蓄電装置の表面に設けられた温度抵抗素子の基準電位からの電位Vsを検出する温度検出部と、前記蓄電装置の前記基準電位からの電位Vtを検出する電圧検出部と、前記温度抵抗素子の電位Vsと前記蓄電装置の電位Vtとの少なくともいずれかに基づいて、前記蓄電装置の液漏れ異常を検知する異常検知部と、を備えることを特徴とする。   An abnormality detection device for a power storage device according to the present invention includes a temperature detection unit that detects a potential Vs from a reference potential of a temperature resistance element provided on a surface of the power storage device, and a potential Vt from the reference potential of the power storage device. A voltage detection unit for detecting, and an abnormality detection unit for detecting a liquid leakage abnormality of the power storage device based on at least one of the potential Vs of the temperature resistance element and the potential Vt of the power storage device. And

本発明に係る異常検出装置の1つの態様では、前記異常検知部は、前記蓄電装置の前記基準電位からの電位Vtと、前記温度抵抗素子の電位Vsとの比較に基づいて、前記蓄電装置の液漏れの有無の判定を行うことを特徴とする。   In one aspect of the abnormality detection device according to the present invention, the abnormality detection unit is configured to compare the potential Vt from the reference potential of the power storage device with the potential Vs of the temperature resistance element. It is characterized by determining the presence or absence of liquid leakage.

本発明に係る異常検出装置の1つの態様では、前記異常検知部は、前記蓄電装置の前記基準電位からの電位Vtと、前記温度抵抗素子に供給される電源の前記基準電位からの電位Vccとの比較に基づいて、前記蓄電装置の液漏れの有無の判定を行うことを特徴とする。   In one aspect of the abnormality detection device according to the present invention, the abnormality detection unit includes a potential Vt from the reference potential of the power storage device and a potential Vcc from the reference potential of a power source supplied to the temperature resistance element. On the basis of the comparison, the presence or absence of liquid leakage of the power storage device is determined.

本発明に係る異常検出装置の1つの態様では、前記異常検知部は、前記蓄電装置の前記基準電位からの電位Vtと、前記基準電位との比較に基づいて、前記蓄電装置の液漏れの有無の判定を行うことを特徴とする。   In one aspect of the abnormality detection device according to the present invention, the abnormality detection unit detects whether or not there is a liquid leak in the power storage device based on a comparison between the reference potential and the potential Vt from the reference potential of the power storage device. This determination is performed.

本発明に係る異常検出装置の1つの態様では、前記蓄電装置は、電気的に直列接続された少なくとも1つの電池ブロックであって、前記異常検知部は、前記蓄電装置の前記基準電位からの電位Vtに、前記蓄電装置を構成する電池ブロックの数に基づいて定まる係数を乗算した値と、前記温度抵抗素子の電位Vsとの比較に基づいて、前記蓄電装置の液漏れの有無の判定を行うことを特徴とする。   In one aspect of the abnormality detection device according to the present invention, the power storage device is at least one battery block electrically connected in series, and the abnormality detection unit is a potential from the reference potential of the power storage device. Based on a comparison between a value obtained by multiplying Vt by a coefficient determined based on the number of battery blocks constituting the power storage device and the potential Vs of the temperature resistance element, the presence or absence of liquid leakage of the power storage device is determined. It is characterized by that.

本発明に係る異常検出装置の1つの態様では、前記異常検知部は、前記蓄電装置を構成する電池ブロックの数をM、1以上かつM以下の整数をm、前記係数をm/M、所定の閾値をSとして、|Vs−m/M×Vt|≦Sを満たすmが存在する場合に、前記基準電位側からm番目に接続された電池ブロックの液漏れとして異常を検知することを特徴とする。   In one aspect of the abnormality detection device according to the present invention, the abnormality detection unit sets the number of battery blocks constituting the power storage device to M, an integer not less than 1 and not more than M, m to the coefficient, m / M, a predetermined value. When the threshold value of S is S and m satisfying | Vs−m / M × Vt | ≦ S exists, an abnormality is detected as a leakage of the battery block connected m-th from the reference potential side. And

本発明に係る蓄電装置の異常検出装置は、蓄電装置の表面に設けられた温度抵抗素子の基準電位からの電位Vsに基づいて、当該蓄電装置の温度を演算する温度検出部と、前記温度抵抗素子の電位Vsが所定の電位範囲に含まれない場合に、前記温度抵抗素子の不具合として異常を検知する異常検知部であって、前記温度抵抗素子の不具合の検知に先立って、前記蓄電装置の液漏れの有無の判定を行い、前記蓄電装置の液漏れを検知しなかった場合のみ、前記温度抵抗素子の不具合の検知を行う異常検知部と、を備えることを特徴とする。   An abnormality detection device for a power storage device according to the present invention includes a temperature detection unit that calculates a temperature of the power storage device based on a potential Vs from a reference potential of a temperature resistance element provided on a surface of the power storage device, and the temperature resistance An abnormality detection unit that detects an abnormality as a malfunction of the temperature resistance element when the potential Vs of the element is not included in a predetermined potential range, and prior to the detection of the malfunction of the temperature resistance element, An abnormality detection unit that performs the determination of the presence or absence of liquid leakage and detects the malfunction of the temperature resistance element only when the liquid leakage of the power storage device is not detected.

本発明によれば、蓄電装置の液漏れの初期段階での検出が可能になる。   According to the present invention, it is possible to detect liquid leakage of the power storage device at an initial stage.

本発明を実施するための最良の形態(以下、実施形態と称す)について、蓄電装置として組電池を例にとり説明する。   The best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described by taking an assembled battery as an example of a power storage device.

図1に、本実施形態における異常検出装置の構成ブロック図を示す。異常検出装置は例えばハイブリッド電気自動車に搭載され、組電池の電圧および温度を検出する。図1において、蓄電装置としての組電池20は、n個の電池ブロックB1〜Bn(以下、単にブロックB1〜Bnと称呼する)を直列に接続して構成される。末端に接続されたブロックBnの両端子のうち、後段にブロックが接続されていない端子tn+1は接地(G2)されている。ブロックB1〜Bnはそれぞれ、2個の電池モジュールを電気的に直列接続して構成されており、更に、各電池モジュールは、6個の単電池を電気的に直列に接続して構成されている。各単電池としては、ニッケル水素電池やリチウムイオン電池等を用いることができる。なお、ブロック、電池モジュール、単電池の数は特に限定されるものではなく、例えばブロックは1つの単電池から構成されてもよい。組電池20の構成も上記した例に限定されるものではない。   FIG. 1 is a block diagram showing the configuration of the abnormality detection apparatus according to this embodiment. The abnormality detection device is mounted on, for example, a hybrid electric vehicle, and detects the voltage and temperature of the assembled battery. In FIG. 1, an assembled battery 20 as a power storage device is configured by connecting n battery blocks B1 to Bn (hereinafter simply referred to as blocks B1 to Bn) in series. Of both terminals of the block Bn connected to the terminal, the terminal tn + 1 to which the block is not connected in the subsequent stage is grounded (G2). Each of the blocks B1 to Bn is configured by electrically connecting two battery modules in series, and each battery module is configured by electrically connecting six unit cells in series. . As each single battery, a nickel metal hydride battery, a lithium ion battery, or the like can be used. In addition, the number of blocks, battery modules, and single cells is not particularly limited. For example, the block may be configured by one single cell. The configuration of the assembled battery 20 is not limited to the above example.

図1において、電池電子制御ユニット(以下、電池ECUと称す)10は、接地(接地点G、接地点G2と同電位)され、組電池20の電圧や温度に基づいて組電池20の充電あるいは放電を制御する。   In FIG. 1, a battery electronic control unit (hereinafter referred to as a battery ECU) 10 is grounded (the same potential as the grounding point G and the grounding point G2), and the battery pack 20 is charged based on the voltage or temperature of the battery pack 20. Control the discharge.

電池ECU10は、電圧検出部12と、温度検出部14と、異常検知部16とを備える。電圧検出部12は、MUX(マルチプレクサ)30を介して各ブロックB1〜Bnの各端子t1〜tn+1に順次接続され、各ブロックの各端子の基準電位である接地点G2からの電位Vt1〜Vtn+1を取得する。電圧検出部12は、各ブロックの両端の電位の差を演算することで、各ブロックの端子間電圧Vbを求める。なお、電圧検出部12は、MUX30を介して各ブロックB1〜Bnの端子間電圧Vbを順次取得して、それらを順次加算していくことで、電位Vt1〜Vtn+1を求めてもよい。   The battery ECU 10 includes a voltage detection unit 12, a temperature detection unit 14, and an abnormality detection unit 16. The voltage detection unit 12 is sequentially connected to the terminals t1 to tn + 1 of the blocks B1 to Bn via the MUX (multiplexer) 30, and receives the potentials Vt1 to Vtn + 1 from the ground point G2, which are reference potentials of the terminals of the blocks. get. The voltage detector 12 calculates the inter-terminal voltage Vb of each block by calculating the potential difference between both ends of each block. The voltage detection unit 12 may obtain the potentials Vt1 to Vtn + 1 by sequentially acquiring the inter-terminal voltages Vb of the blocks B1 to Bn via the MUX 30 and sequentially adding them.

温度検出部14は、各ブロックB1〜Bnに設けられた温度センサ40からMUX32を介して各ブロックB1〜Bnの温度情報を取得し、各温度情報に基づいて各ブロックB1〜Bnの温度を演算する。   The temperature detection unit 14 acquires temperature information of each block B1 to Bn from the temperature sensor 40 provided in each block B1 to Bn via the MUX 32, and calculates the temperature of each block B1 to Bn based on each temperature information. To do.

各ブロックB1〜Bnの温度情報は、サーミスタや白金温度計などの温度抵抗素子の接地点からの電位を検出することにより測定することができる。本実施形態では、温度抵抗素子としてサーミスタを用いた場合について、以下に説明する。温度センサ40は、サーミスタ42および抵抗44を備える。サーミスタ42は、ブロックBを構成する単電池の表面に電気的に絶縁した状態で接触配設され、サーミスタ42の一端は、抵抗44を介して電源Vccに接続され、サーミスタ42の他端は接地(接地点G1、電池ECU10の接地点Gと同電位)される。このように配置されたサーミスタ42の温度は、ブロックBを構成する単電池の表面温度にほぼ等しくなるように変化し、サーミスタ42の電気抵抗は、ブロックBの表面温度に応じて変化する。したがって、サーミスタ42と抵抗44との接続点Cにおける、基準電位である接地点G1からの電位Vsも、ブロックBの表面温度に応じて変化する。   The temperature information of each block B1 to Bn can be measured by detecting the potential from the ground point of a temperature resistance element such as a thermistor or a platinum thermometer. In this embodiment, the case where a thermistor is used as the temperature resistance element will be described below. The temperature sensor 40 includes a thermistor 42 and a resistor 44. The thermistor 42 is disposed in contact with the surface of the unit cell constituting the block B in an electrically insulated state. One end of the thermistor 42 is connected to the power source Vcc via the resistor 44, and the other end of the thermistor 42 is grounded. (Grounding point G1 and the same potential as the grounding point G of the battery ECU 10). The temperature of the thermistor 42 arranged in this way changes so as to be approximately equal to the surface temperature of the single cells constituting the block B, and the electrical resistance of the thermistor 42 changes according to the surface temperature of the block B. Therefore, the potential Vs from the ground point G1 that is the reference potential at the connection point C between the thermistor 42 and the resistor 44 also changes according to the surface temperature of the block B.

そこで、温度検出部14は、サーミスタ42の電位Vsを温度情報として取得して、電位Vsに基づいてブロックBの温度Tbを演算する。温度検出部14は、例えば図2に示すような、電位Vsと温度Tbとの関係を示すマップを参照して、電位Vsに基づいて温度Tbを演算する。なお、マップは、予め実験等などに基づいて、複数の電位Vsおよび温度Tbを測定し、測定結果に基づいて作成しておけばよい。   Therefore, the temperature detection unit 14 acquires the potential Vs of the thermistor 42 as temperature information, and calculates the temperature Tb of the block B based on the potential Vs. The temperature detection unit 14 calculates the temperature Tb based on the potential Vs with reference to a map showing the relationship between the potential Vs and the temperature Tb as shown in FIG. 2, for example. The map may be created based on the measurement results obtained by measuring a plurality of potentials Vs and temperatures Tb in advance based on experiments or the like.

このように構成された異常検出装置において、本実施形態では、異常検知部16が、サーミスタ42の不具合の有無の判定に先立って、組電池20を構成するブロックの液漏れの有無を判定する。   In the abnormality detection device configured as described above, in the present embodiment, the abnormality detection unit 16 determines the presence or absence of liquid leakage of the blocks constituting the assembled battery 20 prior to the determination of whether or not the thermistor 42 is defective.

より具体的には、異常検知部16は、図3に示すフローチャートに示す処理を実行し、ブロックの液漏れの有無の判定を行った後に、サーミスタ42の不具合の有無を判定する。このように、異常検知部16が、サーミスタ42の不具合の有無の判定に先立って、組電池20を構成するブロックの液漏れの有無を判定することで、サーミスタの不具合を検知する精度を向上させることができる。つまり、ブロックの液漏れによりサーミスタ42の電位Vsが正常な値を示していない場合に、異常検知部16が、サーミスタ42の電位Vsが正常な値を示していないことを根拠として、サーミスタ42の不具合であると誤って検知することを防止することができる。   More specifically, the abnormality detection unit 16 performs the process shown in the flowchart shown in FIG. 3 and determines whether or not there is a malfunction of the thermistor 42 after determining whether or not there is a liquid leak in the block. As described above, the abnormality detection unit 16 improves the accuracy of detecting the thermistor failure by determining the presence or absence of the liquid leakage of the block constituting the assembled battery 20 prior to the determination of the presence or absence of the failure of the thermistor 42. be able to. That is, when the potential Vs of the thermistor 42 does not show a normal value due to liquid leakage from the block, the abnormality detection unit 16 is based on the fact that the potential Vs of the thermistor 42 does not show a normal value. It is possible to prevent erroneous detection as a malfunction.

なお、異常検知部16がブロックの液漏れを検知するには、サーミスタ42にブロックから漏れ出した電解液が直接接触する必要がある。直接接触する場合としては、例えばサーミスタ42を被覆している絶縁皮膜が劣化して電解液と接触する場合や、サーミスタ42とMUX32などの回路を繋ぐ導線部から電解液が這い上がる場合が考えられる。また、意図的にサーミスタ42の絶縁皮膜に部分的に孔を形成しておき、液漏れのない通常状態では支障なく温度測定を行い、液漏れ時には電解液を孔を介して直接接触させ、液漏れを検知できるようにしてもよい。   In order for the abnormality detection unit 16 to detect liquid leakage from the block, it is necessary that the electrolytic solution leaking from the block directly contacts the thermistor 42. Examples of the direct contact include a case where the insulating film covering the thermistor 42 deteriorates and comes into contact with the electrolytic solution, or a case where the electrolytic solution crawls up from a conductor portion connecting the thermistor 42 and a circuit such as the MUX 32. . In addition, a hole is intentionally formed partially in the insulating film of the thermistor 42, and temperature measurement is performed without any trouble in a normal state where there is no liquid leakage. When the liquid leaks, the electrolyte is directly contacted through the hole, A leak may be detected.

図3において、異常検知部16は、温度検出部14からサーミスタ42の電位Vsを取得し(S100)、さらに電圧検出部12から各ブロックの各端子の電位Vt1〜Vtn+1を取得する(S102)。次いで、異常検知部16は、取得した電位情報に基づいて、まずブロックの液漏れの有無を判定する(S104)。   3, the abnormality detection unit 16 acquires the potential Vs of the thermistor 42 from the temperature detection unit 14 (S100), and further acquires the potentials Vt1 to Vtn + 1 of each terminal of each block from the voltage detection unit 12 (S102). Next, the abnormality detection unit 16 first determines the presence or absence of liquid leakage from the block based on the acquired potential information (S104).

ここで、ブロックの液漏れの判定は、具体的には以下の通り行う。   Here, the determination of the leakage of the block is specifically performed as follows.

まず、何れかのブロックの一端子とサーミスタ42の接続点Cとが短絡した場合、サーミスタ42の電位Vsと、短絡したブロックの端子の電位Vtとはほぼ等しくなる。そこで、異常検知部16は、電位Vsとの差が所定の閾値S以下の電位Vtをもつ端子が存在する場合に、ブロックが液漏れしていると判定する。つまり、異常検知部16は、次式(1)を満たす端子が存在する場合に、ブロックの液漏れ有りと判定する。
|Vt−Vs|≦S (1)
First, when one terminal of any block and the connection point C of the thermistor 42 are short-circuited, the potential Vs of the thermistor 42 and the potential Vt of the terminal of the short-circuited block are substantially equal. Therefore, the abnormality detection unit 16 determines that the block is leaking when there is a terminal having a potential Vt whose difference from the potential Vs is equal to or less than a predetermined threshold S. That is, the abnormality detection unit 16 determines that there is liquid leakage from the block when there is a terminal that satisfies the following expression (1).
| Vt−Vs | ≦ S (1)

また、抵抗44の電源側の一端Dと、何れかのブロックの一端子とが短絡した場合、短絡した端子の電位Vtは、電源の電位Vccとほぼ等しくなる。そこで、異常検知部16は、電位Vccとの差が所定の閾値S以下の電位Vtをもつ端子が存在する場合に、ブロックの液漏れ有りと判定する。つまり、異常検知部16は、次式(2)を満たす端子が存在する場合に、ブロックの液漏れ有りと判定する。
|Vt−Vcc|≦S (2)
When one end D of the resistor 44 on the power supply side and one terminal of any block are short-circuited, the potential Vt of the short-circuited terminal becomes substantially equal to the potential Vcc of the power supply. Therefore, the abnormality detection unit 16 determines that there is liquid leakage in the block when there is a terminal having a potential Vt whose difference from the potential Vcc is equal to or less than a predetermined threshold S. That is, the abnormality detection unit 16 determines that there is liquid leakage from the block when there is a terminal that satisfies the following equation (2).
| Vt−Vcc | ≦ S (2)

さらに、サーミスタ42の接地点G1と、何れかのブロックの一端子とが短絡した場合、短絡した端子の電位Vtは、ゼロとなる。そこで、異常検知部16は、所定の閾値S以下の電位Vtをもつ端子が存在する場合に、ブロックの液漏れ有りと判定する。つまり、異常検知部16は、次式(3)を満たす端子が存在する場合に、ブロックの液漏れ有りと判定する。
|Vt|≦S (3)
Further, when the ground point G1 of the thermistor 42 and one terminal of any block are short-circuited, the potential Vt of the short-circuited terminal becomes zero. Therefore, the abnormality detection unit 16 determines that there is liquid leakage from the block when there is a terminal having a potential Vt that is equal to or lower than the predetermined threshold S. That is, the abnormality detection unit 16 determines that there is liquid leakage from the block when there is a terminal that satisfies the following expression (3).
| Vt | ≦ S (3)

以上、上記ではブロックの両端の端子の何れかが液漏れにより短絡した場合を説明した。しかし、液漏れにより短絡するのはブロックの両端の端子とは限らない。つまり、ブロックの両端の位置に接続された単電池以外の単電池が液漏れをして、サーミスタ42の接続点Cと短絡することも考えられる。このような場合、以下の条件により、ブロックBの液漏れの有無を判定することができる。   As described above, the case where any of the terminals at both ends of the block is short-circuited due to liquid leakage has been described. However, short-circuiting due to liquid leakage is not necessarily the terminals at both ends of the block. That is, it is also conceivable that single cells other than the single cells connected to the both ends of the block leak and short-circuit with the connection point C of the thermistor 42. In such a case, the presence or absence of liquid leakage in the block B can be determined under the following conditions.

すなわち、例えば、ブロックが6個の単電池を直列接続して構成されており、負極側(つまり、基準電位である接地点側)から2つ目の単電池の正極側と、負極側から3つ目の単電池の負極側との接続点において、サーミスタ42の接続点Cとの短絡が生じた場合、サーミスタ42の電位Vsは、ブロックの正極側の電位Vtの2/6にほぼ等しくなる。また、負極側から5つ目の単電池の正極側と、負極側から6つ目(つまり最も正極側)の単電池の負極側との接続点において、サーミスタ42の接続点Cとの短絡が生じた場合、サーミスタ42の電位Vsは、ブロックの正極側の電位Vtの5/6にほぼ等しくなる。このように、異常検知部16は、ブロックを構成する単電池の数をM、1以上かつM以下の整数をmとして、次式(4)を満たす端子が存在する場合に、ブロックが液漏れをしていると判定することができる。
|Vs−m/M×Vt|≦S (4)
That is, for example, the block is configured by connecting six single cells in series, and the positive electrode side of the second single cell from the negative electrode side (that is, the ground potential side that is the reference potential), and 3 from the negative electrode side. When a short circuit with the connection point C of the thermistor 42 occurs at the connection point with the negative electrode side of the first unit cell, the potential Vs of the thermistor 42 becomes substantially equal to 2/6 of the potential Vt on the positive electrode side of the block. . Further, at the connection point between the positive electrode side of the fifth unit cell from the negative electrode side and the negative electrode side of the sixth unit cell (that is, the most positive electrode side) from the negative electrode side, a short circuit with the connection point C of the thermistor 42 occurs. When it occurs, the potential Vs of the thermistor 42 is approximately equal to 5/6 of the potential Vt on the positive side of the block. As described above, the abnormality detection unit 16 causes the block to leak when there is a terminal satisfying the following expression (4), where M is the number of cells constituting the block, and m is an integer of 1 or more and M or less. It can be determined that
| Vs−m / M × Vt | ≦ S (4)

また、上記の条件式(4)に基づいてブロックの液漏れを判定することで、ブロック内のどの単電池が液漏れを起こしているかを絞り込むことができる。つまり、式(4)を満たす整数をm’とする場合、負極側からm’番目に接続された単電池の正極側、若しくは負極側からm’+1番目に接続された単電池の負極側とサーミスタが液漏れで短絡が生じている。したがって、この場合は、m’番目もしくはm’+1番目の単電池が液漏れしている可能性が高い。また、液漏れにより蓄電性能が喪失し、端子間電圧Vb’がほぼ0Vの場合に、式(4)を満たす整数がm’とする。この場合、負極側からm’+1番目の単電池が液漏れし、負極側からm’+1番目の単電池の正極側もしくは負極側がサーミスタと液漏れで短絡している可能性が高い。   Moreover, it can be narrowed down which cell in the block has caused the liquid leak by determining the liquid leak of the block based on the conditional expression (4). In other words, when m ′ is an integer that satisfies Equation (4), the positive side of the unit cell connected m ′ from the negative side or the negative side of the unit cell connected m ′ + 1 from the negative side The thermistor leaks and a short circuit occurs. Therefore, in this case, there is a high possibility that the m′-th or m ′ + 1-th unit cell is leaking. Further, when the storage performance is lost due to liquid leakage and the inter-terminal voltage Vb ′ is approximately 0 V, the integer satisfying the equation (4) is m ′. In this case, there is a high possibility that the m ′ + 1-th unit cell from the negative electrode side leaks and the positive electrode side or the negative electrode side of the m ′ + 1-th unit cell from the negative electrode side is short-circuited with the thermistor due to liquid leakage.

蓄電池性能を喪失する過程で、液漏れにより蓄電性能が劣化した電池は、放電時に端子間電圧Vbが0V近くまで低下し、充電時には端子間電圧Vb’が回復する状態を経て、最終的に蓄電性能を喪失することが知られている。そのため、充放電電流値と電位との関係における時間推移を参照することで、ブロック内のどの単電池が液漏れを起こしているか、さらに絞り込むことができる。   In the process of losing the storage battery performance, the battery whose storage performance has deteriorated due to liquid leakage is finally stored after the voltage Vb between the terminals decreases to near 0 V during discharging and the terminal voltage Vb ′ recovers during charging. It is known to lose performance. Therefore, by referring to the time transition in the relationship between the charge / discharge current value and the potential, it is possible to further narrow down which single cell in the block is causing the liquid leakage.

以上の通り、異常検知部16は、まず、各ブロックの各端子の電位Vt1〜Vtn+1のうちいずれかの電位が、上記のいずれかの条件式を満たすか否かを判定することで、ブロックBの液漏れの有無を判定する。その結果、ブロックBの液漏れが生じている場合には、異常検知部16は、ブロックBの液漏れを異常として外部に通知する(S108)。   As described above, the abnormality detection unit 16 first determines whether any one of the potentials Vt1 to Vtn + 1 of each terminal of each block satisfies any of the above-described conditional expressions, so that the block B The presence or absence of liquid leakage is determined. As a result, when the liquid leakage of the block B has occurred, the abnormality detection unit 16 notifies the liquid leakage of the block B to the outside as an abnormality (S108).

一方、ステップS104での判定の結果、ブロックBの液漏れが生じていない場合(ステップS106の判定結果が、否定「N」)、異常検知部16は、サーミスタ42の不具合の有無の判定を行う。具体的には、異常検知部16は、サーミスタ42の電位Vsが所定の電位範囲に含まれるか否かに基づいて、サーミスタ42の不具合の有無の判定を行う。   On the other hand, as a result of the determination in step S104, when the liquid leakage of the block B has not occurred (the determination result in step S106 is negative “N”), the abnormality detection unit 16 determines whether or not the thermistor 42 is defective. . Specifically, the abnormality detection unit 16 determines whether or not the thermistor 42 is defective based on whether or not the potential Vs of the thermistor 42 is included in a predetermined potential range.

ここで、組電池20が正常に充電や放電を行う場合において想定している各ブロックBの温度範囲は、例えば、−30℃〜80℃である。よって、この温度範囲に対応するサーミスタの電位Vsの範囲は、図2に示すような参照マップから、例えば0.7V〜4.5Vと定めることができる。つまり、サーミスタの電位Vsがこの電位範囲に含まれない場合には、サーミスタ42の不具合の可能性がある。そこで、異常検知部16は、サーミスタの電位Vsが所定の電位範囲に含まれるか否かに基づいて、サーミスタ42の不具合の有無の判定を行う(S110)。   Here, the temperature range of each block B assumed when the assembled battery 20 normally charges and discharges is, for example, −30 ° C. to 80 ° C. Therefore, the range of the thermistor potential Vs corresponding to this temperature range can be determined to be, for example, 0.7 V to 4.5 V from a reference map as shown in FIG. That is, if the potential Vs of the thermistor is not included in this potential range, the thermistor 42 may be defective. Therefore, the abnormality detection unit 16 determines whether or not the thermistor 42 is defective based on whether or not the potential Vs of the thermistor is included in a predetermined potential range (S110).

判定の結果、サーミスタの電位Vsが所定の電位範囲に含まれない場合には(ステップS110の判定結果が、否定「N」)、異常検知部16は、サーミスタ42が正常に機能しておらず、サーミスタ42の不具合の可能性があるとして、サーミスタ42の不具合を異常として外部に通知する(S112)。   As a result of the determination, if the thermistor potential Vs is not included in the predetermined potential range (the determination result of step S110 is negative “N”), the abnormality detection unit 16 indicates that the thermistor 42 is not functioning normally. Assuming that there is a possibility of a malfunction of the thermistor 42, the malfunction of the thermistor 42 is notified to the outside as an abnormality (S112).

以上の通り、本実施形態では、異常検知部16は、サーミスタ42の不具合の有無の判定に先だって、ブロックBの液漏れの有無の判定を行う。これにより、異常検知部16は、ブロックBの液漏れの場合に、サーミスタ42の異常であると誤って判定することを防止することができる。よって、サーミスタの不具合を検知する精度を向上させることができる。また、本実施形態では、ブロックBに接触配置されたサーミスタ42を用いてブロックBの液漏れを検知するため、ブロックBの液漏れを初期段階で検知することができる。つまり、組電池の外側に設けた漏電遮断器やトランジスタなどによって液漏れを検出する場合よりも、早期に液漏れを検出することができる。   As described above, in the present embodiment, the abnormality detection unit 16 determines whether or not there is a liquid leak in the block B prior to determining whether or not the thermistor 42 is defective. Thereby, the abnormality detection unit 16 can prevent erroneous determination that the thermistor 42 is abnormal in the case of the liquid leakage of the block B. Therefore, it is possible to improve the accuracy of detecting a malfunction of the thermistor. Moreover, in this embodiment, since the leak of the block B is detected using the thermistor 42 disposed in contact with the block B, the leak of the block B can be detected in the initial stage. That is, the liquid leakage can be detected earlier than when the liquid leakage is detected by an earth leakage circuit breaker or a transistor provided outside the assembled battery.

なお、上記の実施形態において、ブロックの液漏れの判定に用いる各式(1)〜(3)における閾値Sは、測定における許容誤差を表す。したがって、閾値Sは、雑音、すなわち、外来ノイズや熱雑音、電圧演算回路12などの回路構成に起因する確率的変動によりランダムに発生する誤差などによって決められる。また、システムの設計が測定値から求められる式の結果にどの程度影響を与えるかなども考慮して決められる。例えば測定する電池電圧が高い周波数で変動している場合には、蓄電池電位とサーミスタ電位との測定タイミングによって測定電圧が大きく異なるため、測定電圧の変動速度を考慮して、閾値Sを決める必要がある。   In the above embodiment, the threshold value S in each of the equations (1) to (3) used for determining the leakage of the block represents an allowable error in measurement. Accordingly, the threshold value S is determined by noise, that is, an external noise or thermal noise, an error that is randomly generated due to a stochastic variation caused by a circuit configuration such as the voltage calculation circuit 12 or the like. In addition, it is determined in consideration of how much the design of the system affects the result of the equation obtained from the measured value. For example, when the battery voltage to be measured fluctuates at a high frequency, the measurement voltage varies greatly depending on the measurement timing of the storage battery potential and the thermistor potential, so the threshold S must be determined in consideration of the fluctuation speed of the measurement voltage. is there.

電池電圧が変動しない、例えば充電あるいは放電が行われていない条件下では測定を複数回行い、それらの平均値を得ることにより、許容誤差の影響を小さくすることができる。アナログ値をデジタル値に変換するA/D変換回路の量子化誤差などの測定回路にも依存するが、電源Vccを5V、A/D変換回路の分解能が10ビットの場合、例えば閾値Sは10ビット程度に相当する0.05V以下であることが好ましい。   Under the condition that the battery voltage does not fluctuate, for example, when charging or discharging is not performed, the influence of the tolerance can be reduced by performing the measurement a plurality of times and obtaining an average value thereof. Although depending on a measurement circuit such as a quantization error of an A / D conversion circuit that converts an analog value into a digital value, when the power supply Vcc is 5 V and the resolution of the A / D conversion circuit is 10 bits, for example, the threshold S is 10 It is preferable that it is 0.05 V or less corresponding to about a bit.

一方、充電あるいは放電により電池電圧が変動する場合には、仮にサーミスタ42とブロックとの短絡が発生していると、サーミスタ42の電位も変動するので、閾値Sを例えば0.2Vと大きな値に設定する。そして、時系列で取得した電圧値による上記の各式(
1)〜(3)による判定を行い、予め決めておいた各式(1)〜(3)の連続成立回数を超えた時点で、式の条件が確定したと判定する処理を行うことで、電池電圧とサーミスタ42の電圧のA/D変換の時間のずれや雑音の影響を許容しつつ、誤判定を防ぐことができる。
On the other hand, when the battery voltage fluctuates due to charging or discharging, if the thermistor 42 and the block are short-circuited, the potential of the thermistor 42 also fluctuates, so the threshold value S is set to a large value, for example, 0.2V. Set. Then, each of the above formulas based on voltage values acquired in time series (
By performing the determinations according to 1) to (3) and performing a process of determining that the condition of the expression has been established when the number of consecutive establishments of the expressions (1) to (3) determined in advance is exceeded, It is possible to prevent misjudgment while allowing the time difference of the A / D conversion between the battery voltage and the voltage of the thermistor 42 and the influence of noise.

また、ブロックの液漏れの判定に用いる式(4)における閾値Sは、m番目の単電池かm+1番目の単電池のどちらの単電池に液漏れが起きているかを判定する際に用いられる。そのため、閾値Sが単電池の端子間電圧以上であると、液漏れした単電池がm番目の単電池かm±1番目の単電池か区別できない。そこで、閾値Sは、電池の公称電圧、ニッケル水素電池では1.2Vであることが望ましい。電池の公称電圧は、電池毎に便宜上与えられた電圧であり、電池の使用形態が必ずしも考慮されているとは言い難い。したがって、電池の使用形態を考慮して、通常電池が使用される電圧を閾値Sとして用いることは有効である。例えば、ハイブリッド電気自動車に搭載されるニッケル水素電池は、一般には、動作中は1.0V〜1.4Vの電圧で制御され、リチウムイオン二次電池は、3.4V〜4.0Vの電圧で制御される。したがって、閾値Sは、動作中に想定される範囲の電圧を用いることが有効である。   Further, the threshold value S in the equation (4) used for determining the liquid leakage of the block is used when determining which of the m-th cell and the m + 1-th cell has a liquid leak. Therefore, if the threshold value S is equal to or higher than the voltage between the terminals of the unit cell, it cannot be distinguished whether the leaked unit cell is the mth unit cell or the m ± 1 unit cell. Therefore, the threshold value S is desirably a nominal voltage of the battery, or 1.2 V for the nickel metal hydride battery. The nominal voltage of the battery is a voltage given for each battery for convenience, and it is difficult to say that the usage pattern of the battery is necessarily considered. Therefore, it is effective to use the voltage at which a normal battery is used as the threshold value S in consideration of the battery usage. For example, a nickel metal hydride battery mounted on a hybrid electric vehicle is generally controlled at a voltage of 1.0 V to 1.4 V during operation, and a lithium ion secondary battery is operated at a voltage of 3.4 V to 4.0 V. Be controlled. Therefore, it is effective to use a voltage within a range assumed during operation as the threshold S.

また、上記の実施形態では、サーミスタ42の不具合の有無の判定に先だって、ブロックBの液漏れの有無の判定を行う例について説明した。しかし、異常検知部16は、サーミスタ42の電位Vsが所定の電位範囲に含まれないと判定された後に、ブロックBの液漏れの有無の判定を行い、ブロックBの液漏れが無いと判定された場合のみ、サーミスタ42の不具合として異常を検知してもよい。つまり、異常検知部16は、サーミスタ42の不具合の有無の判定に先だって、ブロックBの液漏れの有無の判定を行わない場合でも、サーミスタ42の不具合よりもブロックBの液漏れを優先して異常として検知すればよい。   Further, in the above-described embodiment, the example in which the presence / absence of the leakage of the block B is determined prior to the determination of the presence / absence of the malfunction of the thermistor 42 has been described. However, after determining that the potential Vs of the thermistor 42 is not included in the predetermined potential range, the abnormality detection unit 16 determines whether or not there is a liquid leak in the block B, and determines that there is no liquid leak in the block B. An abnormality may be detected as a malfunction of the thermistor 42 only when it is detected. That is, even when the abnormality detection unit 16 does not determine whether or not there is a leakage of the block B prior to determining whether or not the thermistor 42 is defective, the abnormality detection unit 16 gives priority to the leakage of the block B over the failure of the thermistor 42. Can be detected.

さらに、上記の実施形態では、ブロック単位で端子の電位を測定して、サーミスタ42の電位Vsとの比較を行う例について説明した。しかし、例えば、ブロックを構成する電池モジュールや電池モジュールを構成する単電池ごとに端子の電位を測定して、サーミスタ42の電位Vsとの比較などを行い、液漏れの有無を判定してもよい。このように、端子の電位の測定を電池モジュール単位や単電池単位に行うことで、液漏れを起こした単電池の特定がより容易になる。   Furthermore, in the above-described embodiment, an example in which the potential of the terminal is measured in units of blocks and compared with the potential Vs of the thermistor 42 has been described. However, for example, the potential of the terminal may be measured for each battery module constituting the block or each single cell constituting the battery module, and compared with the potential Vs of the thermistor 42 to determine the presence or absence of liquid leakage. . Thus, by measuring the potential of the terminal in units of battery modules or single cells, it becomes easier to identify the single cell in which liquid leakage has occurred.

また、上記の実施形態では、基準電位を接地点の場合を例に説明した。しかし、基準電位は接地点には限られず、例えば、各電池ブロックの最も負極側の電位を各電池ブロックの基準電位としてもよい。   In the above embodiment, the case where the reference potential is the ground point has been described as an example. However, the reference potential is not limited to the ground point, and for example, the most negative potential of each battery block may be used as the reference potential of each battery block.

以下、各電池ブロックの最も負極側の電位を各電池ブロックの基準電位として、単電池ごとに液漏れの有無を判定する本実施形態の変形例について、図4を用いて説明する。   Hereinafter, a modified example of the present embodiment for determining the presence or absence of liquid leakage for each cell will be described with reference to FIG. 4 with the most negative potential of each battery block as the reference potential of each battery block.

図4は、変形例に係る異常検出装置の構成ブロックを示す。上記の実施形態では、基準電位は組電池の接地電位であったが、変形例では、基準電位は、電池ブロックB20nの最も負極側の電位G1nである。この電位は、上記の実施形態におけるサーミスタ42の接地点G1および電池ECU10の接地点Gと同電位である。また、電圧レギュレータ46nの接地点とも同電位である。   FIG. 4 shows a configuration block of an abnormality detection apparatus according to a modification. In the above embodiment, the reference potential is the ground potential of the assembled battery. However, in the modification, the reference potential is the most negative potential G1n of the battery block B20n. This potential is the same as the ground point G1 of the thermistor 42 and the ground point G of the battery ECU 10 in the above embodiment. Also, the voltage regulator 46n has the same potential as the grounding point.

図4において、組電池200は、ブロックB201〜B20N(以下、区別する必要が無い場合には、ブロックB20nと称す。他の機能ブロックの符号についても区別する必要がない場合は「n」を付して各機能ブロックを称す。)を電気的に直列接続されて構成される。各ブロックB20nは、4つの単電池Bn1〜Bn4が電気的に直列に接続されて構成される。なお、組電池200は、異常検知部160とは絶縁されている。   In FIG. 4, the assembled battery 200 is represented by blocks B201 to B20N (hereinafter referred to as a block B20n when it is not necessary to distinguish between them). Each functional block is referred to as an electrical series connection). Each block B20n is configured by electrically connecting four unit cells Bn1 to Bn4 in series. The assembled battery 200 is insulated from the abnormality detection unit 160.

各単電池Bn1〜Bn4の各端子は、電位検出線Ln1〜Ln5を介してマルチプレクサ(MUX)30nに接続される。MUX30nは、順次各電位検出線Lnを介して各単電池Bn1〜Bn4の両端に接続して、順次端子間電圧Vbn1〜Vbn4をA/D変換して、電圧検出部12nに出力する。電圧検出部12nは、MUX30nを介して順次各単電池Bn1〜Bn4の各端子間電圧Vbn1〜Vbn4を検出する。電圧検出部12nは各端子間電圧Vbn1〜Vbn4を順次加算していくことで、電位Vtn1〜Vtn4を求め、異常検知部160に向けて出力する。   Each terminal of each unit cell Bn1 to Bn4 is connected to a multiplexer (MUX) 30n via potential detection lines Ln1 to Ln5. The MUX 30n is sequentially connected to both ends of each of the unit cells Bn1 to Bn4 via each potential detection line Ln, sequentially A / D-converts the inter-terminal voltages Vbn1 to Vbn4, and outputs them to the voltage detection unit 12n. The voltage detector 12n sequentially detects the inter-terminal voltages Vbn1 to Vbn4 of the single cells Bn1 to Bn4 via the MUX 30n. The voltage detection unit 12n obtains the potentials Vtn1 to Vtn4 by sequentially adding the inter-terminal voltages Vbn1 to Vbn4, and outputs them to the abnormality detection unit 160.

ブロックB20nには、温度センサ40nとして、上記の実施形態と同様に、サーミスタ42nが電気的に絶縁した状態で接触配設されている。サーミスタ42nには、電池ブロックB20nから電圧レギュレータ46nを介して、基準電圧Vccnが供給される。温度検出部14nは、サーミスタ42nの基準電位G1nからの電位Vsnに基づいて、ブロックB20nの温度を検出する。温度検出部14nは、電位VsnをA/D変換した信号を、異常検知部160に向けて出力する。   Similar to the above embodiment, the thermistor 42n is disposed in contact with the block B20n in a state of being electrically insulated as the temperature sensor 40n. The thermistor 42n is supplied with the reference voltage Vccn from the battery block B20n via the voltage regulator 46n. The temperature detection unit 14n detects the temperature of the block B20n based on the potential Vsn from the reference potential G1n of the thermistor 42n. The temperature detection unit 14n outputs a signal obtained by A / D converting the potential Vsn to the abnormality detection unit 160.

電圧検出部12nから出力される各単電池の電位Vtn1〜Vtn4を示す各信号および温度検出部14nから出力される各サーミスタの電位Vsnを示す信号は、絶縁部60を介して異常検知部160に入力される。   Each signal indicating the potential Vtn1 to Vtn4 of each single cell output from the voltage detection unit 12n and the signal indicating the potential Vsn of each thermistor output from the temperature detection unit 14n are sent to the abnormality detection unit 160 via the insulating unit 60. Entered.

また、図4において、電流センサ50は、組電池200の充放電電流Iを検出し、電流検出部52に入力する。電流検出部52は、入力された充放電電流Iの信号をA/D変換して、異常検知部160に向けて出力する。電流センサ50は、ホール素子を用いて、例えばハイブリッド電気自動車のボディと組電池200の電気的な絶縁を保持したまま、組電池200の充放電電流Iを計測する。   In FIG. 4, the current sensor 50 detects the charging / discharging current I of the assembled battery 200 and inputs it to the current detector 52. The current detection unit 52 performs A / D conversion on the input charge / discharge current I signal and outputs the signal to the abnormality detection unit 160. The current sensor 50 measures the charge / discharge current I of the assembled battery 200 using a Hall element while maintaining the electrical insulation between the body of the hybrid electric vehicle and the assembled battery 200, for example.

このように構成された異常検出装置において、異常検知部160は、電圧検出部12nからの電位Vtn1〜Vtn4および温度検出部14nからの電位Vsnに基づいて、上記の実施形態と同様に、図3に示す処理手順に基づいて、単電池ごとの液漏れの有無の判定およびサーミスタの不具合の有無の判定を行う。なお、図3の「ブロック」との記載は、「単電池」と適宜読み替えて参照されたい。また、単電池の液漏れの有無の判定については、上記の実施形態と同様に、式(1)〜(4)に基づいて行えばよい。   In the abnormality detection device configured as described above, the abnormality detection unit 160 is similar to that in the above embodiment based on the potentials Vtn1 to Vtn4 from the voltage detection unit 12n and the potential Vsn from the temperature detection unit 14n. On the basis of the processing procedure shown in FIG. 4, the determination of the presence or absence of liquid leakage for each unit cell and the determination of the presence or absence of malfunction of the thermistor are performed. Note that the description of “block” in FIG. 3 should be read as “single cell” as appropriate. Moreover, what is necessary is just to perform determination of the presence or absence of the liquid leak of a cell based on Formula (1)-(4) similarly to said embodiment.

以上、本変形例によれば、組電池を構成する単電池ごとに液漏れの有無を検知することができる。   As described above, according to this modification, it is possible to detect the presence or absence of liquid leakage for each unit cell constituting the assembled battery.

本実施形態における異常検出装置の構成ブロックを示す図である。It is a figure which shows the structural block of the abnormality detection apparatus in this embodiment. 温度検出部がサーミスタの電位に基づいて電池の温度を算出する場合に参照するマップの一例を示す図である。It is a figure which shows an example of the map referred when a temperature detection part calculates the temperature of a battery based on the electric potential of a thermistor. 本実施形態における異常検知部がサーミスタの不具合あるいはブロックの液漏れを検知する手順を示すフローチャートである。It is a flowchart which shows the procedure in which the abnormality detection part in this embodiment detects the malfunction of a thermistor or the liquid leak of a block. 本実施形態の変形例における異常検出装置の構成ブロックを示す図である。It is a figure which shows the structural block of the abnormality detection apparatus in the modification of this embodiment.

符号の説明Explanation of symbols

10 電池ECU、12 電圧検出部、14 温度検出部、16 異常検知部、20 組電池、30,32 マルチプレクサ、40 温度センサ、42 サーミスタ(温度抵抗素子)、44 抵抗。   DESCRIPTION OF SYMBOLS 10 Battery ECU, 12 Voltage detection part, 14 Temperature detection part, 16 Abnormality detection part, 20 assembled battery, 30, 32 multiplexer, 40 temperature sensor, 42 thermistor (temperature resistance element), 44 resistance.

Claims (8)

蓄電装置の表面に設けられた温度抵抗素子の基準電位からの電位Vsを検出する温度検出部と、
前記蓄電装置の前記基準電位からの電位Vtを検出する電圧検出部と、
前記温度抵抗素子の電位Vsと前記蓄電装置の電位Vtとの少なくともいずれかに基づいて、前記蓄電装置の液漏れ異常を検知する異常検知部と、
を備える蓄電装置の異常検出装置。
A temperature detector for detecting a potential Vs from a reference potential of a temperature resistance element provided on the surface of the power storage device;
A voltage detector that detects a potential Vt from the reference potential of the power storage device;
An abnormality detection unit that detects a liquid leakage abnormality of the power storage device based on at least one of the potential Vs of the temperature resistance element and the potential Vt of the power storage device;
An abnormality detection device for a power storage device comprising:
請求項1に記載の異常検出装置において、
前記異常検知部は、
前記蓄電装置の前記基準電位からの電位Vtと、前記温度抵抗素子の電位Vsとの比較に基づいて、前記蓄電装置の液漏れの有無の判定を行う、
ことを特徴とする異常検出装置。
The abnormality detection device according to claim 1,
The abnormality detection unit
Based on the comparison between the potential Vt from the reference potential of the power storage device and the potential Vs of the temperature resistance element, the presence or absence of liquid leakage of the power storage device is determined.
An abnormality detection device characterized by the above.
請求項1に記載の異常検出装置において、
前記異常検知部は、
前記蓄電装置の前記基準電位からの電位Vtと、前記温度抵抗素子に供給される電源の前記基準電位からの電位Vccとの比較に基づいて、前記蓄電装置の液漏れの有無の判定を行う、
ことを特徴とする異常検出装置。
The abnormality detection device according to claim 1,
The abnormality detection unit
Based on the comparison between the potential Vt from the reference potential of the power storage device and the potential Vcc from the reference potential of the power source supplied to the temperature resistance element, the presence or absence of liquid leakage of the power storage device is determined.
An abnormality detection device characterized by the above.
請求項1に記載の異常検出装置において、
前記異常検知部は、
前記蓄電装置の前記基準電位からの電位Vtと、前記基準電位との比較に基づいて、前記蓄電装置の液漏れの有無の判定を行う、
ことを特徴とする異常検出装置。
The abnormality detection device according to claim 1,
The abnormality detection unit
Based on a comparison between the reference potential and the potential Vt from the reference potential of the power storage device, the presence or absence of liquid leakage of the power storage device is determined.
An abnormality detection device characterized by the above.
請求項1に記載の異常検出装置において、
前記蓄電装置は、電気的に直列接続された少なくとも1つの電池ブロックであって、
前記異常検知部は、
前記蓄電装置の前記基準電位からの電位Vtに、前記蓄電装置を構成する電池ブロックの数に基づいて定まる係数を乗算した値と、前記温度抵抗素子の電位Vsとの比較に基づいて、前記蓄電装置の液漏れの有無の判定を行う、
ことを特徴とする異常検出装置。
The abnormality detection device according to claim 1,
The power storage device is at least one battery block electrically connected in series,
The abnormality detection unit
Based on a comparison between a value obtained by multiplying a potential Vt from the reference potential of the power storage device by a coefficient determined based on the number of battery blocks constituting the power storage device, and a potential Vs of the temperature resistance element, Judging whether there is liquid leakage from the device,
An abnormality detection device characterized by the above.
請求項5に記載の異常検出装置において、
前記異常検知部は、
前記蓄電装置を構成する電池ブロックの数をM、1以上かつM以下の整数をm、前記係数をm/M、所定の閾値をSとして、|Vs−m/M×Vt|≦Sを満たすmが存在する場合に、前記基準電位側からm番目に接続された電池ブロックの液漏れとして異常を検知する、
ことを特徴とする異常検出装置。
In the abnormality detection device according to claim 5,
The abnormality detection unit
When the number of battery blocks constituting the power storage device is M, an integer not less than 1 and not more than M is m, the coefficient is m / M, and a predetermined threshold is S, | Vs−m / M × Vt | ≦ S is satisfied. When m is present, an abnormality is detected as a leakage of the battery block connected mth from the reference potential side.
An abnormality detection device characterized by the above.
蓄電装置の表面に設けられた温度抵抗素子の基準電位からの電位Vsに基づいて、当該蓄電装置の温度を演算する温度検出部と、
前記温度抵抗素子の電位Vsに基づく前記温度抵抗素子の不具合の検知、および前記蓄電装置の液漏れの検知を行う異常検知部であって、たとえ前記温度抵抗素子の電位Vsが所定の電位範囲に含まれない場合でも、前記蓄電装置の液漏れを検知した場合には、前記温度抵抗素子の不具合ではなく、前記蓄電装置の液漏れとして異常を検知する異常検知部と、
を備える蓄電装置の異常検出装置。
A temperature detector that calculates the temperature of the power storage device based on the potential Vs from the reference potential of the temperature resistance element provided on the surface of the power storage device;
An abnormality detection unit that detects a malfunction of the temperature resistance element based on the potential Vs of the temperature resistance element and a liquid leak of the power storage device, even if the potential Vs of the temperature resistance element is within a predetermined potential range. Even when it is not included, when a liquid leakage of the power storage device is detected, an abnormality detection unit that detects an abnormality as a liquid leakage of the power storage device, not a malfunction of the temperature resistance element,
An abnormality detection device for a power storage device comprising:
蓄電装置の表面に設けられた温度抵抗素子の基準電位からの電位Vsに基づいて、当該蓄電装置の温度を演算する温度検出部と、
前記温度抵抗素子の電位Vsが所定の電位範囲に含まれない場合に、前記温度抵抗素子の不具合として異常を検知する異常検知部であって、前記温度抵抗素子の不具合の検知に先立って、前記蓄電装置の液漏れの有無の判定を行い、前記蓄電装置の液漏れを検知しなかった場合のみ、前記温度抵抗素子の不具合の検知を行う異常検知部と、
を備える蓄電装置の異常検出装置。
A temperature detector that calculates the temperature of the power storage device based on the potential Vs from the reference potential of the temperature resistance element provided on the surface of the power storage device;
An abnormality detection unit that detects an abnormality as a malfunction of the temperature resistance element when the potential Vs of the temperature resistance element is not included in a predetermined potential range, and prior to the detection of the malfunction of the temperature resistance element, An abnormality detection unit that determines whether or not there is a liquid leakage of the power storage device and detects a failure of the temperature resistance element only when the liquid leakage of the power storage device is not detected;
An abnormality detection device for a power storage device comprising:
JP2007271960A 2007-10-19 2007-10-19 Storage device abnormality detection device Expired - Fee Related JP5059543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271960A JP5059543B2 (en) 2007-10-19 2007-10-19 Storage device abnormality detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271960A JP5059543B2 (en) 2007-10-19 2007-10-19 Storage device abnormality detection device

Publications (2)

Publication Number Publication Date
JP2009099473A true JP2009099473A (en) 2009-05-07
JP5059543B2 JP5059543B2 (en) 2012-10-24

Family

ID=40702280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271960A Expired - Fee Related JP5059543B2 (en) 2007-10-19 2007-10-19 Storage device abnormality detection device

Country Status (1)

Country Link
JP (1) JP5059543B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209273A (en) * 2010-03-26 2011-10-20 Simplo Technology Co Ltd Voltage detection circuit and method thereof
CN102236080A (en) * 2010-04-26 2011-11-09 新普科技股份有限公司 Voltage detecting circuit and method thereof
JP2018017528A (en) * 2016-07-25 2018-02-01 株式会社デンソー Electric leakage determination device
JP2018026246A (en) * 2016-08-09 2018-02-15 株式会社デンソー Battery monitoring device
JP2018045939A (en) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 Battery temperature monitoring system
JP2018049726A (en) * 2016-09-21 2018-03-29 トヨタ自動車株式会社 Battery temperature monitoring system
JP2018064377A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Power supply monitoring system for vehicle using satellite board
CN113711073A (en) * 2020-03-17 2021-11-26 株式会社Lg新能源 Apparatus and method for predicting abnormal condition of battery and battery management system providing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269423A (en) * 1989-04-07 1990-11-02 Matsushita Electric Works Ltd Charge controlling circuit
JPH05109436A (en) * 1991-10-15 1993-04-30 Matsushita Electric Ind Co Ltd Method of detecting liquid leaking from battery
JP2002075465A (en) * 2000-09-04 2002-03-15 Sanyo Electric Co Ltd Leakage detection method of battery system and detection circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269423A (en) * 1989-04-07 1990-11-02 Matsushita Electric Works Ltd Charge controlling circuit
JPH05109436A (en) * 1991-10-15 1993-04-30 Matsushita Electric Ind Co Ltd Method of detecting liquid leaking from battery
JP2002075465A (en) * 2000-09-04 2002-03-15 Sanyo Electric Co Ltd Leakage detection method of battery system and detection circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209273A (en) * 2010-03-26 2011-10-20 Simplo Technology Co Ltd Voltage detection circuit and method thereof
US8427132B2 (en) 2010-03-26 2013-04-23 Simplo Technology Co., Ltd Voltage detection circuit and method thereof
TWI413789B (en) * 2010-03-26 2013-11-01 Simplo Technology Co Ltd Voltage detection circuit and method thereof
CN102236080A (en) * 2010-04-26 2011-11-09 新普科技股份有限公司 Voltage detecting circuit and method thereof
JP2018017528A (en) * 2016-07-25 2018-02-01 株式会社デンソー Electric leakage determination device
JP2018026246A (en) * 2016-08-09 2018-02-15 株式会社デンソー Battery monitoring device
JP2018045939A (en) * 2016-09-16 2018-03-22 トヨタ自動車株式会社 Battery temperature monitoring system
JP2018049726A (en) * 2016-09-21 2018-03-29 トヨタ自動車株式会社 Battery temperature monitoring system
JP2018064377A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Power supply monitoring system for vehicle using satellite board
CN113711073A (en) * 2020-03-17 2021-11-26 株式会社Lg新能源 Apparatus and method for predicting abnormal condition of battery and battery management system providing the same
CN113711073B (en) * 2020-03-17 2024-05-14 株式会社Lg新能源 Apparatus and method for predicting abnormal condition of battery and battery management system providing the same

Also Published As

Publication number Publication date
JP5059543B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5059543B2 (en) Storage device abnormality detection device
JP4283615B2 (en) Secondary battery voltage correction method and apparatus, and secondary battery remaining capacity estimation method and apparatus
US9716520B2 (en) Integrated standard-compliant data acquisition device
US10620274B2 (en) Method and apparatus for contact detection in battery packs
KR100791215B1 (en) Method and apparatus of detecting voltage for battery pack
US10826138B2 (en) Method and apparatus for contact detection in battery packs
US11965936B2 (en) Battery diagnosis apparatus and method
KR20130112802A (en) Apparatus for measuring isolation resistance having malfunction self -diagnosing function and malfunction self-diagnosing method using the same
US10066999B2 (en) System and method for monitoring exceptional watt hour meter terminal temperature
US10444293B2 (en) Battery voltage measurement circuit
US11130406B2 (en) Integrated standard-compliant data acquisition device
US20110311850A1 (en) Secondary battery device
US20100173183A1 (en) Systems and Methods of Battery Cell Anomaly Detection
JP6016754B2 (en) Battery voltage detector
US9977093B2 (en) Electronic apparatus, system for estimating degradation of internal power supply, and method of estimating degradation of internal power supply
WO2023168542A1 (en) Method and device for calibrating contact resistance of battery connecting piece, and electric device
KR20200002016A (en) Apparatus and method for diagnosing current sensor
JP6599831B2 (en) Battery temperature monitoring system
US10436852B2 (en) Battery monitoring using a redundant neighbor measurement
JP2004247319A (en) Battery fault detecting method
JP2023107032A (en) Insulation resistance detector and fault detection method
CN113748353A (en) Device and method for diagnosing battery cell
JP3749963B2 (en) Overdischarge protection device for battery pack
JP7475320B2 (en) Earth leakage detection method
US8816716B2 (en) Diagnostic apparatus for erroneous installation of power storage stacks and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees