JP2018064310A - ロータ組立体 - Google Patents

ロータ組立体 Download PDF

Info

Publication number
JP2018064310A
JP2018064310A JP2016199776A JP2016199776A JP2018064310A JP 2018064310 A JP2018064310 A JP 2018064310A JP 2016199776 A JP2016199776 A JP 2016199776A JP 2016199776 A JP2016199776 A JP 2016199776A JP 2018064310 A JP2018064310 A JP 2018064310A
Authority
JP
Japan
Prior art keywords
cylindrical member
rotating shaft
rotor assembly
rotor
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016199776A
Other languages
English (en)
Inventor
中村 修
Osamu Nakamura
修 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2016199776A priority Critical patent/JP2018064310A/ja
Publication of JP2018064310A publication Critical patent/JP2018064310A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

【課題】製造コストの上昇を抑えつつ容易に共振周波数を高めることができるロータ組立体を提供する。
【解決手段】回転軸62に、当該回転軸62の剛性を高める筒状部材65が設けられ、筒状部材65の軸方向と交差する方向の断面形状が非円形形状とされ、筒状部材65の径方向内側が回転軸62の径方向外側に部分的に接触されている。これにより、筒状部材65を弾性変形可能として、筒状部材65をかじること無く回転軸62に容易に装着して、回転軸62の剛性を高める(共振周波数を高める)ことができる。また、筒状部材65を鋼管から容易に形成することができるので、製造コストの上昇を抑えることができる。
【選択図】図6

Description

本発明は、モータ装置に用いられるロータ組立体に関する。
従来、自動車等の車両に搭載されるワイパ装置等の駆動源には、小型でありながら大きな出力が可能な減速機構付きのモータ装置が用いられている。これにより、車両への搭載性を向上させて、ひいては小型車両から大型車両まで適用することができる。また、近年のハイブリッド車両や電気自動車等の普及により、小型かつ高出力化への対応は勿論のこと、より静粛性を向上させたモータ装置の開発が望まれている。
ここで、モータ装置の騒音を悪化させる原因には、例えば、以下に示すものがある。すなわち、モータ装置の回転部分を形成するロータ組立体の共振周波数(固有振動数)と、モータ装置の極数やスロット数等で決まる周期的な騒音(磁気振動)の周波数とが合致することで、モータ装置全体としての騒音が大きくなることが挙げられる。言い換えれば、ロータ組立体の剛性を弱めたりまたは強めたりしてその共振周波数を調整することで、モータ装置全体としての静粛性を向上させることができる。
ロータ組立体を形成する回転軸やロータの剛性を弱めて、ロータ組立体の共振周波数を低くし、これにより磁気振動の周波数に対してロータ組立体の共振周波数をずらせるが、この場合には、モータ装置の仕様に応じて複雑な形状の回転軸やロータを準備する必要があり、製造コストが上昇する。したがって、ロータ組立体の共振周波数を調整するには、例えば、回転軸に単純な形状のスリーブを装着して、回転軸の剛性を高めるのが望ましい。この方が、複雑な形状の回転軸やロータを準備する場合に比して、製造コストの上昇が抑えられる。
このように、回転軸の剛性を高めるべく、回転軸にスリーブを装着させた技術が、例えば、特許文献1に記載されている。この特許文献1に記載された技術では、シャフト(回転軸)の軸方向に沿う積層コア(ロータ)と整流子(コンミテータ)との間に、パイプ状の金属製スリーブを装着している。
特開2003−319629号公報
しかしながら、上述の特許文献1に記載された技術では、パイプ状の金属製スリーブを、回転軸に圧入することで固定している。したがって、スリーブの回転軸への圧入時において、回転軸に対するスリーブのかじりが発生して、ひいてはスリーブの回転軸に対する位置精度がばらつく等の問題を生じ得る。具体的には、回転軸の軸心とスリーブの軸心とがずれる等の不具合が発生する。そこで、回転軸の外径寸法とスリーブの内径寸法とを精度良く仕上げることも考えられるが、この場合には、仕上げ加工が必要になる等、製造コストが上昇する。
本発明の目的は、製造コストの上昇を抑えつつ容易に共振周波数を高めることができるロータ組立体を提供することにある。
本発明の一態様では、モータ装置に用いられるロータ組立体であって、前記モータ装置への駆動電流の供給により回転されるロータと、前記ロータの軸心に固定され、前記ロータの回転を外部に出力する回転軸と、前記回転軸に装着され、前記回転軸の剛性を高める筒状部材と、を備え、前記筒状部材の軸方向と交差する方向の断面形状が非円形形状とされ、前記筒状部材の径方向内側が前記回転軸の径方向外側に部分的に接触されている。
本発明の他の態様では、前記筒状部材の前記回転軸に対する接触部分が、前記回転軸の周方向に等間隔で配置されている。
本発明の他の態様では、前記接触部分の数が奇数である。
本発明の他の態様では、前記筒状部材が、前記ロータと前記回転軸を回転自在に支持する軸受部材との間に設けられている。
本発明の他の態様では、前記モータ装置がブラシレスモータである。
本発明によれば、回転軸に、当該回転軸の剛性を高める筒状部材が設けられ、筒状部材の軸方向と交差する方向の断面形状が非円形形状とされ、筒状部材の径方向内側が回転軸の径方向外側に部分的に接触されているので、筒状部材を弾性変形可能として、筒状部材をかじること無く回転軸に容易に装着して、回転軸の剛性を高める(共振周波数を高める)ことができる。また、筒状部材を鋼管から容易に形成することができるので、製造コストの上昇を抑えることができる。
モータ装置を出力軸側から見た平面図である。 ハウジングの内部を示す斜視図である。 カバー部材,基板,基板カバーを示す分解斜視図である。 ロータ組立体を示す平面図である。 筒状部材を単体で示す斜視図である。 図4のA−A線に沿う断面図である。 他の筒状部材(変形例1)を示す断面図である。 他の筒状部材(変形例2)を示す断面図である。 他の筒状部材(変形例3)を示す断面図である。 他の筒状部材(変形例4)を示す断面図である。 (a),(b)は、軸心を通る任意の線分の長さを、接触部分の数が奇数の場合と偶数の場合とで比較したグラフである。 実施の形態2に係るロータ組立体を備えたモータ装置の平面図である。
以下、本発明の実施の形態1について、図面を用いて詳細に説明する。
図1はモータ装置を出力軸側から見た平面図を、図2はハウジングの内部を示す斜視図を、図3はカバー部材,基板,基板カバーを示す分解斜視図を、図4はロータ組立体を示す平面図を、図5は筒状部材を単体で示す斜視図を、図6は図4のA−A線に沿う断面図を、図7は他の筒状部材(変形例1)を示す断面図を、図8は他の筒状部材(変形例2)を示す断面図を、図9は他の筒状部材(変形例3)を示す断面図を、図10は他の筒状部材(変形例4)を示す断面図を、図11(a),(b)は軸心を通る任意の線分の長さを、接触部分の数が奇数の場合と偶数の場合とで比較したグラフをそれぞれ示している。
図1に示されるモータ装置10は、例えば、車両のフロントガラスを払拭するワイパ装置(図示せず)の駆動源に用いられるものである。このモータ装置10は、所定の制御ロジックに基づいて正逆方向に回転駆動され、これによりフロントガラス上のワイパ部材(図示せず)が往復払拭動作されて、フロントガラス上に付着した雨水等が払拭される。
モータ装置10は、電動モータ50および減速機構70を収容するハウジング20と、ハウジング20の第1開口部21(図2参照)を閉塞するカバー部材30(図3参照)と、ハウジング20の第2開口部(図示せず)を閉塞するモータカバー40とを備えている。そして、これらのハウジング20,カバー部材30およびモータカバー40は、互いに組み立てられた状態のもとで、モータ装置10の外郭を形成する。
ハウジング20は、溶融したアルミ材料等を鋳造成形することで所定形状に形成され、有底の略バスタブ形状に形成された減速機構収容部22を備えている。また、ハウジング20は、減速機構収容部22に一体に設けられ、有底の略円筒形状に形成されたモータ固定部23を備えている。このように、ハウジング20には、減速機構収容部22とモータ固定部23とが一体に設けられている。なお、ハウジング20の殆どの部分を減速機構収容部22が占めている。
減速機構収容部22の内部およびモータ固定部23の内部は、互いに連通されており、減速機構収容部22の内部およびモータ固定部23の内部には、電動モータ50を形成するロータ組立体60が、両者間を跨ぐようにして回転自在に収容されている。そして、モータ固定部23の減速機構収容部22側とは反対側に第2開口部が形成され、この第2開口部を介してハウジング20の内部に電動モータ50が組み付けられるようになっている。
具体的には、電動モータ50を形成するステータ51が、モータ固定部23の径方向内側に固定され、モータ固定部23に固定されたステータ51の径方向内側に、ロータ組立体60が回転自在に収容される。なお、ステータ51の軸方向一側(図中右側)の略半分が、モータ固定部23の径方向内側に圧入により固定されている。
モータ固定部23の第2開口部側(図中左側)には、径方向外側に膨出された環状のフランジ部23aが一体に設けられている。このフランジ部23aには、モータカバー40の軸方向に沿う底部41側とは反対側に設けられた環状のカバーフランジ42が突き合わされている。そして、フランジ部23aおよびカバーフランジ42は、一対の締結ねじS1(図示では1つのみ示す)を介して互いに固定されている。これにより、ステータ51の軸方向他側(図中左側)の略半分が、モータカバー40によって覆われる。なお、ステータ51はモータカバー40に対して非接触の状態とされる。よって、モータカバー40をモータ固定部23に対して容易に装着することができる。
ここで、モータカバー40は、プラスチック等の樹脂材料により有底筒状に形成され、略円盤状に形成された底部41と、径方向外側に膨出された環状のカバーフランジ42と、を備えている。そして、カバーフランジ42とフランジ部23aとの間には、シール剤等の密封部材が介在されている。これにより、電動モータ50が被水するのを防止している。
電動モータ50は、モータ固定部23の径方向内側に固定されたステータ51を備えている。ステータ51は、磁性体である鋼板を複数枚積層することで略筒状に形成され、その径方向内側には、複数のティース(図示せず)が設けられている。そして、これらのティースには、U相,V相,W相のコイル(図示せず)が、例えば、デルタ結線等の巻き方で巻装されている。
また、ステータ51の軸方向一側には、図2に示されるように、プラスチック等の樹脂材料よりなるターミナルホルダ52が装着されている。このターミナルホルダ52は、ステータ51に巻装された三相のコイルを集約し、かつこれらのコイルの端部を、減速機構収容部22の内部に引き出している。これにより、カバー部材30に装着された基板80(図3参照)に、それぞれのコイルの端部が電気的に接続される。
図1に示されるように、ステータ51の径方向内側には、ロータ組立体60を形成するロータ61が、所定の隙間(エアギャップ)を介して回転自在に設けられている。ロータ61は、磁性体である鋼板を複数枚積層することで略円柱状に形成され、その径方向外側には、略円筒形状に形成された永久磁石(図示せず)が装着されている。
このように、モータ装置10は、ロータ61の表面に永久磁石を装着したSPM(Surface Permanent Magnet)構造のブラシレスモータを採用している。ただし、SPM構造のブラシレスモータに限らず、ロータ61に複数の永久磁石を埋め込んだIPM(Interior Permanent Magnet)構造のブラシレスモータを採用しても良い。また、略円筒形状に形成した1つの永久磁石に換えて、ロータ61の軸線と交差する方向の断面形状が略円弧形状に形成された複数の永久磁石を、ロータ61の周方向に沿って磁極が交互に並ぶように等間隔で配置したものを採用しても良い。また、永久磁石の極数は、モータ装置10の仕様に応じて、2極あるいは4極以上等、任意に設定できる。
そして、基板80の制御により、ステータ51に巻装された三相のコイルに、順次所定のタイミングで駆動電流を供給することで、複数のティースのうちの電磁石とされるティースの位置が次々と切り換えられていく。これにより、ロータ61に設けられた永久磁石が、電磁石とされたティースに引き寄せられて、ひいてはロータ組立体60が所定の回転方向に所定の回転速度で回転される。このように、ロータ61は、モータ装置10への駆動電流の供給により回転される。
ロータ61の軸心には、回転軸62の基端側(図中左側)が固定されている。つまり、回転軸62は、ロータ61の回転を外部に出力するようになっている。なお、ここで言う外部とは、減速機構70のことを指している。回転軸62の先端側(図中右側)には、転造加工等により形成されたウォーム71(詳細は図4を参照)が一体に設けられている。ここで、ウォーム71は、減速機構収容部22に収容されたウォームホイール72とともに、減速機構70を構成している。
減速機構70を形成するウォームホイール72は、プラスチック等の樹脂材料により形成され、減速機構収容部22の内部に回転自在に収容されている。ウォームホイール72の軸心には、出力軸73の基端側が固定され、出力軸73の先端側は減速機構収容部22の外部に延出されている。ここで、出力軸73の先端側には、ワイパ装置を構成するリンク機構(図示せず)が固定される。
ウォームホイール72の外周部には、ギヤ歯72a(詳細図示せず)が形成され、このギヤ歯72aには、回転軸62に一体に設けられたウォーム71が噛み合わされている。なお、ウォーム71およびウォームホイール72よりなる減速機構70は、回転軸62の回転を所定の回転数にまで減速して高トルク化し、高トルク化された回転力を出力軸73からリンク機構に出力する。
図2に示されるように、ウォームホイール72の軸心であって、かつ出力軸73側とは反対側には、ウォームホイール用センサマグネットWMが固定されている。ウォームホイール用センサマグネットWMには、出力軸73(図1参照)の回転方向に沿って複数の磁極(図示せず)が設けられている。これにより、ウォームホイール用センサマグネットWMの磁極が出力軸73の回転に伴って交互に出現する。そして、基板80のウォームホイール用センサマグネットWMとの対向部分には、1つのMRセンサ(図示せず)が実装されている。これにより、MRセンサにより出力軸73の回転方向や回転位置等が検出される。なお、出力軸73が設けられたウォームホイール72は、第1開口部21を介して減速機構収容部22の内部に収容される。
減速機構収容部22の第1開口部21は、図3に示されるカバー部材30によって閉塞されている。ここで、カバー部材30は、減速機構収容部22に対して3つの固定ねじS2で固定されている。なお、減速機構収容部22とカバー部材30との間には、ゴムパッキン等の弾性シール(図示せず)が介在され、これにより、減速機構収容部22の内部への雨水等の進入が防止される。カバー部材30は、溶融したプラスチック材料を射出成形等することで有底状に形成され、その外郭形状は、図2に示されるように、減速機構収容部22の外郭形状と略同じ形状とされている。
図3に示されるように、カバー部材30には、車両側の外部コネクタCN(図1参照)が接続されるコネクタ接続部31が一体に設けられている。また、カバー部材30の内側には、モータ装置10を制御する基板80が装着されている。具体的には、基板80は、カバー部材30の内側に、複数の固定ねじ(図示せず)によって固定されている。そして、基板80の表面および裏面には、それぞれホールICやMRセンサ等の複数の電子部品EPが実装されている。
ここで、複数の電子部品EPには、ホールICやMRセンサの他にも、モータ装置10を統括的に制御するCPUや、U相,V相,W相でそれぞれ2つずつのFET素子等がある。そして、CPUには、ホールICやMRセンサからのセンサ信号がそれぞれ入力され、CPUは、これらのセンサ信号の入力に応じて、各FET素子をそれぞれ所定のタイミングでスイッチングさせる。これにより、電動モータ50(図1参照)が制御される。
また、基板80は、基板カバー90によって覆われている。すなわち、基板80は、減速機構収容部22(図2参照)の内部で、カバー部材30と基板カバー90との間に配置される。基板カバー90は、プラスチック等の樹脂材料を射出成形等することで、薄板状に形成されている。これにより、ウォーム71とウォームホイール72との間に塗布されたグリス(図示せず)が、基板80に飛散して付着することが防止される。
ここで、基板カバー90の略中央部分には、貫通穴91が設けられている。この貫通穴91は、ウォームホイール用センサマグネットWM(図2参照)との対向部に配置され、これによりMRセンサの検出精度が低下するのを防止する。なお、グリスは、ウォーム71とウォームホイール72との間に塗布されるため、貫通穴91がある部分には到達されない。
次に、ロータ組立体60の詳細構造について、図面を用いて説明する。
図4に示されるように、ロータ組立体60は、モータ装置10(図1参照)への駆動電流の供給により回転されるロータ61と、当該ロータ61の軸心に固定され、ロータ61の回転を減速機構70(図1参照)に出力する回転軸62と、を備えている。そして、回転軸62の先端側(図中左側)にウォーム71が形成され、回転軸62の基端側(図中右側)にロータ61が固定されている。
回転軸62の軸方向に沿う略中央部分には、第1軸受部材(軸受部材)63が装着されている。第1軸受部材63は玉軸受とされ、内レース(内輪),外レース(外輪)および両者間に配置された複数の玉(鋼球)を備えている。そして、第1軸受部材63の内レースは、回転軸62の軸方向に沿う略中央部分に、当該回転軸62をかしめること等により固定されている。すなわち、第1軸受部材63は、回転軸62の軸方向に移動不能となっている。
一方、第1軸受部材63の外レースは、図2に示される減速機構収容部22の内部に設けられた第1軸受収容部22aの内部に収容されている。よって、第1軸受部材63は、回転軸62を回転自在に支持しつつ、ハウジング20に対する回転軸62の軸方向への移動を規制している。
また、回転軸62の軸方向に沿うウォーム71と第1軸受部材63との間には、回転軸用センサマグネットSMが固定されている。回転軸用センサマグネットSMには、回転軸62の回転方向に沿って複数の磁極(図示せず)が設けられている。回転軸用センサマグネットSMは、回転軸62とともに回転され、これにより回転軸用センサマグネットSMの磁極が回転軸62の回転に伴って交互に出現する。そして、基板80の回転軸用センサマグネットSMとの対向部分には、複数のホールIC(図示せず)が設けられている。これにより、各ホールICにより回転軸62の回転数や回転方向、回転位置等が検出される。
回転軸62の軸方向に沿うウォーム71よりも先端側には、第2軸受部材64が装着されている。第2軸受部材64においても玉軸受とされ、内レース(内輪),外レース(外輪)および両者間に配置された複数の玉(鋼球)を備えている。そして、第2軸受部材64の内レースは、回転軸62の軸方向に沿う先端部分に、固定では無く取り外し自在に装着されている。これに対し、第2軸受部材64の外レースは、図2に示される減速機構収容部22の内部に設けられた第2軸受収容部22bの内部に収容されている。よって、第2軸受部材64は、回転軸62の先端側の軸方向と交差する方向への振れを抑制している。
また、回転軸62の軸方向に沿うロータ61と第1軸受部材63との間には、回転軸62の剛性を高める筒状部材65が装着されている。つまり、回転軸62の軸方向に沿うロータ61と第1軸受部材63との間の部分の剛性が、筒状部材65によって高められている。これにより、ロータ組立体60の共振周波数f1(Hz)が、筒状部材65を備えないロータ組立体(図示せず)の共振周波数f2(Hz)よりも高められる(f1>f2)。よって、モータ装置10の磁気振動の周波数m(Hz)から、ロータ組立体60の共振周波数f1(Hz)が大きくずらされて、モータ装置10の騒音が低減される(f1>m,f2≒m)。
図5および図6に示されるように、筒状部材65は、所定の肉厚の鋼管をプレス加工等することで、その軸方向と交差する方向の断面形状が非円形形状となっている。具体的には、筒状部材65は、外周面65aおよび内周面65bを備え、筒状部材65の周方向に沿って略波形形状に形成されている。筒状部材65は、その軸心Cからの距離がR1とされて外周面65a側に突出された円弧状凸部65cと、軸心Cからの距離がR2とされて内周面65b側に窪んだ円弧状凹部65dと、を備えている(R1>R2)。
ここで、距離R1,R2は、それぞれ軸心Cと外周面65aとの間の距離とされる。そして、本実施の形態では、円弧状凸部65cおよび円弧状凹部65dが、それぞれ9個ずつ筒状部材65の周方向に交互に等間隔(20度間隔)で配置されている。言い換えれば、本実施の形態の筒状部材65は、「9角(奇数角)の星形スリーブ」で構成されている。
図6に示されるように、筒状部材65は、回転軸62の周囲に装着されている。具体的には、断面形状が円形の回転軸62の外周壁62aに対して、筒状部材65の円弧状凹部65dの先端部分が、所定の押圧力で接触(線接触)されている。このように、本実施の形態では、筒状部材65の径方向内側が、回転軸62の径方向外側に部分的に接触されている。ここで、図6に示される白丸印の部分は、筒状部材65の回転軸62に対する接触部分CPを表しており、当該接触部分CPは、回転軸62の周方向に等間隔(40度間隔)で配置され、その数は9個(奇数)となっている。
これにより、筒状部材65の回転軸62に対する装着を従前に比して容易にできる。すなわち、筒状部材65は、回転軸62にその軸方向から圧入されるが、自身が周方向に弾性変形可能であることも相俟って、その圧入荷重を従前に比して大幅に小さくすることができる。よって、筒状部材65の回転軸62に対するかじりの発生が抑えられる。
また、円弧状凸部65cおよび円弧状凹部65dは、それぞれ筒状部材65の周方向に等間隔(40度間隔)で配置されている。そのため、筒状部材65は、回転軸62に対して、装着と同時に自動的に精度良くセンタリングされる。よって、筒状部材65の回転軸62に対する十分な同軸度が確保される。
ここで、筒状部材65は、図5および図6に示される形状に限らず、以下に示される種々の形状(変形例1,変形例2,変形例3,変形例4)に形成することができる。
[変形例1]
図7に示されるように、変形例1の筒状部材100は、その軸方向と交差する方向の断面形状が、筒状部材65(図6参照)と同様に、略波形形状(非円形形状)となっている。ただし、円弧状凸部101および円弧状凹部102が、それぞれ12個ずつ、筒状部材100の周方向に交互に等間隔(15度間隔)で配置されている。言い換えれば、変形例1の筒状部材100は、「12角(偶数角)の星形スリーブ」で構成されている。つまり、筒状部材100の回転軸62に対する接触部分CPの数は、12個(偶数)となっている。
[変形例2]
図8に示されるように、変形例2の筒状部材110は、その軸方向と交差する方向の断面形状が、筒状部材65(図6参照)と同様に、略波形形状(非円形形状)となっている。ただし、円弧状凸部111および円弧状凹部112が、それぞれ7個ずつ、筒状部材110の周方向に交互に等間隔(略25.7度間隔)で配置されている。言い換えれば、変形例2の筒状部材110は、「7角(奇数角)の星形スリーブ」で構成されている。つまり、筒状部材110の回転軸62に対する接触部分CPの数は、7個(奇数)となっている。
[変形例3]
図9に示されるように、変形例3の筒状部材120は、その軸方向と交差する方向の断面形状が、正5角形の略ホームベース形状(非円形形状)となっている。この筒状部材120は、回転軸62の周方向に交互に配置された5つの円弧状角部121および5つの直線部122を備えている。そして、回転軸62の外周壁62aに対して、5つの直線部122が、それぞれ所定の押圧力で、接触部分CPを介して線接触されている。言い換えれば、回転軸62は、断面形状が正5角形の筒状部材120に内接されている。このように、筒状部材120の回転軸62に対する接触部分CPの数は5個(奇数)とされ、これらの接触部分CPは、回転軸62の周方向に等間隔(72度間隔)で配置されている。ただし、回転軸62を正5角形に内接させるに限らず、正7角形,正9角形,正12角形等に内接させるようにしても良い。
[変形例4]
図10に示されるように、変形例4の筒状部材130は、その軸方向と交差する方向の断面形状が、略花びら形状(非円形形状)となっている。この筒状部材130は、回転軸62の周方向に交互に配置された5つの大円弧状凸部131および5つの小円弧状凹部132を備えている。なお、回転軸62の周方向に沿う大円弧状凸部131の長さの方が、回転軸62の周方向に沿う小円弧状凹部132の長さよりも長くなっている。そして、回転軸62の外周壁62aに対して、5つの小円弧状凹部132の先端部分が、それぞれ所定の押圧力で、接触部分CPを介して線接触されている。このように、筒状部材130の回転軸62に対する接触部分CPの数は、5個(奇数)とされ、これらの接触部分CPは、回転軸62の周方向に等間隔(72度間隔)で配置されている。ただし、回転軸62に線接触される小円弧状凹部132の数は5個に限らず、7個,9個,12個等であっても良い。
ここで、図6および図11(a)に示されるように、筒状部材65(9角の星形スリーブ)においては、軸心Cを横切る任意の線分L1〜L5の長さが、それぞれ同じ長さとなっている。なお、線分L1〜L5は、軸心Cを通る筒状部材65の外周面65aを結ぶ線分である。そして、線分L1〜L5の長さがそれぞれ同じ長さとなる理由は、軸心Cを挟む円弧状凸部65cの反対側(対向位置)に円弧状凹部65dが配置されるからである。これにより、回転軸62の筒状部材65が設けられた部分の周方向に沿う剛性が、どの部分においても略同じ剛性となる。
したがって、回転軸62が回転する際に、その回転方向に沿って高剛性の部分と低剛性の部分とが交互に現れないようにできる。これは、筒状部材65を設けたことに起因する回転軸62の回転ブレが抑えられることを意味しており、よって、共振対策(静粛性に優れたロータ組立体の設計)を容易に行うことができる。ここで、上述のような効果が得られる形状には、図6の筒状部材65の形状のように接触部分CPが奇数である、図8の筒状部材110(変形例2),図9の筒状部材120(変形例3),図10の筒状部材130(変形例4)が当てはまる。
ただし、図10の筒状部材130(変形例4)においては、回転軸62の周方向に沿う大円弧状凸部131の長さの方が、回転軸62の周方向に沿う小円弧状凹部132の長さよりも長いため、大円弧状凸部131から軸心Cを通って大円弧状凸部131に到達される線分L6が存在する。この線分L6の長さは、小円弧状凹部132から軸心Cを通って大円弧状凸部131に到達される線分L7の長さよりも長くなる(L6>L7)。したがって、筒状部材65,110,120に比して若干の回転ブレが生じることになるが、この回転ブレの大きさは、共振対策を困難にさせる程の悪影響を与えることは無い。
これに対し、図7および図11(b)に示されるように、変形例1の筒状部材100(12角の星形スリーブ)においては、回転軸62の軸心Cを横切る任意の線分L1〜L5の長さが、多少ばらつくことになる。これは、接触部分CPの数が偶数であり、軸心Cを挟む円弧状凸部101の反対側(対向位置)に円弧状凸部101が配置され、軸心Cを挟む円弧状凹部102の反対側(対向位置)に円弧状凹部102が配置されることが理由である。よって、この場合においても、筒状部材65,110,120に比して若干の回転ブレが生じることになるが、この回転ブレの大きさについても、共振対策を困難にさせる程の悪影響を与えることは無い。
以上のことから、筒状部材を設ける際に設計し易い条件、つまり上述した回転ブレを気にしなくて済むための条件には、接触部分CPの数が奇数であること、および軸心Cを通る任意の線分の長さが略同じ長さになることが挙げられる。すなわち、図6,図8,図9に示される筒状部材65,110,120が、筒状部材としてより望ましい形状となる。特に、より望ましい形状である筒状部材65,110,120においては、回転軸が高速回転される減速機構付きのモータ装置に用いてより好適である。
以上詳述したように、実施の形態1におけるロータ組立体60によれば、回転軸62に、当該回転軸62の剛性を高める筒状部材65(変形例1〜4を含む)が設けられ、筒状部材65の軸方向と交差する方向の断面形状が非円形形状とされ、筒状部材65の径方向内側が回転軸62の径方向外側に部分的に接触されているので、筒状部材65を弾性変形可能として、筒状部材65をかじること無く回転軸62に容易に装着して、回転軸62の剛性を高める(共振周波数を高める)ことができる。また、筒状部材65を鋼管から容易に形成することができるので、製造コストの上昇を抑えることができる。
また、実施の形態1におけるロータ組立体60によれば、筒状部材65(変形例1〜4を含む)の回転軸62に対する接触部分CPが、回転軸62の周方向に等間隔で配置されているので、筒状部材65を、回転軸62に対して、装着と同時に自動的に精度良くセンタリングすることができる。よって、筒状部材65の回転軸62に対する十分な同軸度を確保することができる。
さらに、実施の形態1におけるロータ組立体60によれば、変形例1(図7参照)を除き、接触部分CPの数を奇数としたので、筒状部材を設けたことに起因する回転軸62の回転ブレを抑えることができる。よって、共振対策(静粛性に優れたロータ組立体の設計)を容易に行うことが可能となる。
また、実施の形態1におけるロータ組立体60によれば、筒状部材65(変形例1〜4を含む)が、ロータ61と回転軸62を回転自在に支持する第1軸受部材63との間に設けられているので、筒状部材65を利用して回転軸62に対するロータ61の位置決めを行うことができる。つまり、筒状部材65をロータ61の位置決め部品として機能させることができる。よって、ロータ組立体60の組み立て作業の簡素化が図れる。
さらに、実施の形態1におけるロータ組立体60によれば、当該ロータ組立体60が適用されるモータ装置10がブラシレスモータであるので、ブラシノイズ(電気ノイズ)が発生せず、より静粛性に優れたモータ装置10を提供することができる。
次に、本発明の実施の形態2について、図面を用いて詳細に説明する。
図12は実施の形態2に係るロータ組立体を備えたモータ装置の平面図を示している。
図12に示されるように、実施の形態2に係るロータ組立体210は、ブラシ付きの減速機構付きワイパモータ(モータ装置)200に採用されている。ロータ組立体210は回転軸211を備え、当該回転軸211の基端側(図中左側)にはコイル212が巻装されたアーマチュアコア213が固定されている。なお、アーマチュアコア213の周囲には、複数の永久磁石214が配置されている。また、回転軸211の先端側(図中右側)には、第1ウォーム215aおよび第2ウォーム215bが一体に設けられている。
回転軸211の軸方向に沿う第2ウォーム215bとアーマチュアコア213との間には、複数のブラシ216が摺接されるコンミテータ(整流子)217が固定されている。ここで、コンミテータ217には、コイル212が電気的に接続されている。また、各ブラシ216は、それぞれブラシスプリング218によりコンミテータ217に向けて押圧されている。
さらに、減速機構付きワイパモータ200を構成する減速機構219は、第1ウォーム215aおよび第2ウォーム215bと、出力軸220を備えた大径ギヤ221と、第1カウンタギヤ222と、第2カウンタギヤ223とから構成されている。第1カウンタギヤ222は、第1ウォーム215aと大径ギヤ221との間に動力伝達可能に設けられ、第2カウンタギヤ223は、第2ウォーム215bと大径ギヤ221との間に動力伝達可能に設けられている。これにより、回転軸211の回転数が所定の回転数にまで減速されて、高トルク化された回転力が出力軸220から出力される。
そして、実施の形態2に係るロータ組立体210では、実施の形態1で説明した筒状部材65,100(変形例1),110(変形例2),120(変形例3),130(変形例4)が、回転軸211の軸方向に沿うコンミテータ217とアーマチュアコア213との間に設けられている。
以上のように形成された実施の形態2のロータ組立体210においても、上述した実施の形態1と同様の作用効果を奏することができる。
本発明は上記各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記各実施の形態では、ロータ組立体60,210を、ワイパ装置の駆動源に用いられるモータ装置に適用した場合を示したが、本発明はこれに限らず、自動車等の車両に搭載される他の駆動機構(スライドドア装置,パワーウィンド装置,サンルーフ装置等)の駆動源に用いられるモータ装置に適用することもできる。
その他、上記各実施の形態における各構成要素の材質,形状,寸法,数,設置箇所等は、本発明を達成できるものであれば任意であり、上記各実施の形態に限定されない。
10 モータ装置
20 ハウジング
21 第1開口部
22 減速機構収容部
22a 第1軸受収容部
22b 第2軸受収容部
23 モータ固定部
23a フランジ部
30 カバー部材
31 コネクタ接続部
40 モータカバー
41 底部
42 カバーフランジ
50 電動モータ
51 ステータ
52 ターミナルホルダ
60 ロータ組立体
61 ロータ
62 回転軸
62a 外周壁
63 第1軸受部材(軸受部材)
64 第2軸受部材
65 筒状部材
65a 外周面
65b 内周面
65c 円弧状凸部
65d 円弧状凹部
70 減速機構
71 ウォーム
72 ウォームホイール
72a ギヤ歯
73 出力軸
80 基板
90 基板カバー
91 貫通穴
100 筒状部材(変形例1)
101 円弧状凸部
102 円弧状凹部
110 筒状部材(変形例2)
111 円弧状凸部
112 円弧状凹部
120 筒状部材(変形例3)
121 円弧状角部
122 直線部
130 筒状部材(変形例4)
131 大円弧状凸部
132 小円弧状凹部
200 減速機構付きワイパモータ(モータ装置)
210 ロータ組立体
211 回転軸
212 コイル
213 アーマチュアコア
214 永久磁石
215a 第1ウォーム
215b 第2ウォーム
216 ブラシ
217 コンミテータ
218 ブラシスプリング
219 減速機構
220 出力軸
221 大径ギヤ
222 第1カウンタギヤ
223 第2カウンタギヤ
C 軸心
CN 外部コネクタ
CP 接触部分
EP 電子部品
S1 締結ねじ
S2 固定ねじ
SM 回転軸用センサマグネット
WM ウォームホイール用センサマグネット

Claims (5)

  1. モータ装置に用いられるロータ組立体であって、
    前記モータ装置への駆動電流の供給により回転されるロータと、
    前記ロータの軸心に固定され、前記ロータの回転を外部に出力する回転軸と、
    前記回転軸に装着され、前記回転軸の剛性を高める筒状部材と、
    を備え、
    前記筒状部材の軸方向と交差する方向の断面形状が非円形形状とされ、
    前記筒状部材の径方向内側が前記回転軸の径方向外側に部分的に接触されている、
    ロータ組立体。
  2. 請求項1記載のロータ組立体において、
    前記筒状部材の前記回転軸に対する接触部分が、前記回転軸の周方向に等間隔で配置されている、
    ロータ組立体。
  3. 請求項2記載のロータ組立体において、
    前記接触部分の数が奇数である、
    ロータ組立体。
  4. 請求項1〜3のいずれか1項に記載のロータ組立体において、
    前記筒状部材が、前記ロータと前記回転軸を回転自在に支持する軸受部材との間に設けられている、
    ロータ組立体。
  5. 請求項1〜4のいずれか1項に記載のロータ組立体において、
    前記モータ装置がブラシレスモータである、
    ロータ組立体。
JP2016199776A 2016-10-11 2016-10-11 ロータ組立体 Pending JP2018064310A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016199776A JP2018064310A (ja) 2016-10-11 2016-10-11 ロータ組立体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199776A JP2018064310A (ja) 2016-10-11 2016-10-11 ロータ組立体

Publications (1)

Publication Number Publication Date
JP2018064310A true JP2018064310A (ja) 2018-04-19

Family

ID=61968095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199776A Pending JP2018064310A (ja) 2016-10-11 2016-10-11 ロータ組立体

Country Status (1)

Country Link
JP (1) JP2018064310A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053002B1 (ko) * 2019-01-24 2019-12-09 디와이오토 주식회사 샤프트 유격 방지 구조가 개선된 차량용 소형 모터 장치
CN112602255A (zh) * 2018-09-03 2021-04-02 本田技研工业株式会社 电动动力单元以及作业机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602255A (zh) * 2018-09-03 2021-04-02 本田技研工业株式会社 电动动力单元以及作业机
KR102053002B1 (ko) * 2019-01-24 2019-12-09 디와이오토 주식회사 샤프트 유격 방지 구조가 개선된 차량용 소형 모터 장치
US11251678B2 (en) 2019-01-24 2022-02-15 Dy Auto Corporation Small-sized motor apparatus for vehicle provided with improved shaft thrust gap prevention structure

Similar Documents

Publication Publication Date Title
EP2475079B1 (en) Wiper motor
US10797561B2 (en) Brushless wiper motor
US11162574B2 (en) Speed reduction mechanism and motor with speed reducer
US10465767B2 (en) Actuator
US20130140964A1 (en) Motor for electric power steering device
KR101724787B1 (ko) 인휠모터시스템
JP7078455B2 (ja) 駆動装置
US10442401B2 (en) Brushless wiper motor
US10533653B2 (en) Motor with speed reduction mechanism
JP2009160721A (ja) 電動回転継手
JP2018064310A (ja) ロータ組立体
JP2006304558A (ja) モータ組込みハイポサイクロイド減速機
JP2006280088A (ja) ブラシレスモータ
KR20140095064A (ko) 구동 장치
JP6870989B2 (ja) ロータおよび電動モータ
US11916439B2 (en) Rotor, motor, and wiper motor having a structure for fixing a magnet to a rotor core
JP5973141B2 (ja) ブラシレスモータと、これを利用する電動パワーステアリング装置
JP2006311659A (ja) 車載アクチュエータ用モータ
WO2019077996A1 (ja) 駆動装置