JP2018063373A - 端末システム - Google Patents

端末システム Download PDF

Info

Publication number
JP2018063373A
JP2018063373A JP2016202181A JP2016202181A JP2018063373A JP 2018063373 A JP2018063373 A JP 2018063373A JP 2016202181 A JP2016202181 A JP 2016202181A JP 2016202181 A JP2016202181 A JP 2016202181A JP 2018063373 A JP2018063373 A JP 2018063373A
Authority
JP
Japan
Prior art keywords
terminal
display
data
light
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016202181A
Other languages
English (en)
Other versions
JP6833443B2 (ja
Inventor
佑樹 岡本
Yuki Okamoto
佑樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2016202181A priority Critical patent/JP6833443B2/ja
Publication of JP2018063373A publication Critical patent/JP2018063373A/ja
Application granted granted Critical
Publication of JP6833443B2 publication Critical patent/JP6833443B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)
  • Digital Computer Display Output (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

【課題】低消費電力の情報端末を用いた端末システムを提供する。【解決手段】第1の端末および第2の端末は、サーバを介して互いの情報を授受することができる。また、第1および第2の端末は、表示部に第1の表示素子と、第2の表示素子と、をそれぞれ有し、第1の表示素子および第2の表示素子は、それぞれ異なる画像データを表示することができる。第1の端末で生成した第1のデータは、第1の端末および第2の端末の第1の表示素子で表示を行い、第2の端末で生成した第2のデータは、第1の端末および第2の端末の第2の表示素子で表示を行う。したがって、第1の端末および第2の端末にて更新された画像データを衝突させることなく、互いのデータを共有することができる。【選択図】図1

Description

本発明の一態様は、情報通信機能を備えた端末システムに関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、表示装置、照明装置、蓄電装置、記憶装置、撮像装置、電子機器は、半導体装置を有する場合がある。
近年、スマートフォンやタブレット型端末などの情報端末が広く普及し、データ通信や電子書籍の閲覧などが簡単な操作で行えるようになっている。また、情報端末が備える表示装置の分野においては、限られた容量のバッテリーで長時間の動作が可能な低消費電力技術の開発が競われている。例えば、酸化物半導体を有するトランジスタを画素に有し、当該トランジスタをオフにすることで、画像信号を画素で長時間保持する低消費電力の液晶表示装置が特許文献1に開示されている。
特開2011−141522号公報
表示装置を備える情報端末は、教育等の現場において紙媒体の教科書および学習ノートなどの代替えとして使用することができる。情報端末が備える表示機能、入力機能および通信機能などを適切に利用することで、教育の質の向上が見込める。また、複数の教科書等の書籍を一つの情報端末に格納することができるため、携帯性も向上し、屋外でも積極的に使用することができる。
ただし、一つの情報端末を連続使用することが想定されるため、当該情報端末は低消費電力で動作することが望まれる。また、晴天下の屋外でも視認性が良好な表示装置を備えることが望まれる。
したがって、本発明の一態様では、低消費電力の情報端末を用いた端末システムを提供することを目的の一つとする。または、サーバを介して双方向に通信が可能な情報端末を用いた端末システムを提供することを目的の一つとする。または、第1の情報端末は第1の経路で第2の情報端末にデータを伝送し、第2の情報端末は第2の経路で第1の情報端末にデータを伝送する端末システムを提供することを目的の一つとする。または、強光下でも視認性が良好な表示装置を有する端末システムを提供することを目的の一つとする。または、新規な端末システムを提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、第1の端末と第2の端末との情報通信を効率良く行う管理するシステムに関する。
本発明の一態様は、第1の端末と、第2の端末と、サーバを有する端末システムであって、第1の端末および第2の端末は、サーバを介して互いの情報を授受することができ、第1の端末は第1の表示部を有し、第2の端末は第2の表示部を有し、第1および第2の表示部は、第1の表示素子と、第2の表示素子と、をそれぞれ有し、第1の端末は、第1のデータを生成して第1の表示素子を用いて第1の表示部で表示を行い、第1の端末は、第1のデータをサーバに格納し、第2の端末は、第1のデータをサーバから読み出し、第2の端末は、第1のデータを第1の表示素子を用いて第2の表示部で表示を行い、第2の端末は、第2のデータを生成して第2の表示素子を用いて第2の表示部で表示を行い、第2の端末は、第2のデータをサーバに格納し、第1の端末は、第2のデータをサーバから読み出し、第1の端末は、第2のデータを第2の表示素子を用いて第1の表示部で表示を行う端末システムである。
第1の表示素子および第2の表示素子は、第1のフレーム周波数または第2のフレーム周波数でデータを書き換えることができ、第2のフレーム周波数は第1のフレーム周波数よりも小さい値であり、第1の端末が第2のデータを更新し、次に第2のデータを更新するまでの間において、第1の表示部が有する第2の表示素子は、第2のフレーム周波数で第2のデータの書き換えを行い、第2の表示部が有する第2の表示素子は、第1のフレーム周波数で第2のデータの書き換えを行い、第2の端末が第1のデータを更新し、次に第1のデータを更新するまでの間において、第1の表示部が有する第1の表示素子は、第1のフレーム周波数で第1のデータの書き換えを行い、第2の表示部が有する第1の表示素子は、第2のフレーム周波数で第1のデータの書き換えを行うことができる。
第1の表示素子および第2の表示素子は、同一の画素ユニット内に設けることができる。
第1の表示素子は、可視光を反射する機能を有し、第2の表示素子は、可視光を発する機能を有することができる。
第1の表示素子および第2の表示素子は、チャネルが形成される半導体層に金属酸化物を含むトランジスタとそれぞれ電気的に接続されていることが好ましい。
本発明の一態様を用いることで、低消費電力の情報端末を用いた端末システムを提供することができる。または、サーバを介して双方向に通信が可能な情報端末を用いた端末システムを提供することができる。または、第1の情報端末は第1の経路で第2の情報端末にデータを伝送し、第2の情報端末は第2の経路で第1の情報端末にデータを伝送する端末システムを提供することができる。または、強光下でも視認性が良好な表示装置を有する端末システムを提供することができる。または、新規な端末システムを提供することができる。
なお、本発明の一態様はこれらの効果に限定されるものではない。例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果以外の効果を有する場合もある。または、例えば、本発明の一態様は、場合によっては、または、状況に応じて、これらの効果を有さない場合もある。
端末システムを説明するブロック図。 端末の表示を説明する図。 アイドリングストップ駆動を説明する図。 端末システムの動作を説明するフローチャート。 端末システムの動作を説明するフローチャート。 端末システムを適用した例を説明する図。 端末システムを適用した例を説明する図。 端末システムを適用した例を説明する図。 画素ユニットを説明する図。 画素ユニットを説明する図。 表示装置の回路を説明する図および画素の上面図。 表示装置の回路を説明する図。 表示装置の回路を説明する図および画素の上面図。 表示装置の構成を説明する図。 表示装置の構成を説明する図。 表示装置の構成を説明する図。 表示装置の構成を説明する図。 表示装置の構成を説明する図。 情報端末を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
(実施の形態1)
本実施の形態では、本発明の一態様である端末システムについて、図面を参照して説明する。
本発明の一態様は、第1の端末と、第2の端末と、サーバを有する端末システムであって、第1の端末および第2の端末は、サーバを介して互いの情報を授受することができる。また、第1および第2の端末は、表示部に第1の表示素子と、第2の表示素子と、をそれぞれ有し、第1の表示素子および第2の表示素子は、それぞれ異なる画像データを表示することができる。
第1の端末は、生成した第1のデータの表示を第1の表示素子で行い、かつサーバに送信する。第2の端末は、サーバから読み出した第1のデータの表示を第1の表示素子を用いて行う。また、第2の端末は、生成した第2のデータの表示を第2の表示素子で行い、かつ、サーバに送信する。第1の端末は、サーバから読み出した第2のデータの表示を第2の表示素子を用いて行う。
このように表示素子を使い分けることで、第1の端末および第2の端末にて更新された画像データを衝突させることなく、互いのデータを容易に共有することができる。
また、第1の端末が第2のデータを更新し、次に第2のデータを更新するまでの間において、第1の端末が有する第2の表示素子は、第2のデータを書き換えることなく表示を行う、または書き換え頻度を少なくして表示を行うことができる。また、第2の端末が第1のデータを更新し、次に第1のデータを更新するまでの間において、第2の端末が有する第1の表示素子は、第1のデータを書き換えることなく表示を行う、または書き換え頻度を少なくして表示を行うことができる。
このように画像データの書き換えの頻度を少なくすることで、第1の端末および第2の端末の消費電力を少なくすることができる。
このようなシステムを教育の現場などで用いることにより、教える側は、教えられる側に対して情報の共有などを容易に行うことができ、教育の質の向上が見込める。また、消費電力の低い第1の端末および第2の端末を用いることで、授業の妨げになるような充電の手間を省くことができる。なお、本明細書においては、一例として、教える側を先生、教えられる側を生徒と呼称するが、当該システムの利用者は限られない。
図1は、本発明の一態様の端末システム10の構成を説明する図であり、サーバ11、第1の端末12、第2の端末13(13a乃至13c)、および接続機器14を有する。なお、第2の端末13の数は限定しない。
サーバ11はデータを管理する機器であり、接続機器14を介して第1の端末12および第2の端末13と接続される。例えば、サーバ11は構内に設置され、有線LANまたは無線LANで接続することができる。または、構外に設置されたサーバ11とインターネットを経由して接続される形態でもよい。接続機器14としては、例えば、ルータ、ハブ、モデム、ONU(光回線終端装置)などのいずれかの機器を用いることができる。または、これらの機器のいくつかを組み合わせて用いてもよい。
第1の端末12および第2の端末13には、例えば、携帯型の情報端末を用いることができる。当該情報端末にはタブレット型端末またはスマートフォン型端末を用いることができ、表示部、マイク、スピーカ等を有し、タッチ操作等により情報の入出力ができる。また、画像、動画、書籍などの様々な情報を内部のメモリに格納することができる。通信手段として有線LAN、無線LAN(Wi−Fi(登録商標))、LTE(Long Term Evolution)などの送受信機を有し、外部とデータの授受を行うことができる。
図2に示すように第1の端末12および第2の端末13は、表示部21を有する。表示部21は、第1の表示素子および第2の表示素子を有する。第1の表示素子としては、例えば反射型の液晶素子を用いることができる。また、第2の表示素子としては、例えば発光素子や透過型の液晶素子を用いることができる。
反射型の液晶素子は低消費電力で動作することができ、発光素子およびや透過型の液晶素子は視認性の高い表示を行うことができる。
例えば、屋外などの強光下では、第1の表示素子を用いた第1のモードで表示を行うことで、視認性を高めることができ、かつ、消費電力を抑えることができる。また、屋内などの弱光下では、第2の表示素子を用いた第2のモードで表示を行うことで、視認性を高めることができる。また、第1の表示素子と第2の表示素子とを併用した第3のモードで表示を行ってもよい。なお、第3のモードでは、第1の表示素子および第2の表示素子は、それぞれ異なる画像データを表示することもできる。
図2は、第1の端末12および第2の端末13で第3のモードを効率良く利用する例である。例えば、文字22は第1の表示素子でモノクロ表示とし、アンダーライン23や文字22の強調部24は、第2の表示素子でカラー表示とすることで、低消費電力で視認性の高い表示を行うことができる。
また、第1の表示素子および第2の表示素子のそれぞれは、画像データの書き込みトランジスタとして、金属酸化物をチャネル領域に有するトランジスタ(以下、OSトランジスタ)と電気的に接続されていることが好ましい。OSトランジスタは極めてオフ電流が小さく、画像データとして書き込んだ電位を長時間保持することが可能となる。したがって、複数のフレーム期間において、新たに画像データを書き込むことなく画像表示が維持できる、所謂アイドリングストップ駆動が可能となる。
アイドリングストップ駆動では、画素に書き込んだ画像データを2フレーム以上に亘り保持することができる。これにより、画像データの書き換え頻度を少なくすることができるため、消費電力を低減することができる。
第1の表示素子として用いることのできる反射型の液晶素子は、バックライトを必要としないため、画素部の消費電力は回路動作の消費電力のみとなる。したがって、第1の表示素子を有する画素をアイドリングストップ駆動することが特に効果的であり、画素部の消費電力は書き換え頻度に比例して低減することができる。
上述したアイドリングストップ駆動の一例について、図3(A)乃至(C)を用いて説明する。
図3(A)は、液晶素子63および画素回路61で構成される画素の回路図を図示している。図3(A)では、信号線SLおよびゲート線GLに接続されたトランジスタM1、容量素子CsLCおよび液晶素子LCを図示している。
図3(B)は、アイドリングストップ駆動ではない通常駆動モードにおいて、信号線SLおよびゲート線GLにそれぞれ与える信号の波形を示すタイミングチャートである。通常駆動モードでは、通常のフレーム周波数(例えば60Hz)で動作させることができる。
当該フレーム周波数における連続するフレームの各期間をT、T、Tとしたとき、各フレーム期間でゲート線に走査信号を与え、信号線のデータDを画素に書き込む動作を行う。この動作は、T、T、Tで同じデータDを書き込む場合であっても、異なるデータを書き込む場合であっても同じである。
図3(C)は、アイドリングストップ駆動において、信号線SLおよびゲート線GLにそれぞれ与える信号の波形を示すタイミングチャートである。アイドリングストップ駆動では、低速のフレーム周波数(例えば1Hz)で動作させることができる。
図3(C)では、当該フレーム周波数におけるフレーム期間をT、その中でデータを書き込む期間をT、データを保持する期間をTRETで表している。アイドリングストップ駆動は、期間Tでゲート線に走査信号を与え、信号線のデータDを画素に書き込み、期間TRETでゲート線をローレベルの電圧に固定し、トランジスタM1を非導通状態として一旦書き込んだデータDを画素に保持させる動作を行う。
ここで、トランジスタM1としてOSトランジスタを用いることで、その低いオフ電流によってデータDを長時間保持することが可能となる。また、図3(A)乃至(C)では液晶素子LCを用いた例を示したが、有機EL素子などの発光素子を用いても、同様にアイドリングストップ駆動は可能である。
なお、図3(A)に示す回路図において、液晶素子LCはデータDのリークパスとなる。したがって、適切にアイドリングストップ駆動を行うには、液晶素子LCの抵抗率を1.0×1014Ω・cm以上とすることが好ましい。
第1の端末12は、第1のデータを更新することができる。第1の端末12は、生成した第1のデータを第1の表示素子を用いて表示することができる。生成した第1のデータは、サーバ11へ送信することができる。サーバ11は、当該第1のデータを格納し、第2の端末13に送信することができる。第2の端末13では、受信した第1のデータに従い、第1の表示素子の画像を変更することができる。
この動作により、例えば、先生が第1の端末12を用いて発信した情報を生徒が利用する複数の第2の端末13に一斉に表示させることができる。
一方、第2の端末13は、第2のデータを更新することができる。第2の端末13は、生成した第2のデータを第2の表示素子を用いて表示することができる。生成した第2のデータは、サーバ11へ送信される。サーバ11は、当該第2のデータを格納し、第1の端末12に送信することができる。または、第1の端末12等の命令に従って第2のデータのデータ処理を行い、当該データ処理したデータを第1の端末12に送信することができる。第1の端末12では、受信した第2のデータまたは第2のデータをデータ処理したデータに従い、第2の表示素子の画像を変更することができる。
この動作により、例えば、先生が利用する第1の端末12では、生徒が利用する第2の端末13から送信された第2のデータを受信することができ、生徒が更新した情報を表示させることができる。または、、先生が利用する第1の端末12では、複数の第2の端末13の中から所望する端末を選び、所望する第2の端末13から送信された第2のデータまたは第2のデータをデータ処理したデータを受信し、表示させることができる。
このような制御を行うことで、第1の端末12および第2の端末13にて更新されたデータが衝突することなく、互いのデータを容易に共有することができる。
次に、第1の端末12にて更新された第1のデータを第2の端末13に送信し、共有する際の動作を図4に示すフローチャートを用いて説明する。なお、第1の端末12および第2の端末13は起動している状態であり、前述した第3のモードで表示が行われている状態とする。
まず、第1の端末12において、第1のデータを更新するか否かを判定する(図4:S1)。更新する場合、第1の端末12は第1のデータを更新する。当該第1のデータは、新たなデータを外部のサーバやメディアから取り込む手段、キーボード入力、マウス入力、スタイラス等を利用したタッチ入力などで生成することができる(図4:S2)。当該第1のデータは、第1の端末12が有する第1の表示素子で表示される。
次に、第1の端末12は、第1のデータの更新を確定するか否かを判定する(図4:S3)。当該第1のデータの更新を確定させる場合、第1の端末12は、新たな第1のデータをサーバ11に送信する(図4:S4)。
サーバ11は、第1の端末12にて更新された第1のデータを受信する(図4:S5)。その後、サーバ11は、受信した第1のデータを第2の端末13へ送信するか否かを判定する(図4:S6)。送信する場合、サーバ11は、受信した第1のデータを第2の端末13に送信する(図4:S7)。
第2の端末13は、サーバ11から新たな第1のデータを受信し、第2の端末13が有する第1の表示素子で当該第1のデータを表示する(図4:S9)。S9以降では、当該第1のデータを用いてアイドリングストップ駆動が行われる。なお、S9より前の期間では、第2の端末13は以前に受信した第1のデータにより、アイドリングストップ駆動が行われる(図4:S8)。すなわち、第1の端末12が第1のデータを修正中は、第2の端末13の第1の表示素子はアイドリングストップ駆動することができ、消費電力を削減させることができる。
以上が、第1の端末12にて更新された第1のデータを第2の端末13に送信し、共有する動作の説明である。なお、上記動作において、第1の端末12は、第1のデータを更新する過程において頻繁に画像が変化することがあるため、第1の表示素子に画像データ書き込む際のフレーム周波数は比較的大きな値とすることが好ましい。例えば、30Hz乃至120Hz程度のフレーム周波数とすることができる。
次に、第2の端末13にて更新された第2のデータを第1の端末12に送信し、共有する際の動作を図5に示すフローチャートを用いて説明する。なお、当該動作は、図4に示すフローチャートの動作と並行して行われる。
まず、第2の端末12において、第2のデータを更新するか否かを判定する(図5:S1)。更新する場合、第2の端末13は第2のデータを更新する。当該第2のデータは、キーボード入力、マウス入力、スタイラス等を利用したタッチ入力で生成することができる(図5:S2)。当該第2のデータは第2の端末13が有する第2の表示素子で表示される。
次に、第2の端末13は、第2のデータの更新を確定するか否かを判定する(図5:S3)。当該第2のデータの更新を確定させる場合、第2の端末13は、新たな第2のデータをサーバ11に送信する(図5:S4)。このとき、第2の端末13は端末または使用者を特定できる判別符号を第2のデータに付属してサーバ11に送信してもよい。
サーバ11は、第2の端末13にて更新された第2のデータおよび判別符号を受信し、格納する(図5:S5)。
第1の端末12は、サーバ11に対して所望のデータを要求する(図5:S9)。具体的には、所望する判別符号を要求する。また、サーバ11が受信した複数の第2の端末13のデータを処理させることを要求することもできる。ここで、第1の端末12が要求する処理内容としては、例えば、複数の第2の端末13から送信される第2のデータを識別し、その比率を演算する処理などがある。
サーバ11は、第1の端末12の命令に従って受信した第2のデータの処理を行う(図5:S6)。具体的には、サーバ11は、第1の端末12が所望する符号に関する第2のデータを抽出する。また、第1の端末12が複数の第2の端末13のデータを演算処理させることを要求した場合、当該要求に沿ったデータ処理を行う。
その後、サーバ11は、第2のデータを第1の端末12に送信する(図5:S7)。なお、当該第2のデータとしては、第2のデータを元にデータ処理を行ったデータを含む。
第1の端末12は、サーバ11から新たな第2のデータを受信し、第1の端末12が有する第2の表示素子で当該第2のデータを表示する(S10)。S10以降では、当該第2のデータを用いてアイドリングストップ駆動が行われる。なお、S10より前の期間では、第1の端末12は以前に受信した第2のデータにより、アイドリングストップ駆動が行われる(S8)。すなわち、第2の端末13が第2のデータを修正中は、第1の端末12の第2の表示素子はアイドリングストップ駆動することができ、消費電力を削減させることができる。
以上が、第2の端末13にて更新された第2のデータを第1の端末12に送信し、共有する動作の説明である。なお、上記動作において、第2の端末13は、第2のデータを更新する過程において頻繁に画像が変化することがあるため、第2の表示素子に画像データ書き込む際のフレーム周波数は比較的大きな値とすることが好ましい。例えば、30Hz乃至120Hz程度のフレーム周波数とすることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、実施形態1で説明した端末システムを教育支援サービスに適用する場合の具体例について説明する。なお、当該教育支援サービスは、学校での授業等を想定するものであり、例えば第1の端末12を先生が利用し、第2の端末13を生徒が利用する。また、第1の端末12および第2の端末13はタッチセンサを有しており、スタイラスなどを用いて入力操作を行うことができる。
当該教育支援サービスにおいて、第1の端末12にて更新した情報は、複数の第2の端末13に配信することができる。また、第1の端末12で更新した情報は、第2の端末13の第1の表示素子にて更新される。また、第2の端末13は、第2の表示素子で表示する情報を更新することができる。
図6は、第1の例であり、第1の端末12の動作と、第2の端末13の動作を示している。
まず、時刻T0までにおいて、第1の端末12および第2の端末13の表示部には、第1の表示素子で特定の画像データ25が表示される。画像データ25は時刻T0より前に第1の端末12で生成され、第2の端末13で読み出された第1のデータである。このとき、第1の端末12および第2の端末13の表示部において、第2の表示素子では画像は表示されていない。
時刻T1にて、第1の端末12では表示情報の更新が行われる。この時点では、第2の端末13では表示情報の更新が行われない。したがって、T0乃至T1の期間において、第2の端末13の第1の表示素子は、アイドリングストップ駆動することができる。
時刻T2にて、第1の端末12では、さらに表示情報の更新が行われる。この時点においても、第2の端末13では、表示情報の更新が行われない。したがって、引き続きT1乃至T2の期間においても、第2の端末13の第1の表示素子は、アイドリングストップ駆動することができる。
時刻T3にて、第1の端末12では送信アイコン27がタッチされる。このとき、第1の端末12に表示されている画像データ26は、第1のデータとしてサーバ11に送信される。サーバ11は、当該第1のデータを受信し、第2の端末13に送信することができる。したがって、第2の端末13には、画像データ26が表示される。
なお、第2の端末13では、時刻T0から時刻T3の任意のタイミングにおいて、表示情報を更新することができる。例えば、時刻T2における第2の端末13に示すように、入力操作によってアンダーライン36などを表示することができる。ここで、アンダーライン36の付加などの表示情報の更新は、第2の表示素子で行われる。
サーバ11から送信される画像データを第1の表示素子で表示させ、第2の端末13で更新することができる画像データを第2の表示素子で表示する。このように動作させることで、第1の端末12にて更新された画像データと第2の端末13にて更新された画像データの双方を画像の合成などの複雑な処理を行うことなく表示することができる。なお、第2の端末13にて更新された画像データを第1の端末12の第2の表示素子で表示することもできる。
なお、第1の端末12の数と第2の端末13の数は限定されない。例えば、1クラス内で情報を共有することができる。また、校内で情報を共有することもできる。また、サーバ11をインターネットに接続することで、グローバルに情報を共有することができる。
図7は、第2の例であり、第1の端末12の動作と、第2の端末13の動作を示している。第2の例では、学校でテストを行う際に、当該端末システムを用いることを想定している。
まず、先生は第1の端末12で問題用の画像データ28を生成し、送信アイコン27をタッチすることで第2の端末13に画像データ28を送信する。この状態を時刻T0とする。時刻T0にて、第1の端末12および第2の端末13の表示部は、画像データ28を第1の表示素子で表示させる。この後、生徒は第2の端末13に表示された画像データ28を見て解答を行う。
時刻T1にて、先生が問題の訂正を行うために第1の端末12に表示された問題用の画像データ28の一部を削除する。このとき、第2の端末13の表示は変わらない。したがって、T0乃至T1の期間において、第2の端末13の第1の表示素子は、アイドリングストップ駆動することができる。
また、時刻T1にて、第2の端末13で図示するような解答が行われたとする。この場合、第2の端末13のタッチセンサにて検出された画像データ29が、第2の端末13の第2の表示素子によって表示される。
時刻T2にて、先生が問題の訂正を完了し、画像データ30を生成する。この時点においても、第2の端末13では、表示情報の更新が行われない。したがって、引き続きT1乃至T2の期間においても、第2の端末13の第1の表示素子は、アイドリングストップ駆動することができる。
時刻T3にて、第1の端末12では送信アイコン27がタッチされる。このとき、第1の端末12に表示されている画像データ30は、第1のデータとしてサーバ11に送信される。サーバ11は、当該第1のデータを受信し、第2の端末13に送信することができる。したがって、第2の端末13には、画像データ30が表示される。なお、サーバ11から送信される画像データを第1の表示素子で表示することで、時刻T3以前に生成し、第2の表示素子で表示されている画像データ29は失われない。
図8(A)は、第3の例であり、第1の端末12の動作と、第2の端末13a乃至13cの動作を示している。第3の例では、生徒が第2の端末13に入力するテストの解答情報を先生が利用する第1の端末12に反映して表示させることを想定している。
まず、先生は第1の端末12で問題用の画像データ31を生成し、第2の端末13a乃至13cに画像データ31を送信する。この状態を時刻T0とする。時刻T0にて、第1の端末12および第2の端末13a乃至13cの表示部は、画像データ31を第1の表示素子で表示させる。この後、生徒は第2の端末13に表示された画像データ31を見て解答を行う。
第1の端末12には、第2の端末13a乃至13cを選択する選択アイコン32があり、選択アイコン32をタッチすることで、第2の端末13a乃至13cのいずれかのデータを確認することができる。
時刻T1にて、第2の端末13a乃至13cにて、図示するような回答が行われたとする。
この場合、第2の端末13のタッチセンサにて検出された画像データ33a乃至33cが、第2の端末13a乃至13cのそれぞれの第2の表示素子によって表示される。
時刻T2にて、第1の端末12で第2の端末13bを選択する選択アイコン32がタッチされる。そして、時刻T3において、選択された第2の端末13bの回答結果である画像データ33bが、第1の端末12に反映して表示される。ここで、第1の端末12で表示される画像データ33bは、第2の表示素子にて表示される。
以上の動作により、第1の端末12にて、第2の端末13a乃至13cのいずれかの解答結果を確認することができる。
図8(B)は、第3の例の変形例であり、第1の端末12の動作を示している。なお、第2の端末13a乃至13cの動作は図8(A)と同じである。図8(B)の例は、第1の端末12が、所望の演算処理を実行させるための計算アイコン34を表示している点が図8(A)と異なる。
まず、時刻T0及び時刻T1では、図8(A)と同様の動作を行う。
時刻T2にて、第1の端末12において計算アイコン34がタッチされるとサーバ11は教師が所望する演算処理を行う。ここでは、解答用選択肢の選択率を演算することとするが、他の演算であってもよい。
時刻T3にて、当該選択率の演算結果35が表示される。当該選択率の演算結果35は、第2の表示素子にて表示される。
以上の動作を行うことで、第1の端末12では第2の端末13a乃至13cの解答情報を確認することができる。また、当該動作は、アンケート収集サービスとしても利用する事が可能であり、多数の第2の端末13を用いてアンケート収集を行い、その結果を第1の端末12に表示することができる。
なお、図8(A)、(B)の動作において、時刻T0乃至T3の間に第1の端末12では、画像データ31、選択アイコン32および計算アイコン34の表示の更新がないため、当該期間は第1の表示素子をアイドリングストップ駆動することができる。また、時刻T2およびT3において、選択アイコン32および計算アイコン34の表示色を変化させる場合は、第2の表示素子を用いて表示を変化させればよい。
また、第2の端末13でも、時刻T0乃至T3の間に画像データ31の更新がないため、当該期間は第1の表示素子をアイドリングストップ駆動することができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の端末に用いることのできる表示装置、および表示装置の駆動方法について説明する。
本発明の一態様の表示装置としては、例えば、ハイブリッドディスプレイを好適に用いることができる。なお、当該ハイブリッドディスプレイは、ハイブリッド表示を行うことができる。
ハイブリッド表示とは、1つのパネルにおいて、反射光と、自発光とを併用して、色調または光強度を互いに補完して、文字または画像を表示する方法である。または、ハイブリッド表示とは、同一画素または同一副画素において複数の表示素子から、それぞれの光を用いて、文字および/または画像を表示する方法である。ただし、ハイブリッド表示を行っているハイブリッドディスプレイを局所的にみると、複数の表示素子のいずれか一を用いて表示される画素または副画素と、複数の表示素子の二以上を用いて表示される画素または副画素と、を有する場合がある。
なお、本明細書等において、上記構成のいずれか1つまたは複数の表現を満たすものを、ハイブリッド表示という。
また、ハイブリッドディスプレイは、同一画素または同一副画素に複数の表示素子を有する。なお、複数の表示素子としては、例えば、光を反射する反射型素子と、光を射出する自発光素子とが挙げられる。なお、反射型素子と、自発光素子とは、それぞれ独立に制御することができる。ハイブリッドディスプレイは、表示部において、反射光、及び自発光のいずれか一方または双方を用いて、文字および/または画像を表示する機能を有する。
本発明の一態様の表示装置は、可視光を反射する第1の表示素子が設けられた画素を有することができる。または、可視光を発する第2の表示素子が設けられた画素を有することができる。または、可視光を透過する第3の表示素子が設けられた画素を有することができる。または、第1の表示素子と、第2の表示素子または第3の表示素子と、が設けられた画素を有することができる。
本実施の形態では、可視光を反射する第1の表示素子と、可視光を発する第2の表示素子とを有する表示装置について説明する。
表示装置は、第1の表示素子が反射する第1の光と、第2の表示素子が発する第2の光のうち、いずれか一方、または両方により、画像を表示する機能を有する。または、表示装置は、第1の表示素子が反射する第1の光の光量と、第2の表示素子が発する第2の光の光量と、をそれぞれ制御することにより、階調を表現する機能を有する。
また、表示装置は、第1の表示素子の反射光の光量を制御することにより階調を表現する第1の画素と、第2の表示素子からの発光の光量を制御することにより階調を表現する第2の画素を有する構成とすることが好ましい。第1の画素および第2の画素は、例えばそれぞれマトリクス状に複数配置され、表示部を構成する。
また、第1の画素と第2の画素は、同数且つ同ピッチで、表示領域内に配置されていることが好ましい。このとき、隣接する第1の画素と第2の画素を合わせて、画素ユニットと呼ぶことができる。これにより、後述するように複数の第1の画素のみで表示された画像と、複数の第2の画素のみで表示された画像、ならびに複数の第1の画素および複数の第2の画素の両方で表示された画像のそれぞれは、同じ表示領域に表示することができる。
第1の画素が有する第1の表示素子には、外光を反射して表示する素子を用いることができる。このような素子は、光源を持たないため、表示の際の消費電力を極めて小さくすることが可能となる。
第1の表示素子には、代表的には反射型の液晶素子を用いることができる。または、第1の表示素子として、シャッター方式のMEMS(Micro Electro Mechanical System)素子、光干渉方式のMEMS素子の他、マイクロカプセル方式、電気泳動方式、エレクトロウェッティング方式、電子粉流体(登録商標)方式等を適用した素子などを用いることができる。
第2の画素が有する第2の表示素子は光源を有し、その光源からの光を利用して表示する素子を用いることができる。特に、電界を印加することにより発光性の物質から発光を取り出すことのできる、電界発光素子を用いることが好ましい。このような画素が射出する光は、その輝度や色度が外光に左右されることがないため、色再現性が高く(色域が広く)、且つコントラストの高い、つまり鮮やかな表示を行うことができる。
第2の表示素子には、例えばOLED(Organic Light Emitting Diode)、LED(Light Emitting Diode)、QLED(Quantum−dot Light Emitting Diode)、半導体レーザなどの自発光性の発光素子を用いることができる。または、第2の画素が有する表示素子として、光源であるバックライトと、バックライトからの光の透過光の光量を制御する透過型の液晶素子とを組み合わせたものを用いてもよい。
第1の画素は、例えば白色(W)を呈する副画素、または例えば赤色(R)、緑色(G)、青色(B)の3色の光をそれぞれ呈する副画素を有する構成とすることができる。また、第2の画素も同様に、例えば白色(W)を呈する副画素、または例えば赤色(R)、緑色(G)、青色(B)の3色の光をそれぞれ呈する副画素を有する構成とすることができる。なお、第1の画素および第2の画素がそれぞれ有する副画素は、4色以上であってもよい。副画素の種類が多いほど、消費電力を低減することが可能で、また色再現性を高めることができる。
本発明の一態様は、第1の画素で画像を表示する第1のモード、第2の画素で画像を表示する第2のモード、および第1の画素および第2の画素で画像を表示する第3のモードを切り替えることができる。また、実施の形態1で示したように、第1の画素および第2の画素のそれぞれに異なる画像信号を入力し、合成画像を表示することもできる。
第1のモードは、第1の表示素子による反射光を用いて画像を表示するモードである。第1のモードは光源が不要であるため、極めて低消費電力な駆動モードである。例えば、外光の照度が十分高く、且つ外光が白色光またはその近傍の光である場合に有効である。第1のモードは、例えば本や書類などの文字情報を表示することに適した表示モードである。また、反射光を用いるため、目に優しい表示を行うことができ、目が疲れにくいという効果を奏する。
第2のモードでは、第2の表示素子による発光を利用して画像を表示するモードである。そのため、外光の照度や色度によらず、極めて鮮やかな(コントラストが高く、且つ色再現性の高い)表示を行うことができる。例えば、夜間や暗い室内など、外光の照度が極めて小さい場合などに有効である。また外光が暗い場合、明るい表示を行うと使用者が眩しく感じてしまう場合がある。これを防ぐために、第2のモードでは輝度を抑えた表示を行うことが好ましい。またこれにより、眩しさを抑えることに加え、消費電力も低減することができる。第2のモードは、鮮やかな画像や滑らかな動画などを表示することに適したモードである。
第3のモードでは、第1の表示素子による反射光と、第2の表示素子による発光の両方を利用して表示を行うモードである。具体的には、第1の画素が呈する光と、第1の画素と隣接する第2の画素が呈する光を混色させることにより、1つの色を表現するように駆動する。第1のモードよりも鮮やかな表示をしつつ、第2のモードよりも消費電力を抑えることができる。例えば、室内照明下や、朝方や夕方の時間帯など、外光の照度が比較的低い場合や、外光の色度が白色ではない場合などに有効である。
以下では、本発明の一態様のより具体的な例について、図面を参照して説明する。
[表示装置の構成例]
図9は、本発明の一態様の表示装置が有する画素アレイ40を説明する図である。画素アレイ40は、マトリクス状に配置された複数の画素ユニット45を有する。画素ユニット45は、画素46と、画素47を有する。
図9では、画素46および画素47が、それぞれ赤色(R)、緑色(G)、青色(B)の3色に対応する表示素子を有する場合の例を示している。
画素46は、赤色(R)に対応する表示素子46R、緑色(G)に対応する表示素子46G、青色(B)に対応する表示素子46Bを有する。表示素子46R、46G、46Bはそれぞれ、光源の光を利用した第2の表示素子である。
画素47は、赤色(R)に対応する表示素子47R、緑色(G)に対応する表示素子47G、青色(B)に対応する表示素子47Bを有する。表示素子47R、47G、47Bはそれぞれ、外光の反射を利用した第1の表示素子である。
ここで、第1の表示素子と第2の表示素子とは重なる領域を有し、両者の距離はできるだけ小さくすることが好ましい。例えば、第1の表示素子に液晶素子、第2の表示素子に発光素子を用いたとき、第1の表示素子の対向電極(コモン電極)と、第2の表示素子の発光部との距離は、30μm未満、好ましくは10μm未満、さらに好ましくは5μm未満とする。
上記のように両者の距離を小さくすることで、例えば、ある画素の第1の表示素子から放たれる光と、隣接する画素の第2の表示素子から放たれる光との混色がおきにくくなり、鮮明な画像を得ることができる。また、第2の表示素子から放たれる光の光路を短くすることにより、当該光の減衰を減らすことができる。また、表示装置全体の厚さを薄くすることができる。また、可撓性を有する表示装置の作製に適する。
以上が表示装置の構成例についての説明である。
[画素ユニットの構成例]
続いて、図10(A)、(B)、(C)を用いて画素ユニット45について説明する。図10(A)、(B)、(C)は、画素ユニット45の構成例を示す模式図である。
画素46は、表示素子46R、表示素子46G、表示素子46Bを有する。表示素子46Rは、光源を有し、画素46に入力される第2の階調値に含まれる赤色に対応する階調値に応じた輝度の赤色の光R2を、表示面側に射出する。表示素子46G、表示素子46Bも同様に、それぞれ緑色の光G2または青色の光B2を、表示面側に射出する。
画素47は、表示素子47R、表示素子47G、表示素子47Bを有する。表示素子47Rは、外光を反射し、画素47に入力される第1の階調値に含まれる赤色に対応する階調値に応じた輝度の赤色の光R1を、表示面側に射出する。表示素子47G、表示素子47Bも同様に、それぞれ緑色の光G1または青色の光B1を、表示面側に射出する。
〔第1のモード〕
図10(A)は、外光を反射する表示素子47R、表示素子47G、表示素子47Bを駆動して画像を表示する動作モードの例を示している。図10(A)に示すように、画素ユニット45は、例えば外光の照度が十分に高い場合などでは、画素46を駆動させずに、画素47からの光(光R1、光G1、および光B1)のみを混色させることにより、所定の色の光55を表示面側に射出することもできる。これにより、極めて低消費電力な駆動を行うことができる。
〔第2のモード〕
図10(B)は、表示素子46R、表示素子46G、表示素子46Bを駆動して画像を表示する動作モードの例を示している。図10(B)に示すように、画素ユニット45は、例えば外光の照度が極めて小さい場合などでは、画素47を駆動させずに、画素46からの光(光R2、光G2、および光B2)のみを混色させることにより、所定の色の光55を表示面側に射出することもできる。これにより鮮やかな表示を行うことができる。また外光の照度が小さい場合に輝度を低くすることで、使用者が感じる眩しさを抑えると共に消費電力を低減できる。
〔第3のモード〕
図10(C)は、外光を反射する表示素子47R、表示素子47G、表示素子47Bと、光を発する表示素子46R、表示素子46G、表示素子46Bの両方を駆動して画像を表示する動作モードの例を示している。図10(C)に示すように、画素ユニット45は、光R1、光G1、光B1、光R2、光G2、および光B2の6つの光を混色させることにより、所定の色の光55を表示面側に射出することができる。
以上が画素ユニット45の構成例についての説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
以下では、本発明の一態様の表示装置に用いることのできる表示パネルの例について説明する。以下で例示する表示パネルは、反射型の液晶素子と、発光素子の両方を有し、透過モードと反射モードの両方の表示を行うことのできる、表示パネルである。
[構成例]
図11(A)は、表示装置400の構成の一例を示すブロック図である。表示装置400は、表示部362にマトリクス状に配列した複数の画素410を有する。また表示装置400は、回路GDと、回路SDを有する。また、方向Rに配列した複数の画素410、回路GDと電気的に接続する複数の配線G1、複数の配線G2、複数の配線ANO、および複数の配線CSCOMを有する。また、方向Cに配列した複数の画素410、回路SDと電気的に接続する複数の配線S1、および複数の配線S2を有する。
なお、ここでは簡単のために回路GDと回路SDを1つずつ有する構成を示したが、液晶素子を駆動する回路GDおよび回路SDと、発光素子を駆動する回路GDおよび回路SDとを、別々に設けてもよい。
画素410は、反射型の液晶素子と、発光素子を有する。画素410において、液晶素子と発光素子とは、互いに重なる部分を有する。
図11(B1)は、画素410が有する導電層311bの構成例を示す。導電層311bは、画素410における液晶素子の反射電極として機能する。また導電層311bには、開口451が設けられている。
図11(B1)には、導電層311bと重なる領域に位置する発光素子360を破線で示している。発光素子360は、導電層311bが有する開口451と重ねて配置されている。これにより、発光素子360が発する光は、開口451を介して表示面側に射出される。
図11(B1)では、方向Rに隣接する画素410が異なる色に対応する画素である。このとき、図11(B1)に示すように、方向Rに隣接する2つの画素において、開口451が一列に配列されないように、導電層311bの異なる位置に設けられていることが好ましい。これにより、2つの発光素子360を離すことが可能で、発光素子360が発する光が隣接する画素410が有する着色層に入射してしまう現象(クロストークともいう)を抑制することができる。また、隣接する2つの発光素子360を離して配置することができるため、発光素子360のEL層をシャドウマスク等により作り分ける場合であっても、高い精細度の表示装置を実現できる。
また、図11(B2)に示すような配列としてもよい。
非開口部の総面積に対する開口451の総面積の比の値が大きすぎると、液晶素子を用いた表示が暗くなってしまう。また、非開口部の総面積に対する開口451の総面積の比の値が小さすぎると、発光素子360を用いた表示が暗くなってしまう。
また、反射電極として機能する導電層311bに設ける開口451の面積が小さすぎると、発光素子360が射出する光から取り出せる光の効率が低下してしまう。
開口451の形状は、例えば多角形、四角形、楕円形、円形または十字等の形状とすることができる。また、細長い筋状、スリット状、市松模様状の形状としてもよい。また、開口451を隣接する画素に寄せて配置してもよい。好ましくは、開口451を同じ色を表示する他の画素に寄せて配置する。これにより、クロストークを抑制できる。
[回路構成例]
図12は、画素410の構成例を示す回路図である。図12では、隣接する2つの画素410を示している。
画素410は、スイッチSW1、容量素子C1、液晶素子340、スイッチSW2、トランジスタM、容量素子C2、および発光素子360等を有する。また、画素410には、配線G1、配線G2、配線ANO、配線CSCOM、配線S1、および配線S2が電気的に接続されている。また、図12では、液晶素子340と電気的に接続する配線VCOM1、および発光素子360と電気的に接続する配線VCOM2を示している。
図12では、スイッチSW1およびスイッチSW2に、トランジスタを用いた場合の例を示している。
スイッチSW1は、ゲートが配線G1と接続され、ソースまたはドレインの一方が配線S1と接続され、ソースまたはドレインの他方が容量素子C1の一方の電極、および液晶素子340の一方の電極と接続されている。容量素子C1は、他方の電極が配線CSCOMと接続されている。液晶素子340は、他方の電極が配線VCOM1と接続されている。
また、スイッチSW2は、ゲートが配線G2と接続され、ソースまたはドレインの一方が配線S2と接続され、ソースまたはドレインの他方が、容量素子C2の一方の電極、トランジスタMのゲートと接続されている。容量素子C2は、他方の電極がトランジスタMのソースまたはドレインの一方、および配線ANOと接続されている。トランジスタMは、ソースまたはドレインの他方が発光素子360の一方の電極と接続されている。発光素子360は、他方の電極が配線VCOM2と接続されている。
図12では、トランジスタMが半導体を挟む2つのゲートを有し、これらが接続されている例を示している。これにより、トランジスタMが流すことのできる電流を増大させることができる。
配線G1には、スイッチSW1を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM1には、所定の電位を与えることができる。配線S1には、液晶素子340が有する液晶の配向状態を制御する信号を与えることができる。配線CSCOMには、所定の電位を与えることができる。
配線G2には、スイッチSW2を導通状態または非導通状態に制御する信号を与えることができる。配線VCOM2および配線ANOには、発光素子360が発光する電位差が生じる電位をそれぞれ与えることができる。配線S2には、トランジスタMの導通状態を制御する信号を与えることができる。
図12に示す画素410は、例えば、反射モードの表示を行う場合には、配線G1および配線S1に与える信号により駆動し、液晶素子340による光学変調を利用して表示することができる。また、透過モードで表示を行う場合には、配線G2および配線S2に与える信号により駆動し、発光素子360を発光させて表示することができる。また、両方のモードで駆動する場合には、配線G1、配線G2、配線S1および配線S2のそれぞれに与える信号により駆動することができる。
なお、図12では一つの画素410に、一つの液晶素子340と一つの発光素子360とを有する例を示したが、これに限られない。図13(A)は、一つの画素410に一つの液晶素子340と4つの発光素子360(発光素子360r、360g、360b、360w)を有する例を示している。
図13(A)では図12の例に加えて、画素410に配線G3および配線S3が接続されている。
図13(A)に示す例では、例えば4つの発光素子360を、それぞれ赤色(R)、緑色(G)、青色(B)、および白色(W)を呈する発光素子を用いることができる。また液晶素子340として、白色を呈する反射型の液晶素子を用いることができる。これにより、反射モードの表示を行う場合には、反射率の高い白色の表示を行うことができる。また透過モードで表示を行う場合には、演色性の高い表示を低い電力で行うことができる。
また、図13(B)には、画素410の構成例を示している。画素410は、電極311が有する開口部と重なる発光素子360wと、電極311の周囲に配置された発光素子360r、発光素子360g、および発光素子360bとを有する。発光素子360r、発光素子360g、および発光素子360bは、発光面積がほぼ同等であることが好ましい。
[表示パネルの構成例]
図14は、本発明の一態様の表示パネル300の斜視概略図である。表示パネル300は、基板351と基板361とが貼り合わされた構成を有する。図14では、基板361を破線で明示している。
表示パネル300は、表示部362、回路364、配線365等を有する。基板351には、例えば回路364、配線365、および画素電極として機能する導電層311b等が設けられる。また図14では基板351上にIC373とFPC372が実装されている例を示している。そのため、図14に示す構成は、表示パネル300とFPC372およびIC373を有する表示モジュールと言うこともできる。
回路364は、例えば走査線駆動回路として機能する回路を用いることができる。
配線365は、表示部や回路364に信号や電力を供給する機能を有する。当該信号や電力は、FPC372を介して外部、またはIC373から配線365に入力される。
また、図14では、COG(Chip On Glass)方式等により、基板351にIC373が設けられている例を示している。IC373は、例えば走査線駆動回路、または信号線駆動回路などとしての機能を有するICを適用できる。なお表示パネル300が走査線駆動回路および信号線駆動回路として機能する回路を備える場合や、走査線駆動回路や信号線駆動回路として機能する回路を外部に設け、FPC372を介して表示パネル300を駆動するための信号を入力する場合などでは、IC373を設けない構成としてもよい。また、IC373を、COF(Chip On Film)方式等により、FPC372に実装してもよい。
図14には、表示部362の一部の拡大図を示している。表示部362には、複数の表示素子が有する導電層311bがマトリクス状に配置されている。導電層311bは、可視光を反射する機能を有し、後述する液晶素子340の反射電極として機能する。
また、図14に示すように、導電層311bは開口を有する。さらに導電層311bよりも基板351側に、発光素子360を有する。発光素子360からの光は、導電層311bの開口を介して基板361側に射出される。
また、基板361上にはタッチセンサを設けることができる。例えば、シート状の静電容量方式のタッチセンサ366を表示部362に重ねて設ける構成とすればよい。または、基板361と基板351との間にタッチセンサを設けてもよい。基板361と基板351との間にタッチセンサを設ける場合は、静電容量方式のタッチセンサのほか、光電変換素子を用いた光学式のタッチセンサを適用してもよい。
[断面構成例1]
図15に、図14で例示した表示パネルの、FPC372を含む領域の一部、回路364を含む領域の一部、および表示部362を含む領域の一部をそれぞれ切断したときの断面の一例を示す。なお、タッチセンサ366は含まない。
表示パネルは、基板351と基板361の間に、絶縁層220を有する。また基板351と絶縁層220の間に、発光素子360、トランジスタ201、トランジスタ205、トランジスタ206、着色層134等を有する。また絶縁層220と基板361の間に、液晶素子340、着色層131等を有する。また基板361と絶縁層220は接着層141を介して接着され、基板351と絶縁層220は接着層142を介して接着されている。
トランジスタ206は、液晶素子340と電気的に接続し、トランジスタ205は、発光素子360と電気的に接続する。トランジスタ205とトランジスタ206は、いずれも絶縁層220の基板351側の面上に形成されているため、これらを同一の工程を用いて作製することができる。
基板361には、着色層131、遮光層132、絶縁層121、および液晶素子340の共通電極として機能する導電層313、配向膜133b、絶縁層117等が設けられている。絶縁層117は、液晶素子340のセルギャップを保持するためのスペーサとして機能する。
絶縁層220の基板351側には、絶縁層211、絶縁層212、絶縁層213、絶縁層214、絶縁層215等の絶縁層が設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層212、絶縁層213、および絶縁層214は、各トランジスタを覆って設けられている。また絶縁層214を覆って絶縁層215が設けられている。絶縁層214および絶縁層215は、平坦化層としての機能を有する。なお、ここではトランジスタ等を覆う絶縁層として、絶縁層212、絶縁層213、絶縁層214の3層を有する場合について示しているが、これに限られず4層以上であってもよいし、単層、または2層であってもよい。また平坦化層として機能する絶縁層214は、不要であれば設けなくてもよい。
また、トランジスタ201、トランジスタ205、およびトランジスタ206は、一部がゲートとして機能する導電層221、一部がソースまたはドレインとして機能する導電層222、半導体層231を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。
液晶素子340は反射型の液晶素子である。液晶素子340は、導電層311a、液晶312、導電層313が積層された積層構造を有する。また、導電層311aの基板351側に接して、可視光を反射する導電層311bが設けられている。導電層311bは開口251を有する。また、導電層311aおよび導電層313は可視光を透過する材料を含む。また、液晶312と導電層311aの間に配向膜133aが設けられ、液晶312と導電層313の間に配向膜133bが設けられている。また、基板361の外側の面には、偏光板130を有する。
液晶素子340において、導電層311bは可視光を反射する機能を有し、導電層313は可視光を透過する機能を有する。基板361側から入射した光は、偏光板130により偏光され、導電層313、液晶312を透過し、導電層311bで反射する。そして、液晶312および導電層313を再度透過して、偏光板130に達する。このとき、導電層311bと導電層313の間に与える電圧によって液晶の配向を制御し、光の光学変調を制御することができる。すなわち、偏光板130を介して射出される光の強度を制御することができる。また光は着色層131によって特定の波長領域以外の光が吸収されることにより、取り出される光は、例えば赤色を呈する光となる。
発光素子360は、ボトムエミッション型の発光素子である。発光素子360は、絶縁層220側から導電層191、EL層192、および導電層193bの順に積層された積層構造を有する。また導電層193bを覆って導電層193aが設けられている。導電層193bは可視光を反射する材料を含み、導電層191および導電層193aは可視光を透過する材料を含む。発光素子360が発する光は、着色層134、絶縁層220、開口251、導電層313等を介して、基板361側に射出される。
ここで、図15に示すように、開口251には可視光を透過する導電層311aが設けられていることが好ましい。これにより、開口251と重なる領域においてもそれ以外の領域と同様に液晶312が配向するため、これらの領域の境界部で液晶の配向不良が生じ、意図しない光が漏れてしまうことを抑制できる。
ここで、基板361の外側の面に配置する偏光板130として直線偏光板を用いてもよいが、円偏光板を用いることもできる。円偏光板としては、例えば直線偏光板と1/4波長位相差板を積層したものを用いることができる。これにより、外光反射を抑制することができる。また、外光反射を抑制するために光拡散版を設けてもよい。また、偏光板の種類に応じて、液晶素子340に用いる液晶素子のセルギャップ、配向、駆動電圧等を調整することで、所望のコントラストが実現されるようにすればよい。
導電層191の端部を覆う絶縁層216上には、絶縁層217が設けられている。絶縁層217は、絶縁層220と基板351が必要以上に接近することを抑制するスペーサとしての機能を有する。またEL層192や導電層193aを遮蔽マスク(メタルマスク)を用いて形成する場合には、当該遮蔽マスクが被形成面に接触することを抑制するためのマスクギャッパとしての機能を有していてもよい。なお、絶縁層217は不要であれば設けなくてもよい。
トランジスタ205のソースまたはドレインの一方は、導電層224を介して発光素子360の導電層191と電気的に接続されている。
トランジスタ206のソースまたはドレインの一方は、接続部207を介して導電層311bと電気的に接続されている。導電層311bと導電層311aは接して設けられ、これらは電気的に接続されている。ここで、接続部207は、絶縁層220に設けられた開口を介して、絶縁層220の両面に設けられる導電層同士を接続する部分である。
基板351の基板361と重ならない領域には、接続部204が設けられている。接続部204は、接続層242を介してFPC372と電気的に接続されている。接続部204は接続部207と同様の構成を有している。接続部204の上面は、導電層311aと同一の導電膜を加工して得られた導電層が露出している。これにより、接続部204とFPC372とを接続層242を介して電気的に接続することができる。
接着層141が設けられる一部の領域には、接続部252が設けられている。接続部252において、導電層311aと同一の導電膜を加工して得られた導電層と、導電層313の一部が、接続体243により電気的に接続されている。したがって、基板361側に形成された導電層313に、基板351側に接続されたFPC372から入力される信号または電位を、接続部252を介して供給することができる。
接続体243としては、例えば導電性の粒子を用いることができる。導電性の粒子としては、有機樹脂またはシリカなどの粒子の表面を金属材料で被覆したものを用いることができる。金属材料としてニッケルや金を用いると接触抵抗を低減できるため好ましい。またニッケルをさらに金で被覆するなど、2種類以上の金属材料を層状に被覆させた粒子を用いることが好ましい。また接続体243として、弾性変形、または塑性変形する材料を用いることが好ましい。このとき導電性の粒子である接続体243は、図15に示すように上下方向に潰れた形状となる場合がある。こうすることで、接続体243と、これと電気的に接続する導電層との接触面積が増大し、接触抵抗を低減できるほか、接続不良などの不具合の発生を抑制することができる。
接続体243は、接着層141に覆われるように配置することが好ましい。例えば接着層141となるペースト等を塗布した後に、接続体243を散布すればよい。
図15では、回路364の例としてトランジスタ201が設けられている例を示している。
図15では、トランジスタ201およびトランジスタ205の例として、チャネルが形成される半導体層231を2つのゲートで挟持する構成が適用されている。一方のゲートは導電層221により、他方のゲートは絶縁層212を介して半導体層231と重なる導電層223により構成されている。このような構成とすることで、トランジスタのしきい値電圧を制御することができる。このとき、2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。このようなトランジスタは他のトランジスタと比較して電界効果移動度を高めることが可能であり、オン電流を増大させることができる。その結果、高速駆動が可能な回路を作製することができる。さらには、回路部の占有面積を縮小することが可能となる。オン電流の大きなトランジスタを適用することで、表示パネルを大型化、または高精細化したときに配線数が増大したとしても、各配線における信号遅延を低減することが可能であり、表示ムラを抑制することができる。
なお、回路364が有するトランジスタと、表示部362が有するトランジスタは、同じ構造であってもよい。また回路364が有する複数のトランジスタは、全て同じ構造であってもよいし、異なる構造のトランジスタを組み合わせて用いてもよい。また、表示部362が有する複数のトランジスタは、全て同じ構造であってもよいし、異なる構造のトランジスタを組み合わせて用いてもよい。
各トランジスタを覆う絶縁層212、絶縁層213のうち少なくとも一方は、水や水素などの不純物が拡散しにくい材料を用いることが好ましい。すなわち、絶縁層212または絶縁層213はバリア膜として機能させることができる。このような構成とすることで、トランジスタに対して外部から不純物が拡散することを効果的に抑制することが可能となり、信頼性の高い表示パネルを実現できる。
基板361側において、着色層131、遮光層132を覆って絶縁層121が設けられている。絶縁層121は、平坦化層としての機能を有していてもよい。絶縁層121により、導電層313の表面を概略平坦にできるため、液晶312の配向状態を均一にできる。
[断面構成例2]
また、本発明の一態様の表示パネルは、図16に示すように、画素に設けられる第1のトランジスタと、第2のトランジスタが重なる領域を有する構成であってもよい。このような構成とすることで、一画素あたりの面積を小さくすることができ、高精細な画像が表示できる画素密度の高い表示パネルを形成することができる。
例えば、発光素子360を駆動するためのトランジスタであるトランジスタ205と、トランジスタ208が重なる領域を有するように構成とすることができる。または、液晶素子340を駆動するためのトランジスタ206と、トランジスタ205およびトランジスタ208の一方が重なる領域を有するように構成であってもよい。
[断面構成例3]
また、本発明の一態様の表示パネルは、図17に示すように、表示パネル300aと表示パネル300bが接着層50を介して貼り合わされた構成であってもよい。表示パネル300aは、表示部362aに液晶素子340およびトランジスタ206を有し、表示部362を駆動する回路364aにトランジスタ201aを有する。表示パネル300bは、表示部362bに発光素子360およびトランジスタ205、208を有し、表示部362bを駆動する回路364bにトランジスタ201bを有する。
〔断面構成例4〕
図18に示す表示パネルは、図15に示す構成において各トランジスタにトップゲート型のトランジスタを適用した場合の例である。このように、トップゲート型のトランジスタを適用することにより、寄生容量が低減できるため、表示のフレーム周波数を高めることができる。なお、トップゲート型のトランジスタは、図16および図17に示す構成に適用することもできる。
このような構成とすることで、表示パネル300aおよび表示パネル300bのそれぞれに適した作製工程を用いることができ、製品歩留りを向上させることができる。
[各構成要素について]
以下では、上記に示す各構成要素について説明する。
〔基板〕
表示パネルが有する基板には、平坦面を有する材料を用いることができる。表示素子からの光を取り出す側の基板には、該光を透過する材料を用いる。例えば、ガラス、石英、セラミック、サファイヤ、有機樹脂などの材料を用いることができる。
厚さの薄い基板を用いることで、表示パネルの軽量化、薄型化を図ることができる。さらに、可撓性を有する程度の厚さの基板を用いることで、可撓性を有する表示パネルを実現できる。
また、発光を取り出さない側の基板は、透光性を有していなくてもよいため、上記に挙げた基板の他に、金属基板等を用いることもできる。金属基板は熱伝導性が高く、基板全体に熱を容易に伝導できるため、表示パネルの局所的な温度上昇を抑制することができ、好ましい。可撓性や曲げ性を得るためには、金属基板の厚さは、10μm以上200μm以下が好ましく、20μm以上50μm以下であることがより好ましい。
金属基板を構成する材料としては、特に限定はないが、例えば、アルミニウム、銅、ニッケル等の金属、もしくはアルミニウム合金またはステンレス等の合金などを好適に用いることができる。
また、金属基板の表面を酸化する、または表面に絶縁膜を形成するなどにより、絶縁処理が施された基板を用いてもよい。例えば、スピンコート法やディップ法などの塗布法、電着法、蒸着法、またはスパッタリング法などを用いて絶縁膜を形成してもよいし、酸素雰囲気で放置するまたは加熱するほか、陽極酸化法などによって、基板の表面に酸化膜を形成してもよい。
可撓性を有し、可視光に対する透過性を有する材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリ塩化ビニル樹脂、ポリテトラフルオロエチレン(PTFE)樹脂等が挙げられる。特に、熱膨張係数の低い材料を用いることが好ましく、例えば、熱膨張係数が30×10−6/K以下であるポリアミドイミド樹脂、ポリイミド樹脂、PET等を好適に用いることができる。また、ガラス繊維に有機樹脂を含浸した基板や、無機フィラーを有機樹脂に混ぜて熱膨張係数を下げた基板を使用することもできる。このような材料を用いた基板は、重量が軽いため、該基板を用いた表示パネルも軽量にすることができる。
上記材料中に繊維体が含まれている場合、繊維体は有機化合物または無機化合物の高強度繊維を用いる。高強度繊維とは、具体的には引張弾性率またはヤング率の高い繊維のことを言い、代表例としては、ポリビニルアルコール系繊維、ポリエステル系繊維、ポリアミド系繊維、ポリエチレン系繊維、アラミド系繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、ガラス繊維、または炭素繊維が挙げられる。ガラス繊維としては、Eガラス、Sガラス、Dガラス、Qガラス等を用いたガラス繊維が挙げられる。これらは、織布または不織布の状態で用い、この繊維体に樹脂を含浸させ樹脂を硬化させた構造物を、可撓性を有する基板として用いてもよい。可撓性を有する基板として、繊維体と樹脂からなる構造物を用いると、曲げや局所的押圧による破損に対する信頼性が向上するため、好ましい。
または、可撓性を有する程度に薄いガラス、金属などを基板に用いることもできる。または、ガラスと樹脂材料とが接着層により貼り合わされた複合材料を用いてもよい。
可撓性を有する基板に、表示パネルの表面を傷などから保護するハードコート層(例えば、窒化シリコン、酸化アルミニウムなど)や、押圧を分散可能な材質の層(例えば、アラミド樹脂など)等が積層されていてもよい。また、水分等による表示素子の寿命の低下等を抑制するために、可撓性を有する基板に透水性の低い絶縁膜が積層されていてもよい。例えば、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、窒化アルミニウム等の無機絶縁材料を用いることができる。
基板は、複数の層を積層して用いることもできる。特に、ガラス層を有する構成とすると、水や酸素に対するバリア性を向上させ、信頼性の高い表示パネルとすることができる。
〔トランジスタ〕
トランジスタは、ゲート電極として機能する導電層と、半導体層と、ソース電極として機能する導電層と、ドレイン電極として機能する導電層と、ゲート絶縁層として機能する絶縁層と、を有する。上記では、ボトムゲート構造のトランジスタを適用した場合を示している。
なお、本発明の一態様の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
また、トランジスタに用いる半導体材料としては、エネルギーギャップが2eV以上、好ましくは2.5eV以上、より好ましくは3eV以上である金属酸化物を用いることができる。代表的には、インジウムを含む酸化物半導体などであり、例えば、後述するCAC−OSなどを用いることができる。
シリコンよりもバンドギャップが広く、且つキャリア密度の小さい酸化物半導体を用いたトランジスタは、その低いオフ電流により、トランジスタと直列に接続された容量素子に蓄積した電荷を長期間に亘って保持することが可能である。
半導体層は、例えばインジウム、亜鉛およびM(アルミニウム、チタン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、スズ、ネオジムまたはハフニウム等の金属)を含むIn−M−Zn系酸化物で表記される膜とすることができる。
半導体層を構成する酸化物半導体がIn−M−Zn系酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In≧M、Zn≧Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8等が好ましい。なお、成膜される半導体層の原子数比はそれぞれ、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。
本実施の形態で例示したボトムゲート構造のトランジスタは、作製工程を削減できるため好ましい。またこのとき酸化物半導体を用いることで、多結晶シリコンよりも低温で形成できる、半導体層よりも下層の配線や電極の材料、基板の材料として、耐熱性の低い材料を用いることが可能なため、材料の選択の幅を広げることができる。例えば、極めて大面積のガラス基板などを好適に用いることができる。
半導体層としては、キャリア密度の低い酸化物半導体膜を用いる。例えば、半導体層は、キャリア密度が1×1017/cm以下、好ましくは1×1015/cm以下、さらに好ましくは1×1013/cm以下、より好ましくは1×1011/cm以下、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上のキャリア密度の酸化物半導体を用いることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。これにより不純物濃度が低く、欠陥準位密度が低いため、安定な特性を有する酸化物半導体であるといえる。
なお、これらに限られず、必要とするトランジスタの半導体特性および電気特性(電界効果移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とするトランジスタの半導体特性を得るために、半導体層のキャリア密度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
半導体層を構成する酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、半導体層において酸素欠損が増加し、n型化してしまう。このため、半導体層におけるシリコンや炭素の濃度(二次イオン質量分析法により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、アルカリ金属およびアルカリ土類金属は、酸化物半導体と結合するとキャリアを生成する場合があり、トランジスタのオフ電流が増大してしまうことがある。このため半導体層における二次イオン質量分析法により得られるアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、半導体層を構成する酸化物半導体に窒素が含まれていると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため半導体層における二次イオン質量分析法により得られる窒素濃度は、5×1018atoms/cm以下にすることが好ましい。
また、半導体層は、例えば非単結晶構造でもよい。非単結晶構造は、例えば、c軸に配向した結晶を有するCAAC−OS(C−Axis Aligned Crystalline Oxide Semiconductor、または、C−Axis Aligned and A−B−plane Anchored Crystalline Oxide Semiconductor)、多結晶構造、微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。
非晶質構造の酸化物半導体膜は、例えば、原子配列が無秩序であり、結晶成分を有さない。または、非晶質構造の酸化物膜は、例えば、完全な非晶質構造であり、結晶部を有さない。
なお、半導体層が、非晶質構造の領域、微結晶構造の領域、多結晶構造の領域、CAAC−OSの領域、単結晶構造の領域のうち、二種以上を有する混合膜であってもよい。混合膜は、例えば上述した領域のうち、いずれか二種以上の領域を含む単層構造、または積層構造を有する場合がある。
<CAC−OSの構成>
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud Aligned Complementary)−OSの構成について説明する。
CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)などと、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。したがって、CAC−OSにおいて、結晶構造は副次的な要素である。
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。
また、CAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。したがって、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3などが主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3などが主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。したがって、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、GaOX3などが主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3などが主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。
したがって、CAC−OSを半導体素子に用いた場合、GaOX3などに起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。
また、CAC−OSを用いた半導体素子は、信頼性が高い。したがって、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。
または、トランジスタのチャネルが形成される半導体にシリコンを用いてもよい。シリコンとしてアモルファスシリコンを用いてもよいが、特に結晶性を有するシリコンを用いることが好ましい。例えば、微結晶シリコン、多結晶シリコン、単結晶シリコンなどを用いることが好ましい。特に、多結晶シリコンは、単結晶シリコンに比べて低温で形成でき、且つアモルファスシリコンに比べて高い電界効果移動度と高い信頼性を備える。
本実施の形態で例示したボトムゲート構造のトランジスタは、作製工程を削減できるため好ましい。またこのときアモルファスシリコンを用いることで、多結晶シリコンよりも低温で形成できるため、半導体層よりも下層の配線や電極の材料、基板の材料として、耐熱性の低い材料を用いることが可能なため、材料の選択の幅を広げることができる。例えば、極めて大面積のガラス基板などを好適に用いることができる。一方、トップゲート型のトランジスタは、自己整合的に不純物領域を形成しやすいため、特性のばらつきなどを低減することができるため好ましい。このとき特に、多結晶シリコンや単結晶シリコンなどを用いる場合に適している。
〔導電層〕
トランジスタのゲート、ソースおよびドレインのほか、表示装置を構成する各種配線および電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金などが挙げられる。またこれらの材料を含む膜を単層で、または積層構造として用いることができる。例えば、シリコンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、その上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛等の酸化物を用いてもよい。また、マンガンを含む銅を用いると、エッチングによる形状の制御性が高まるため好ましい。
また、透光性を有する導電性材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、またはチタンなどの金属材料や、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすればよい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線および電極などの導電層や、表示素子が有する導電層(画素電極や共通電極として機能する導電層)にも用いることができる。
〔絶縁層〕
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル、エポキシなどの樹脂、シロキサン結合を有する樹脂の他、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料を用いることもできる。
また、発光素子は、一対の透水性の低い絶縁膜の間に設けられていることが好ましい。これにより、発光素子に水等の不純物が侵入することを抑制でき、装置の信頼性の低下を抑制できる。
透水性の低い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜や、窒化アルミニウム膜等の窒素とアルミニウムを含む膜等が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。
例えば、透水性の低い絶縁膜の水蒸気透過量は、1×10−5[g/(m・day)]以下、好ましくは1×10−6[g/(m・day)]以下、より好ましくは1×10−7[g/(m・day)]以下、さらに好ましくは1×10−8[g/(m・day)]以下とする。
〔液晶素子〕
液晶素子としては、例えば垂直配向(VA:Vertical Alignment)モードが適用された液晶素子を用いることができる。垂直配向モードとしては、MVA(Multi−Domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)モード、ASV(Advanced Super View)モードなどを用いることができる。
また、液晶素子には、様々なモードが適用された液晶素子を用いることができる。例えばVAモードのほかに、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optically Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)モード等が適用された液晶素子を用いることができる。
なお、液晶素子は、液晶の光学的変調作用によって光の透過または非透過を制御する素子である。なお、液晶の光学的変調作用は、液晶にかかる電界(横方向の電界、縦方向の電界または斜め方向の電界を含む)によって制御される。なお、液晶素子に用いる液晶としては、サーモトロピック液晶、低分子液晶、高分子液晶、高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)、強誘電性液晶、反強誘電性液晶等を用いることができる。これらの液晶材料は、条件により、コレステリック相、スメクチック相、キュービック相、カイラルネマチック相、等方相等を示す。
また、液晶材料としては、ポジ型の液晶、またはネガ型の液晶のいずれを用いてもよく、適用するモードや設計に応じて最適な液晶材料を用いればよい。
また、液晶の配向を制御するため、配向膜を設けることができる。なお、横電界方式を採用する場合、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善するために数重量%以上のカイラル剤を混合させた液晶組成物を液晶層に用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が短く、光学的等方性である。また、ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、配向処理が不要であり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要となるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工程中の液晶表示装置の不良や破損を軽減することができる。
また、液晶素子として、透過型の液晶素子、反射型の液晶素子、または半透過型の液晶素子などを用いることができる。
本発明の一態様では、特に反射型の液晶素子を用いることができる。
透過型または半透過型の液晶素子を用いる場合、一対の基板を挟むように、2つの偏光板を設ける。また偏光板よりも外側に、バックライトを設ける。バックライトとしては、直下型のバックライトであってもよいし、エッジライト型のバックライトであってもよい。LED(Light Emitting Diode)を備える直下型のバックライトを用いると、ローカルディミングが容易となり、コントラストを高めることができるため好ましい。また、エッジライト型のバックライトを用いると、バックライトを含めたモジュールの厚さを低減できるため好ましい。
め好ましい。
反射型の液晶素子を用いる場合には、表示面側に偏光板を設ける。またこれとは別に、表示面側に光拡散板を配置すると、視認性を向上させられるため好ましい。
また、反射型、または半透過型の液晶素子を用いる場合、偏光板よりも外側に、フロントライトを設けてもよい。フロントライトとしては、エッジライト型のフロントライトを用いることが好ましい。LED(Light Emitting Diode)を備えるフロントライトを用いると、消費電力を低減できるため好ましい。
〔発光素子〕
発光素子としては、自発光が可能な素子を用いることができ、電流または電圧によって輝度が制御される素子をその範疇に含んでいる。例えば、LED、有機EL素子、無機EL素子等を用いることができる。
発光素子は、トップエミッション型、ボトムエミッション型、デュアルエミッション型などがある。光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
EL層は少なくとも発光層を有する。EL層は、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性および正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
EL層には低分子系化合物および高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。EL層を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
陰極と陽極の間に、発光素子の閾値電圧より高い電圧を印加すると、EL層に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔はEL層において再結合し、EL層に含まれる発光物質が発光する。
発光素子として、白色発光の発光素子を適用する場合には、EL層に2種類以上の発光物質を含む構成とすることが好ましい。例えば2以上の発光物質の各々の発光が補色の関係となるように、発光物質を選択することにより白色発光を得ることができる。例えば、それぞれR(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質、またはR、G、Bのうち2以上の色のスペクトル成分を含む発光を示す発光物質のうち、2以上を含むことが好ましい。また、発光素子からの発光のスペクトルが、可視光領域の波長(例えば350nm乃至750nm)の範囲内に2以上のピークを有する発光素子を適用することが好ましい。また、黄色の波長領域にピークを有する材料の発光スペクトルは、緑色および赤色の波長領域にもスペクトル成分を有する材料であることが好ましい。
EL層は、一の色を発光する発光材料を含む発光層と、他の色を発光する発光材料を含む発光層とが積層された構成とすることが好ましい。例えば、EL層における複数の発光層は、互いに接して積層されていてもよいし、いずれの発光材料も含まない領域を介して積層されていてもよい。例えば、蛍光発光層と燐光発光層との間に、当該蛍光発光層または燐光発光層と同一の材料(例えばホスト材料、アシスト材料)を含み、且ついずれの発光材料も含まない領域を設ける構成としてもよい。これにより、発光素子の作製が容易になり、また、駆動電圧が低減される。
また、発光素子は、EL層を1つ有するシングル素子であってもよいし、複数のEL層が電荷発生層を介して積層されたタンデム素子であってもよい。
可視光を透過する導電膜は、例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを添加した酸化亜鉛などを用いて形成することができる。また、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、もしくはチタン等の金属材料、これら金属材料を含む合金、またはこれら金属材料の窒化物(例えば、窒化チタン)等も、透光性を有する程度に薄く形成することで用いることができる。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウム錫酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。また、グラフェン等を用いてもよい。
可視光を反射する導電膜は、例えば、アルミニウム、金、白金、銀、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、もしくはパラジウム等の金属材料、またはこれら金属材料を含む合金を用いることができる。また、上記金属材料や合金に、ランタン、ネオジム、またはゲルマニウム等が添加されていてもよい。また、チタン、ニッケル、またはネオジムと、アルミニウムを含む合金(アルミニウム合金)を用いてもよい。また銅、パラジウム、マグネシウムと、銀を含む合金を用いてもよい。銀と銅を含む合金は、耐熱性が高いため好ましい。さらに、アルミニウム膜またはアルミニウム合金膜に接して金属膜または金属酸化物膜を積層することで、酸化を抑制することができる。このような金属膜、金属酸化物膜の材料としては、チタンや酸化チタンなどが挙げられる。また、上記可視光を透過する導電膜と金属材料からなる膜とを積層してもよい。例えば、銀とインジウム錫酸化物の積層膜、銀とマグネシウムの合金とインジウム錫酸化物の積層膜などを用いることができる。
電極は、それぞれ、蒸着法やスパッタリング法を用いて形成すればよい。そのほか、インクジェット法などの吐出法、スクリーン印刷法などの印刷法、またはメッキ法を用いて形成することができる。
なお、上述した、発光層、ならびに正孔注入性の高い物質、正孔輸送性の高い物質、電子輸送性の高い物質、および電子注入性の高い物質、バイポーラ性の物質等を含む層は、それぞれ量子ドットなどの無機化合物や、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。
なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。また、12族と16族、13族と15族、または14族と16族の元素グループを含む材料を用いてもよい。または、カドミウム、セレン、亜鉛、硫黄、リン、インジウム、テルル、鉛、ガリウム、ヒ素、アルミニウム等の元素を含む量子ドット材料を用いてもよい。
〔接着層〕
接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
また、上記樹脂に乾燥剤を含んでいてもよい。例えば、アルカリ土類金属の酸化物(酸化カルシウムや酸化バリウム等)のように、化学吸着によって水分を吸着する物質を用いることができる。または、ゼオライトやシリカゲル等のように、物理吸着によって水分を吸着する物質を用いてもよい。乾燥剤が含まれていると、水分などの不純物が素子に侵入することを抑制でき、表示パネルの信頼性が向上するため好ましい。
また、上記樹脂に屈折率の高いフィラーや光散乱部材を混合することにより、光取り出し効率を向上させることができる。例えば、酸化チタン、酸化バリウム、ゼオライト、ジルコニウム等を用いることができる。
〔接続層〕
接続層としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)や、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
〔着色層〕
着色層に用いることのできる材料としては、金属材料、樹脂材料、顔料または染料が含まれた樹脂材料などが挙げられる。
〔遮光層〕
遮光層として用いることのできる材料としては、カーボンブラック、チタンブラック、金属、金属酸化物、複数の金属酸化物の固溶体を含む複合酸化物等が挙げられる。遮光層は、樹脂材料を含む膜であってもよいし、金属などの無機材料の薄膜であってもよい。また、遮光層に、着色層の材料を含む膜の積層膜を用いることもできる。例えば、ある色の光を透過する着色層に用いる材料を含む膜と、他の色の光を透過する着色層に用いる材料を含む膜との積層構造を用いることができる。着色層と遮光層の材料を共通化することで、装置を共通化できるほか工程を簡略化できるため好ましい。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
本実施の形態では、本発明の一態様に用いることのできる情報端末について説明する。
図19(A)に、タブレット型の情報端末の構成例を示す。情報端末700は、筐体701、表示部702、操作キー703、スピーカ704を有する。ここで、表示部702には、入力装置としての機能を有する表示装置を用いることができる。当該入力装置としての機能は、例えば、表示装置に静電容量式のタッチセンサを設ける、表示装置に光電変換素子を有する画素部を設けるなどの方法によって付加することができる。また、操作キー703は、情報端末700を起動する電源スイッチ、情報端末700に格納したソフトウェアを操作するボタン、音量調整ボタン、または表示部702を点灯、あるいは消灯するスイッチとして用いることができる。
また、情報端末700はマイクロホン705を有していてもよい。これにより、例えば、情報端末700に携帯電話のような通話機能を付することができる。また、情報端末700はカメラ706を有していてもよい。また、筐体701内には、データ通信および通話をするための電波を送受信するアンテナ707、位置情報を取得するための電波を送受信するGPSアンテナ708を有する。また、情報端末700はフラッシュライト、または照明として用いることができる発光装置を有していてもよい。
また、情報端末700は、筐体701の内部にセンサ709(力、変位、位置、速度、加速度、角速度、回転数、距離、光、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線などを測定する機能を含むもの)を有していてもよい。特に、ジャイロセンサ、加速度センサなどの傾きを検出するセンサを有する検出装置を設けることで、情報端末700の向き(鉛直方向に対して情報端末がどの向きに向いているか)を判断して、表示部702の画面表示を、情報端末700の向きに応じて自動的に切り替えるようにすることができる。
また、図19(B)は、情報端末700のブロック図の一例である。情報端末700は、CPU301(中央演算処理回路)および各種メモリ(ROM302、RAM303)を有するシステム制御部320と、情報を格納する不揮発性メモリ304と、ロジック回路等を有する構成とすることができる。CPUやメモリを備えることにより、様々なソフトウェアを動作させることができるほか、書籍などの情報を格納させることができ、パーソナルコンピュータの機能の一部または全部の機能を持たせることができる。
上記CPU301等には、表示制御部331、入力制御部332、音声制御部333、通信制御部334、位置情報制御部335、センサ制御部336と電気的に接続される。表示制御部331および入力制御部332は、表示部702およびカメラ706と電気的に接続される。音声制御部323は、スピーカ704およびマイクロホン705と電気的に接続される。通信制御部334は、アンテナ707と電気的に接続される。位置情報制御部335は、GPSアンテナ708と電気的に接続される。センサ制御部336は、センサ709と電気的に接続される。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
10 端末システム
11 サーバ
12 端末
13 端末
13a 端末
13b 端末
13c 端末
14 接続機器
21 表示部
22 文字
23 アンダーライン
24 強調部
25 画像データ
26 画像データ
27 送信アイコン
28 画像データ
29 画像データ
30 画像データ
31 画像データ
32 選択アイコン
33a 画像データ
33b 画像データ
33c 画像データ
34 計算アイコン
35 演算結果
36 アンダーライン
40 画素アレイ
45 画素ユニット
46 画素
46B 表示素子
46G 表示素子
46R 表示素子
47 画素
47B 表示素子
47G 表示素子
47R 表示素子
50 接着層
55 光
61 画素回路
63 液晶素子
117 絶縁層
121 絶縁層
130 偏光板
131 着色層
132 遮光層
133a 配向膜
133b 配向膜
134 着色層
141 接着層
142 接着層
191 導電層
192 EL層
193a 導電層
193b 導電層
201 トランジスタ
201a トランジスタ
201b トランジスタ
204 接続部
205 トランジスタ
206 トランジスタ
207 接続部
208 トランジスタ
211 絶縁層
212 絶縁層
213 絶縁層
214 絶縁層
215 絶縁層
216 絶縁層
217 絶縁層
220 絶縁層
221 導電層
222 導電層
223 導電層
224 導電層
231 半導体層
242 接続層
243 接続体
251 開口
252 接続部
300 表示パネル
300a 表示パネル
300b 表示パネル
301 CPU
302 ROM
303 RAM
304 不揮発性メモリ
311 電極
311a 導電層
311b 導電層
312 液晶
313 導電層
320 システム制御部
323 音声制御部
331 表示制御部
332 入力制御部
333 音声制御部
334 通信制御部
335 位置情報制御部
336 センサ制御部
340 液晶素子
351 基板
360 発光素子
360b 発光素子
360g 発光素子
360r 発光素子
360w 発光素子
361 基板
362 表示部
362a 表示部
362b 表示部
364 回路
364a 回路
364b 回路
365 配線
366 タッチセンサ
372 FPC
373 IC
400 表示装置
410 画素
451 開口
700 情報端末
701 筐体
702 表示部
703 操作キー
704 スピーカ
705 マイクロホン
706 カメラ
707 アンテナ
708 GPSアンテナ
709 センサ

Claims (7)

  1. 第1の端末と、第2の端末と、サーバを有する端末システムであって、
    前記第1の端末および前記第2の端末は、前記サーバを介して互いの情報を授受することができ、
    前記第1の端末は第1の表示部を有し、
    前記第2の端末は第2の表示部を有し、
    前記第1および前記第2の表示部は、第1の表示素子と、第2の表示素子と、をそれぞれ有し、
    前記第1の端末は、第1のデータを生成して前記第1の表示素子を用いて前記第1の表示部で表示を行い、
    前記第1の端末は、前記第1のデータを前記サーバに格納し、
    前記第2の端末は、前記第1のデータを前記サーバから読み出し、
    前記第2の端末は、前記第1のデータを前記第1の表示素子を用いて前記第2の表示部で表示を行い、
    前記第2の端末は、第2のデータを生成して前記第2の表示素子を用いて前記第2の表示部で表示を行い、
    前記第2の端末は、前記第2のデータを前記サーバに格納し、
    前記第1の端末は、前記第2のデータを前記サーバから読み出し、
    前記第1の端末は、前記第2のデータを前記第2の表示素子を用いて前記第1の表示部で表示を行う端末システム。
  2. 請求項1において、
    前記第1の表示素子および前記第2の表示素子は、第1のフレーム周波数または第2のフレーム周波数でデータを書き換えることができ、
    前記第2のフレーム周波数は前記第1のフレーム周波数よりも小さい値であり、
    前記第1の端末が前記第2のデータを更新し、次に前記第2のデータを更新するまでの間において、
    前記第1の表示部が有する前記第2の表示素子は、前記第2のフレーム周波数で前記第2のデータの書き換えを行い、
    前記第2の表示部が有する前記第2の表示素子は、前記第1のフレーム周波数で前記第2のデータの書き換えを行い、
    前記第2の端末が前記第1のデータを更新し、次に前記第1のデータを更新するまでの間において、
    前記第1の表示部が有する前記第1の表示素子は、前記第1のフレーム周波数で前記第1のデータの書き換えを行い、
    前記第2の表示部が有する前記第1の表示素子は、前記第2のフレーム周波数で前記第1のデータの書き換えを行う端末システム。
  3. 請求項1または2において、
    前記第1の表示素子および前記第2の表示素子は、同一の画素ユニット内に設けられている端末システム。
  4. 請求項1乃至3のいずれか一項において、
    前記第1の表示素子は、可視光を反射する機能を有する端末システム。
  5. 請求項1乃至4のいずれか一項において、
    前記第2の表示素子は、可視光を発する機能を有する端末システム。
  6. 請求項1乃至5のいずれか一項において、
    前記第1の表示素子および前記第2の表示素子は、チャネルが形成される半導体層に金属酸化物を含むトランジスタとそれぞれ電気的に接続されている端末システム。
  7. 請求項1乃至6のいずれか一項において、前記第1の端末および前記第2の端末は、表示部にタッチセンサを有する端末システム。
JP2016202181A 2016-10-14 2016-10-14 端末システム Active JP6833443B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202181A JP6833443B2 (ja) 2016-10-14 2016-10-14 端末システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202181A JP6833443B2 (ja) 2016-10-14 2016-10-14 端末システム

Publications (2)

Publication Number Publication Date
JP2018063373A true JP2018063373A (ja) 2018-04-19
JP6833443B2 JP6833443B2 (ja) 2021-02-24

Family

ID=61966688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202181A Active JP6833443B2 (ja) 2016-10-14 2016-10-14 端末システム

Country Status (1)

Country Link
JP (1) JP6833443B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322850A (ja) * 2002-04-30 2003-11-14 Nec Corp 表示装置及びその駆動方法
JP2012053454A (ja) * 2010-08-06 2012-03-15 Semiconductor Energy Lab Co Ltd 液晶表示装置
JP2013213913A (ja) * 2012-04-02 2013-10-17 Sharp Corp 表示駆動装置、表示駆動方法、表示装置、電子機器、表示駆動プログラムおよび記録媒体
JP2016156886A (ja) * 2015-02-23 2016-09-01 富士通株式会社 表示制御プログラム、表示制御方法および表示制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322850A (ja) * 2002-04-30 2003-11-14 Nec Corp 表示装置及びその駆動方法
JP2012053454A (ja) * 2010-08-06 2012-03-15 Semiconductor Energy Lab Co Ltd 液晶表示装置
JP2013213913A (ja) * 2012-04-02 2013-10-17 Sharp Corp 表示駆動装置、表示駆動方法、表示装置、電子機器、表示駆動プログラムおよび記録媒体
JP2016156886A (ja) * 2015-02-23 2016-09-01 富士通株式会社 表示制御プログラム、表示制御方法および表示制御装置

Also Published As

Publication number Publication date
JP6833443B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
US11550181B2 (en) Display device and electronic device
US11881177B2 (en) Display device and electronic device
JP2018041078A (ja) 電子機器、画像表示方法、プログラム、表示システム
JP2018120220A (ja) 表示装置、電子機器、及び表示モジュール
JP2018141950A (ja) 表示装置および電子機器
TW201810242A (zh) 顯示裝置,及顯示裝置的驅動方法
JP2019045613A (ja) 表示装置および電子機器
JP2018049271A (ja) 表示装置および電子機器
US20180026037A1 (en) Display Device and Electronic Device
JP2018049269A (ja) 表示システムおよび電子機器
JP2018031944A (ja) 表示システムおよび電子機器
TW201824221A (zh) 顯示裝置
JP2018060179A (ja) 表示装置および電子機器
JP2018060203A (ja) 表示装置および電子機器
US10216999B2 (en) Display system, electronic device, and display method
JP6833443B2 (ja) 端末システム
JP2018054901A (ja) 表示システムおよび電子機器
JP2018040867A (ja) 表示装置、電子機器、及び情報提供方法
JP2018022145A (ja) 半導体装置、表示システム及び電子機器
JP2018060198A (ja) 表示装置および電子機器
JP2018072462A (ja) 表示装置
JP2018073306A (ja) 画像表示システム、画像表示方法および情報処理装置
JP2018028589A (ja) 表示装置および電子機器
JP2018022038A (ja) 表示装置および電子機器
JP2018036584A (ja) 表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210203

R150 Certificate of patent or registration of utility model

Ref document number: 6833443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150