JP2018064012A - 素子 - Google Patents

素子 Download PDF

Info

Publication number
JP2018064012A
JP2018064012A JP2016200808A JP2016200808A JP2018064012A JP 2018064012 A JP2018064012 A JP 2018064012A JP 2016200808 A JP2016200808 A JP 2016200808A JP 2016200808 A JP2016200808 A JP 2016200808A JP 2018064012 A JP2018064012 A JP 2018064012A
Authority
JP
Japan
Prior art keywords
layer
electrode
power generation
substrate
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016200808A
Other languages
English (en)
Inventor
崇尋 今井
Takahiro Imai
崇尋 今井
近藤 玄章
Haruaki Kondo
玄章 近藤
菅原 智明
Tomoaki Sugawara
智明 菅原
夕子 有住
Yuko Arisumi
夕子 有住
名取 潤一郎
Junichiro Natori
潤一郎 名取
荒海 麻由佳
Mayuka Araumi
麻由佳 荒海
秀之 宮澤
Hideyuki Miyazawa
秀之 宮澤
牧人 中島
Makihito Nakajima
牧人 中島
瑞樹 小田切
Mizuki Odagiri
瑞樹 小田切
恵 北村
Megumi Kitamura
恵 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016200808A priority Critical patent/JP2018064012A/ja
Publication of JP2018064012A publication Critical patent/JP2018064012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】同等の発電をする複数の素子が段階的に発電することで安定した出力を得る。【解決手段】本発明に係る素子200は、加圧することで発電する2以上の整数個の素子201,202,203が積層されたものであって、素子が加圧方向と垂直方向に変形可能であり、各素子の基材101A、101B、103C、105A、105B、105Cの長さが、1方向に順に短く形成されていて、加圧により、段階的に変形して発電することを特徴とする。【選択図】図2

Description

本発明は、素子に関する。
近年、機械的な付加圧力を電力に変換する圧電発電(素子)を利用した圧電発電装置が開発されている。このような圧電発電装置には、直接外力を加えることで圧電素子を変形させて起電力を得るものや、風力等の力を間接的に圧電素子に加えることで圧電素子を変形させて起電力を得るものがあり、起電力を電荷としてコンデンサ等の蓄電素子を備えた蓄電部に蓄積してしる。特許文献1には、長さ違いで複数積層された素子が多段的に変形することにより発電時間を延ばす発電素子が開示されている。
特許文献1の発電素子は、多段的に発電させて発電時間を延ばしているが、複数の素子のうち、ある素子に対し、別な素子が遅れて負荷を受ける形状であるため、それぞれ変形の仕方が異なり、ある素子に対し別な素子での発電が小さくなってしまい、安定した出力を得るのが難しい。
本発明は、同等の発電をする複数の素子が段階的に発電することで、安定した出力を得ることを、その目的とする。
本発明は、加圧することで発電する2以上の整数個の素子が積層された素子であって、素子が加圧方向と垂直方向に変形可能であり、各素子の基材の長さが、1方向に順に短く形成されていて、加圧により、段階的に変形して発電することを特徴としている。
本発明によれば、積載された素子の出力電圧に変動が起き難くなり、安定した出力を得ることができる。
本発明の実施形態に係る素子の基本構造を説明する図。 本発明の第1の実施形態に係る素子の構造を説明する図。 (a)〜(e)は、第1の実施形態に係る素子の変形を時間経過とともに説明した図。 本発明の第2の実施形態に係る素子の構成を説明する図。 特定の材料を用いた素子の発電時の波形を示したグラフ。 (a)、(b)は、特定の材料を用いた素子の異なる構造を説明する図。 素子の発電時の波形を示したグラフ。 (a)、(b)は、素子の発電量の測定方法の一例を説明する図。
以下、本発明に係る実施形態について図面を用いて説明する。実施形態において、同一機能や同一構成を有するものには同一の符号を付し、重複説明は適宜省略する。図面は一部構成の理解を助けるために部分的に省略する場合もある。
本発明に係る実施形態に係る素子は、外力を電力に変換する素子であって、同形状で積層された複数の素子が段階的変形することで、各層の素子の発電する電圧を等しく、発電出力を安定して持続可能としたものである。なお、本実施形態において、素子とは発電素子(積層素子)として説明するが、このような形態に限定するものではない。
図1は、本実施形態に係る素子としての発電素子100の構造を示す図である。図1において、発電素子100は、第一基板101、第一電極102、中間層103、第二電極104、第二基板105を備えている。第一電極102、中間層103、第二電極104は、第一基板101と第二基板105の間に積層されて配置されている。つまり、第一電極102の一方の面は第一基板101の一方の面に接合され、第一電極102の他方の面は中間層103の一方の面に接合されている。第二電極104の一方の面は中間層103の他方の面に接合され、第二電極104の他方の面は第二基板105の一方の面に接合されている。すなわち、本実施形態に係る発電素子100は、第一基板101、第一電極102、中間層103、第二電極104、第二基板105が積層されて構成されている。
第一基板101、及び第二基板105は、発電素子100の基材であり、その材質としては、例えば、高分子材料などが挙げられる。高分子材料としては、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリイミド樹脂、フッ素樹脂、アクリル樹脂などが挙げられる。
第一電極102、及び第二電極104の材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。第一電極102、及び第二電極104において、その材質、形状、大きさ、構造は、同じであってもよいし、異なっていてもよいが、同じであることが好ましい。
第一電極102、及び第二電極104の材質としては、例えば、金属、炭素系導電材料、導電性ゴム組成物、導電性高分子、酸化物などが挙げられる。
金属としては、例えば、金、銀、銅、アルミニウム、ステンレス、タンタル、ニッケル、リン青銅などが挙げられる。炭素系導電材料としては、例えば、カーボンナノチューブ、炭素繊維、黒鉛などが挙げられる。導電性ゴム組成物としては、例えば、導電性フィラーと、ゴムとを含有する組成物などが挙げられる。導電性高分子としては、例えば、ポリエチレンジオキシチオフェン(PEDOT)、ポリピロール、ポリアニリンなどが挙げられる。酸化物としては、例えば、酸化インジウム錫(ITO)、酸化インジウム・酸化亜鉛(IZO)、酸化亜鉛などが挙げられる。
前記導電性フィラーとしては、例えば、炭素材料(例えば、ケッチェンブラック、アセチレンブラック、黒鉛、炭素繊維、カーボンファイバー(CF)、カーボンナノファイバー(CNF)、カーボンナノチューブ(CNT)、グラフェンなど)、金属フィラー(金、銀、白金、銅、アルミニウム、ニッケルなど)、導電性高分子材料(ポリチオフェン、ポリアセチレン、ポリアニリン、ポリピロール、ポリパラフェニレン、及びポリパラフェニレンビニレンのいずれかの誘導体、又は、これら誘導体にアニオン若しくはカチオンに代表されるドーパントを添加したものなど)、イオン液体などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記ゴムとしては、例えば、シリコーンゴム、アクリルゴム、クロロプレンゴム、多硫化ゴム、ウレタンゴム、ブチルゴム、天然ゴム、エチレン・プロピレンゴム、ニトリルゴム、フッ素ゴム、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、アクリロニトリル・ブタジエンゴム、エチレン・プロピレン・ジエンゴム、クロロスルホン化ポリエチレンゴム、ポリイソブチレン、変成シリコーンなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
第一電極102の形状、及び第二電極104の形状としては、例えば、薄膜などが挙げられる。第一電極102の構造、及び第二電極104の構造としては、例えば、織物、不織布、編物、メッシュ、スポンジ、繊維状の炭素材料が重なって形成された不織布であってもよい。
第一電極102、及び第二電極104の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、導電性及び可撓性の点から、0.01μm〜1mmが好ましく、0.1μm〜500μmがより好ましい。このように平均厚みが、0.01μm以上であると、機械的強度が適正であり、導電性が向上する。また、このように平均厚みが、1mm以下であると、発電素子100が変形可能であり、発電性能が良好である。
中間層103は外力により変形すると発電する材料であり、例えば圧電素子(セラミックスやポリフッ化ビニリデン(PVDF)などがある)や特開2016−103967号公報に記載の素子や、第一電極102及び第二電極104との仕事関数差により摩擦帯電する材料を用いてもよい。たとえば、電極である金属と帯電列で離れている塩化ビニルなどがある。中間層103の材料は、これらに限定するものではなく、外力により変形が加わると発電する材料もしくは素子であればよい。また、中間層103の材料が、セラミックスなどの硬い材料の場合、変形により折れたり、割れたりして破損してしまうことが想定されるので、可撓性のある材料の方が適している。
つまり、中間層103の第一電極側と第二電極側とは同じ変形付与力に対する変形の度合いが異なるように構成されている。
第一基板101と第一電極102は互いの対向する面が接着され、第二基板105と第二電極104は互いの対向する面が接着されている。中間層103と第一電極102は、圧電素子など、接触帯電、剥離帯電を用いた発電方式の場合でなければ互いの対向する面が接着されており、接触帯電、剥離帯電を用いた発電方式の場合であれば接着はされない。中間層103と第二電極104は、互いの対向する面が接着されている。なおここでいう接着は、接着剤等による接着のみを示すものではなく、クーロン力などの物理現象などにより貼りついた状態も含んでいる。
(第1の実施形態)
図2は、図1に示した発電素子100を用いて作製された素子としての積層素子である発電素子200の構成を示す図である。図2では、発電素子100に相当する素子201、202、203を3つ用いて3層構造の積層素子とした発電素子200を示すが、発電素子200の層構造としては3層に限定するものではなく、2以上の整数層の素子を有する発電素子200であればよい。なお、図2の説明では、素子201を第一層素子201とし、素子202を第二層素子202とし、素子203を第三層素子203とする。発電素子200は、第一層素子201から第三層素子203が並列配置されて積層されているが、互いに接着はされておらず、独立して変形可能に構成されている。第一層素子201から第三層素子203は、それぞれ変形することで発電するが、同一の力が加わり、同一の変形(変形率)が行われることで、同一の電圧が出力されるように構成されている。
図2に示す構成は、本実施形態の最小限の構成を示すものであり、実際に変形を起こすために、発電素子200を構成する第一層素子201から第三層素子203をそれぞれ支持する構造がある。例えば外圧の方向を図2の上下方向とした場合、上下方向より第一層素子201〜第三層素子203をそれぞれ支持するための部材である板で挟む、第一層素子201〜第三層素子203の変形を阻害しない範囲で全体をカバー材等で覆うことで、支持構造を構成することができる。あるいは、加圧により長さ違いの第一層素子201〜第三層素子203の端部が床や壁等に触れるような場所に設置することで支持構造を構成してもよい。
発電素子200は、第一層素子201に比べ、第二層素子202は短く、さらに第三層素子203は第二層素子202より短く形成されている。すなわち、第一層素子201〜第三層素子203と発電素子100との違いは、第一基板と第二基板の長さが異なっている。第一層素子201に用いている第一基板101Aと第二基板105Aは同一の長さである。第二層素子202に用いている第一基板101Bと第二基板105Bは同一の長さであるが、第一基板101Aと第二基板105Aよりも短く設定されている。第三層素子203に用いている第一基板101Cと第二基板105Cは同一の長さであるが、第一基板101Bと第二基板105Bよりも短く設定されている。第一層素子201〜第三層素子203は、それぞれ第一基板101A〜101Cと第二基板105A〜105が、一方の端部側で揃えて積層配置されている。また、第一層素子201〜第三層素子203で用いている第一電極102A〜102C、中間層103A〜103C、第二電極104A〜104Cは同一の長さであり、その中心が同一中心線Z上に位置するように配置されている。すなわち、発電素子200は、第一基板101A〜101Cと第二基板105A〜105Cの長さが異なるので、第一層素子201〜第三層素子203の外観形状は異なっているが、発電に寄与する第一電極102A〜102C、中間層103A〜103C、第二電極104A〜104Cは同一の長さであり、同形状とされている。つまり、発電素子200は、第一層素子201から第三層素子203に向かって層が進むにつれて、層素子が短くなるように構成されている。
次に、このような発電素子200の変形について説明する。図3(a)〜(e)は、発電素子200の変形を時間経過とともに示した図である。図3(a)は変形前の状態を示している。この変形前の状態に対して、図3(b)に示すように、外力204が発電素子200の端部側から加わると、図3(a)の状態から図3(b)のように発電素子200が変形する。この例では、第一基板101Aに向かって凸形状となる方向に変形する。つまり、最も長い第一層素子201のみが外力204により、湾曲するように変形するので、外力204に対して垂直方向に第一層素子201の変形が生じる。このとき、第一層素子201の長さは短くなる。また、変形した第一層素子201は変形により発電する。さらに外力204が加わると、図3(b)の状態から図3(c)のように第二層素子202も、第一層素子201と同様に外力204に対して垂直方向に変形し、第二層素子202が発電する。図3(c)よりさらに外力204が加わると、図3(c)の状態から図3(d)のよう第三層素子203も外力204に対して垂直方向に変形して発電する。
このように、発電素子200を構成する第一層素子201から第三層素子203の、外力が加わる方向への長さを異ならせることで、第一層素子201から第三層素子203に向かって段階的に各層素子(各素子)が変形することで発電するタイミングをずらすことができる。このため、発電素子200から出力される電圧を持続させることができ、安定した出力を得ることができる。また、発電素子200は、最終的には図3(e)に示すように、第一層素子201から第三層素子203までの全ての素子が、第一層素子201の第一基板101A側に向かって凸形状になり、各素子が同形状まで変形するので、素子間の発電量を同等にすることができる。このため、発電素子200を高周波数の電流を通しやすいをコンデンサ等の蓄電素子を備えた充電部に接続して充電に使用とした場合でも、効率よく充電することができる。
また、接触帯電、剥離帯電により発電する中間層103A〜103Cであれば、第一基板101A〜101Cは、第二基板105A〜105Cよりも長くすることで、外力204が加わると、第一基板101A〜101Cは変形し、第一電極102A〜102Cと中間層103A〜103Cの間で、それぞれ剥離帯電が発生して発電する。さらに、図3(d)よりも強い外圧が加わり変形が進むと、図3(e)に示すように第三層素子203が変形する。この途中の過程は、第三層素子203、第二層素子202、第一層素子201の順で、第一電極102Cから102Aと中間層103Cから103A間で接触帯電が発生する。
(第2の実施形態)
図4は、第2の実施形態の構成を示す。本実施形態に係る素子としての発電素子300は、素子(層素子)としての第一層素子301、第二層素子302、第三層素子303を備えている。第一層素子301〜第三層素子303は、第一電極102A〜102C、中間層103A〜103C、第二電極104A〜104Cを積層した状態で備えている。この発電素子300の構成では、第一層素子301〜第三層素子303を構成する第一基板と第二基板を部分的に共通化している。すなわち、第一層素子301〜第三層素子303の三層で構成された発電素子300において、中間層となる第二層素子302の第一基板301Bは、前層であり第二層素子302と隣接する第一層素子301の第二基板305Aと共通な基板300Aとされている。第二層素子302の第二基板305Bは、後層となる第三層素子303の第一基板301Cと共通の基板300Bとされている。つまり、図4の左から2番目の共通な基板300Aは、第一層素子301の第二基板305Aであり、第二層素子302の第一基板301Bということになる。図4の左から3番目の基板300Bは、第一層素子301の第一基板301Cであり、第二層素子302の第二基板305Bということになる。
このように複数の素子(第一層素子301、第二層素子302、第三層素子303)で構成された発電素子300のように、基板を共通にすることにより、発電素子300(積層素子)の膜厚を薄くするこができ、より弱い力で発電させることが可能となるだけでなく、より多くの層素子(素子)を積層することができるようになる。この結果、より安定した発電が可能になることで、充電部を充電することができるとともに、コスト削減にもなる。
図5は、ポリフッ化ビニリデン(PVDF)を用いた素子としての発光素子の発電時の波形を示したグラフを示す。発電素子の構造は、図6(a)、図6(b)に示すように、第二層素子以降の素子の第一基板401B、501Bおよび501Cを前層である第一層素子の第二基板505A、505Bと共通な基板400A、400Bおよび共通な基板500A、500Bとしたものである。発電素子としては、図6(a)に示した長さの違う第一層素子401、第二層素子402、第三層素子403の素子構造の発電素子400と、図6(b)に示した第一層素子501、第二層素子502、第三層素子503ともに長さが同じ素子構造の発電素子500の2つを作成した。ここでは、発電素子400を便宜的に積層素子1とし、発電素子500を積層素子2とする。
図6(a)に示した発電素子400(積層素子1)の各中間層と各第一電極及び各第二電極の大きさは、それぞれ縦40mm横50mmで、第一層素子201の第一基板201Aと第二基板205Bは縦80mm横100mmであり、以下第二層素子202、第三層素子203と縦の長さが1mmずつ短くした。図6(b)に示した発電素子500(積層素子2)は、各中間層と各第一電極と各第二電極の大きさが、縦40mm横50mmで、それぞれの第一基板と第二基板の大きさが縦80mm、横100mmの層素子を3層積層した。図6(b)では、これら三層の素子を第一層素子501、第二層素子502、第三層素子503とする。
測定方法は、図8(a)に示すように、発電素子400,500(積層素子1、2)の変形をさせるために、板701,702で挟んで外力404を0.8秒で、図8(b)に示す板701,702の間の距離Rが30mmなるように加えた時の電圧をオシロスコープで測定した。図8(a)、図8(b)は、発電素子400(積層素子1)の測定を示す図であるが、発電素子500(積層素子2)の場合も同様に測定する。
オシロスコープはTPS2024を用いプローブはTPP0201(入力インピーダンス10M)を用いた。発電した出力は直接オシロスコープのプローブに入力して測定した。
波形Aは発電素子400(積層素子1)の発電波形を示し、波形Bは発電素子500(積層素子2)の発電波形を示す。長さの違う素子で構成された発電素子400(積層素子1)の波形Aは、長さの同じ素子で構成された発電素子500(積層素子2)の波形Bと比べて発電時間が長いことが分かる。このように素子の長さを変えて発電を段階的に起こすことで、より安定した出力が得られることが分かる。
図7は、特開2016−103967号公報に記載の素子の中間層を用いて作製した積層素子(発電素子)3,4の発電グラフを示す。特開2016−103967号公報に記載の素子の中間層は素子構造により、圧電素子に準じた出力をするが、本実施形態では、接触帯電、剥離帯電を主に用いて発電をさせている。積層素子3,4の構造は、第二層素子以降の素子の第一基板は前層の第二基板と共通の構造である。積層素子3は図6(a)と同様に各層の長さの違うものとして構成し、積層素子4は図6(b)と同様に各層の素子の長さが同じものとして構成した。
積層素子3は、中間層の大きさが縦70mm、横105mmで、電極が縦65mm、横100mmであり、第一層素子の基板は縦100mm横110mmであり、以下第二層素子、第三層素子、第四層素子、第五層素子と縦の長さが1mmずつ短くした。積層素子4は、中間層の大きさが縦70mm、横105mmで、電極が縦65mm、横100mmであり、基板の大きさが縦100mm、横110mmの素子を5層積層した。
測定方法は、図8(a)、図8(b)と同様に、素子を変形させるために、板(701,702)で挟んで外力404を1.6秒で、板701,702の間の距離Rが40mmになるように加えた時の電圧をオシロスコープで測定した。図8(a)、図8(b)は積層素子3の測定を示す図であるが、積層素子4の場合も同様に測定する。
オシロスコープはTPS2024を用いプローブはP5150(入力インピーダンス40M)を用いた。発電した出力は直接オシロスコープのプローブに入力して測定した。
波形Cは積層素子3の発電波形を示し、波形Dは積層素子4の発電波形を示す。長さの違う素子で構成された積層素子3の波形Cは、長さの同じ素子で構成された積層素子4の波形Dとくらべ発電時間が長いことが分かる。このように素子の長さを変えて発電を段階的に起こすことで、より安定した出力が得られることが分かる。図5の波形と比較すると、接触帯電、剥離帯電による発電を行うものでは効果がより大きくなる。
このように、長さ違いの素子が段階的に変形することで、長時間の出力を得られるようになってことで、より短時間で充電部を充電することができる。
以上本発明の好ましい実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、上述の説明で特に限定していない限り、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更が可能である。
本発明の実施の形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施の形態に記載されたものに限定されるものではない。
201,301,401,501 素子(第一層素子)
202,302,402,502 素子(第二層素子)
203,303,403,503 素子(第三層素子)
200,300,400,500 素子(発電素子)
101A,101B,101C 基材(第一基板)
102A,102B,102C 電極(第一電極)
103A,103B,103C 中間層
104A,104B,104C 電極(第二電極)
105A,105B,105C 基材(第二基板)
300A,300B 共通な基板
400A,400B 共通な基板
500A,500B 共通な基板
特許第4892079号公報

Claims (4)

  1. 加圧することで発電する2以上の整数個の素子が積層された素子であって、
    前記素子が加圧方向と垂直方向に変形可能であり、各素子の基材の長さが、1方向に順に短く形成されていて、加圧により、段階的に変形して発電することを特徴とする素子。
  2. 前記素子は、電極と、前記電極と接触する中間層を有し、
    前記中間層は、前記電極との接触帯電または剥離帯電により発電することを特徴とする請求項1に記載の素子。
  3. 前記素子は、第一電極と、第二電極と、前記第一電極と第二電極の間に配置され前記第一電極と前記第二電極とに接触する中間層を有し、前記第一電極、前記中間層および前記第二電極はこの順序で積層されていて、
    前記中間層は可撓性を有し、前記中間層の第一電極側と第二電極側とは同じ変形付与力に対する変形の度合いが異なる請求項1に記載の素子。
  4. 前記複数の素子のうち、第一層素子と隣接された第二層素子以降の素子の第一基板は、前記第二層素子よりも一層上の層素子の第二基板と共通な基板となるように形成されていることを特徴とする請求項3に記載の素子。
JP2016200808A 2016-10-12 2016-10-12 素子 Pending JP2018064012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200808A JP2018064012A (ja) 2016-10-12 2016-10-12 素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200808A JP2018064012A (ja) 2016-10-12 2016-10-12 素子

Publications (1)

Publication Number Publication Date
JP2018064012A true JP2018064012A (ja) 2018-04-19

Family

ID=61968035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200808A Pending JP2018064012A (ja) 2016-10-12 2016-10-12 素子

Country Status (1)

Country Link
JP (1) JP2018064012A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188658A1 (ja) 2018-03-29 2019-10-03 テルモ株式会社 撮像デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188658A1 (ja) 2018-03-29 2019-10-03 テルモ株式会社 撮像デバイス

Similar Documents

Publication Publication Date Title
Guo et al. Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy
JP6339996B2 (ja) 多層可変素子及び表示装置
US11050363B2 (en) Frictional electric generator, device including the same, and method for manufacturing the same
JP5959807B2 (ja) アクチュエータおよびアクチュエータ構造体
JP6231542B2 (ja) 多層可変素子及び表示装置
US9287487B2 (en) Textile-based stretchable energy generator
KR20140096644A (ko) 자가 동력 터치 센서 겸용 에너지 수확 장치
WO2014012403A1 (zh) 压电和摩擦电混合薄膜纳米发电机
JPWO2014080470A1 (ja) 柔軟導電部材およびそれを用いたトランスデューサ
JP2011530715A5 (ja)
TWI715071B (zh) 可原位充電的儲能裝置
JPWO2010095581A1 (ja) マルチ積層変形センサ
CN103684035A (zh) 多层高功率纳米摩擦发电机
US10211388B2 (en) Piezoelectric device and method of manufacturing the same
JP5818937B2 (ja) 電界放出源
JP2018064012A (ja) 素子
JP2015136212A (ja) 摩擦帯電現象を利用する折り重ね式発電機
KR101594432B1 (ko) 폴리이미드 유기 유전층을 포함한 정전기력 기반 작동기
KR20120005751A (ko) 그라핀을 이용한 압전필름
US20220278631A1 (en) Ultrathin Triboelectric Nanogenerator and Application Thereof
Gu et al. All-solid-state stretchable pseudocapacitors enabled by carbon nanotube film-capped sandwich-like electrodes
JP2020022214A (ja) 誘電エラストマートランスデューサーシステム
JP6019880B2 (ja) 凹凸形成装置およびキー入力装置
JP2018191454A (ja) 発電体、発電装置及び圧力センサ
KR102659116B1 (ko) 고신축성 복합 소재, 이를 포함하는 슈퍼 커패시터 및 그 제조 방법.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929