JP2018056440A - 非水系リチウム型蓄電素子 - Google Patents
非水系リチウム型蓄電素子 Download PDFInfo
- Publication number
- JP2018056440A JP2018056440A JP2016192764A JP2016192764A JP2018056440A JP 2018056440 A JP2018056440 A JP 2018056440A JP 2016192764 A JP2016192764 A JP 2016192764A JP 2016192764 A JP2016192764 A JP 2016192764A JP 2018056440 A JP2018056440 A JP 2018056440A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- less
- storage element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
【課題】高容量および優れた入出力特性と、長期間高温にさらされた場合の高い耐久性を同時に有する非水系リチウム型蓄電素子を提供すること。
【解決手段】正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、上記正極が、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、上記正極活物質は活性炭を含み、上記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、上記正極中に含まれる上記リチウム化合物の量が、上記正極活物質層の全質量を基準として、1質量%以上50質量%以下である、非水系リチウム型蓄電素子。
【選択図】なし
【解決手段】正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、上記正極が、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、上記正極活物質は活性炭を含み、上記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、上記正極中に含まれる上記リチウム化合物の量が、上記正極活物質層の全質量を基準として、1質量%以上50質量%以下である、非水系リチウム型蓄電素子。
【選択図】なし
Description
本発明は、非水系リチウム型蓄電素子に関する。
近年、地球環境の保全や省資源を目指すエネルギーの有効利用の観点から、風力発電の電力平滑化システム又は深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システム等が注目を集めている。
これらの蓄電システムに用いられる電池の第一の要求事項は、エネルギー密度が高いことである。このような要求に対応可能な高エネルギー密度電池の有力候補として、リチウムイオン電池の開発が精力的に進められている。
第二の要求事項は、出力特性が高いことである。例えば、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)又は燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、加速時には蓄電システムにおける高出力放電特性が要求されている。
現在、高出力蓄電デバイスとしては、電気二重層キャパシタ、ニッケル水素電池等が開発されている。
電気二重層キャパシタのうち、電極に活性炭を用いたものは、0.5〜1kW/L程度の出力特性を有する。この電気二重層キャパシタは、耐久性(サイクル特性及び高温保存特性)も高く、上記高出力が要求される分野で最適のデバイスと考えられてきた。しかし、そのエネルギー密度は1〜5Wh/L程度に過ぎない。そのため、更なるエネルギー密度の向上が必要である。
他方、現在ハイブリッド電気自動車で採用されているニッケル水素電池は、電気二重層キャパシタと同等の高出力を有し、かつ160Wh/L程度のエネルギー密度を有している。しかしながら、そのエネルギー密度及び出力をより一層高めるとともに、耐久性(特に、高温における安定性)を高めるための研究が精力的に進められている。
また、リチウムイオン電池においても、高出力化に向けての研究が進められている。例えば、放電深度(蓄電素子の放電容量の何%を放電した状態かを示す値)50%において3kW/Lを超える高出力が得られるリチウムイオン電池が開発されている。しかし、そのエネルギー密度は100Wh/L以下であり、リチウムイオン電池の最大の特徴である高エネルギー密度を敢えて抑制した設計となっている。また、その耐久性(サイクル特性及び高温保存特性)については、電気二重層キャパシタに比べ劣る。そのため、実用的な耐久性を持たせるためには、放電深度が0〜100%の範囲よりも狭い範囲での使用となる。実際に使用できる容量は更に小さくなるから、耐久性をより一層向上させるための研究が精力的に進められている。
上記のように、高エネルギー密度、高出力特性、及び耐久性を兼ね備えた蓄電素子の実用化が強く求められている。しかし、上述した既存の蓄電素子には、それぞれ一長一短がある。そのため、これらの技術的要求を充足する新たな蓄電素子が求められている。その有力な候補として、リチウムイオンキャパシタと呼ばれる蓄電素子が注目され、開発が盛んに行われている。
リチウムイオンキャパシタは、リチウム塩を含む非水系電解液を使用する蓄電素子(非水系リチウム型蓄電素子)の一種であって、正極においては約3V以上で電気二重層キャパシタと同様の陰イオンの吸着及び脱着による非ファラデー反応、負極においてはリチウムイオン電池と同様のリチウムイオンの吸蔵及び放出によるファラデー反応によって、充放電を行う蓄電素子である。
上述の電極材料とその特徴をまとめると、電極に活性炭等の材料を用い、活性炭表面のイオンの吸着・脱離(非ファラデー反応)により充放電を行う場合は、高出力かつ高耐久性を実現するが、エネルギー密度が低くなる(例えば1倍とする。)。一方、電極に酸化物や炭素材料を用い、ファラデー反応により充放電を行う場合は、エネルギー密度が高くなる(例えば活性炭を用いた非ファラデー反応の10倍とする。)が、耐久性及び出力特性に課題がある。
これらの電極材料の組合せとして、電気二重層キャパシタは、正極及び負極に活性炭(エネルギー密度1倍)を用い、正負極共に非ファラデー反応により充放電を行うことを特徴とし、高出力かつ高耐久性を有するがエネルギー密度が低い(正極1倍×負極1倍=1)という特徴がある。
リチウムイオン二次電池は、正極にリチウム遷移金属酸化物(エネルギー密度10倍)、負極に炭素材料(エネルギー密度10倍)を用い、正負極共にファラデー反応により充放電を行うことを特徴とし、高エネルギー密度(正極10倍×負極10倍=100)だが、出力特性及び耐久性に課題がある。更に、ハイブリッド電気自動車等で要求される高耐久性を満足させるためには放電深度を制限しなければならず、リチウムイオン二次電池では、そのエネルギーの10〜50%しか使用できない。
リチウムイオンキャパシタは、正極に活性炭(エネルギー密度1倍)、負極に炭素材料(エネルギー密度10倍)を用い、正極では非ファラデー反応、負極ではファラデー反応により充放電を行うことを特徴とし、電気二重層キャパシタ及びリチウムイオン二次電池の特徴を兼ね備えた新規の非対称キャパシタである。そして、高出力かつ高耐久性でありながら、高エネルギー密度(正極1倍×負極10倍=10)を有し、リチウムイオン二次電池の様に放電深度を制限する必要がないことが特徴である。
リチウムイオンキャパシタは、優れた入出力特性を有する一方で、高温下での保存や使用において、蓄電素子内部の副反応によりガスが発生し、その特性に悪影響を与えることが知られている。特許文献1は、この劣化を防ぐため、電解液にスルトン系の添加物を加えることで、電極活物質の表面に安定な被膜を形成させ、電解液の分解に由来するガス発生を抑制し、高温下での保存及び使用においても、その劣化を抑制することを記載している。
しかしながら、高温下で生じるガスは、電解液の分解に限らず、電極に含まれる材料に起因した分解反応により生じることも知られている。そのため、特許文献1に記載されているような技術では、高温下での保存および使用において特性が悪化することがあった。このため、高温下での保存および使用における特性悪化を効果的に抑制することができる技術が求められている。
本発明が解決しようとする課題のひとつは、高容量および優れた入出力特性と、長期間高温にさらされた場合の高い耐久性を同時に有する非水系リチウム型蓄電素子を提供することである。
本発明者らは、上記課題を解決すべく鋭意検討し、実験を重ねた。その結果、正極活物質以外のリチウム化合物を正極に含有させ、更に非水系リチウム型蓄電素子の内部に、ガス吸着剤を導入することで、非水系リチウム型蓄電素子の充放電によりリチウム化合物から発生するガスを、ガス吸着剤により取り除くことができ、その結果、高温下での保存及び使用における発生ガスによる非水系リチウム型蓄電素子の劣化を抑制できることを見出した。これにより、高容量および優れた入出力特性と、長期間高温にさらされた場合の高い耐久性を同時に有する非水系リチウム型蓄電素子を提供できることを見出した。
すなわち、本発明は、以下のとおりのものである。
〔1〕
正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
上記正極が、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、上記正極活物質は活性炭を含み、
上記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、
上記正極中に含まれる上記リチウム化合物の量が、上記正極活物質層の全質量を基準として、1質量%以上50質量%以下である、非水系リチウム型蓄電素子。
〔2〕
上記正極と上記負極が上記セパレータを介して積層された電極積層体、又は積層及び捲回された電極捲回体と、
上記非水系電解液と、
ガス吸着包装体とが、
外装体の内部に収納及び封止されている、非水系リチウム型蓄電素子であって、
上記ガス吸着包装体は、微多孔膜から構成される微多孔包装材に上記ガス吸着剤が収納及び封止されている、項目1に記載の非水系リチウム型蓄電素子。
〔3〕
上記ガス吸着剤の細孔径が3.2Å以上9.0Å以下である、項目1又は2に記載の非水系リチウム型蓄電素子。
〔4〕
上記ガス吸着剤がゼオライトを含む、項目1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。
〔5〕
上記正極活物質層が、下記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を、上記正極活物質層の単位質量当たり1.60×10−4mol/g〜300×10−4mol/g含有する、項目1〜4のいずれか一項に記載の非水系リチウム型蓄電素子。
{式(1)中、R1は、炭素数1〜4のアルキレン基、又は炭素数1〜4のハロゲン化アルキレン基であり、X1、X2はそれぞれ独立に−(COO)n(ここで、nは0又は1である。)である。}
{式(2)中、R1は、炭素数1〜4のアルキレン基、又は炭素数1〜4のハロゲン化アルキレン基であり、R2は水素、炭素数1〜10のアルキル基、炭素数1〜10のモノ若しくはポリヒドロキシアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のモノ又はポリヒドロキシアルケニル基、炭素数3〜6のシクロアルキル基、又はアリール基であり、X1、X2はそれぞれ独立に−(COO)n(ここで、nは0又は1である。)である。}
{式(3)中、R1は、炭素数1〜4のアルキレン基、又は炭素数1〜4のハロゲン化アルキレン基であり、R2、R3はそれぞれ独立に水素、炭素数1〜10のアルキル基、炭素数1〜10のモノ若しくはポリヒドロキシアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のモノ又はポリヒドロキシアルケニル基、炭素数3〜6のシクロアルキル基、又はアリール基であり、X1、X2はそれぞれ独立に−(COO)n(ここで、nは0又は1である。)である。}
〔6〕
上記正極活物質層に含まれる、上記式(1)〜(3)からなる群から選択される少なくとも一種の化合物の、上記正極活物質層の単位質量当たりの含有量をAとし、
上記負極活物質層に含まれる、上記式(1)〜(3)からなる群から選択される少なくとも一種の化合物の、上記負極活物質層の単位質量当たりの含有量をBとしたとき、
0.2≦A/B≦20である、項目1〜5のいずれか一項に記載の、非水系リチウム型蓄電素子。
〔7〕
上記リチウム化合物は、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種のリチウム化合物である、項目1〜6のいずれか一項に記載の非水系リチウム型蓄電素子。
〔8〕
上記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す活性炭である、項目1〜7のいずれか一項に記載の非水系リチウム型蓄電素子。
〔9〕
上記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す活性炭である、項目1〜8のいずれか一項に記載の非水系リチウム型蓄電素子。
〔10〕
上記負極活物質のリチウムイオンのドープ量が、単位質量当たり530mAh/g以上2,500mAh/g以下である、項目1〜9のいずれか一項に記載の非水系リチウム型蓄電素子。
〔11〕
上記負極活物質のBET比表面積が100m2/g以上1,500m2/g以下である、項目1〜10のいずれか一項に記載の非水系リチウム型蓄電素子。
〔12〕
上記負極活物質のリチウムイオンのドープ量が、単位質量当たり50mAh/g以上700mAh/g以下である、項目1〜9のいずれか一項に記載の非水系リチウム型蓄電素子。
〔13〕
上記負極活物質のBET比表面積が1m2/g以上50m2/g以下である、項目1〜9及び12のいずれか一項に記載の非水系リチウム型蓄電素子。
〔14〕
正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
非水系リチウム型蓄電素子において、初期の常温放電内部抵抗をRa(Ω)、初期の常温充電内部抵抗をRf(Ω)、静電容量をF(F)、電力量をE(Wh)、蓄電素子の体積をV(L)としたとき、
以下の(a)、(b)、及び(c):
(a)RaとFとの積Ra・Fが0.3以上3.0以下である;
(b)E/Vが15以上50以下である;及び
(c)Rf/Raが0.5以上1.5以下である;
を満たす、非水系リチウム型蓄電素子。
〔15〕
正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
上記非水系リチウム型蓄電素子において、セル電圧4V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRd(Ω)としたとき、以下の(d)及び(e):
(d)Rd/Raが0.3以上3.0以下である;
(e)セル電圧4V及び環境温度60℃において2か月間保存したときに発生するガス量が、25℃において30×10−3cc/F以下である;
を満たす、非水系リチウム型蓄電素子。
〔1〕
正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
上記正極が、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、上記正極活物質は活性炭を含み、
上記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、
上記正極中に含まれる上記リチウム化合物の量が、上記正極活物質層の全質量を基準として、1質量%以上50質量%以下である、非水系リチウム型蓄電素子。
〔2〕
上記正極と上記負極が上記セパレータを介して積層された電極積層体、又は積層及び捲回された電極捲回体と、
上記非水系電解液と、
ガス吸着包装体とが、
外装体の内部に収納及び封止されている、非水系リチウム型蓄電素子であって、
上記ガス吸着包装体は、微多孔膜から構成される微多孔包装材に上記ガス吸着剤が収納及び封止されている、項目1に記載の非水系リチウム型蓄電素子。
〔3〕
上記ガス吸着剤の細孔径が3.2Å以上9.0Å以下である、項目1又は2に記載の非水系リチウム型蓄電素子。
〔4〕
上記ガス吸着剤がゼオライトを含む、項目1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。
〔5〕
上記正極活物質層が、下記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を、上記正極活物質層の単位質量当たり1.60×10−4mol/g〜300×10−4mol/g含有する、項目1〜4のいずれか一項に記載の非水系リチウム型蓄電素子。
〔6〕
上記正極活物質層に含まれる、上記式(1)〜(3)からなる群から選択される少なくとも一種の化合物の、上記正極活物質層の単位質量当たりの含有量をAとし、
上記負極活物質層に含まれる、上記式(1)〜(3)からなる群から選択される少なくとも一種の化合物の、上記負極活物質層の単位質量当たりの含有量をBとしたとき、
0.2≦A/B≦20である、項目1〜5のいずれか一項に記載の、非水系リチウム型蓄電素子。
〔7〕
上記リチウム化合物は、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種のリチウム化合物である、項目1〜6のいずれか一項に記載の非水系リチウム型蓄電素子。
〔8〕
上記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す活性炭である、項目1〜7のいずれか一項に記載の非水系リチウム型蓄電素子。
〔9〕
上記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す活性炭である、項目1〜8のいずれか一項に記載の非水系リチウム型蓄電素子。
〔10〕
上記負極活物質のリチウムイオンのドープ量が、単位質量当たり530mAh/g以上2,500mAh/g以下である、項目1〜9のいずれか一項に記載の非水系リチウム型蓄電素子。
〔11〕
上記負極活物質のBET比表面積が100m2/g以上1,500m2/g以下である、項目1〜10のいずれか一項に記載の非水系リチウム型蓄電素子。
〔12〕
上記負極活物質のリチウムイオンのドープ量が、単位質量当たり50mAh/g以上700mAh/g以下である、項目1〜9のいずれか一項に記載の非水系リチウム型蓄電素子。
〔13〕
上記負極活物質のBET比表面積が1m2/g以上50m2/g以下である、項目1〜9及び12のいずれか一項に記載の非水系リチウム型蓄電素子。
〔14〕
正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
非水系リチウム型蓄電素子において、初期の常温放電内部抵抗をRa(Ω)、初期の常温充電内部抵抗をRf(Ω)、静電容量をF(F)、電力量をE(Wh)、蓄電素子の体積をV(L)としたとき、
以下の(a)、(b)、及び(c):
(a)RaとFとの積Ra・Fが0.3以上3.0以下である;
(b)E/Vが15以上50以下である;及び
(c)Rf/Raが0.5以上1.5以下である;
を満たす、非水系リチウム型蓄電素子。
〔15〕
正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
上記非水系リチウム型蓄電素子において、セル電圧4V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRd(Ω)としたとき、以下の(d)及び(e):
(d)Rd/Raが0.3以上3.0以下である;
(e)セル電圧4V及び環境温度60℃において2か月間保存したときに発生するガス量が、25℃において30×10−3cc/F以下である;
を満たす、非水系リチウム型蓄電素子。
本発明によれば、非水系リチウム型蓄電素子の内部にガス吸着剤を導入することで、リチウム化合物からの発生ガスを除去し、高容量および優れた入出力特性と、長期間高温にさらされた場合の高い耐久性を同時に有する非水系リチウム型蓄電素子を提供することができる。
以下、本発明の実施形態(以下、「本実施形態」という。)を例示する目的で詳細に説明するが、本発明は本実施形態に限定されるものではない。本願明細書において、各数値範囲の上限値及び下限値は任意に組み合わせることができる。
《非水系リチウム型蓄電素子》
非水系リチウム型蓄電素子は一般に、正極と、負極と、セパレータと、電解液とを主な構成要素として有する。電解液としては、リチウム塩を溶解させた有機溶媒(以下、非水系電解液という。)を用いる。
非水系リチウム型蓄電素子は一般に、正極と、負極と、セパレータと、電解液とを主な構成要素として有する。電解液としては、リチウム塩を溶解させた有機溶媒(以下、非水系電解液という。)を用いる。
本実施形態の非水系リチウム型蓄電素子は、正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、上記正極が、正極集電体と、上記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、上記正極活物質は活性炭を含み、上記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、上記正極中に含まれる上記リチウム化合物の量が、上記正極活物質層の全質量を基準として、1質量%以上50質量%以下である。
〈正極〉
正極は、正極集電体と、正極集電体の片面又は両面に存在する正極活物質層とを有する。
正極は、正極集電体と、正極集電体の片面又は両面に存在する正極活物質層とを有する。
正極は、非水系リチウム型蓄電素子を組み立てる前の正極前駆体として、リチウム化合物を含むことが好ましい。本実施形態では、非水系リチウム型蓄電素子を組み立てる際に、負極にリチウムイオンをプレドープすることが好ましい。プレドープ方法としては、リチウム化合物を含む正極前駆体と、負極と、セパレータと、非水系電解液とを用いて非水系リチウム型蓄電素子を組み立てた後に、正極前駆体と負極との間に電圧を印加することが好ましい。正極前駆体の正極集電体上に形成された正極活物質層が、リチウム化合物を含有することが好ましい。
本明細書中、リチウムドープ前における正極状態のことを「正極前駆体」、リチウムドープ後における正極状態のことを「正極」と定義する。
[正極活物質層]
正極に含まれる正極活物質層は、活性炭を含む正極活物質を含有する。正極活物質層は、正極活物質以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
正極に含まれる正極活物質層は、活性炭を含む正極活物質を含有する。正極活物質層は、正極活物質以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
正極前駆体の正極活物質層は、正極活物質以外のリチウム化合物を含有することが好ましい。
[正極活物質]
正極活物質は、活性炭を含む。正極活物質としては、活性炭のみを使用してもよく、又は活性炭に加えて、後述するような他の炭素材料を併用してもよい。炭素材料としては、カーボンナノチューブ、導電性高分子、又は多孔性の炭素材料を使用することがより好ましい。正極活物質には、活性炭を含む1種類以上の炭素材料を混合して使用してもよく、炭素材料以外の材料(例えば、リチウムと遷移金属との複合酸化物等)を含んでもよい。
正極活物質は、活性炭を含む。正極活物質としては、活性炭のみを使用してもよく、又は活性炭に加えて、後述するような他の炭素材料を併用してもよい。炭素材料としては、カーボンナノチューブ、導電性高分子、又は多孔性の炭素材料を使用することがより好ましい。正極活物質には、活性炭を含む1種類以上の炭素材料を混合して使用してもよく、炭素材料以外の材料(例えば、リチウムと遷移金属との複合酸化物等)を含んでもよい。
正極活物質の総質量に対する炭素材料の含有率は、好ましくは50質量%以上であり、より好ましくは70質量%以上、又は100質量%であってもよい。他の材料の併用による効果を良好に得る観点から、正極活物質の総質量に対する炭素材料の含有率は、例えば、90質量%以下であることが好ましく、80質量%以下であってもよい。
正極活物質として用いる活性炭の種類及びその原料は特に限定されない。しかし、高い入出力特性と、高いエネルギー密度とを両立させるために、活性炭の細孔を最適に制御することが好ましい。具体的には、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、
(1)高い入出力特性のためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下、活性炭1ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下、活性炭2ともいう。)が好ましい。
(1)高い入出力特性のためには、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下である活性炭(以下、活性炭1ともいう。)が好ましく、また、
(2)高いエネルギー密度を得るためには、0.8<V1≦2.5、及び0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下である活性炭(以下、活性炭2ともいう。)が好ましい。
以下、上記(1)活性炭1及び上記(2)活性炭2について、個別に順次説明する。
(活性炭1)
活性炭1のメソ孔量V1は、蓄電素子に組み込んだときの入出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましい。正極の嵩密度の低下を抑える点から、0.8cc/g以下であることが好ましい。上記V1は、より好ましくは0.35cc/g以上0.7cc/g以下、更に好ましくは0.4cc/g以上0.6cc/g以下である。
(活性炭1)
活性炭1のメソ孔量V1は、蓄電素子に組み込んだときの入出力特性を大きくする点で、0.3cc/gより大きい値であることが好ましい。正極の嵩密度の低下を抑える点から、0.8cc/g以下であることが好ましい。上記V1は、より好ましくは0.35cc/g以上0.7cc/g以下、更に好ましくは0.4cc/g以上0.6cc/g以下である。
活性炭1のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.5cc/g以上であることが好ましい。活性炭の嵩を抑え、電極としての密度を増加させ、単位体積当たりの容量を増加させるという点から、1.0cc/g以下であることが好ましい。上記V2は、より好ましくは0.6cc/g以上1.0cc/g以下、更に好ましくは0.8cc/g以上1.0cc/g以下である。尚、下限と上限の組み合わせは任意である。
マイクロ孔量V2に対するメソ孔量V1の比(V1/V2)は、0.3≦V1/V2≦0.9の範囲であることが好ましい。すなわち、高容量を維持しながら出力特性の低下を抑えることができる程度に、マイクロ孔量に対するメソ孔量の割合を大きくするという点から、V1/V2が0.3以上であることが好ましい。高出力特性を維持しながら容量の低下を抑えることができる程度に、メソ孔量に対するマイクロ孔量の割合を大きくするという点から、V1/V2は0.9以下であることが好ましい。より好ましいV1/V2の範囲は0.4≦V1/V2≦0.7、更に好ましいV1/V2の範囲は0.55≦V1/V2≦0.7である。尚、下限と上限の組み合わせは任意である。
活性炭1の平均細孔径は、得られる蓄電素子の出力を最大にする点から、17Å以上であることが好ましく、18Å以上であることがより好ましく、20Å以上であることがより更に好ましい。また容量を最大にする点から、活性炭1の平均細孔径は25Å以下であることが好ましい。
活性炭1のBET比表面積は、1,500m2/g以上3,000m2/g以下であることが好ましく、1,500m2/g以上2,500m2/g以下であることがより好ましい。BET比表面積が1,500m2/g以上の場合には、良好なエネルギー密度が得られ易く、他方、BET比表面積が3,000m2/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。尚、下限と上限の組み合わせは任意である。
上記のような特徴を有する活性炭1は、例えば、以下に説明する原料及び処理方法を用いて得ることができる。
本実施形態では、活性炭1の原料として用いられる炭素源は、特に限定されるものではない。例えば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バガス、廃糖蜜等の植物系原料;泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタール等の化石系原料;フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂等の各種合成樹脂;ポリブチレン、ポリブタジエン、ポリクロロプレン等の合成ゴム;その他の合成木材、合成パルプ等、及びこれらの炭化物が挙げられる。これらの原料の中でも、量産対応及びコストの観点から、ヤシ殻、木粉等の植物系原料、及びそれらの炭化物が好ましく、ヤシ殻炭化物が特に好ましい。
これらの原料から活性炭1を得るための炭化及び賦活の方式としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の既知の方式を採用できる。
これらの原料の炭化方法としては、窒素、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等の不活性ガス、又はこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して、400〜700℃、好ましくは450〜600℃程度において、30分〜10時間程度に亘って焼成する方法が挙げられる。
炭化により得られる炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて焼成するガス賦活法が好ましく用いられる。このうち、賦活ガスとして、水蒸気又は二酸化炭素を使用する方法が好ましい。
賦活方法では、賦活ガスを0.5〜3.0kg/h、好ましくは0.7〜2.0kg/hの割合で供給しながら、炭化物を3〜12時間、好ましくは5〜11時間、更に好ましくは6〜10時間かけて、800〜1,000℃まで昇温して賦活するのが好ましい。
炭化物の賦活処理に先立ち、予め炭化物を1次賦活してもよい。この1次賦活では、通常、炭素材料を水蒸気、二酸化炭素、酸素等の賦活ガスを用いて、900℃未満の温度で焼成してガス賦活する方法が好ましい。
炭化方法における焼成温度及び焼成時間と、賦活方法における賦活ガス供給量、昇温速度及び最高賦活温度とを適宜組み合わせることにより、上記の特徴を有する活性炭1を製造することができる。
活性炭1の平均粒子径は、2〜20μmであることが好ましい。平均粒子径が2μm以上であると、活物質層の密度が高いために電極体積当たりの容量が高くなる傾向がある。平均粒子径が2μm以上であれば、正極活物質層の耐久性を確保し易い。平均粒子径が20μm以下であると、非水系リチウム蓄電素子の高速充放電に適合し易くなる傾向がある。平均粒子径は、より好ましくは2〜15μmであり、更に好ましくは3〜10μmである。平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
(活性炭2)
活性炭2のメソ孔量V1は、蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましい。V1は、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。上記V1は、より好ましくは1.00cc/g以上2.0cc/g以下、さらに好ましくは、1.2cc/g以上1.8cc/g以下である。
活性炭2のメソ孔量V1は、蓄電素子に組み込んだときの出力特性を大きくする観点から、0.8cc/gより大きい値であることが好ましい。V1は、蓄電素子の容量の低下を抑える観点から、2.5cc/g以下であることが好ましい。上記V1は、より好ましくは1.00cc/g以上2.0cc/g以下、さらに好ましくは、1.2cc/g以上1.8cc/g以下である。
活性炭2のマイクロ孔量V2は、活性炭の比表面積を大きくし、容量を増加させるために、0.8cc/gより大きい値であることが好ましい。V2は、活性炭の電極としての密度を増加させ、単位体積当たりの容量を増加させるという観点から、3.0cc/g以下であることが好ましい。上記V2は、より好ましくは1.0cc/gより大きく2.5cc/g以下、更に好ましくは1.5cc/g以上2.5cc/g以下である。
上述したメソ孔量及びマイクロ孔量を有する活性炭2は、従来の電気二重層キャパシタ又はリチウムイオンキャパシタ用として使用されていた活性炭よりもBET比表面積が高いものである。活性炭2のBET比表面積の具体的な値としては、2,300m2/g以上4,000m2/g以下であることが好ましい。BET比表面積の下限としては、3,000m2/g以上であることがより好ましく、3,200m2/g以上であることが更に好ましい。BET比表面積の上限としては、3,800m2/g以下であることがより好ましい。BET比表面積が2,300m2/g以上の場合には、良好なエネルギー密度が得られ易く、BET比表面積が4,000m2/g以下の場合には、電極の強度を保つためにバインダーを多量に入れる必要がないので、電極体積当たりの性能が高くなる。
活性炭2のV1、V2及びBET比表面積については、それぞれ上記で説明された好適な範囲の上限と下限を、任意に組み合わせることができる。
上記のような特徴を有する活性炭2は、例えば以下に説明するような原料及び処理方法を用いて得ることができる。
活性炭2の原料として用いられる炭素源としては、通常活性炭原料として用いられる炭素源であれば特に限定されるものではなく、例えば、木材、木粉、ヤシ殻等の植物系原料;石油ピッチ、コークス等の化石系原料;フェノール樹脂、フラン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂等の各種合成樹脂等が挙げられる。これらの原料の中でも、フェノール樹脂、及びフラン樹脂は、高比表面積の活性炭を作製するのに適しており特に好ましい。
これらの原料を炭化する方式、或いは賦活処理時の加熱方法としては、例えば、固定床方式、移動床方式、流動床方式、スラリー方式、ロータリーキルン方式等の公知の方式が挙げられる。加熱時の雰囲気は窒素、二酸化炭素、ヘリウム、アルゴン等の不活性ガス、又はこれらの不活性ガスを主成分として他のガスとの混合したガスが用いられる。炭化温度は400〜700℃、下限は、好ましくは450℃以上、更に好ましくは500℃以上であり、上限は、好ましくは650℃以下である。焼成時間は好ましくは0.5〜10時間である。
炭化処理後の炭化物の賦活方法としては、水蒸気、二酸化炭素、酸素等の賦活ガスを用いて焼成するガス賦活法、及びアルカリ金属化合物と混合した後に加熱処理を行うアルカリ金属賦活法があるが、高比表面積の活性炭を作製するにはアルカリ金属賦活法が好ましい。
この賦活方法では、例えば、炭化物と水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)等のアルカリ金属化合物との質量比が1:1以上(すなわち、アルカリ金属化合物の量が、炭化物の量と同じかこれよりも多い量)となるように混合した後に、不活性ガス雰囲気下で600〜900℃、好ましくは650℃〜850℃の範囲において、0.5〜5時間加熱を行い、その後アルカリ金属化合物を酸及び水により洗浄除去し、更に乾燥を行うことができる。
炭化物とアルカリ金属化合物の質量比(=炭化物:アルカリ金属化合物)は1:1以上が好ましく、アルカリ金属化合物の量が増えるほど、メソ孔量が増える。しかしながら、質量比1:3.5付近を境に急激に孔量が増える傾向があるので、質量比は1:3よりアルカリ金属化合物が多いことが好ましい。質量比はアルカリ金属化合物が増えるほど孔量が大きくなるが、その後の洗浄等の処理効率を考慮すると1:5.5以下であることが好ましい。
マイクロ孔量を大きくし、メソ孔量を大きくしないためには、賦活する際に炭化物の量を多めにしてKOHと混合するとよい。マイクロ孔量及びメソ孔量の双方を大きくするためには、KOHの量を多めに使用するとよい。主としてメソ孔量を大きくするためには、アルカリ賦活処理を行った後に水蒸気賦活を行うことが好ましい。
活性炭2の平均粒子径は2μm以上20μm以下であることが好ましく、より好ましくは3μm以上10μm以下である。
(活性炭の使用態様)
活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって上記した各々の特性値を混合物全体として示すものであってもよい。
活性炭1及び2は、それぞれ、1種の活性炭であってもよいし、2種以上の活性炭の混合物であって上記した各々の特性値を混合物全体として示すものであってもよい。
活性炭1及び2は、これらのうちのいずれか一方を選択して使用してもよいし、両者を混合して使用してもよい。
正極活物質は、活性炭1及び2以外の材料、例えば、上記特定のV1及び/若しくはV2を有さない活性炭、又は活性炭以外の材料、例えば、リチウムと遷移金属との複合酸化物等を含んでもよい。例示の態様において、活性炭1の含有量、又は活性炭2の含有量、又は活性炭1及び2の合計含有量が、それぞれ、全正極活物質の50質量%より多いことが好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましく、100質量%であることがより更に好ましい。
正極活物質層における正極活物質の含有割合は、正極前駆体における正極活物質層の全質量を基準として、35質量%以上95質量%以下であることが好ましい。正極活物質の含有割合の上限としては、45質量%以上であることがより好ましく、55質量%以上であることがさらに好ましい。正極活物質の含有割合の下限としては、90質量%以下であることがより好ましく、80質量%以下であることが更に好ましい。この範囲の含有割合とすることにより、より好適な充放電特性を発揮する。
[リチウム化合物]
本実施形態の正極前駆体の正極活物質層は、正極活物質以外のリチウム化合物を含有することが好ましい。本実施形態の正極の正極活物質層は、正極活物質以外のリチウム化合物を含有する。
本実施形態の正極前駆体の正極活物質層は、正極活物質以外のリチウム化合物を含有することが好ましい。本実施形態の正極の正極活物質層は、正極活物質以外のリチウム化合物を含有する。
リチウム化合物としては、リチウムドープにおいて正極で分解し、リチウムイオンを放出することが可能である化合物が好ましく、例えば、炭酸リチウム、酸化リチウム、水酸化リチウム、フッ化リチウム、塩化リチウム、シュウ化リチウム、ヨウ化リチウム、窒化リチウム、シュウ酸リチウム、及び酢酸リチウムからなる群から選択される少なくとも1種が好適に用いられる。中でも、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種がより好適であり、空気中での取り扱いが可能であり、かつ吸湿性が低いという観点から炭酸リチウムがさらに好適に用いられる。このようなリチウム化合物は、電圧の印加によって分解し、負極へのリチウムドープのドーパント源として機能するとともに、正極活物質層において空孔を形成するから、電解液の保持性に優れ、イオン伝導性に優れる正極を形成することができる。
(正極前駆体のリチウム化合物)
リチウム化合物は、粒子状であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径は0.1μm以上100μm以下であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の上限としては50μm以下であることがより好ましく、20μm以下であることが更に好ましく、10μm以下であることがより更に好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の下限としては0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。リチウム化合物の平均粒子径が0.1μm以上であれば、正極におけるリチウム化合物の酸化反応後に残る空孔が電解液を保持するのに十分な容積を有することとなるため、高負荷充放電特性が向上する。リチウム化合物の平均粒子径が100μm以下であれば、リチウム化合物の表面積が過度に小さくはならないから、リチウム化合物の酸化反応の速度を確保することができる。リチウム化合物の平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
リチウム化合物は、粒子状であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径は0.1μm以上100μm以下であることが好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の上限としては50μm以下であることがより好ましく、20μm以下であることが更に好ましく、10μm以下であることがより更に好ましい。正極前駆体に含有されるリチウム化合物の平均粒子径の下限としては0.3μm以上であることがより好ましく、0.5μm以上であることが更に好ましい。リチウム化合物の平均粒子径が0.1μm以上であれば、正極におけるリチウム化合物の酸化反応後に残る空孔が電解液を保持するのに十分な容積を有することとなるため、高負荷充放電特性が向上する。リチウム化合物の平均粒子径が100μm以下であれば、リチウム化合物の表面積が過度に小さくはならないから、リチウム化合物の酸化反応の速度を確保することができる。リチウム化合物の平均粒子径の範囲の上限と下限は、任意に組み合わせることができる。
リチウム化合物の微粒子化には、様々な方法を用いることができる。例えば、ボールミル、ビーズミル、リングミル、ジェットミル、ロッドミル等の粉砕機を使用することができる。
正極前駆体の正極活物質層におけるリチウム化合物の含有割合は、正極前駆体における正極活物質層の全質量を基準として、5質量%以上60質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましい。この範囲の含有割合とすることにより、負極へのドーパント源として好適な機能を発揮するとともに、正極に適当な程度の多孔性を付与することができ、両者相俟って高負荷充放電効率に優れる蓄電素子を与えることができ、好ましい。この含有割合の範囲の上限と下限は、任意に組み合わせることができる。
(正極のリチウム化合物)
正極が含有する、正極活物質以外のリチウム化合物は、正極における正極活物質層の全質量を基準として、好ましくは1質量%以上50質量%以下、より好ましくは2.5質量%以上25質量%以下である。リチウム化合物量が1質量%以上であると、高温環境下における正極上での電解液溶媒の分解反応をリチウム化合物が抑制するため、高温耐久性が向上し、2.5質量%以上でその効果が顕著になる。リチウム化合物量が50質量%以下であると、正極活物質間の電子伝導性がリチウム化合物により阻害されることが比較的小さいため、高い入出力特性を示し、25質量%以下であると、特に入出力特性の観点から特に好ましい。尚、下限と上限の組み合わせは任意である。
正極が含有する、正極活物質以外のリチウム化合物は、正極における正極活物質層の全質量を基準として、好ましくは1質量%以上50質量%以下、より好ましくは2.5質量%以上25質量%以下である。リチウム化合物量が1質量%以上であると、高温環境下における正極上での電解液溶媒の分解反応をリチウム化合物が抑制するため、高温耐久性が向上し、2.5質量%以上でその効果が顕著になる。リチウム化合物量が50質量%以下であると、正極活物質間の電子伝導性がリチウム化合物により阻害されることが比較的小さいため、高い入出力特性を示し、25質量%以下であると、特に入出力特性の観点から特に好ましい。尚、下限と上限の組み合わせは任意である。
(正極中のリチウム化合物の同定方法)
正極中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば、下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
正極中に含まれるリチウム化合物の同定方法は特に限定されないが、例えば、下記の方法により同定することができる。リチウム化合物の同定には、以下に記載する複数の解析手法を組み合わせて同定することが好ましい。
SEM−EDX、ラマン、X線光電子分光(XPS)を測定する際には、アルゴンボックス中で非水系リチウム型蓄電素子を解体して正極を取り出し、正極表面に付着した電解質を洗浄した後に測定を行うことが好ましい。正極を洗浄するための溶媒については、正極表面に付着した電解質を洗い流せればよいため、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート溶媒が好適に利用できる。洗浄方法としては、例えば、正極質量の50〜100倍のジエチルカーボネート溶媒に正極を10分間以上浸漬させ、その後溶媒を取り替えて再度正極を浸漬させる。その後正極をジエチルカーボネートから取り出し、真空乾燥(温度:0〜200℃、圧力:0〜20kPa、時間:1〜40時間の範囲で正極中のジエチルカーボネートの残存が1質量%以下になる条件とする。ジエチルカーボネートの残存量は、蒸留水洗浄、液量調整後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。)させた後に、SEM−EDX、ラマン、及びXPSの解析を実施する。
イオンクロマトグラフィーでは、正極を蒸留水で洗浄した後の水を解析することにより陰イオンを同定することができる。
正極の蒸留水洗浄液をイオンクロマトグラフィー(IC)で解析することにより、水中に溶出したアニオン種を同定することができる。使用するカラムとしては、イオン交換型、イオン排除型、逆相イオン対型を使用することができる。検出器としては、電気伝導度検出器、紫外可視吸光光度検出器、電気化学検出器等を使用することができ、検出器の前にサプレッサーを設置するサプレッサー方式、またはサプレッサーを配置せずに電気伝導度の低い溶液を溶離液に用いるノンサプレッサー方式を用いることができる。質量分析計や荷電化粒子検出を検出器と組み合わせて測定することもできるため、SEM−EDX、ラマン、XPSの解析結果から同定されたリチウム化合物を基に適切なカラム、検出器を組み合わせることが好ましい。
サンプルの保持時間は、使用するカラムや溶離液等の条件が決まれば、イオン種成分毎に一定であり、また、ピークのレスポンスの大きさはイオン種毎に異なるが濃度に比例する。トレーサビリティーが確保された既知濃度の標準液を予め測定しておくことでイオン種成分の定性と定量が可能となる。
上記方法でリチウム化合物を同定できなかった場合、その他の解析手法として、固体7Li−NMR、XRD(X線回折)、TOF−SIMS(飛行時間型二次イオン質量分析)、AES(オージェ電子分光)、TPD/MS(加熱発生ガス質量分析)、DSC(示差走査熱量分析)等を用いることにより、リチウム化合物を同定することもできる。
(リチウム化合物の平均粒子径)
正極は、正極活物質以外のリチウム化合物を含有する。正極が含有する、正極活物質以外のリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、かつX1<Y1であることが好ましい。更に好ましくは、0.5μm≦X1≦5μmである。X1が0.1μm以上の場合、高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル特性が向上する。X1が10μm以下の場合、高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。Y1が2μm以上の場合、正極活物質間の電子伝導性を確保できる。Y1が20μm以下の場合、電解質イオンとの反応面積が増加するために高い出力特性を発現できる。X1<Y1である場合、正極活物質間に生じる隙間にリチウム化合物が充填されるため、正極活物質間の電子伝導性を確保しつつ、エネルギー密度を高めることができる。
正極は、正極活物質以外のリチウム化合物を含有する。正極が含有する、正極活物質以外のリチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、かつX1<Y1であることが好ましい。更に好ましくは、0.5μm≦X1≦5μmである。X1が0.1μm以上の場合、高負荷充放電サイクルで生成するフッ素イオンを吸着することにより高負荷充放電サイクル特性が向上する。X1が10μm以下の場合、高負荷充放電サイクルで生成するフッ素イオンとの反応面積が増加するため、フッ素イオンの吸着を効率良く行うことができる。Y1が2μm以上の場合、正極活物質間の電子伝導性を確保できる。Y1が20μm以下の場合、電解質イオンとの反応面積が増加するために高い出力特性を発現できる。X1<Y1である場合、正極活物質間に生じる隙間にリチウム化合物が充填されるため、正極活物質間の電子伝導性を確保しつつ、エネルギー密度を高めることができる。
X1及びY1の測定方法は特に限定されないが、正極断面のSEM画像、及びSEM−EDX画像から算出することができる。正極断面の形成方法については、正極上部からArビームを照射し、試料直上に設置した遮蔽板の端部に沿って平滑な断面を作製するBIB加工を用いることができる。正極に炭酸リチウムを含有させる場合、正極断面のラマンイメージングを測定することで炭酸イオンの分布を求めることもできる。
[リチウム化合物と正極活物質の判別方法]
酸素を含有するリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定例として、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、真空蒸着やスパッタリング等の方法により金、白金、オスミウム等で表面処理することもできる。SEM−EDX画像の測定条件としては、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物とする。
酸素を含有するリチウム化合物及び正極活物質は、観察倍率を1000倍〜4000倍にして測定した正極表面のSEM−EDX画像による酸素マッピングにより判別できる。SEM−EDX画像の測定例として、加速電圧を10kV、エミッション電流を1μA、測定画素数を256×256ピクセル、積算回数を50回として測定できる。試料の帯電を防止するために、真空蒸着やスパッタリング等の方法により金、白金、オスミウム等で表面処理することもできる。SEM−EDX画像の測定条件としては、明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整することが好ましい。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物とする。
[X1及びY1の算出方法]
X1及びY1は、前記正極断面SEMと同視野にて測定した正極断面SEM−EDXから得られた画像を、画像解析することで求めることができる。前記正極断面のSEM画像にて判別されたリチウム化合物の粒子X、及びそれ以外の粒子を正極活物質の粒子Yとし、断面SEM画像中に観察されるX、Yそれぞれの粒子全てについて、断面積Sを求め、下記数式(1)にて算出される粒子径dを求める。(円周率をπとする。)
X1及びY1は、前記正極断面SEMと同視野にて測定した正極断面SEM−EDXから得られた画像を、画像解析することで求めることができる。前記正極断面のSEM画像にて判別されたリチウム化合物の粒子X、及びそれ以外の粒子を正極活物質の粒子Yとし、断面SEM画像中に観察されるX、Yそれぞれの粒子全てについて、断面積Sを求め、下記数式(1)にて算出される粒子径dを求める。(円周率をπとする。)
正極断面の視野を変えて5ヶ所以上測定し、それぞれのX0及びY0の平均値をもって平均粒子径X1及びY1とする。
正極中に含有されたリチウム化合物は、約4.0V以上の高い電位に曝されると徐々に分解してガス化してしまい、発生したガスが電解液中のイオンの拡散を阻害するために抵抗上昇の原因になってしまう。そのため、リチウム化合物の表面にフッ素含有化合物から構成される被膜を形成し、前記リチウム化合物の反応を抑制することが好ましい。
[リチウム化合物の定量方法]
正極中に含まれるリチウム化合物の定量方法を以下に記載する。
正極を有機溶媒で洗浄し、その後蒸留水で洗浄し、蒸留水での洗浄前後の正極質量変化からリチウム化合物を定量することができる。測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、更に好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であればサンプルの取扱い性に優れる。正極を洗浄するための有機溶媒としては、正極表面に堆積した非水系電解液分解物を除去できればよく、特に限定されないが、リチウム化合物の溶解度が2%以下である有機溶媒を用いることでリチウム化合物の溶出が抑制されるため好ましい。正極を洗浄するための有機溶媒としては、例えば、メタノール、アセトン等の極性溶媒が好適に用いられる。
正極中に含まれるリチウム化合物の定量方法を以下に記載する。
正極を有機溶媒で洗浄し、その後蒸留水で洗浄し、蒸留水での洗浄前後の正極質量変化からリチウム化合物を定量することができる。測定する正極の面積は特に制限されないが、測定のばらつきを軽減するという観点から5cm2以上200cm2以下であることが好ましく、更に好ましくは25cm2以上150cm2以下である。面積が5cm2以上あれば測定の再現性が確保される。面積が200cm2以下であればサンプルの取扱い性に優れる。正極を洗浄するための有機溶媒としては、正極表面に堆積した非水系電解液分解物を除去できればよく、特に限定されないが、リチウム化合物の溶解度が2%以下である有機溶媒を用いることでリチウム化合物の溶出が抑制されるため好ましい。正極を洗浄するための有機溶媒としては、例えば、メタノール、アセトン等の極性溶媒が好適に用いられる。
正極の洗浄方法は、例えば、正極の質量に対し50〜100倍のメタノール溶液に正極を3日間以上十分に浸漬させる。この時、メタノールが揮発しないよう容器に蓋をするなどの対策を施すことが好ましい。その後正極をメタノールから取り出し、真空乾燥し、真空乾燥後の正極の質量をM0[g]とする。真空乾燥の条件としては、例えば、温度:100〜200℃、圧力:0〜10kPa、時間:5〜20時間の範囲で正極中のメタノールの残存が1質量%以下になる条件とする。メタノールの残存量については、後述する蒸留水洗浄後の水のGC/MSを測定し、予め作成した検量線を基に定量することができる。真空乾燥後、正極の質量の100倍(100M0[g])の蒸留水に正極を3日間以上十分に浸漬させる。この時、蒸留水が揮発しないよう容器に蓋をする等の対策を施すことが好ましい。なお、イオンクロマトグラフィーを測定する場合は、蒸留水の量が100M0[g]になるように液量を調整する。蒸留水に3日間以上浸漬させた後、蒸留水から正極を取り出し、上記のメタノール洗浄と同様に真空乾燥する。この時の正極の質量をM1[g]とし、続いて、得られた正極の集電体の質量を測定するため、スパチュラ、ブラシ、刷毛等を用いて集電体上の正極活物質層を取り除く。得られた正極集電体の質量をM2[g]とすると、正極中に含まれるリチウム化合物の質量%Zは、下記数式(3):
Z=100×[1−(M1−M2)/(M0−M2)] ...数式(3)
により算出できる。
Z=100×[1−(M1−M2)/(M0−M2)] ...数式(3)
により算出できる。
[正極活物質層の任意成分]
本実施形態における正極活物質層は、正極活物質及びリチウム化合物の他に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
本実施形態における正極活物質層は、正極活物質及びリチウム化合物の他に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
導電性フィラーとしては、特に制限されず、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、黒鉛、カーボンナノチューブ、これらの混合物等を用いることができる。導電性フィラーの使用量は、正極活物質100質量部に対して、好ましくは0質量部超30質量部以下である。より好ましくは0.01質量部以上20質量部以下、さらに好ましくは1質量部以上15質量部以下である。導電性フィラーの使用量が30質量部以下であれば、正極活物質層における正極活物質の含有割合を多くでき、正極活物質層体積当たりのエネルギー密度が向上するため好ましい。
結着剤としては、特に制限されず、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着剤の使用量は、正極活物質100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは3質量部以上27質量部以下、さらに好ましくは5質量部以上25質量部以下である。結着剤の使用量が1質量部以上であれば、十分な電極強度が発現される。一方で結着剤の使用量が30質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
分散安定剤としては、特に制限されず、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、正極活物質100質量部に対して、好ましくは、0質量部又は0.1質量部以上、10質量部以下である。分散安定剤の使用量が10質量部以下であれば、正極活物質へのイオンの出入り及び拡散を阻害せず、高い入出力特性が発現される。
[正極集電体]
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こりにくい材料であれば特に制限されず、金属箔が好ましい。本実施の形態の非水系リチウム型蓄電素子における正極集電体としては、アルミニウム箔が特に好ましい。
本実施形態における正極集電体を構成する材料としては、電子伝導性が高く、電解液への溶出及び電解質又はイオンとの反応等による劣化が起こりにくい材料であれば特に制限されず、金属箔が好ましい。本実施の形態の非水系リチウム型蓄電素子における正極集電体としては、アルミニウム箔が特に好ましい。
金属箔は、凹凸や貫通孔を持たない金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
正極集電体の厚みは、正極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
正極集電体の厚みは、正極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
[正極前駆体の製造]
本実施形態において、非水系リチウム型蓄電素子の正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。得られた正極前駆体をプレスして、正極活物質層の膜厚又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
本実施形態において、非水系リチウム型蓄電素子の正極となる正極前駆体は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を水又は有機溶剤中に分散又は溶解してスラリー状の塗工液を調製し、この塗工液を正極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより正極前駆体を得ることができる。得られた正極前駆体をプレスして、正極活物質層の膜厚又は嵩密度を調整してもよい。代替的には、溶剤を使用せずに、正極活物質及びリチウム化合物、並びに必要に応じて使用されるその他の任意成分を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて正極集電体に貼り付ける方法も可能である。
正極前駆体の塗工液は、正極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水若しくは有機溶媒、及び/又はそれらに結着剤若しくは分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調製してもよい。水又は有機溶媒に結着剤又は分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、正極活物質を含む各種材料粉末を追加して、塗工液を調製してもよい。ドライブレンドする方法として、例えばボールミル等を使用して正極活物質及びリチウム化合物、並びに必要に応じて導電性フィラーを予め混合して、導電性の低いリチウム化合物に導電性フィラーをコーティングさせる予備混合をしてもよい。これにより、後述のリチウムドープにおいて正極前駆体でリチウム化合物が分解し易くなる。塗工液の溶媒に水を使用する場合には、リチウム化合物を加えることで塗工液がアルカリ性になることもあるため、必要に応じてpH調整剤を添加してもよい。
正極前駆体の塗工液の調製方法としては、特に制限されるものではないが、好適にはホモディスパーや多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速が1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。周速が50m/s以下であれば、分散による熱又はせん断力により各種材料が破壊されにくく、再凝集が生じにくいため好ましい。
塗工液の分散度は、粒ゲージで測定した粒度が0.1μm以上100μm以下であることが好ましい。分散度の上限としては、より好ましくは粒度が80μm以下、さらに好ましくは粒度が50μm以下である。粒度が0.1μm以上であれば、正極活物質を含む各種材料粉末が、塗工液作製時に過度に破砕されず残るため好ましい。粒度が100μm以下であれば、塗工液吐出時の詰まりや塗膜のスジ発生等が少なく、安定に塗工ができる。
正極前駆体の塗工液の粘度(ηb)は、1,000mPa・s以上20,000mPa・s以下が好ましく、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び膜厚が良好に制御できる。粘度(ηb)が20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
塗工液のTI値(チクソトロピーインデックス値)は、1.1以上が好ましく、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
正極前駆体の塗膜の形成方法は特に限定されず、好適にはダイコーター、コンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工で形成してもよい。多層塗工の場合には、塗膜各層内のリチウム化合物の含有量が異なるように塗工液組成を調整してもよい。塗工速度は0.1m/分以上100m/分以下であることが好ましく、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。塗工速度が100m/分以下であれば、塗工精度を十分に確保できる。
正極前駆体の塗膜の乾燥方法は、特に限定されず、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。複数の乾燥方法を組み合わせて塗膜を乾燥させてもよい。乾燥温度は、25℃以上200℃以下であることが好ましく、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。乾燥温度が200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、及び正極集電体や正極活物質層の酸化を抑制できる。
正極前駆体のプレス方法は、特に限定されず、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。正極活物質層の膜厚、嵩密度及び電極強度は、後述するプレス圧力、隙間、及びプレス部の表面温度により調整できる。
プレス圧力は0.5kN/cm以上20kN/cm以下が好ましく、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。プレス圧力が20kN/cm以下であれば、正極前駆体に撓みやシワが生じることが少なく、所望の正極活物質層膜厚や嵩密度に調整できる。
当業者であれば、プレスロール同士の隙間は、所望の正極活物質層の膜厚や嵩密度となるように乾燥後の正極前駆体膜厚に応じて任意の値を設定できる。当業者であれば、プレス速度は正極前駆体に撓みやシワが生じにくい任意の速度に設定できる。
プレス部の表面温度は室温でもよいし、必要によりプレス部を加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは融点マイナス45℃以上、さらに好ましくは融点マイナス30℃以上である。加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは融点プラス30℃以下、さらに好ましくは融点プラス20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、プレス部の表面温度は、好ましくは90℃以上200℃以下、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下である。結着剤にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、プレス部の表面温度は、好ましくは40℃以上150℃以下、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下である。
結着剤の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
プレス圧力、隙間、速度、及びプレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
正極活物質層の膜厚は、正極集電体の片面当たり20μm以上200μm以下であることが好ましい。正極活物質層の膜厚は、より好ましくは片面当たり25μm以上100μm以下であり、更に好ましくは30μm以上80μm以下である。この膜厚が20μm以上であれば、十分な充放電容量を発現することができる。この膜厚が200μm以下であれば、電極内のイオン拡散抵抗を低く維持することができる。そのため、十分な出力特性が得られるとともに、セル体積を縮小することができ、従ってエネルギー密度を高めることができる。上記正極活物質層の膜厚の範囲の上限と下限は、任意に組み合わせることができる。集電体が貫通孔や凹凸を有する場合における正極活物質層の膜厚とは、集電体の貫通孔や凹凸を有していない部分の片面当たりの膜厚の平均値をいう。
[正極]
リチウムドープ後の正極における正極活物質層の嵩密度は、0.25g/cm3以上であることが好ましく、より好ましくは0.30g/cm3以上1.3g/cm3以下の範囲である。正極活物質層の嵩密度が0.25g/cm3以上であれば、高いエネルギー密度を発現でき、蓄電素子の小型化を達成できる。この嵩密度が1.3g/cm3以下であれば、正極活物質層内の空孔における電解液の拡散が十分となり、高い出力特性が得られる。
リチウムドープ後の正極における正極活物質層の嵩密度は、0.25g/cm3以上であることが好ましく、より好ましくは0.30g/cm3以上1.3g/cm3以下の範囲である。正極活物質層の嵩密度が0.25g/cm3以上であれば、高いエネルギー密度を発現でき、蓄電素子の小型化を達成できる。この嵩密度が1.3g/cm3以下であれば、正極活物質層内の空孔における電解液の拡散が十分となり、高い出力特性が得られる。
〈負極〉
負極は、負極集電体と、負極集電体の片面又は両面に存在する負極活物質層とを有する。
負極は、負極集電体と、負極集電体の片面又は両面に存在する負極活物質層とを有する。
[負極活物質層]
負極活物質層は、リチウムイオンを吸蔵及び放出できる負極活物質を含み、負極活物質以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
負極活物質層は、リチウムイオンを吸蔵及び放出できる負極活物質を含み、負極活物質以外に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
[負極活物質]
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質を用いることができる。具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。負極活物質の総質量に対する炭素材料の含有率は、好ましくは50質量%以上、より好ましくは70質量%以上であり、又は100質量%であってもよい。他の材料の併用による効果を良好に得る観点から、負極活物質の総質量に対する炭素材料の含有率は、例えば、90質量%以下であることが好ましく、80質量%以下であってもよい。
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質を用いることができる。具体的には、炭素材料、チタン酸化物、ケイ素、ケイ素酸化物、ケイ素合金、ケイ素化合物、錫及び錫化合物等が例示される。負極活物質の総質量に対する炭素材料の含有率は、好ましくは50質量%以上、より好ましくは70質量%以上であり、又は100質量%であってもよい。他の材料の併用による効果を良好に得る観点から、負極活物質の総質量に対する炭素材料の含有率は、例えば、90質量%以下であることが好ましく、80質量%以下であってもよい。
負極活物質には、リチウムイオンをドープすることが好ましい。本明細書において、負極活物質にドープされたリチウムイオンとしては、主に3つの形態が包含される。
第一の形態としては、非水系リチウム型蓄電素子を作製する前に、負極活物質に設計値として予め吸蔵させるリチウムイオンである。
第二の形態としては、非水系リチウム型蓄電素子を作製し、出荷する際の負極活物質に吸蔵されているリチウムイオンである。
第三の形態としては、非水系リチウム型蓄電素子をデバイスとして使用した後の負極活物質に吸蔵されているリチウムイオンである。
負極活物質にリチウムイオンをドープしておくことにより、得られる非水系リチウム型蓄電素子の容量及び作動電圧を良好に制御することが可能となる。
第一の形態としては、非水系リチウム型蓄電素子を作製する前に、負極活物質に設計値として予め吸蔵させるリチウムイオンである。
第二の形態としては、非水系リチウム型蓄電素子を作製し、出荷する際の負極活物質に吸蔵されているリチウムイオンである。
第三の形態としては、非水系リチウム型蓄電素子をデバイスとして使用した後の負極活物質に吸蔵されているリチウムイオンである。
負極活物質にリチウムイオンをドープしておくことにより、得られる非水系リチウム型蓄電素子の容量及び作動電圧を良好に制御することが可能となる。
炭素材料としては、例えば、難黒鉛化性炭素材料;易黒鉛化性炭素材料;カーボンブラック;カーボンナノ粒子;活性炭;人造黒鉛;天然黒鉛;黒鉛化メソフェーズカーボン小球体;黒鉛ウイスカ;ポリアセン系物質等のアモルファス炭素質材料;炭素質材料前駆体を熱処理して得られる炭素質材料;フルフリルアルコール樹脂又はノボラック樹脂の熱分解物;フラーレン;カーボンナノフォーン;及びこれらの複合炭素材料を挙げることができる。炭素質材料前駆体としては、石油系のピッチ、石炭系のピッチ、メソカーボンマイクロビーズ、コークス、並びに合成樹脂(例えばフェノール樹脂等)が挙げられる。
これらの中でも負極の抵抗を下げる観点から、炭素材料1種以上(以下、基材ともいう。)と炭素質材料前駆体とを共存させた状態で熱処理を行い、基材と炭素質材料前駆体由来の炭素質材料とを複合させた複合炭素材料が好ましい。炭素質材料前駆体としては、熱処理により炭素質材料となるものであれば特に制限されず、石油系のピッチ又は石炭系のピッチが特に好ましい。熱処理を行う前に、炭素質材料前駆体の融点より高い温度において、基材と炭素質材料前駆体とを混合してもよい。熱処理温度は、使用する炭素質材料前駆体が揮発又は熱分解して発生する成分が炭素質材料となる温度であればよく、好ましくは400℃以上2500℃以下、より好ましくは500℃以上2000℃以下、さらに好ましくは550℃以上1500℃以下である。熱処理を行う雰囲気は特に制限されず、非酸化性雰囲気が好ましい。
複合炭素材料の好ましい例としては、後述の複合炭素材料1及び2である。これらの内どちらかを選択して使用しても良く、又はこれらの双方を併用してもよい。
(複合炭素材料1)
複合炭素材料1は、BET比表面積が100m2/g以上3000m2/g以下の炭素材料1種以上を基材として用いた複合炭素材料である。基材は、特に制限されるものではないが、活性炭やカーボンブラック、鋳型多孔質炭素、高比表面積黒鉛、カーボンナノ粒子等を好適に用いることができる。
複合炭素材料1は、BET比表面積が100m2/g以上3000m2/g以下の炭素材料1種以上を基材として用いた複合炭素材料である。基材は、特に制限されるものではないが、活性炭やカーボンブラック、鋳型多孔質炭素、高比表面積黒鉛、カーボンナノ粒子等を好適に用いることができる。
複合炭素材料1のBET比表面積は、好ましくは100m2/g以上1,500m2/g以下、より好ましくは150m2/g以上1,100m2/g以下、さらに好ましくは180m2/g以上550m2/g以下である。このBET比表面積が100m2/g以上であれば、細孔を適度に保持することができリチウムイオンの拡散が良好となるため、高い入出力特性を示すことができる。1,500m2/g以下であることにより、リチウムイオンの充放電効率が向上するため、サイクル耐久性が損なわれることがない。
複合炭素材料1における炭素質材料の基材に対する質量比率は、好ましくは10質量%以上200質量%以下、より好ましくは12質量%以上180質量%以下、更に好ましくは15質量%以上160質量%以下、特に好ましくは18質量%以上150質量%以下である。炭素質材料の質量比率が10質量%以上であれば、基材が有していたマイクロ孔を炭素質材料で適度に埋めることができ、リチウムイオンの充放電効率が向上するため、良好なサイクル耐久性を示すことができる。炭素質材料の質量比率が200質量%以下であれば、細孔を適度に保持することができリチウムイオンの拡散が良好となるため、高い入出力特性を示すことができる。
複合炭素材料1の単位質量当たりのリチウムイオンのドープ量は、530mAh/g以上2,500mAh/g以下であることが好ましい。より好ましくは620mAh/g以上2,100mAh/g以下、さらに好ましくは760mAh/g以上1,700mAh/g以下、特に好ましくは840mAh/g以上1,500mAh/g以下である。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料1を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
ドープ量が530mAh/g以上であれば、複合炭素材料1におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされ、更に所望のリチウム量に対する複合炭素材料1の量を低減することができる。そのため、負極膜厚を薄くすることが可能となり、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。ドープ量が2,500mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれがない。
複合炭素材料1の好ましい例として、基材として活性炭を用いた複合炭素材料1aについて説明する。
複合炭素材料1aは、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をVm1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をVm2(cc/g)とするとき、0.010≦Vm1≦0.300、0.001≦Vm2≦0.650であることが好ましい。
メソ孔量Vm1は、より好ましくは0.010≦Vm1≦0.225、さらに好ましくは0.010≦Vm1≦0.200である。マイクロ孔量Vm2は、より好ましくは0.001≦Vm2≦0.200、更に好ましくは0.001≦Vm2≦0.150、特に好ましくは0.001≦Vm2≦0.100である。
メソ孔量Vm1が0.300cc/g以下であれば、BET比表面積を大きくすることができ、リチウムイオンのドープ量を高めることができることに加え、負極の嵩密度を高めることができる。その結果、負極を薄膜化することができる。マイクロ孔量Vm2が0.650cc/g以下であれば、リチウムイオンに対する高い充放電効率が維持できる。メソ孔量Vm1及びマイクロ孔量Vm2が下限以上(0.010≦Vm1、0.001≦Vm2)であれば、高い入出力特性が得られる。
複合炭素材料1aのBET比表面積は、好ましくは100m2/g以上1,500m2/g以下、より好ましくは150m2/g以上1,100m2/g以下、さらに好ましくは180m2/g以上550m2/g以下である。このBET比表面積が100m2/g以上であれば、細孔を適度に保持することができるため、リチウムイオンの拡散が良好となるため、高い入出力特性を示すことができる。リチウムイオンのドープ量を高めることができるため、負極を薄膜化することができる。1,500m2/g以下であることにより、リチウムイオンの充放電効率が向上するので、サイクル耐久性が損なわれることがない。
複合炭素材料1aの平均細孔径は、高い入出力特性にする点から、20Å以上であることが好ましく、25Å以上であることがより好ましく、30Å以上であることがさらに好ましい。高エネルギー密度にする点から、平均細孔径は、65Å以下であることが好ましく、60Å以下であることがより好ましい。
複合炭素材料1aの平均粒子径は1μm以上10μm以下であることが好ましい。下限については、より好ましくは2μm以上であり、更に好ましくは2.5μm以上である。上限については、より好ましくは6μm以下であり、更に好ましくは4μm以下である。平均粒子径が1μm以上10μm以下であれば良好な耐久性が保たれる。
複合炭素材料1aの水素原子/炭素原子の原子数比(H/C)は、0.05以上0.35以下であることが好ましく、0.05以上0.15以下であることが、より好ましい。H/Cが0.35以下である場合には、活性炭表面に被着している炭素質材料の構造(典型的には、多環芳香族系共役構造)が良好に発達して容量(エネルギー密度)及び充放電効率が高くなる。H/Cが0.05以上である場合には、炭素化が過度に進行することはないため良好なエネルギー密度が得られる。H/Cは元素分析装置により測定される。
複合炭素材料1aは、基材の活性炭に由来するアモルファス構造を有するが、同時に、主に被着した炭素質材料に由来する結晶構造を有する。X線広角回折法によると、複合炭素材料1aは、(002)面の面間隔d002が3.60Å以上4.00Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが8.0Å以上20.0Å以下であるものが好ましく、d002が3.60Å以上3.75Å以下であり、このピークの半価幅から得られるc軸方向の結晶子サイズLcが11.0Å以上16.0Å以下であるものがより好ましい。
複合炭素材料1aの基材として用いる活性炭としては、得られる複合炭素材料1aが所望の特性を発揮する限り、特に制限はない。例えば石油系、石炭系、植物系、高分子系等の各種の原材料から得られた市販品を使用することができる。活性炭粉末の平均粒子径は、好ましくは1μm以上15μm以下、より好ましくは2μm以上10μm以下である。
本実施形態において規定する細孔分布範囲を有する複合炭素材料1aを得るためには、基材に用いる活性炭の細孔分布が重要である。
活性炭においては、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)としたとき、0.050≦V1≦0.500、0.005≦V2≦1.000、かつ、0.2≦V1/V2≦20.0であることが好ましい。
メソ孔量V1については、0.050≦V1≦0.350がより好ましく、0.100≦V1≦0.300が更に好ましい。マイクロ孔量V2については、0.005≦V2≦0.850がより好ましく、0.100≦V2≦0.800が更に好ましい。メソ孔量/マイクロ孔量の比率については、0.22≦V1/V2≦15.0がより好ましく、0.25≦V1/V2≦10.0が更に好ましい。活性炭のメソ孔量V1が0.500以下である場合及びマイクロ孔量V2が1.000以下である場合、複合炭素材料1aの細孔構造を得るためには適量の炭素質材料を被着させれば足りるので、細孔構造を制御し易くなる。活性炭のメソ孔量V1が0.050以上である場合及びマイクロ孔量V2が0.005以上である場合、V1/V2が0.2以上である場合、及びV1/V2が20.0以下である場合にも複合炭素材料1aの細孔構造が容易に得られる。
複合炭素材料1aの原料として用いる炭素質材料前駆体は、熱処理することにより、活性炭に炭素質材料を被着させることができる、固体、液体、又は溶剤に溶解可能な有機材料であることが好ましい。炭素質材料前駆体としては、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等を挙げることができる。これらの炭素質材料前駆体の中でも、安価であるピッチを用いることが、製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。石油系ピッチとしては、例えば原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。
ピッチを用いる場合、例えば、ピッチを活性炭との共存下で熱処理し、活性炭の表面においてピッチの揮発成分又は熱分解成分を熱反応させて活性炭に炭素質材料を被着させることにより、複合炭素材料1aが得られる。この場合、200〜500℃程度の温度において、ピッチの揮発成分又は熱分解成分の活性炭細孔内への被着が進行し、400℃以上で被着成分が炭素質材料となる反応が進行する。熱処理時のピーク温度(最高到達温度)は、得られる複合炭素材料1aの特性、熱反応パターン、熱反応雰囲気等により適宜決定されるものであるが、400℃以上であることが好ましく、より好ましくは450℃〜1,000℃であり、さらに好ましくは500〜800℃程度である。熱処理時のピーク温度を維持する時間は、30分間〜10時間であることが好ましく、より好ましくは1時間〜7時間、更に好ましくは2時間〜5時間である。例えば、500〜800℃程度のピーク温度で2時間〜5時間に亘って熱処理する場合、活性炭表面に被着している炭素質材料は多環芳香族系炭化水素になるものと考えられる。
ピッチの軟化点は、30℃以上250℃以下が好ましく、60℃以上130℃以下が更に好ましい。軟化点が30℃以上であるピッチはハンドリング性に支障がなく、精度よく仕込むことが可能である。軟化点が250℃以下であるピッチには比較的低分子の化合物を多く含有し、従ってピッチを用いると、活性炭内の細かい細孔まで被着することが可能となる。
複合炭素材料1aを製造するための具体的方法としては、例えば、炭素質材料前駆体から揮発した炭化水素ガスを含む不活性雰囲気中で活性炭を熱処理し、気相で炭素質材料を被着させる方法が挙げられる。活性炭と炭素質材料前駆体とを予め混合し熱処理する方法、又は溶媒に溶解させた炭素質材料前駆体を活性炭に塗布して乾燥させた後に熱処理する方法も可能である。
複合炭素材料1aにおける炭素質材料の活性炭に対する質量比率は、好ましくは10質量%以上100質量%以下、より好ましくは15質量%以上80質量%以下である。炭素質材料の質量比率が10質量%以上であれば、活性炭が有していたマイクロ孔を炭素質材料で適度に埋めることができ、リチウムイオンの充放電効率が向上するから、サイクル耐久性が損なわれることが少ない。炭素質材料の質量比率が100質量%以下であれば、複合炭素材料1aの細孔が適度に保持されて比表面積が大きいまま維持される。そのため、リチウムイオンのドープ量を高めることができる結果から、負極を薄膜化しても高出力密度かつ高耐久性を維持することができる。
(複合炭素材料2)
複合炭素材料2は、BET比表面積が0.5m2/g以上80m2/g以下の炭素材料1種以上を基材として用いた複合炭素材料である。基材は、特に制限されるものではないが、天然黒鉛、人造黒鉛、低結晶黒鉛、ハードカーボン、ソフトカーボン、カーボンブラック等を好適に用いることができる。
複合炭素材料2は、BET比表面積が0.5m2/g以上80m2/g以下の炭素材料1種以上を基材として用いた複合炭素材料である。基材は、特に制限されるものではないが、天然黒鉛、人造黒鉛、低結晶黒鉛、ハードカーボン、ソフトカーボン、カーボンブラック等を好適に用いることができる。
複合炭素材料2のBET比表面積は、1m2/g以上50m2/g以下が好ましく、より好ましくは1.5m2/g以上40m2/g以下、さらに好ましくは2m2/g以上25m2/g以下である。このBET比表面積が1m2/g以上であれば、リチウムイオンとの反応場を十分に確保できるため、高い入出力特性を示すことができる。50m2/g以下であれば、リチウムイオンの充放電効率が向上し、かつ充放電中の非水系電解液の分解反応が抑制されるため、高いサイクル耐久性を示すことができる。
複合炭素材料2の平均粒子径は1μm以上10μm以下であることが好ましい。この平均粒子径は、より好ましくは2μm以上8μm以下、さらに好ましくは3μm以上6μm以下である。平均粒子径が1μm以上であれば、リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。10μm以下であれば、複合炭素材料2と非水系電解液との反応面積が増加するため、高い入出力特性を示すことができる。
複合炭素材料2における炭素質材料の基材に対する質量比率は、好ましくは1質量%以上30質量%以下、より好ましくは1.2質量%以上25質量%以下、さらに好ましくは1.5質量%以上20質量%以下である。炭素質材料の質量比率が質量1%以上であれば、炭素質材料によりリチウムイオンとの反応サイトを十分に増加でき、かつリチウムイオンの脱溶媒和も容易となるため、高い入出力特性を示すことができる。炭素質材料の質量比率が20質量%以下であれば、炭素質材料と基材との間のリチウムイオンの固体内拡散を良好に保持できるため、高い入出力特性を示すことができる。リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。
複合炭素材料2の単位質量当たりのリチウムイオンのドープ量は、好ましくは50mAh/g以上700mAh/g以下、より好ましくは70mAh/g以上650mAh/g以下、さらに好ましくは90mAh/g以上600mAh/g以下、特に好ましくは100mAh/g以上550mAh/g以下である。
リチウムイオンをドープすることにより、負極電位が低くなる。従って、リチウムイオンがドープされた複合炭素材料2を含む負極を正極と組み合わせた場合には、非水系リチウム型蓄電素子の電圧が高くなるとともに、正極の利用容量が大きくなる。そのため、得られる非水系リチウム型蓄電素子の容量及びエネルギー密度が高くなる。
ドープ量が50mAh/g以上であれば、複合炭素材料2におけるリチウムイオンを一旦挿入したら脱離し得ない不可逆なサイトにもリチウムイオンが良好にドープされるため、高いエネルギー密度が得られる。ドープ量が多いほど負極電位が下がり、入出力特性、エネルギー密度、及び耐久性は向上する。
ドープ量が700mAh/g以下であれば、リチウム金属の析出等の副作用が発生するおそれが少ない。
複合炭素材料2の好ましい例として、基材として黒鉛材料を用いた複合炭素材料2aについて説明する。
複合炭素材料2aの平均粒子径は、好ましくは1μm以上10μm以下、より好ましくは2μm以上8μm以下、さらに好ましくは3μm以上6μm以下である。平均粒子径が1μm以上であれば、リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。10μm以下であれば、複合炭素材料2aと非水系電解液との反応面積が増加するため、高い入出力特性を示すことができる。
複合炭素材料2aのBET比表面積は、好ましくは1m2/g以上20m2/g以下、より好ましくは1m2/g以上15m2/g以下である。このBET比表面積が1m2/g以上であれば、リチウムイオンとの反応場を十分に確保できるため、高い入出力特性を示すことができる。20m2/g以下であれば、リチウムイオンの充放電効率が向上し、かつ充放電中の非水系電解液の分解反応が抑制されるため、高いサイクル耐久性を示すことができる。
基材として用いる黒鉛材料としては、得られる複合炭素材料2aが所望の特性を発揮する限り、特に制限はない。例えば人造黒鉛、天然黒鉛、黒鉛化メソフェーズカーボン小球体、黒鉛ウイスカ等を使用することができる。黒鉛材料の平均粒子径は、好ましくは1μm以上10μm以下、より好ましくは2μm以上8μm以下である。
複合炭素材料2aの原料として用いる炭素質材料前駆体は、熱処理することにより、黒鉛材料に炭素質材料を複合させることができる、固体、液体、又は溶剤に溶解可能な有機材料であることが好ましい。この炭素質材料前駆体としては、例えば、ピッチ、メソカーボンマイクロビーズ、コークス、合成樹脂(例えばフェノール樹脂等)等を挙げることができる。これらの炭素質材料前駆体の中でも、安価であるピッチを用いることが、製造コスト上好ましい。ピッチは、大別して石油系ピッチと石炭系ピッチとに分けられる。石油系ピッチとしては、例えば原油の蒸留残査、流動性接触分解残査(デカントオイル等)、サーマルクラッカーに由来するボトム油、ナフサクラッキングの際に得られるエチレンタール等が例示される。
複合炭素材料2aにおける炭素質材料の黒鉛材料に対する質量比率は、好ましくは1質量%以上10質量%以下、より好ましくは1.2質量%以上8質量%以下、さらに好ましくは1.5質量%以上6質量%以下、特に好ましくは2質量%以上5質量%以下である。炭素質材料の質量比率が1質量%以上であれば、炭素質材料によりリチウムイオンとの反応サイトを十分に増加でき、かつリチウムイオンの脱溶媒和も容易となるため、高い入出力特性を示すことができる。炭素質材料の質量比率が20質量%以下であれば、炭素質材料と黒鉛材料との間のリチウムイオンの固体内拡散を良好に保持できるため、高い入出力特性を示すことができる。リチウムイオンの充放電効率が向上できるため、高いサイクル耐久性を示すことができる。
[負極活物質層の任意成分]
本実施形態における負極活物質層は、負極活物質の他に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
本実施形態における負極活物質層は、負極活物質の他に、必要に応じて、導電性フィラー、結着剤、分散安定剤等の任意成分を含んでいてもよい。
導電性フィラーの種類は特に制限されるものではないが、例えば、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維等が例示される。導電性フィラーの使用量は、負極活物質100質量部に対して、好ましくは0質量部超30質量部以下、より好ましくは0質量部超20質量部以下、さらに好ましくは0質量部超15質量部以下である。
結着剤としては、特に制限されず、例えばPVdF(ポリフッ化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、ポリイミド、ラテックス、スチレン−ブタジエン共重合体、フッ素ゴム、アクリル共重合体等を用いることができる。結着剤の使用量は、負極活物質100質量部に対して、好ましくは1質量部以上30質量部以下、より好ましくは2質量部以上27質量部以下、さらに好ましくは3質量部以上25質量部以下である。結着剤の量が1質量部以上であれば、十分な電極強度が発現される。結着剤の量が30質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
分散安定剤としては、特に制限されず、例えばPVP(ポリビニルピロリドン)、PVA(ポリビニルアルコール)、セルロース誘導体等を用いることができる。分散安定剤の使用量は、負極活物質100質量部に対して、好ましくは0質量部以上10質量部以下である。分散安定剤の量が10質量部以下であれば、負極活物質へのリチウムイオンの出入りを阻害せず、高い入出力特性が発現される。
[負極集電体]
本実施形態における負極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化がおこりにくい金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施の形態の非水系リチウム型蓄電素子における負極集電体としては、銅箔が好ましい。
本実施形態における負極集電体を構成する材料としては、電子伝導性が高く、非水系電解液への溶出及び電解質又はイオンとの反応等による劣化がおこりにくい金属箔であることが好ましい。このような金属箔としては、特に制限はなく、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス鋼箔等が挙げられる。本実施の形態の非水系リチウム型蓄電素子における負極集電体としては、銅箔が好ましい。
金属箔は凹凸や貫通孔を持たない金属箔でもよいし、エンボス加工、ケミカルエッチング、電解析出法、ブラスト加工等を施した凹凸を有する金属箔でもよいし、エキスパンドメタル、パンチングメタル、エッチング箔等の貫通孔を有する金属箔でもよい。
負極集電体の厚みは、負極の形状及び強度を十分に保持できれば特に制限はないが、例えば、1〜100μmが好ましい。
[負極の製造]
負極は、負極集電体の片面上又は両面上に負極活物質層を有する。典型的な態様において負極活物質層は負極集電体に固着している。
負極は、負極集電体の片面上又は両面上に負極活物質層を有する。典型的な態様において負極活物質層は負極集電体に固着している。
負極は、既知のリチウムイオン電池、電気二重層キャパシタ等における電極の製造技術によって製造することが可能である。例えば、負極活物質を含む各種材料を水又は有機溶剤中に分散又は溶解してスラリー状の負極塗工液を調製し、この負極塗工液を負極集電体上の片面又は両面に塗工して塗膜を形成し、これを乾燥することにより負極を得ることができる。さらに得られた負極にプレスを施して、負極活物質層の膜厚や嵩密度を調整してもよい。或いは、溶剤を使用せずに、負極活物質を含む各種材料を乾式で混合し、得られた混合物をプレス成型した後、導電性接着剤を用いて負極集電体に貼り付ける方法も可能である。
負極塗工液の調整は、負極活物質を含む各種材料粉末の一部若しくは全部をドライブレンドし、次いで水又は有機溶媒、及び/又はそれらに結着剤や分散安定剤が溶解又は分散した液状又はスラリー状の物質を追加して調整してもよい。あるいは、水又は有機溶媒に結着剤や分散安定剤が溶解又は分散した液状又はスラリー状の物質の中に、負極活物質を含む各種材料粉末を追加して調整してもよい。負極塗工液の調整方法は、特に限定されず、好適にはホモディスパーや多軸分散機、プラネタリーミキサー、薄膜旋回型高速ミキサー等の分散機等を用いることができる。良好な分散状態の負極塗工液を得るためには、周速1m/s以上50m/s以下で分散することが好ましい。周速1m/s以上であれば、各種材料が良好に溶解又は分散するため好ましい。50m/s以下であれば、分散による熱やせん断力により各種材料が破壊されにくく、再凝集が生じるにくいため好ましい。
負極塗工液の粘度(ηb)は、好ましくは1,000mPa・s以上20,000mPa・s以下、より好ましくは1,500mPa・s以上10,000mPa・s以下、さらに好ましくは1,700mPa・s以上5,000mPa・s以下である。粘度(ηb)が1,000mPa・s以上であれば、塗膜形成時の液ダレが抑制され、塗膜幅及び膜厚が良好に制御できる。20,000mPa・s以下であれば、塗工機を用いた際の塗工液の流路における圧力損失が少なく安定に塗工でき、また所望の塗膜厚み以下に制御できる。
負極塗工液のTI値(チクソトロピーインデックス値)は、好ましくは1.1以上、より好ましくは1.2以上、さらに好ましくは1.5以上である。TI値が1.1以上であれば、塗膜幅及び膜厚が良好に制御できる。
負極塗膜の形成方法は特に制限されず、好適にはダイコーターやコンマコーター、ナイフコーター、グラビア塗工機等の塗工機を用いることができる。塗膜は単層塗工で形成してもよいし、多層塗工して形成してもよい。塗工速度は、好ましくは0.1m/分以上100m/分以下、より好ましくは0.5m/分以上70m/分以下、さらに好ましくは1m/分以上50m/分以下である。塗工速度が0.1m/分以上であれば、安定に塗工できる。100m/分以下であれば、塗工精度を十分に確保できる。
塗膜の乾燥方法は特に制限されず、好適には熱風乾燥や赤外線(IR)乾燥等の乾燥方法を用いることができる。塗膜の乾燥は、単一の温度で乾燥させてもよいし、多段的に温度を変えて乾燥させてもよい。複数の乾燥方法を組み合わせて乾燥させてもよい。乾燥温度は、好ましくは25℃以上200℃以下、より好ましくは40℃以上180℃以下、さらに好ましくは50℃以上160℃以下である。乾燥温度が25℃以上であれば、塗膜中の溶媒を十分に揮発させることができる。200℃以下であれば、急激な溶媒の揮発による塗膜のヒビ割れやマイグレーションによる結着剤の偏在、負極集電体や負極活物質層の酸化を抑制できる。
負極のプレス方法は特に制限されず、好適には油圧プレス機、真空プレス機等のプレス機を用いることができる。負極活物質層の膜厚、嵩密度及び電極強度は後述するプレス圧力、隙間、プレス部の表面温度により調整できる。プレス圧力は、好ましくは0.5kN/cm以上20kN/cm以下、より好ましくは1kN/cm以上10kN/cm以下、さらに好ましくは2kN/cm以上7kN/cm以下である。プレス圧力が0.5kN/cm以上であれば、電極強度を十分に高くできる。20kN/cm以下であれば、負極に撓みやシワが生じることが少なく、所望の負極活物質層膜厚や嵩密度に調整できる。
当業者であれば、プレスロール同士の隙間は所望の負極活物質層の膜厚や嵩密度となるように乾燥後の負極膜厚に応じて任意の値を設定できる。当業者であれば、プレス速度は負極に撓みやシワが生じにくい任意の速度に設定できる。
プレス部の表面温度は室温でもよいし、必要により加熱してもよい。加熱する場合のプレス部の表面温度の下限は、使用する結着剤の融点マイナス60℃以上が好ましく、より好ましくは45℃以上、さらに好ましくは30℃以上である。加熱する場合のプレス部の表面温度の上限は、使用する結着剤の融点プラス50℃以下が好ましく、より好ましくは30℃以下、さらに好ましくは20℃以下である。例えば、結着剤にPVdF(ポリフッ化ビニリデン:融点150℃)を用いた場合、プレス部の表面温度は、好ましくは90℃以上200℃以下、より好ましく105℃以上180℃以下、さらに好ましくは120℃以上170℃以下である。結着剤にスチレン−ブタジエン共重合体(融点100℃)を用いた場合、プレス部の表面温度は、好ましくは40℃以上150℃以下、より好ましくは55℃以上130℃以下、さらに好ましくは70℃以上120℃以下である。
結着剤の融点は、DSC(Differential Scanning Calorimetry、示差走査熱量分析)の吸熱ピーク位置で求めることができる。例えば、パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで昇温し、昇温過程における吸熱ピーク温度が融点となる。
プレス圧力、隙間、速度、プレス部の表面温度の条件を変えながら複数回プレスを実施してもよい。
負極活物質層の膜厚は、片面当たり、好ましくは5μm以上100μm以下であり、下限は、さらに好ましくは7μm以上、より好ましくは10μm以上であり、上限は、さらに好ましくは80μm以下、より好ましくは60μm以下である。負極活物質層の膜厚が片面当たり5μm以上であれば、負極活物質層を塗工した際にスジ等が発生しにくく塗工性に優れる。負極活物質層の膜厚が片面あたり100μm以下であれば、セル体積を縮小することによって高いエネルギー密度を発現できる。集電体が貫通孔や凹凸を有する場合における負極活物質層の膜厚とは、集電体の貫通孔や凹凸を有していない部分の片面当たりの膜厚の平均値をいう。
負極活物質層の嵩密度は、好ましくは0.30g/cm3以上1.8g/cm3以下であり、より好ましくは0.40g/cm3以上1.5g/cm3以下、さらに好ましくは0.45g/cm3以上1.3g/cm3以下である。嵩密度が0.30g/cm3以上であれば、十分な強度を保つことができるとともに、負極活物質間の十分な導電性を発現することができる。1.8g/cm3以下であれば、負極活物質層内でイオンが十分に拡散できる空孔が確保できる。
〈正極活物質層及び負極活物質層中の化合物〉
[正極活物質層中の化合物]
本実施形態において、正極活物質層は、下記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を、正極活物質層の単位質量当たり1.60×10−4mol/g〜300×10−4mol/g含有することが好ましい。
[正極活物質層中の化合物]
本実施形態において、正極活物質層は、下記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を、正極活物質層の単位質量当たり1.60×10−4mol/g〜300×10−4mol/g含有することが好ましい。
式(1)の化合物として特に好ましい化合物は、LiOC2H4OLi、LiOC3H6OLi、LiOC2H4OCOOLi、LiOCOOC3H6OLi、LiOCOOC2H4OCOOLi、及びLiOCOOC3H6OCOOLiで表される化合物が挙げられる。
式(2)の化合物として特に好ましい化合物は、LiOC2H4OH、LiOC3H6OH、LiOC2H4OCOOH、LiOC3H6OCOOH、LiOCOOC2H4OCOOH、LiOCOOC3H6OCOOH、LiOC2H4OCH3、LiOC3H6OCH3、LiOC2H4OCOOCH3、LiOC3H6OCOOCH3、LiOCOOC2H4OCOOCH3、LiOCOOC3H6OCOOCH3、LiOC2H4OC2H5、LiOC3H6OC2H5、LiOC2H4OCOOC2H5、LiOC3H6OCOOC2H5、LiOCOOC2H4OCOOC2H5、及びLiOCOOC3H6OCOOC2H5で表される化合物が挙げられる。
式(3)の化合物として特に好ましい化合物は、HOC2H4OH、HOC3H6OH、HOC2H4OCOOH、HOC3H6OCOOH、HOCOOC2H4OCOOH、HOCOOC3H6OCOOH、HOC2H4OCH3、HOC3H6OCH3、HOC2H4OCOOCH3、HOC3H6OCOOCH3、HOCOOC2H4OCOOCH3、HOCOOC3H6OCOOCH3、HOC2H4OC2H5、HOC3H6OC2H5、HOC2H4OCOOC2H5、HOC3H6OCOOC2H5、HOCOOC2H4OCOOC2H5、HOCOOC3H6OCOOC2H5、CH3OC2H4OCH3、CH3OC3H6OCH3、CH3OC2H4OCOOCH3、CH3OC3H6OCOOCH3、CH3OCOOC2H4OCOOCH3、CH3OCOOC3H6OCOOCH3、CH3OC2H4OC2H5、CH3OC3H6OC2H5、CH3OC2H4OCOOC2H5、CH3OC3H6OCOOC2H5、CH3OCOOC2H4OCOOC2H5、CH3OCOOC3H6OCOOC2H5、C2H5OC2H4OC2H5、C2H5OC3H6OC2H5、C2H5OC2H4OCOOC2H5、C2H5OC3H6OCOOC2H5、C2H5OCOOC2H4OCOOC2H5、及びC2H5OCOOC3H6OCOOC2H5で表される化合物が挙げられる。
正極活物質層における上記化合物の総量は、正極活物質の単位質量当たり、1.60×10−4mol/g以上であることが好ましく、5.0×10−4mol/g以上であることがより好ましい。正極活物質層における上記化合物の総量が正極活物質層の単位質量当たり1.60×10−4mol/g以上であれば、非水系電解液が正極活物質に接することが少なく、非水系電解液が酸化分解してガスが発生することを抑制できる。
正極活物質層における上記化合物の総量は、正極活物質の単位質量当たり、300×10−4mol/g以下であり、150×10−4mol/g以下であることがより好ましく、100×10−4mol/g以下であることがより更に好ましい。前記化合物の総量が正極活物質の単位質量当たり300×10−4mol/g以下であれば、Liイオンの拡散を阻害することが少なく、高い入出力特性を発現することができる。
[負極活物質層中の化合物]
本実施形態において、負極活物質層は、上記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を、負極活物質層の単位質量当たり0.50×10−4mol/g〜120×10−4mol/g含有することが好ましい。式(1)〜(3)の化合物については上述したのでここでは記載を省略する。
本実施形態において、負極活物質層は、上記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を、負極活物質層の単位質量当たり0.50×10−4mol/g〜120×10−4mol/g含有することが好ましい。式(1)〜(3)の化合物については上述したのでここでは記載を省略する。
負極活物質層における上記化合物の総量は、負極活物質層の単位質量当たり0.50×10−4mol/g以上であることが好ましく、1.0×10−4mol/g以上であることがより好ましい。負極活物質層における上記化合物の総量が負極活物質層の単位質量当たり0.50×10−4mol/g以上であれば、非水系電解液が負極活物質に接することが少なく、非水系電解液が還元分解してガスが発生することを抑制できる。
負極活物質層における上記化合物の総量は、負極活物質層の単位質量当たり120×10−4mol/g以下であることが好ましく、100×10−4mol/g以下であることがより好ましく、80×10−4mol/g以下であることがより更に好ましい。負極活物質層における上記化合物の総量が負極活物質層の単位質量当たり120×10−4mol/g以下であれば、負極界面でのLiイオンの拡散を阻害することが少なく、高い入出力特性を発現することができる。
[正極活物質層における化合物と負極活物質層における化合物との量比(A/B)]
正極活物質層における上記化合物の、正極活物質層の単位質量当たりの含有量をAとし、正極活物質層における上記化合物の、負極活物質層の単位質量当たりの含有量をBとすると、その比A/Bは、好ましくは0.2以上20以下、より好ましくは0.8以上15以下、更に好ましくは1.2以上12以下である。A/Bが0.2以上であることで、非水電解液が正極界面で酸化分解してガスが発生することを抑制でき、負極界面でLiイオンの拡散を阻害することが少ない。A/Bが20以下であることで、非水電解液が負極界面で還元分解してガスが発生することを抑制でき、正極界面でLiイオンの拡散を阻害することが少ない。そのため、A/Bが0.2以上20以下であることによって、高い高温耐久性と、幅広い温度での高い入出力特性とを両立することができる。
正極活物質層における上記化合物の、正極活物質層の単位質量当たりの含有量をAとし、正極活物質層における上記化合物の、負極活物質層の単位質量当たりの含有量をBとすると、その比A/Bは、好ましくは0.2以上20以下、より好ましくは0.8以上15以下、更に好ましくは1.2以上12以下である。A/Bが0.2以上であることで、非水電解液が正極界面で酸化分解してガスが発生することを抑制でき、負極界面でLiイオンの拡散を阻害することが少ない。A/Bが20以下であることで、非水電解液が負極界面で還元分解してガスが発生することを抑制でき、正極界面でLiイオンの拡散を阻害することが少ない。そのため、A/Bが0.2以上20以下であることによって、高い高温耐久性と、幅広い温度での高い入出力特性とを両立することができる。
[正極活物質層及び負極活物質層中の化合物の導入方法]
本実施形態において、上記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を正極活物質層内に含有させるための方法としては、例えば、
正極活物質層に上記化合物を混合する方法、
正極活物質層に上記化合物を吸着させる方法、
正極活物質層に上記化合物を電気化学的に析出させる方法
等が挙げられる。
本実施形態において、上記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を正極活物質層内に含有させるための方法としては、例えば、
正極活物質層に上記化合物を混合する方法、
正極活物質層に上記化合物を吸着させる方法、
正極活物質層に上記化合物を電気化学的に析出させる方法
等が挙げられる。
中でも、非水系電解液中に、分解してこれらの上記化合物を生成し得る前駆体を含有させておき、非水系リチウムイオン蓄電素子を作製する際に前駆体を分解して、正極活物質層内に上記化合物を堆積させる方法が好ましい。
本実施形態において、上記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を負極活物質層内に含有させるための方法としては、例えば、
負極活物質層に上記化合物を混合する方法、
負極活物質層に上記化合物を吸着させる方法、
負極活物質層に上記化合物を電気化学的に析出させる方法
等が挙げられる。
負極活物質層に上記化合物を混合する方法、
負極活物質層に上記化合物を吸着させる方法、
負極活物質層に上記化合物を電気化学的に析出させる方法
等が挙げられる。
中でも、非水系電解液中に、分解してこれらの上記化合物を生成し得る前駆体を含有させておき、非水系リチウムイオン蓄電素子を作製する際に前駆体を分解して、負極活物質層内に上記化合物を堆積させる方法が好ましい。
式(1)〜(3)の化合物を形成する前駆体としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートおよびフルオロエチレンカーボネートから選択される少なくとも1種の有機溶媒を使用することが好ましく、エチレンカーボネート、及びプロピレンカーボネートを使用することがさらに好ましい。
〈BET比表面積及び平均細孔径、メソ孔量、マイクロ孔量の測定〉
本願明細書において、BET比表面積及び平均細孔径、メソ孔量、マイクロ孔量は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、平均細孔径は質量当たりの全細孔容積をBET比表面積で除すことにより、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
本願明細書において、BET比表面積及び平均細孔径、メソ孔量、マイクロ孔量は、それぞれ以下の方法によって求められる値である。試料を200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET比表面積はBET多点法又はBET1点法により、平均細孔径は質量当たりの全細孔容積をBET比表面積で除すことにより、メソ孔量はBJH法により、マイクロ孔量はMP法により、それぞれ算出される。
BJH法は一般的にメソ孔の解析に用いられる計算方法で、Barrett, Joyner, Halendaらにより提唱されたものである(E. P. Barrett, L. G. Joyner and P. Halenda, J. Am. Chem. Soc., 73, 373(1951))。
MP法とは、「t−プロット法」(B.C.Lippens,J.H.de Boer,J.Catalysis,4319(1965))を利用して、マイクロ孔容積、マイクロ孔面積、及びマイクロ孔の分布を求める方法を意味し、M.Mikhail, Brunauer, Bodorにより考案された方法である(R.S.Mikhail,S.Brunauer,E.E.Bodor,J.Colloid Interface Sci.,26,45 (1968))。
本願明細書において、平均粒子径は、粒度分布測定装置を用いて粒度分布を測定した際、全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径(すなわち、50%径(Median径))を指す。この平均粒子径は市販のレーザー回折式粒度分布測定装置を用いて測定することができる。
本願明細書において、1次粒子径は、粉体を電子顕微鏡で数視野撮影し、それらの視野中の粒子の粒子径を、全自動画像処理装置等を用いて2,000〜3,000個程度計測し、これらを算術平均した値を1次粒子径とする方法により得ることができる。
本明細書中、分散度は、JIS K5600に規定された粒ゲージによる分散度評価試験により求められる値である。すなわち、粒のサイズに応じた所望の深さの溝を有する粒ゲージに対して、溝の深い方の先端に十分な量の試料を流し込み,溝から僅かに溢れさせる。スクレーパーの長辺がゲージの幅方向と平行になり、粒ゲージの溝の深い先端に刃先が接触するように置き、スクレーパーをゲージの表面になるように保持しながら、溝の長辺方向に対して直角に、ゲージの表面を均等な速度で、溝の深さ0まで1〜2秒間かけて引き、引き終わってから3秒以内に20°以上30°以下の角度で光を当てて観察し、粒ゲージの溝に粒が現れる深さを読み取る。
本願明細書において、粘度(ηb)及びTI値は、それぞれ以下の方法により求められる値である。まず、E型粘度計を用いて温度25℃、ずり速度2s−1の条件で2分以上測定した後の安定した粘度(ηa)を取得する。ずり速度を20s−1に変更した他は上記と同様の条件で測定した粘度(ηb)を取得する。上記で得た粘度の値を用いてTI値はTI値=ηa/ηbの式により算出される。ずり速度を2s−1から20s−1へ上昇させる際は、1段階で上昇させてもよいし、上記の範囲で多段的にずり速度を上昇させ、適宜そのずり速度における粘度を取得しながら上昇させてもよい。
〈電解液〉
本実施形態において、電解液は非水系電解液である。すなわち、この電解液は、後述する非水溶媒を含む。非水系電解液は、非水系電解液の総量を基準として、0.5mol/L以上のリチウム塩を含有することが好ましい。すなわち、非水系電解液は、リチウムイオンを電解質として含む。
本実施形態において、電解液は非水系電解液である。すなわち、この電解液は、後述する非水溶媒を含む。非水系電解液は、非水系電解液の総量を基準として、0.5mol/L以上のリチウム塩を含有することが好ましい。すなわち、非水系電解液は、リチウムイオンを電解質として含む。
[リチウム塩]
非水系電解液は、リチウム塩として、例えば、(LiN(SO2F)2)、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C2F5)、LiN(SO2CF3)(SO2C2F4H)、LiC(SO2F)3、LiC(SO2CF3)3、LiC(SO2C2F5)3、LiCF3SO3、LiC4F9SO3、LiPF6、LiBF4等を単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、LiPF6及び/又はLiN(SO2F)2を含むことが好ましい。
非水系電解液は、リチウム塩として、例えば、(LiN(SO2F)2)、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C2F5)、LiN(SO2CF3)(SO2C2F4H)、LiC(SO2F)3、LiC(SO2CF3)3、LiC(SO2C2F5)3、LiCF3SO3、LiC4F9SO3、LiPF6、LiBF4等を単独で用いることができ、2種以上を混合して用いてもよい。高い伝導度を発現できることから、LiPF6及び/又はLiN(SO2F)2を含むことが好ましい。
非水系電解液中のリチウム塩濃度は、非水系電解液の総量を基準として、0.5mol/L以上であることが好ましく、0.5mol/L以上2.0mol/L以下の範囲がより好ましい。リチウム塩濃度が0.5mol/L以上であれば、陰イオンが十分に存在するので蓄電素子の容量を十分高くできる。リチウム塩濃度が2.0mol/L以下である場合、未溶解のリチウム塩が非水系電解液中に析出すること、及び電解液の粘度が高くなり過ぎることを防止でき、伝導度が低下せず、出力特性も低下しないため好ましい。
非水系電解液は、非水系電解液の総量を基準として、0.1mol/L以上1.5mol/L以下の濃度のLiN(SO2F)2を含むことが好ましく、より好ましくは0.3mol/L以上1.2mol/L以下である。LiN(SO2F)2が0.1mol/L以上であれば、電解液のイオン伝導度を高めるとともに、負極界面に電解質被膜が適量堆積し、これにより電解液が分解することによるガスを低減することができる。この値が1.5mol/L以下であれば、充放電の時に電解質塩の析出を低減することができ、かつ長期間経過後であっても電解液の粘度の増加を抑制することができる。
[非水溶媒]
非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のリチウム塩を溶解させる点、及び正極活物質層にリチウム化合物を適量堆積させる点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、及びフルオロエチレンカーボネートからなる群から選択される少なくとも1種が好ましい。
非水系電解液は、非水溶媒として、好ましくは、環状カーボネートを含有する。非水系電解液が環状カーボネートを含有することは、所望の濃度のリチウム塩を溶解させる点、及び正極活物質層にリチウム化合物を適量堆積させる点で有利である。環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、及びフルオロエチレンカーボネートからなる群から選択される少なくとも1種が好ましい。
環状カーボネートの合計含有量は、非水系電解液の総質量を基準として、好ましくは15質量%以上、より好ましくは20質量%以上である。環状カーボネートの合計含有量が15質量%以上であれば、所望の濃度のリチウム塩を溶解させることが可能となり、高いリチウムイオン伝導度を発現することができる。また、正極活物質層にリチウム化合物を適量堆積させることが可能となり、電解液の酸化分解を抑制することができる。
本実施形態の非水系電解液は、非水溶媒として、鎖状カーボネートを含有することも好ましい。非水系電解液が鎖状カーボネートを含有することは、高いリチウムイオン伝導度を発現する点で有利である。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等に代表されるジアルキルカーボネート化合物が挙げられる。ジアルキルカーボネート化合物は典型的には非置換である。
鎖状カーボネートの合計含有量は、非水系電解液の総質量を基準として、好ましくは30質量%以上、より好ましくは35質量%以上であり、好ましくは95質量%以下、より好ましくは90質量%以下である。鎖状カーボネートの含有量が30質量%以上であれば、電解液の低粘度化が可能であり、高いリチウムイオン伝導度を発現することができる。鎖状カーボネートの含有量が95質量%以下であれば、電解液が、後述する添加剤をさらに含有することができる。
[添加剤]
非水系電解液は、更に添加剤を含有していてもよい。添加剤としては、特に制限されないが、例えば、スルトン化合物、環状ホスファゼン、非環状含フッ素エーテル、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物からなる群から選択される少なくとも1種が挙げられる。これらの添加剤は1種を単独で用いることができ、また、2種以上を混合して用いてもよい。
非水系電解液は、更に添加剤を含有していてもよい。添加剤としては、特に制限されないが、例えば、スルトン化合物、環状ホスファゼン、非環状含フッ素エーテル、含フッ素環状カーボネート、環状炭酸エステル、環状カルボン酸エステル、及び環状酸無水物からなる群から選択される少なくとも1種が挙げられる。これらの添加剤は1種を単独で用いることができ、また、2種以上を混合して用いてもよい。
(スルトン化合物)
スルトン化合物としては、例えば、下記一般式(5)〜(7)で表されるスルトン化合物を挙げることができる。これらのスルトン化合物は、1種を単独で用いてもよく、又は2種以上を混合して用いてもよい。
スルトン化合物としては、例えば、下記一般式(5)〜(7)で表されるスルトン化合物を挙げることができる。これらのスルトン化合物は、1種を単独で用いてもよく、又は2種以上を混合して用いてもよい。
抵抗への悪影響の少なさの観点、及び非水系電解液の高温における分解を抑制してガス発生を抑えるという観点から、一般式(5)で表されるスルトン化合物としては、1,3−プロパンスルトン、2,4−ブタンスルトン、1,4−ブタンスルトン、1,3−ブタンスルトン、又は2,4−ペンタンスルトンが好ましい。一般式(6)で表されるスルトン化合物としては、1,3−プロペンスルトン又は1,4−ブテンスルトンが好ましい。一般式(7)で表されるスルトン化合物としては、1,5,2,4−ジオキサジチエパン2,2,4,4−テトラオキシドが好ましい。その他のスルトン化合物としては、メチレンビス(ベンゼンスルホン酸)、メチレンビス(フェニルメタンスルホン酸)、メチレンビス(エタンスルホン酸)、メチレンビス(2,4,6,トリメチルベンゼンスルホン酸)、及びメチレンビス(2−トリフルオロメチルベンゼンスルホン酸)を挙げることができる。これらスルトン化合物から選択される少なくとも1種を使用することが好ましい。
本実施形態における非水系リチウム蓄電素子の非水系電解液中のスルトン化合物の総含有量は、非水系電解液の総質量を基準として、0.5質量%以上15質量%以下であることが好ましい。非水系電解液中のスルトン化合物の総含有量が0.5質量%以上であれば、高温における電解液の分解を抑制してガス発生を抑えることが可能となる。この総含有量が15質量%以下であれば、電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。非水系リチウム蓄電素子の非水系電解液に存在するスルトン化合物の含有量は、高い入出力特性と耐久性を両立する観点から、好ましくは1質量%以上10質量%以下であり、より好ましくは3質量%以上8質量%以下である。
(環状ホスファゼン)
環状ホスファゼンとしては、例えばエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、及びフェノキシペンタフルオロシクロトリホスファゼンからなる群から選択される少なくとも1種が好ましい。
環状ホスファゼンとしては、例えばエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、及びフェノキシペンタフルオロシクロトリホスファゼンからなる群から選択される少なくとも1種が好ましい。
非水系電解液中の環状ホスファゼンの含有率は、非水系電解液の総質量を基準として、0.5質量%以上20質量%以下であることが好ましい。この値が0.5質量%以上であれば、高温における電解液の分解を抑制してガス発生を抑えることが可能となる。この値が20質量%以下であれば、電解液のイオン伝導度の低下を抑えることができ、高い入出力特性を保持することができる。環状ホスファゼンの含有率は、より好ましくは2質量%以上15質量%以下であり、更に好ましくは4質量%以上12質量%以下である。尚、これらの環状ホスファゼンは、1種を単独で用いてもよく、又は2種以上を混合して用いてもよい。
(非環状含フッ素エーテル)
非環状含フッ素エーテルとしては、例えば、HCF2CF2OCH2CF2CF2H、CF3CFHCF2OCH2CF2CF2H、HCF2CF2CH2OCH2CF2CF2H、及びCF3CFHCF2OCH2CF2CFHCF3等が挙げられ、中でも、電気化学的安定性の観点から、HCF2CF2OCH2CF2CF2Hが好ましい。
非環状含フッ素エーテルとしては、例えば、HCF2CF2OCH2CF2CF2H、CF3CFHCF2OCH2CF2CF2H、HCF2CF2CH2OCH2CF2CF2H、及びCF3CFHCF2OCH2CF2CFHCF3等が挙げられ、中でも、電気化学的安定性の観点から、HCF2CF2OCH2CF2CF2Hが好ましい。
非環状含フッ素エーテルの含有量は、非水系電解液の総質量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることが更に好ましい。非環状含フッ素エーテルの含有量が0.5質量%以上であれば、非水系電解液の酸化分解に対する安定性が高まり、高温時耐久性が高い蓄電素子が得られる。非環状含フッ素エーテルの含有量が15質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、非環状含フッ素エーテルは、単独で使用しても、2種以上を混合して使用してもよい。
(含フッ素環状カーボネート)
含フッ素環状カーボネートとしては、他の非水溶媒との相溶性の観点から、フルオロエチレンカーボネート(FEC)及びジフルオロエチレンカーボネート(dFEC)からなる群から選択される少なくとも1種を使用することが好ましい。
含フッ素環状カーボネートとしては、他の非水溶媒との相溶性の観点から、フルオロエチレンカーボネート(FEC)及びジフルオロエチレンカーボネート(dFEC)からなる群から選択される少なくとも1種を使用することが好ましい。
フッ素原子を含有する環状カーボネートの含有量は、非水系電解液の総質量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。フッ素原子を含有する環状カーボネートの含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することによって、高温における耐久性が高い蓄電素子が得られる。フッ素原子を含有する環状カーボネートの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記のフッ素原子を含有する環状カーボネートは、1種を単独で使用しても、2種以上を混合して使用してもよい。
(環状炭酸エステル)
環状炭酸エステルとしては、ビニレンカーボネートが好ましい。
環状炭酸エステルとしては、ビニレンカーボネートが好ましい。
環状炭酸エステルの含有量は、非水系電解液の総質量を基準として、0.5質量%以上10質量%以下が好ましく、1質量%以上5質量%以下であることが更に好ましい。環状炭酸エステルの含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温における耐久性が高い蓄電素子が得られる。環状炭酸エステルの含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。
(環状カルボン酸エステル)
環状カルボン酸エステルとしては、例えば、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、及びイプシロンカプロラクトンからなる群から選択される少なくとも1種を使用することが好ましい。中でも、ガンマブチロラクトンが、リチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルとしては、例えば、ガンマブチロラクトン、ガンマバレロラクトン、ガンマカプロラクトン、及びイプシロンカプロラクトンからなる群から選択される少なくとも1種を使用することが好ましい。中でも、ガンマブチロラクトンが、リチウムイオン解離度の向上に由来する電池特性向上の点から特に好ましい。
環状カルボン酸エステルの含有量は、非水系電解液の総質量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上5質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上の良質な被膜を形成することができ、負極上での電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。環状カルボン酸エステルの含有量が5質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ、非水系電解液のイオン伝導度を高く維持することができるため、高度の入出力特性を発現することが可能となる。尚、上記の環状カルボン酸エステルは、単独で使用しても、2種以上を混合して使用してもよい。
(環状酸無水物)
環状酸無水物については、無水コハク酸、無水マレイン酸、無水シトラコン酸、及び無水イタコン酸から選択される1種以上が好ましい。中でも工業的な入手のし易さによって電解液の製造コストが抑えられる点、非水系電解液中に溶解し易い点等から、無水コハク酸及び無水マレイン酸からなる群から選択される少なくとも1種が好ましい。
環状酸無水物については、無水コハク酸、無水マレイン酸、無水シトラコン酸、及び無水イタコン酸から選択される1種以上が好ましい。中でも工業的な入手のし易さによって電解液の製造コストが抑えられる点、非水系電解液中に溶解し易い点等から、無水コハク酸及び無水マレイン酸からなる群から選択される少なくとも1種が好ましい。
環状酸無水物の含有量は、非水系電解液の総質量を基準として、0.5質量%以上15質量%以下が好ましく、1質量%以上10質量%以下であることがより好ましい。環状酸無水物の含有量が0.5質量%以上であれば、負極上に良質な被膜を形成することができ、負極上における電解液の還元分解を抑制することにより、高温時耐久性が高い蓄電素子が得られる。環状酸無水物の含有量が10質量%以下であれば、電解質塩の溶解度が良好に保たれ、かつ非水系電解液のイオン伝導度を高く維持することができ、従って高度の入出力特性を発現することが可能となる。尚、上記の環状酸無水物は、単独で使用しても、2種以上を混合して使用してもよい。
〈セパレータ〉
一般的に、正極前駆体及び負極を、セパレータを介して積層し、又は積層及び捲回して、正極前駆体、負極及びセパレータを有する電極積層体または電極捲回体を形成する。
一般的に、正極前駆体及び負極を、セパレータを介して積層し、又は積層及び捲回して、正極前駆体、負極及びセパレータを有する電極積層体または電極捲回体を形成する。
セパレータとしては、リチウムイオン二次電池に用いられるポリエチレン製の微多孔膜若しくはポリプロピレン製の微多孔膜、又は電気二重層キャパシタで用いられるセルロース製の不織紙等を用いることができる。これらのセパレータの片面または両面に、有機または無機の微粒子から構成される膜を積層してもよい。セパレータの内部に有機または無機の微粒子が含まれていてもよい。
セパレータの厚みは5μm以上35μm以下が好ましい。5μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。35μm以下の厚みとすることにより、非水系リチウム蓄電素子の入出力特性が高くなる傾向があるため好ましい。
有機または無機の微粒子から構成される膜は、1μm以上10μm以下が好ましい。1μm以上の厚みとすることにより、内部のマイクロショートによる自己放電が小さくなる傾向があるため好ましい。10μm以下の厚みとすることにより、非水系リチウム蓄電素子の入出力特性が高くなる傾向があるため好ましい。
〈ガス吸着剤〉
本実施形態の非水系リチウム型蓄電素子は、ガス吸着剤を有する。ガス吸着剤は、充放電することにより発生するリチウム化合物由来の発生ガスを吸着することができる。ガス吸着剤を備える場所は、非水系リチウム型蓄電素子の外装体の中であれば、特に限定されない。例えば、吸着剤は、正極活物質層に含まれていてもよく、負極活物質層に含まれていてもよい。吸着剤は、セパレータの膜内に埋め込まれていてもよく、ガス吸着剤を層状に成形し、セパレータに積層された状態であってもよい。ガス吸着剤を、ガスが透過可能な微多孔膜から構成される微多孔包装材に入れたもの(以下、「ガス吸着包装体」ともいう)を、電極積層体又は電極捲回体とともに、外装体の内部に収納してもよい。中でも、非水系リチウム型蓄電素子の入出力特性および高容量化の観点から、ガス吸着包装体を電極積層体又は電極捲回体とともに、外装体の内部に収納する方法が好ましい。
本実施形態の非水系リチウム型蓄電素子は、ガス吸着剤を有する。ガス吸着剤は、充放電することにより発生するリチウム化合物由来の発生ガスを吸着することができる。ガス吸着剤を備える場所は、非水系リチウム型蓄電素子の外装体の中であれば、特に限定されない。例えば、吸着剤は、正極活物質層に含まれていてもよく、負極活物質層に含まれていてもよい。吸着剤は、セパレータの膜内に埋め込まれていてもよく、ガス吸着剤を層状に成形し、セパレータに積層された状態であってもよい。ガス吸着剤を、ガスが透過可能な微多孔膜から構成される微多孔包装材に入れたもの(以下、「ガス吸着包装体」ともいう)を、電極積層体又は電極捲回体とともに、外装体の内部に収納してもよい。中でも、非水系リチウム型蓄電素子の入出力特性および高容量化の観点から、ガス吸着包装体を電極積層体又は電極捲回体とともに、外装体の内部に収納する方法が好ましい。
[ガス吸着剤の種類]
非水系リチウム型蓄電素子は、リチウム化合物の分解により発生するガスが蓄電素子の容量低下や抵抗増大をもたらすことがあるため、ガス吸着剤は、リチウム化合物由来の発生ガスを選択的に吸着することが好ましい。例えば、リチウム化合物が炭酸リチウムである場合、炭酸リチウムは酸化分解により二酸化炭素を発生するため、ガス吸着剤は、二酸化炭素を選択的に吸着するものを選択することが好ましい。リチウム化合物が窒化リチウムである場合は、酸化分解により窒素が発生するため、ガス吸着剤は、窒素を選択的に吸着するものを選択することが好ましい。
非水系リチウム型蓄電素子は、リチウム化合物の分解により発生するガスが蓄電素子の容量低下や抵抗増大をもたらすことがあるため、ガス吸着剤は、リチウム化合物由来の発生ガスを選択的に吸着することが好ましい。例えば、リチウム化合物が炭酸リチウムである場合、炭酸リチウムは酸化分解により二酸化炭素を発生するため、ガス吸着剤は、二酸化炭素を選択的に吸着するものを選択することが好ましい。リチウム化合物が窒化リチウムである場合は、酸化分解により窒素が発生するため、ガス吸着剤は、窒素を選択的に吸着するものを選択することが好ましい。
ガスの吸着機構としては、発生ガスと化学的に反応することで吸着する化学吸着の機構と、発生ガスを分子間力などの物理的な相互作用で吸着する物理吸着の機構があげられる。本実施形態においては、非水系リチウム型蓄電素子として、余分な反応を抑制するため、物理吸着機構によりガスを吸着するガス吸着剤が好適に用いられる。
物理吸着機構によりガスを吸着するガス吸着剤の一例としては、ゼオライト(結晶性アルミノケイ酸塩)、シリカゲル、及び活性炭などが挙げられ、中でもゼオライトが好適に用いられる。ゼオライトは組成により、その結晶構造や細孔径を、ガス種のサイズに適合できるようにコントロールすることができ、特定のガス種を選択的に吸着することができるため、好ましい。
ガス吸着剤の細孔径は3.0Å以上9.0Å以下が好ましい。ガス吸着剤がゼオライトであって、その細孔径が3.0Å以上9.0Å以下であることがより好ましい。細孔径が3.2Å以上であれば、リチウム化合物由来のガスを選択的に吸着できるため好ましい。細孔径が9.0Å以下であれば、リチウム化合物由来のガスを物理吸着できる分子間力を得ることができるため好ましい。
ガス吸着剤の細孔径は、発生ガス種の種類によって選択することが更に好ましい。例えば炭酸リチウムをリチウム化合物に用いる場合、炭酸ガス(CO2:分子径約3.3Å)が発生するため、この場合は細孔径が3.5Å以上5.0Å以下を有するゼオライトが好適に用いられる。酸化リチウムや窒化リチウムをリチウム化合物に用いる場合、それぞれ酸素(O2:分子径約3.5Å)および窒素(N2:分子径約3.7Å)が発生するため、この場合は細孔径が4.0Å以上9.0Å以下を有するゼオライトが好適に用いられる。
ガス吸着剤の形状はどのような形状でもよいが、微多孔包装材からの外部流出を防ぐため、ビーズ状およびペレット状が好ましい。ガス吸着剤の粒子径は、0.5mm以上5mm以下が好ましい。ガス吸着剤の粒子径が0.5mm以上であれば、ガス吸着剤が微多孔包装材の外部に流出するリスクが低いため好ましい。ガス吸着剤の粒子径が5mm以下であれば、ガス吸着剤が微多孔包装材を突き破るリスクを低減できるため好ましい。
[ガス吸着包装体]
ガス吸着剤を包装する微多孔包装材は、ガスを透過可能な微多孔膜であれば特に限定はない。例えば、ガス吸着剤を微多孔包装材の外部に流出させない観点から、ポリエチレン(PE)多孔膜やポリプロピレン(PP)多孔膜に代表されるポリオレフィン多孔膜があげられる。例えば液体を透過せず、ガスのみを透過することができるポリテトラフルオロエチレン(PTFE)多孔膜を含む微多孔包装材が好適に用いられる。
ガス吸着剤を包装する微多孔包装材は、ガスを透過可能な微多孔膜であれば特に限定はない。例えば、ガス吸着剤を微多孔包装材の外部に流出させない観点から、ポリエチレン(PE)多孔膜やポリプロピレン(PP)多孔膜に代表されるポリオレフィン多孔膜があげられる。例えば液体を透過せず、ガスのみを透過することができるポリテトラフルオロエチレン(PTFE)多孔膜を含む微多孔包装材が好適に用いられる。
ガス吸着放送体は、ガス吸着剤を袋状に加工した微多孔包装材に収納し、開口部を封止することで作製することができる。
《非水系リチウム型蓄電素子の製造方法》
本実施形態の非水系リチウム型蓄電素子は、例えば、電極積層体又は電極捲回体が、非水系電解液とともに外装体内に収納することで製造することができる。以下、非水系リチウム蓄電素子の例示的な製造方法を説明する。
本実施形態の非水系リチウム型蓄電素子は、例えば、電極積層体又は電極捲回体が、非水系電解液とともに外装体内に収納することで製造することができる。以下、非水系リチウム蓄電素子の例示的な製造方法を説明する。
〈組立及び乾燥〉
セルの組み立てでは、典型的には、枚葉の形状にカットした正極前駆体と負極を、セパレータを介して積層して電極積層体を得て、電極積層体に正極端子と負極端子を接続する。あるいは、正極前駆体と負極を、セパレータを介して積層及び捲回して電極捲回体を得て、電極捲回体に正極端子及び負極端子を接続する。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
セルの組み立てでは、典型的には、枚葉の形状にカットした正極前駆体と負極を、セパレータを介して積層して電極積層体を得て、電極積層体に正極端子と負極端子を接続する。あるいは、正極前駆体と負極を、セパレータを介して積層及び捲回して電極捲回体を得て、電極捲回体に正極端子及び負極端子を接続する。電極捲回体の形状は円筒型であっても、扁平型であってもよい。
正極端子と負極端子の接続の方法は特に限定されず、抵抗溶接や超音波溶接などの方法で行うことができる。
[外装体]
外装体としては、金属缶、ラミネート包材等を使用できる。金属缶としては、アルミニウム製のものが好ましい。ラミネート包材としては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムから構成される3層構成のものが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内装樹脂フィルムは、内部に収納する非水系電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。
外装体としては、金属缶、ラミネート包材等を使用できる。金属缶としては、アルミニウム製のものが好ましい。ラミネート包材としては、金属箔と樹脂フィルムとを積層したフィルムが好ましく、外層樹脂フィルム/金属箔/内装樹脂フィルムから構成される3層構成のものが例示される。外層樹脂フィルムは、接触等により金属箔が損傷を受けることを防止するためのものであり、ナイロン又はポリエステル等の樹脂が好適に使用できる。金属箔は水分及びガスの透過を防ぐためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内装樹脂フィルムは、内部に収納する非水系電解液から金属箔を保護するとともに、外装体のヒートシール時に溶融封口させるためのものであり、ポリオレフィン、酸変成ポリオレフィン等が好適に使用できる。
[外装体への収納]
乾燥した電極積層体又は電極捲回体は、金属缶やラミネート包材に代表される外装体の中に収納し、開口部を1方だけ残した状態で封止することが好ましい。外装体の封止方法は特に限定されず、ラミネート包材を用いる場合は、ヒートシールやインパルスシールなどの方法を用いることができる。
乾燥した電極積層体又は電極捲回体は、金属缶やラミネート包材に代表される外装体の中に収納し、開口部を1方だけ残した状態で封止することが好ましい。外装体の封止方法は特に限定されず、ラミネート包材を用いる場合は、ヒートシールやインパルスシールなどの方法を用いることができる。
ガス吸着剤の形態として、ガス吸着包装体を用いる場合は、ガス吸着包装体を、電極積層体又は電極捲回体とともに外装体の内部に収納することが好ましい。ガス吸着包装体の収納位置については特に限定はしないが、電極積層体又は電極捲回体へ損傷や、非水系リチウム型蓄電素子の厚みを低減できることから、正極端子又は負極端子が溶接された位置であることが好ましい。
[乾燥]
外装体へ収納した電極積層体又は電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法は限定されず、真空乾燥などにより乾燥することができる。残存溶媒は、正極活物質層又は負極活物質層の質量あたり、1.5質量%以下が好ましい。残存溶媒が1.5質量%以下であれば、自己放電特性やサイクル特性が低下しにくいため好ましい。
外装体へ収納した電極積層体又は電極捲回体は、乾燥することで残存溶媒を除去することが好ましい。乾燥方法は限定されず、真空乾燥などにより乾燥することができる。残存溶媒は、正極活物質層又は負極活物質層の質量あたり、1.5質量%以下が好ましい。残存溶媒が1.5質量%以下であれば、自己放電特性やサイクル特性が低下しにくいため好ましい。
〈注液、含浸、封止〉
乾燥させ、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液する。注液後に、正極、負極、及びセパレータを非水系電解液で十分に含浸することが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープにおいて、ドープが不均一に進むため、得られる非水系リチウム蓄電素子の抵抗が上昇したり、耐久性が低下したりする。含浸方法としては、特に制限されないが、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸後には、外装体が開口した状態の電極積層体又は電極捲回体を減圧しながら封止することで密閉する。
乾燥させ、外装体の中に収納された電極積層体又は電極捲回体に、非水系電解液を注液する。注液後に、正極、負極、及びセパレータを非水系電解液で十分に含浸することが望ましい。正極、負極、及びセパレータのうちの少なくとも一部に非水系電解液が浸っていない状態では、後述するリチウムドープにおいて、ドープが不均一に進むため、得られる非水系リチウム蓄電素子の抵抗が上昇したり、耐久性が低下したりする。含浸方法としては、特に制限されないが、例えば、注液後の電極積層体又は電極捲回体を、外装体が開口した状態で、減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にし、再度大気圧に戻す方法等を用いることができる。含浸後には、外装体が開口した状態の電極積層体又は電極捲回体を減圧しながら封止することで密閉する。
〈リチウムドープ〉
リチウムドープの好ましい操作としては、正極前駆体と負極との間に電圧を印加してリチウム化合物を分解することにより、正極前駆体中のリチウム化合物を分解してリチウムイオンを放出し、負極でリチウムイオンを還元することにより負極活物質層にリオチウムイオンをプレドープする。
リチウムドープの好ましい操作としては、正極前駆体と負極との間に電圧を印加してリチウム化合物を分解することにより、正極前駆体中のリチウム化合物を分解してリチウムイオンを放出し、負極でリチウムイオンを還元することにより負極活物質層にリオチウムイオンをプレドープする。
リチウムドープにおいて、正極前駆体中のリチウム化合物の酸化分解に伴い、CO2等のガスが発生する。そのため、電圧を印加する際には、発生したガスを外装体の外部に放出する手段を講ずることが好ましい。この手段としては、例えば、外装体の一部を開口させた状態で電圧を印加する方法;外装体の一部に予めガス抜き弁、ガス透過フィルム等の適宜のガス放出手段を設置した状態で電圧を印加する方法;等を挙げることができる。
〈エージング〉
リチウムドープ後に、電極積層体又は電極捲回体にエージングを行うことが好ましい。エージングでは、非水系電解液中の溶媒が負極で分解し、負極表面にリチウムイオン透過性の固体高分子被膜が形成される。
リチウムドープ後に、電極積層体又は電極捲回体にエージングを行うことが好ましい。エージングでは、非水系電解液中の溶媒が負極で分解し、負極表面にリチウムイオン透過性の固体高分子被膜が形成される。
エージングの方法としては、特に制限されず、例えば、高温環境下で非水系電解液中の溶媒を反応させる方法等を用いることができる。
〈ガス抜き〉
エージング後に、更にガス抜きを行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。非水系電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系リチウム蓄電素子の抵抗が上昇してしまう。
エージング後に、更にガス抜きを行い、非水系電解液、正極、及び負極中に残存しているガスを確実に除去することが好ましい。非水系電解液、正極、及び負極の少なくとも一部にガスが残存している状態では、イオン伝導が阻害されるため、得られる非水系リチウム蓄電素子の抵抗が上昇してしまう。
ガス抜きの方法としては、特に制限されず、例えば、外装体を開口した状態で電極積層体又は電極捲回体を減圧チャンバーに設置し、真空ポンプを用いてチャンバー内を減圧状態にする方法等を用いることができる。
《非水系リチウム型蓄電素子の特性評価》
〈ガス吸着剤の採取〉
ガス吸着剤は、完成した非水系リチウム型蓄電素子を嫌気下で解体し、採取したガス吸着剤を洗浄し、乾燥させたサンプルを解析することで確認できる。以下に、ガス吸着剤の採取方法について例示する。
〈ガス吸着剤の採取〉
ガス吸着剤は、完成した非水系リチウム型蓄電素子を嫌気下で解体し、採取したガス吸着剤を洗浄し、乾燥させたサンプルを解析することで確認できる。以下に、ガス吸着剤の採取方法について例示する。
アルゴンボックス中で非水系リチウム型蓄電素子を解体してガス吸着剤を取り出し、付着した電解質を洗浄した後に測定を行うことが好ましい。ガス吸着剤の洗浄溶媒については、表面に付着した電解質を洗い流せればよいため、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート溶媒が好適に利用できる。洗浄方法としては、例えば、ガス吸着剤の質量の50〜100倍のジエチルカーボネート溶媒にセパレータを10分間以上浸漬させ、その後溶媒を取り替えて再度セパレータを浸漬させる。その後セパレータをジエチルカーボネートから取り出し、真空乾燥する。真空乾燥の条件としては、例えば、温度:0〜200℃、圧力:0〜20kPa、時間:1〜40時間とすることができる。真空乾燥の際、ガス吸着剤の構造が変化しない程度の温度とすることが好ましい。
〈ガス吸着剤の細孔径測定〉
ガス吸着剤の細孔径の測定方法は、特に限定されず、吸着等温線測定、粉末X線回折(XRD)測定、透過型電子顕微鏡(TEM)観察などの方法により測定することができる。
ガス吸着剤の細孔径の測定方法は、特に限定されず、吸着等温線測定、粉末X線回折(XRD)測定、透過型電子顕微鏡(TEM)観察などの方法により測定することができる。
吸着等温線測定による方法を用いる場合、採取し洗浄したガス吸着剤を25〜200℃で一昼夜真空乾燥し、窒素を吸着質として吸脱着の等温線の測定を行なう。ここで得られる吸着側の等温線を用いて、BET多点法又はBET1点法によりBET比表面積を算出し、質量当たりの全細孔容積をBET比表面積で除すことにより、平均細孔径を算出できる。ここで得られた平均細孔径をガス吸着剤の細孔径とすることができる。
粉末X線回折測定を用いる場合、XRD測定により、上記で採取し洗浄したガス吸着剤の回折パターンを取得し、リートベルト解析などの手法により構造を特定することで、ガス吸着剤の細孔径を算出することができる。
〈静電容量〉
本明細書中、静電容量F(F)とは、以下の方法によって得られる値である。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電を行い、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分行う。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとする。ここで得られたQを用いて、F=Q/(3.8−2.2)により算出される値をいう。
本明細書中、静電容量F(F)とは、以下の方法によって得られる値である。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電を行い、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分行う。その後、2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとする。ここで得られたQを用いて、F=Q/(3.8−2.2)により算出される値をいう。
〈電力量〉
本明細書中、電力量E(Wh)とは、以下の方法によって得られる値である。
先に述べた方法で算出された静電容量F(F)を用いて、F×(3.82−2.22)/2/3600により算出される値をいう。
本明細書中、電力量E(Wh)とは、以下の方法によって得られる値である。
先に述べた方法で算出された静電容量F(F)を用いて、F×(3.82−2.22)/2/3600により算出される値をいう。
〈体積〉
非水系リチウム型蓄電素子の体積は、例えば、電極積層体又は電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
非水系リチウム型蓄電素子の体積は、例えば、電極積層体又は電極捲回体のうち、正極活物質層及び負極活物質層が積重された領域が、外装体によって収納された部分の体積を指す。
例えば、ラミネートフィルムによって収納された電極積層体又は電極捲回体の場合は、電極積層体又は電極捲回体のうち、正極活物質層および負極活物質層が存在する領域が、カップ成形されたラミネートフィルムの中に収納されるが、この非水系リチウム型蓄電素子の体積(V1)は、このカップ成形部分の外寸長さ(l1)、外寸幅(w1)、及びラミネートフィルムを含めた非水系リチウム型蓄電素子の厚み(t1)により、V1=l1×w1×t1で計算される。
角型の金属缶に収納された電極積層体又は電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、単にその金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V2)は、角型の金属缶の外寸長さ(l2)と外寸幅(w2)、外寸厚み(t2)により、V2=l2×w2×t2で計算される。
円筒型の金属缶に収納された電極捲回体の場合は、非水系リチウム型蓄電素子の体積としては、その金属缶の外寸での体積を用いる。すなわち、この非水系リチウム型蓄電素子の体積(V3)は、円筒型の金属缶の底面または上面の外寸半径(r)、外寸長さ(l3)により、V3=3.14×r×r×l3で計算される。
〈エネルギー密度〉
本明細書中、エネルギー密度とは、電気量Eと体積Vi(i=1、2、3)を用いてE/Vi(Wh/L)の式により得られる値である。
本明細書中、エネルギー密度とは、電気量Eと体積Vi(i=1、2、3)を用いてE/Vi(Wh/L)の式により得られる値である。
〈常温放電内部抵抗〉
本明細書では、常温放電内部抵抗Ra(Ω)とは、以下の方法によって得られる値である。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=3.8−Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
本明細書では、常温放電内部抵抗Ra(Ω)とは、以下の方法によって得られる値である。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で3.8Vに到達するまで定電流充電し、続いて3.8Vの定電圧を印加する定電圧充電を合計で30分間行う。続いて、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得る。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=3.8−Eo、及びRa=ΔE/(20C(電流値A))により算出される値である。
〈常温充電内部抵抗〉
本明細書では、常温充電内部抵抗Rf(Ω)とは、以下の方法によって得られる値である。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で2.2Vに到達するまで定電流放電し、続いて2.2Vの定電圧を印加する定電圧放電を合計で30分間行う。続いて、20Cの電流値で3.8Vまで定電流充電を行って、充電カーブ(時間−電圧)を得る。この充電カーブにおいて、充電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる充電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=Eo−2.2、及びRf=ΔE/(20C(電流値A))により算出される値である。
本明細書では、常温充電内部抵抗Rf(Ω)とは、以下の方法によって得られる値である。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、20Cの電流値で2.2Vに到達するまで定電流放電し、続いて2.2Vの定電圧を印加する定電圧放電を合計で30分間行う。続いて、20Cの電流値で3.8Vまで定電流充電を行って、充電カーブ(時間−電圧)を得る。この充電カーブにおいて、充電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる充電時間=0秒における電圧をEoとしたときに、降下電圧ΔE=Eo−2.2、及びRf=ΔE/(20C(電流値A))により算出される値である。
〈高温保存試験〉
本願明細書において、高温保存試験時のガス発生量、及び高温保存試験後の常温放電内部抵抗上昇率は、以下の方法によって測定する。
本願明細書において、高温保存試験時のガス発生量、及び高温保存試験後の常温放電内部抵抗上昇率は、以下の方法によって測定する。
先ず、非水系リチウム型蓄電素子と対応するセルを25℃に設定した恒温槽内で、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を10分間行う。その後、セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、前述の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存する。この操作を繰り返し行い、保存開始前のセル体積Va、保存試験2か月後のセル体積Vbをアルキメデス法によって測定する。Vb−Vaをセル電圧4.0V及び環境温度60℃において2か月間保存した際に発生するガス量とする。
高温保存試験後のセルに対して、常温放電内部抵抗と同様の測定方法を用いて得られる抵抗値を高温保存試験後の常温放電内部抵抗Rdとしたとき、高温保存試験開始前の常温放電内部抵抗Raに対する高温保存試験後の常温放電内部抵抗上昇率はRd/Raにより算出される。
本実施形態の非水系リチウム型蓄電素子は、初期の常温放電内部抵抗をRa(Ω)、初期の常温充電内部抵抗をRf(Ω)、静電容量をF(F)、電力量をE(Wh)、蓄電素子の体積をV(L)としたとき、以下の:
(a)RaとFとの積Ra・Fが0.3以上3.0以下である;
(b)E/Vが15以上50以下である;及び
(c)Rf/Raが0.5以上1.5以下である;
を満たすものであることが好ましい。
(a)RaとFとの積Ra・Fが0.3以上3.0以下である;
(b)E/Vが15以上50以下である;及び
(c)Rf/Raが0.5以上1.5以下である;
を満たすものであることが好ましい。
(a)について、Ra・Fは、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.4以下であり、更に好ましくは2.2以下である。Ra・Fが3.0以下であれば、優れた入出力特性を有する非水系リチウム型蓄電素子を得ることができる。そのため、非水系リチウム型蓄電素子を用いた蓄電システムと、例えば高効率エンジンと、を組み合わせること等によって非水系リチウム型蓄電素子に印加される高負荷にも十分に耐え得ることとなり、好ましい。
(b)について、E/Vは十分な充電容量と放電容量とを発現させる観点から、15以上であることが好ましく、より好ましくは18以上であり、更に好ましくは20以上である。E/Vが15以上であれば、優れた体積エネルギー密度を有する蓄電素子を得ることができる。そのため、蓄電素子を用いた蓄電システムを、例えば、自動車のエンジンと組み合わせて使用する場合に、自動車内の限られた狭いスペースに蓄電システムを設置することが可能となり、好ましい。
(c)について、常温充電内部抵抗の常温放電内部抵抗に対する比Rf/Raは、0.5以上1.5以下であることが好ましく、より好ましくは0.7以上1.3以下であり、更に好ましくは0.8以上1.2以下であり、より更に好ましくは0.8以上1.1以下である。Rf/Raが1.5以下であれば、蓄電素子を用いた蓄電システムと、例えば自動車などの高効率エンジンとを組み合わせる際に、蓄電素子によって、回生効率が高められ、燃費の向上につながる。
本実施形態の非水系リチウム型蓄電素子は、初期の常温放電内部抵抗をRa(Ω)、静電容量をF(F)、セル電圧4V及び環境温度60℃において2か月間保存した後の、常温放電内部抵抗をRd(Ω)としたとき、以下の:
(d)Rd/Raが3.0以下である;及び
(e)セル電圧4V及び環境温度60℃において2か月間保存したときに発生するガス量が、25℃において30×10−3cc/F以下である;
を満たすことが好ましい。
(d)Rd/Raが3.0以下である;及び
(e)セル電圧4V及び環境温度60℃において2か月間保存したときに発生するガス量が、25℃において30×10−3cc/F以下である;
を満たすことが好ましい。
(d)について、Rd/Raは、高温環境下に長時間曝された場合に、大電流に対して十分な充電容量と放電容量とを発現させる観点から、3.0以下であることが好ましく、より好ましくは2.5以下であり、更に好ましくは2.0以下である。Rd/Raが3.0以下であれば、長期間安定して優れた出力特性を得ることができるため、デバイスの長寿命化につながる。
(e)について、セル電圧4.0V及び環境温度60℃において2か月間保存した際に発生するガス量は、発生したガスにより素子の特性を低下させないとの観点から、発生ガス量を25℃において測定した値として、30×10−3cc/F以下であることが好ましく、より好ましくは20×10−3cc/F以下であり、更に好ましくは15×10−3cc/F以下である。上記の条件下で発生するガス量が30×10−3cc/F以下であれば、デバイスが長期間高温に曝された場合であっても、ガス発生によってセルが膨張するおそれが低減される。そのため、より高い安全性及び耐久性を有する蓄電素子を得ることができる。
以下、実施例及び比較例により本発明の実施形態を具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。
《実施例1》
〈炭酸リチウムの粉砕〉
平均粒子径53μmの炭酸リチウム200gを、アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、液体窒素で−196℃に冷却化した後、ドライアイスビーズを用い、周速10.0m/sにて9分間粉砕した。−196℃で熱変性を防止し、脆性破壊することにより得られた炭酸リチウムについて平均粒子径を測定することで仕込みの炭酸リチウム粒子径を求めたところ、2.31μmであった。
〈炭酸リチウムの粉砕〉
平均粒子径53μmの炭酸リチウム200gを、アイメックス社製の粉砕機(液体窒素ビーズミルLNM)を用い、液体窒素で−196℃に冷却化した後、ドライアイスビーズを用い、周速10.0m/sにて9分間粉砕した。−196℃で熱変性を防止し、脆性破壊することにより得られた炭酸リチウムについて平均粒子径を測定することで仕込みの炭酸リチウム粒子径を求めたところ、2.31μmであった。
〈正極活物質の調製〉
[活性炭1の調製]
破砕したヤシ殻炭化物を、小型炭化炉中、窒素雰囲気下、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
[活性炭1の調製]
破砕したヤシ殻炭化物を、小型炭化炉中、窒素雰囲気下、500℃において3時間炭化処理して炭化物を得た。得られた炭化物を賦活炉内へ入れ、1kg/hの水蒸気を予熱炉で加温した状態で上記賦活炉内へ導入し、900℃まで8時間かけて昇温して賦活した。賦活後の炭化物を取り出し、窒素雰囲気下で冷却して、賦活された活性炭を得た。得られた活性炭を10時間通水洗浄した後に水切りした。115℃に保持された電気乾燥機内で10時間乾燥した後に、ボールミルで1時間粉砕を行うことにより、活性炭1を得た。
この活性炭1について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、4.2μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が2360m2/g、メソ孔量(V1)が0.52cc/g、マイクロ孔量(V2)が0.88cc/g、V1/V2=0.59であった。
[活性炭2の調製]
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
フェノール樹脂について、窒素雰囲気下、焼成炉中600℃において2時間の炭化処理を行った後、ボールミルにて粉砕し、分級を行って平均粒子径7.0μmの炭化物を得た。この炭化物とKOHとを、質量比1:5で混合し、窒素雰囲下、焼成炉中800℃において1時間加熱して賦活化を行った。その後濃度2mol/Lに調整した希塩酸中で1時間撹拌洗浄を行った後、蒸留水でpH5〜6の間で安定するまで煮沸洗浄した後に乾燥を行うことにより、活性炭2を得た。
この活性炭2について、島津製作所社製レーザー回折式粒度分布測定装置(SALD−2000J)を用いて平均粒子径を測定した結果、7.1μmであった。ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いて細孔分布を測定した。その結果、BET比表面積が3627m2/g、メソ孔量(V1)が1.50cc/g、マイクロ孔量(V2)が2.28cc/g、V1/V2=0.66であった。
〈正極塗工液の調製〉
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウムを用いて下記方法で正極塗工液を製造した。
正極活物質として上記で得た活性炭1又は2を、仕込みのリチウム化合物として上記で得た炭酸リチウムを用いて下記方法で正極塗工液を製造した。
活性炭1又は2を59.5質量部、炭酸リチウムを28.0質量部、ケッチェンブラックを3.0質量部、PVP(ポリビニルピロリドン)を1.5質量部、及びPVdF(ポリフッ化ビニリデン)を8.0質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速17.0m/sの条件で分散して塗工液を得た。
〈正極前駆体の調製〉
得られた塗工液を、東レエンジニアリング社製のダイコーターを用いて、厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた正極前駆体の正極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体の任意の10か所で測定した厚さの平均値から、アルミニウム箔の厚さを引いて求めた。正極活物質層の膜厚は片面あたり約60μmになるようにした。
得られた塗工液を、東レエンジニアリング社製のダイコーターを用いて、厚み15μmのアルミニウム箔の片面又は両面に塗工速度1m/sの条件で塗工し、乾燥温度100℃で乾燥して正極前駆体を得た。得られた正極前駆体を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた正極前駆体の正極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、正極前駆体の任意の10か所で測定した厚さの平均値から、アルミニウム箔の厚さを引いて求めた。正極活物質層の膜厚は片面あたり約60μmになるようにした。
以下、活性炭1を用いた片面正極前駆体および両面正極前駆体を、それぞれ片面正極前駆体1および両面正極前駆体1(総称して「正極前駆体1」)という。活性炭2を用いた片面正極前駆体および両面正極前駆体を、それぞれ片面正極前駆体2および両面正極前駆体2(総称して「正極前駆体2」)という。
〈負極1の調製〉
平均粒子径3.0μm、BET比表面積が1,780m2/gの市販のヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置した。窒素雰囲気下、600℃まで8時間かけて昇温し、同温度で4時間保持することにより、両者を熱反応させ、複合炭素材料1aを得た。自然冷却により60℃まで冷却した後、複合炭素材料1aを炉から取り出した。
平均粒子径3.0μm、BET比表面積が1,780m2/gの市販のヤシ殻活性炭150gをステンレススチールメッシュ製の籠に入れ、石炭系ピッチ(軟化点:50℃)270gを入れたステンレス製バットの上に置き、両者を電気炉(炉内有効寸法300mm×300mm×300mm)内に設置した。窒素雰囲気下、600℃まで8時間かけて昇温し、同温度で4時間保持することにより、両者を熱反応させ、複合炭素材料1aを得た。自然冷却により60℃まで冷却した後、複合炭素材料1aを炉から取り出した。
得られた複合炭素材料1aについて、上記と同様の方法で平均粒子径及びBET比表面積を測定した。その結果、平均粒子径は3.2μm、BET比表面積は262m2/gであった。石炭系ピッチ由来の炭素質材料の活性炭に対する質量比率は78%であった。
次いで複合炭素材料1aを負極活物質として用いて負極を製造した。
複合炭素材料1aを85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。得られた塗工液を、東レエンジニアリング社製のダイコーターを用いて、厚さ10μmの電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極1を得た。得られた負極1を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極1の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極1の負極活物質層の膜厚は片面あたり40μmであった。
複合炭素材料1aを85質量部、アセチレンブラックを10質量部、及びPVdF(ポリフッ化ビニリデン)を5質量部、並びにNMP(N−メチルピロリドン)を混合し、それをPRIMIX社製の薄膜旋回型高速ミキサーフィルミックスを用いて、周速15m/sの条件で分散して塗工液を得た。得られた塗工液の粘度(ηb)及びTI値を東機産業社のE型粘度計TVE−35Hを用いて測定した。その結果、粘度(ηb)は2,789mPa・s、TI値は4.3であった。得られた塗工液を、東レエンジニアリング社製のダイコーターを用いて、厚さ10μmの電解銅箔の両面に塗工速度1m/sの条件で塗工し、乾燥温度85℃で乾燥して負極1を得た。得られた負極1を、ロールプレス機を用いて圧力4kN/cm、プレス部の表面温度25℃の条件でプレスした。上記で得られた負極1の負極活物質層の膜厚を小野計器社製膜厚計Linear Gauge Sensor GS−551を用いて、負極1の任意の10か所で測定した厚さの平均値から、銅箔の厚さを引いて求めた。その結果、負極1の負極活物質層の膜厚は片面あたり40μmであった。
〈負極2〜3の調製例〉
表1に示す基材及びその量、石炭系ピッチの量、熱処理温度となるように調整した他は、負極1の調製と同様にして、負極活物質の製造及び評価を行った。上記で得た負極活物質を用いて、表1に記載の塗工液となるように調整をした他は、負極1の調製と同様にして、負極の製造及び評価を行った。その結果を表1に示す。
表1に示す基材及びその量、石炭系ピッチの量、熱処理温度となるように調整した他は、負極1の調製と同様にして、負極活物質の製造及び評価を行った。上記で得た負極活物質を用いて、表1に記載の塗工液となるように調整をした他は、負極1の調製と同様にして、負極の製造及び評価を行った。その結果を表1に示す。
〈電解液の調製〉
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=33:67(体積比)の混合溶媒を用い、得られる非水系電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるように、それぞれの電解質塩を混合溶媒中に溶解して、非水系電解液を得た。
有機溶媒として、エチレンカーボネート(EC):メチルエチルカーボネート(MEC)=33:67(体積比)の混合溶媒を用い、得られる非水系電解液に対してLiN(SO2F)2及びLiPF6の濃度比が75:25(モル比)であり、かつLiN(SO2F)2及びLiPF6の濃度の和が1.2mol/Lとなるように、それぞれの電解質塩を混合溶媒中に溶解して、非水系電解液を得た。
得られた非水系電解液におけるLiN(SO2F)2及びLiPF6の濃度は、それぞれ、0.9mol/L及び0.3mol/Lであった。
〈ガス吸着包装体の作製〉
ガス吸着剤として、モレキュラーシーブ 5A 1/16(ナカライテスク製、材質:ゼオライト)5.0gを測り取り、微多孔包装材として袋状にしたポリエチレン製の微多孔膜(孔径0.05μm)の中に入れ、微多孔包装材の開口部をインパルスシール機により封止することで、ガス吸着包装体1を作製した。
ガス吸着剤として、モレキュラーシーブ 5A 1/16(ナカライテスク製、材質:ゼオライト)5.0gを測り取り、微多孔包装材として袋状にしたポリエチレン製の微多孔膜(孔径0.05μm)の中に入れ、微多孔包装材の開口部をインパルスシール機により封止することで、ガス吸着包装体1を作製した。
〈非水系リチウム型蓄電素子の製造〉
[組立]
得られた両面負極1と両面正極前駆体1を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体1を用い、更に両面負極1を21枚と両面正極前駆体1を20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。負極と正極前駆体とに、それぞれ、負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体とガス吸着包装体1を、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。乾燥した電極積層体とガス吸着包装体1を露点−45℃のドライ環境下にて、アルミラミネート包材から構成される外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。この時、ガス吸着包装体1の収納位置は、正極端子と正極集電体が溶接された位置とした。
[組立]
得られた両面負極1と両面正極前駆体1を10cm×10cm(100cm2)にカットした。最上面と最下面は片面正極前駆体1を用い、更に両面負極1を21枚と両面正極前駆体1を20枚とを用い、負極と正極前駆体との間に、厚み15μmの微多孔膜セパレータを挟んで積層した。負極と正極前駆体とに、それぞれ、負極端子と正極端子を超音波溶接にて接続して電極積層体とした。この電極積層体とガス吸着包装体1を、温度80℃、圧力50Paで、乾燥時間60hrの条件で真空乾燥した。乾燥した電極積層体とガス吸着包装体1を露点−45℃のドライ環境下にて、アルミラミネート包材から構成される外装体内に収納し、電極端子部およびボトム部の外装体3方を、温度180℃、シール時間20sec、シール圧1.0MPaの条件でヒートシールした。この時、ガス吸着包装体1の収納位置は、正極端子と正極集電体が溶接された位置とした。
[注液、含浸、封止]
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返した後、15分間静置した。常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した(常圧から、それぞれ、−95、−96、−97、−81、−97、−97、−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
アルミラミネート包材の中に収納された電極積層体に、温度25℃、露点−40℃以下のドライエアー環境下にて、上記非水系電解液約80gを大気圧下で注入した。続いて、減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、常圧から−87kPaまで減圧した後、大気圧に戻し、5分間静置した。常圧から−87kPaまで減圧した後、大気圧に戻す操作を4回繰り返した後、15分間静置した。常圧から−91kPaまで減圧した後、大気圧に戻した。同様に減圧し、大気圧に戻す操作を合計7回繰り返した(常圧から、それぞれ、−95、−96、−97、−81、−97、−97、−97kPaまで減圧した)。以上の手順により、非水系電解液を電極積層体に含浸させた。
非水系電解液を含浸させた電極積層体を減圧シール機に入れ、−95kPaに減圧した状態で、180℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止して、非水系リチウム型蓄電素子を得た。
[リチウムドープ]
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値50mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
得られた非水系リチウム型蓄電素子に対して、東洋システム社製の充放電装置(TOSCAT−3100U)を用いて、25℃環境下、電流値50mAで電圧4.5Vに到達するまで定電流充電を行った後、続けて4.5V定電圧充電を72時間継続する手法により初期充電を行い、負極にリチウムドープを行った。
[エージング]
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、1.0Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電圧放電を1時間行うことにより電圧を3.0Vに調整した。非水系リチウム型蓄電素子を60℃の恒温槽に60時間保管した。
リチウムドープ後の非水系リチウム型蓄電素子を25℃環境下、1.0Aで電圧3.0Vに到達するまで定電流放電を行った後、3.0V定電圧放電を1時間行うことにより電圧を3.0Vに調整した。非水系リチウム型蓄電素子を60℃の恒温槽に60時間保管した。
[ガス抜き]
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
エージング後の非水系リチウム型蓄電素子を、温度25℃、露点−40℃のドライエアー環境下でアルミラミネート包材の一部を開封した。減圧チャンバーの中に上記非水系リチウム型蓄電素子を入れ、KNF社製のダイヤフラムポンプ(N816.3KT.45.18)を用いて大気圧から−80kPaまで3分間かけて減圧した後、3分間かけて大気圧に戻す操作を合計3回繰り返した。減圧シール機に非水系リチウム型蓄電素子を入れ、−90kPaに減圧した後、200℃で10秒間、0.1MPaの圧力でシールすることによりアルミラミネート包材を封止した。
以上の手順により、非水系リチウム型蓄電素子を完成させた。
〈非水系リチウム型蓄電素子の測定評価〉
[ガス吸着剤の採取]
完成した非水系リチウム型蓄電素子を2.9Vに調整した後、23℃の部屋に設置された露点−90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体してガス吸着包装体を取り出した。取出したガス吸着包装体の微多孔包装材を開封し、ガス吸着剤を取り出した。ガス吸着剤質量の100倍のメチルエチルカーボネート(MEC)中に、採取したガス吸着剤を10分間以上浸漬させ、その後MECを取り替えて再度ガス吸着剤を浸漬させた。その後ガス吸着剤をMECから取り出し、サイドボックスで室温、圧力10kPa、20分の条件で真空乾燥した。得られたガス吸着剤を更に300℃、圧力10kPa、2時間の条件で真空乾燥し、洗浄に用いたMECを除去した。
[ガス吸着剤の採取]
完成した非水系リチウム型蓄電素子を2.9Vに調整した後、23℃の部屋に設置された露点−90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体してガス吸着包装体を取り出した。取出したガス吸着包装体の微多孔包装材を開封し、ガス吸着剤を取り出した。ガス吸着剤質量の100倍のメチルエチルカーボネート(MEC)中に、採取したガス吸着剤を10分間以上浸漬させ、その後MECを取り替えて再度ガス吸着剤を浸漬させた。その後ガス吸着剤をMECから取り出し、サイドボックスで室温、圧力10kPa、20分の条件で真空乾燥した。得られたガス吸着剤を更に300℃、圧力10kPa、2時間の条件で真空乾燥し、洗浄に用いたMECを除去した。
[ガス吸着剤の細孔径測定]
上記で得られた真空乾燥済みのガス吸着剤について、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いてアルゴンの吸着等温線を得た。その結果、平均細孔径は0.51nm(すなわち5.1Å)であった。
上記で得られた真空乾燥済みのガス吸着剤について、ユアサアイオニクス社製細孔分布測定装置(AUTOSORB−1 AS−1−MP)を用いてアルゴンの吸着等温線を得た。その結果、平均細孔径は0.51nm(すなわち5.1Å)であった。
[正極活物質層の解析]
完成した非水系リチウム型蓄電素子を2.9Vに調整した後、23℃の部屋に設置された露点−90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体して正極を取り出した。取り出した正極を、ジメチルカーボネート(DMC)で浸漬洗浄した後、大気非暴露を維持した状態で、サイドボックス中で真空乾燥させた。
完成した非水系リチウム型蓄電素子を2.9Vに調整した後、23℃の部屋に設置された露点−90℃以下、酸素濃度1ppm以下で管理されているArボックス内で解体して正極を取り出した。取り出した正極を、ジメチルカーボネート(DMC)で浸漬洗浄した後、大気非暴露を維持した状態で、サイドボックス中で真空乾燥させた。
乾燥後の正極を、大気非暴露を維持した状態でサイドボックスからArボックスに移し、重水で浸漬抽出して、正極抽出液を得た。抽出液の解析は、(1)イオンクロマトグラフィー(IC)及び(2)1H−NMRにて行い、求めた正極抽出液中の各化合物の濃度A(mol/ml)、抽出に用いた重水の体積B(ml)、及び抽出に用いた正極活物質層の質量C(g)から、下記数式4:
単位質量当たりの存在量(mol/g)=A×B÷C...(数式4)
により、正極活物質層に堆積する各化合物の、正極活物質層の単位質量当たりの存在量(mol/g)を求めた。
単位質量当たりの存在量(mol/g)=A×B÷C...(数式4)
により、正極活物質層に堆積する各化合物の、正極活物質層の単位質量当たりの存在量(mol/g)を求めた。
なお、抽出に用いた正極活物質層の質量は、以下の方法によって求めた。
重水抽出後に残った正極の集電体から正極活物質層を剥がし取り、剥がし取った正極活物質層を、水洗した後、真空乾燥した。真空乾燥して得た正極活物質層を、NMP又はDMFにより洗浄した。続いて、得られた正極活物質層を再度真空乾燥した後、秤量することにより、抽出に用いた正極活物質層の質量を調べた。
重水抽出後に残った正極の集電体から正極活物質層を剥がし取り、剥がし取った正極活物質層を、水洗した後、真空乾燥した。真空乾燥して得た正極活物質層を、NMP又はDMFにより洗浄した。続いて、得られた正極活物質層を再度真空乾燥した後、秤量することにより、抽出に用いた正極活物質層の質量を調べた。
以下、抽出液の解析方法を示す。
(1)正極抽出液のIC測定(ネガティブモード)により、LiCO3Li由来のCO3 2−が検出され、絶対検量線法により、CO3 2−の濃度Aを求めた。
(1)正極抽出液のIC測定(ネガティブモード)により、LiCO3Li由来のCO3 2−が検出され、絶対検量線法により、CO3 2−の濃度Aを求めた。
(2)(1)と同じ正極抽出液を3mmφNMRチューブ(株式会社シゲミ製PN−002)に入れ、1,2,4,5−テトラフルオロベンゼン入りの重水素化クロロホルムの入った5mmφNMRチューブ(日本精密科学株式会社製N−5)に挿し込み、二重管法にて、1H NMR測定を行った。1,2,4,5−テトラフルオロベンゼンのシグナル7.1ppm(m,2H)で規格化して、観測された各化合物の積分値を求めた。
また、濃度既知のジメチルスルホキシドの入った重水素化クロロホルムを3mmφNMRチューブ(株式会社シゲミ製PN−002)に入れ、上記と同一の1,2,4,5−テトラフルオロベンゼン入りの重水素化クロロホルムの入った5mmφNMRチューブ(日本精密科学株式会社製N−5)に挿し込み、二重管法にて、1H NMR測定を行った。上記と同様に、1,2,4,5−テトラフルオロベンゼンのシグナル7.1ppm(m,2H)で規格化して、ジメチルスルホキシドのシグナル2.6ppm(s,6H)の積分値を求めた。用いたジメチルスルホキシドの濃度と積分値の関係から、正極抽出液中の各化合物の濃度Aを求めた。
1H NMRスペクトルの帰属は、以下のとおりである。
[XOCH2CH2OXについて]
XOCH2CH2OXのCH2:3.7ppm(s,4H)
CH3OX:3.3ppm(s,3H)
CH3CH2OXのCH3:1.2ppm(t,3H)
CH3CH2OXのCH2O:3.7ppm(q,2H)上記のように、XOCH2CH2OXのCH2のシグナル(3.7ppm)は、CH3CH2OXのCH2Oのシグナル(3.7ppm)と重なってしまうため、CH3CH2OXのCH3のシグナル(1.2ppm)から算出されるCH3CH2OXのCH2O相当分を除いて、XOCH2CH2OX量を算出する。
[XOCH2CH2OXについて]
XOCH2CH2OXのCH2:3.7ppm(s,4H)
CH3OX:3.3ppm(s,3H)
CH3CH2OXのCH3:1.2ppm(t,3H)
CH3CH2OXのCH2O:3.7ppm(q,2H)上記のように、XOCH2CH2OXのCH2のシグナル(3.7ppm)は、CH3CH2OXのCH2Oのシグナル(3.7ppm)と重なってしまうため、CH3CH2OXのCH3のシグナル(1.2ppm)から算出されるCH3CH2OXのCH2O相当分を除いて、XOCH2CH2OX量を算出する。
上記において、Xは、それぞれ、−(COO)nLiまたは−(COO)nR1(ここで、nは0又は1、R1は、炭素数1〜4のアルキル基、炭素数1〜4のハロゲン化アルキル基である。)である。
上記(1)及び(2)の解析により求めた各化合物の抽出液中の濃度、及び抽出に用いた重水の体積、抽出に用いた正極活物質層質量より、上記の正極活物質層のXOCH2CH2OXの量Aは73.4×10−4mol/gであった。
[負極活物質層の解析]
上記正極活物質層の解析と同様の方法で、負極活物質層の解析を行った。負極活物質層のXOCH2CH2OXの量Bは22.9×10−4mol/gであり、A/Bは3.2であった。
上記正極活物質層の解析と同様の方法で、負極活物質層の解析を行った。負極活物質層のXOCH2CH2OXの量Bは22.9×10−4mol/gであり、A/Bは3.2であった。
[正極試料の調製]
上記[正極活物質層の解析]で得られた残りの正極について、リチウム化合物の平均粒子径[μm]と、正極中に含まれるリチウム化合物の量[質量%]を測定した。両面に正極活物質層が塗工された正極を10cm×5cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料1を得た。
上記[正極活物質層の解析]で得られた残りの正極について、リチウム化合物の平均粒子径[μm]と、正極中に含まれるリチウム化合物の量[質量%]を測定した。両面に正極活物質層が塗工された正極を10cm×5cmの大きさに切り出し、30gのジエチルカーボネート溶媒に浸し、時折ピンセットで正極を動かし、10分間洗浄した。続いて正極を取り出し、アルゴンボックス中で5分間風乾させ、新たに用意した30gのジエチルカーボネート溶媒に正極を浸し、上記と同様の方法にて10分間洗浄した。正極をアルゴンボックスから取り出し、真空乾燥機(ヤマト科学製、DP33)を用いて、温度25℃、圧力1kPaの条件にて20時間乾燥し、正極試料1を得た。
[正極表面SEM及びEDX測定]
正極試料1から1cm×1cmの小片を切り出し、10Paの真空中にて金をスパッタリングにより表面にコーティングした。続いて以下に示す条件にて、大気暴露下で正極表面のSEM、及びEDXを測定した。
正極試料1から1cm×1cmの小片を切り出し、10Paの真空中にて金をスパッタリングにより表面にコーティングした。続いて以下に示す条件にて、大気暴露下で正極表面のSEM、及びEDXを測定した。
(SEM−EDX測定条件)
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE−SEM S−4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C,O,F
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整した。
・測定装置:日立ハイテクノロジー製、電解放出型走査型電子顕微鏡 FE−SEM S−4700
・加速電圧:10kV
・エミッション電流:1μA
・測定倍率:2000倍
・電子線入射角度:90°
・X線取出角度:30°
・デッドタイム:15%
・マッピング元素:C,O,F
・測定画素数:256×256ピクセル
・測定時間:60sec.
・積算回数:50回
・明るさは最大輝度に達する画素がなく、明るさの平均値が輝度40%〜60%の範囲に入るように輝度及びコントラストを調整した。
[正極断面SEM及びEDX測定]
正極試料1から1cm×1cmの小片を切り出し、日本電子製のSM−09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極試料1の面方向に垂直な断面を作製した。上述の方法により正極断面SEM及びEDXを測定した。
正極試料1から1cm×1cmの小片を切り出し、日本電子製のSM−09020CPを用い、アルゴンガスを使用し、加速電圧4kV、ビーム径500μmの条件にて正極試料1の面方向に垂直な断面を作製した。上述の方法により正極断面SEM及びEDXを測定した。
上記測定した正極断面SEM及びEDXから得られた画像を、画像解析ソフト(ImageJ)を用いて画像解析することでリチウム化合物の平均粒子径X1及び正極活物質の平均粒子径Y1を算出した。得られた酸素マッピングに対し、明るさの平均値を基準に二値化した明部を面積50%以上含む粒子をリチウム化合物の粒子X、及びそれ以外の粒子を正極活物質の粒子Yとし、断面SEM画像中に観察されるX、Yそれぞれの粒子全てについて、断面積Sを求め、下記数式(1)にて算出される粒子径dを求めた。(円周率をπとする。)
[リチウム化合物の定量]
上記得られた正極試料1を5cm×5cmの大きさ(質量0.256g)に切り出し、20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後正極を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。この時の正極質量M0は0.256gであり、洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.00gの蒸留水に正極を含浸させ、容器に蓋をして45℃環境下、3日間静置した。その後正極を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。この時の正極質量M1は0.236gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の質量M2を測定したところ0.099gであった。数式(3)
Z=100×[1−(M1−M2)/(M0−M2)] ...数式(3)
に従い正極中の炭酸リチウム量Zを定量したところ12.7質量%であった。
上記得られた正極試料1を5cm×5cmの大きさ(質量0.256g)に切り出し、20gのメタノールに浸し、容器に蓋をして25℃環境下、3日間静置した。その後正極を取り出し、120℃、5kPaの条件にて10時間真空乾燥した。この時の正極質量M0は0.256gであり、洗浄後のメタノール溶液について、予め検量線を作成した条件にてGC/MSを測定し、ジエチルカーボネートの存在量が1%未満であることを確認した。続いて、25.00gの蒸留水に正極を含浸させ、容器に蓋をして45℃環境下、3日間静置した。その後正極を取り出し、150℃、3kPaの条件にて12時間真空乾燥した。この時の正極質量M1は0.236gであり、洗浄後の蒸留水について、予め検量線を作成した条件にてGC/MSを測定し、メタノールの存在量が1%未満であることを確認した。スパチュラ、ブラシ、刷毛を用いて正極集電体上の活物質層を取り除き、正極集電体の質量M2を測定したところ0.099gであった。数式(3)
Z=100×[1−(M1−M2)/(M0−M2)] ...数式(3)
に従い正極中の炭酸リチウム量Zを定量したところ12.7質量%であった。
[静電容量の測定]
得られた非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電を行い、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分行った。2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.8−2.2)により算出した静電容量Fは、1150Fであった。
得られた非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電を行い、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分行った。2.2Vまで2Cの電流値で定電流放電を施した際の容量をQとし、F=Q/(3.8−2.2)により算出した静電容量Fは、1150Fであった。
[Ra・Fの算出]
得られた非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、次いで、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温放電内部抵抗Raを算出した。
静電容量Fと常温放電内部抵抗Raとの積Ra・Fは1・93ΩFであった。
得られた非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で3.8Vに到達するまで定電流充電し、次いで、3.8Vの定電圧を印加する定電圧充電を合計で30分間行い、次いで、20Cの電流値で2.2Vまで定電流放電を行って、放電カーブ(時間−電圧)を得た。この放電カーブにおいて、放電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる放電時間=0秒における電圧をEoとし、降下電圧ΔE=3.8−Eo、及びR=ΔE/(20C(電流値A))により常温放電内部抵抗Raを算出した。
静電容量Fと常温放電内部抵抗Raとの積Ra・Fは1・93ΩFであった。
[E/Vの算出]
E/Vは、上記方法で得られた静電容量Fの値、非水系リチウム型蓄電素子のラミネートフィルムのカップ成形部分の外寸長さ(l1)と外寸幅(w1)、並びにラミネートフィルムを含めた蓄電素子の厚み(t1)により求められるV1(=l1×w1×t1)を用いて、E/V=F×(3.82−2.22)/7200/V1より21.4Wh/Lと算出された。
E/Vは、上記方法で得られた静電容量Fの値、非水系リチウム型蓄電素子のラミネートフィルムのカップ成形部分の外寸長さ(l1)と外寸幅(w1)、並びにラミネートフィルムを含めた蓄電素子の厚み(t1)により求められるV1(=l1×w1×t1)を用いて、E/V=F×(3.82−2.22)/7200/V1より21.4Wh/Lと算出された。
[Rf/Raの算出]
得られた非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で2.2Vに到達するまで定電流放電し、続いて2.2Vの定電圧を印加する定電圧放電を合計で30分間行い、続いて、20Cの電流値で3.8Vまで定電流充電を行って、充電カーブ(時間−電圧)を得た。この充電カーブにおいて、充電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる充電時間=0秒における電圧をEoとし、降下電圧ΔE=Eo−2.2、及びR=ΔE/(20C(電流値A))により常温充電内部抵抗Rfを算出した。
Rf/Raは1.16であった。
得られた非水系リチウム型蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、20Cの電流値で2.2Vに到達するまで定電流放電し、続いて2.2Vの定電圧を印加する定電圧放電を合計で30分間行い、続いて、20Cの電流値で3.8Vまで定電流充電を行って、充電カーブ(時間−電圧)を得た。この充電カーブにおいて、充電時間2秒及び4秒の時点における電圧値から、直線近似にて外挿して得られる充電時間=0秒における電圧をEoとし、降下電圧ΔE=Eo−2.2、及びR=ΔE/(20C(電流値A))により常温充電内部抵抗Rfを算出した。
Rf/Raは1.16であった。
[高温保存試験後のRd/Raの算出]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施した。高温保存試験後の蓄電素子に対して、上記[Ra・Fの算出]と同様にして高温保存試験後の常温放電内部抵抗Rdを算出した。このRd(Ω)を、上記[Ra・Fの算出]で求めた高温保存試験前の常温放電内部抵抗Ra(Ω)で除して算出した比Rd/Raは1.66であった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施した。高温保存試験後の蓄電素子に対して、上記[Ra・Fの算出]と同様にして高温保存試験後の常温放電内部抵抗Rdを算出した。このRd(Ω)を、上記[Ra・Fの算出]で求めた高温保存試験前の常温放電内部抵抗Ra(Ω)で除して算出した比Rd/Raは1.66であった。
[高温保存試験後のガス発生量]
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、保存試験開始前のセル体積Va、保存試験2か月後のセルの体積Vbをアルキメデス法によって測定した。静電容量Fを用いて、(Vb−Va)/Fにより求めたガス発生量は13.3×10−3cc/Fであった。
得られた蓄電素子について、25℃に設定した恒温槽内で、富士通テレコムネットワークス株式会社製の充放電装置(5V,360A)を用いて、100Cの電流値で4.0Vに到達するまで定電流充電し、続いて4.0Vの定電圧を印加する定電圧充電を合計で10分間行った。セルを60℃環境下に保存し、2週間毎に60℃環境下から取り出し、同様の充電操作にてセル電圧を4.0Vに充電した後、再びセルを60℃環境下で保存した。この操作を2か月間繰り返し実施し、保存試験開始前のセル体積Va、保存試験2か月後のセルの体積Vbをアルキメデス法によって測定した。静電容量Fを用いて、(Vb−Va)/Fにより求めたガス発生量は13.3×10−3cc/Fであった。
《実施例2〜5》
活性炭、負極を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、実施例2〜5の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
活性炭、負極を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、実施例2〜5の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
《実施例6〜33》
活性炭、負極、ガス吸着剤の材質と平均細孔径、正極前駆体のリチウム化合物量と平均粒子径、リチウムドープの時間を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、実施例6〜33の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
活性炭、負極、ガス吸着剤の材質と平均細孔径、正極前駆体のリチウム化合物量と平均粒子径、リチウムドープの時間を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、実施例6〜33の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
《比較例1〜11》
活性炭、負極、ガス吸着剤の平均細孔径、正極前駆体のリチウム化合物量および平均粒子径を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、比較例1〜11の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
活性炭、負極、ガス吸着剤の平均細孔径、正極前駆体のリチウム化合物量および平均粒子径を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、比較例1〜11の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
《実施例34〜38》
活性炭、負極、ガス吸着剤の材質と平均細孔径、微多孔包装材の種類、正極前駆体のリチウム化合物の種類と量及び平均粒子径を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、実施例34〜38の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
活性炭、負極、ガス吸着剤の材質と平均細孔径、微多孔包装材の種類、正極前駆体のリチウム化合物の種類と量及び平均粒子径を、それぞれ、以下の表2に示すとおりとした他は、実施例1と同様にして、実施例34〜38の非水系リチウム型蓄電素子をそれぞれ作製し、各種の評価を行った。
以上で得られた非水系リチウム型蓄電素子の測定及び評価結果を以下の表3及び4に示す。
以上の実施例により、本実施形態の非水系リチウム型蓄電素子は、高容量を発現し、初期入出力特性に優れ、高温保存耐久性に優れた非水系リチウム型蓄電素子であることが検証された。
本発明に係る非水系リチウム型蓄電素子は、初期入出力特性に優れ、高いエネルギー密度を有し、高温保存耐久性に優れるため、例えば、自動車において、内燃機関又は燃料電池、モーター、及び蓄電素子を組み合わせたハイブリット駆動システムの分野、更には瞬間電力ピークのアシスト用途等で好適に利用できる。
Claims (15)
- 正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
前記正極が、正極集電体と、前記正極集電体の片面又は両面上に設けられた、正極活物質を含む正極活物質層とを有し、前記正極活物質は活性炭を含み、
前記リチウム化合物の平均粒子径をX1とするとき、0.1μm≦X1≦10μmであり、正極活物質の平均粒子径をY1とするとき、2μm≦Y1≦20μmであり、X1<Y1であり、
前記正極中に含まれる前記リチウム化合物の量が、前記正極活物質層の全質量を基準として、1質量%以上50質量%以下である、非水系リチウム型蓄電素子。 - 前記正極と前記負極が前記セパレータを介して積層された電極積層体、又は積層及び捲回された電極捲回体と、
前記非水系電解液と、
ガス吸着包装体とが、
外装体の内部に収納及び封止されている、非水系リチウム型蓄電素子であって、
前記ガス吸着包装体は、微多孔膜から構成される微多孔包装材に前記ガス吸着剤が収納及び封止されている、請求項1に記載の非水系リチウム型蓄電素子。 - 前記ガス吸着剤の細孔径が3.2Å以上9.0Å以下である、請求項1又は2に記載の非水系リチウム型蓄電素子。
- 前記ガス吸着剤がゼオライトを含む、請求項1〜3のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記正極活物質層が、下記式(1)〜(3)からなる群から選択される少なくとも1種の化合物を、前記正極活物質層の単位質量当たり1.60×10−4mol/g〜300×10−4mol/g含有する、請求項1〜4のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記正極活物質層に含まれる、前記式(1)〜(3)からなる群から選択される少なくとも一種の化合物の、前記正極活物質層の単位質量当たりの含有量をAとし、
前記負極活物質層に含まれる、前記式(1)〜(3)からなる群から選択される少なくとも一種の化合物の、前記負極活物質層の単位質量当たりの含有量をBとしたとき、
0.2≦A/B≦20である、請求項1〜5のいずれか一項に記載の、非水系リチウム型蓄電素子。 - 前記リチウム化合物は、炭酸リチウム、酸化リチウム、及び水酸化リチウムからなる群から選択される少なくとも一種である、請求項1〜6のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量をV1(cc/g)、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量をV2(cc/g)とするとき、0.3<V1≦0.8、及び0.5≦V2≦1.0を満たし、かつ、BET法により測定される比表面積が1,500m2/g以上3,000m2/g以下を示す活性炭である、請求項1〜7のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記正極活物質層に含まれる正極活物質が、BJH法により算出した直径20Å以上500Å以下の細孔に由来するメソ孔量V1(cc/g)が0.8<V1≦2.5を満たし、MP法により算出した直径20Å未満の細孔に由来するマイクロ孔量V2(cc/g)が0.8<V2≦3.0を満たし、かつ、BET法により測定される比表面積が2,300m2/g以上4,000m2/g以下を示す活性炭である、請求項1〜8のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のリチウムイオンのドープ量が、単位質量当たり530mAh/g以上2,500mAh/g以下である、請求項1〜9のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のBET比表面積が100m2/g以上1,500m2/g以下である、請求項1〜10のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のリチウムイオンのドープ量が、単位質量当たり50mAh/g以上700mAh/g以下である、請求項1〜9のいずれか一項に記載の非水系リチウム型蓄電素子。
- 前記負極活物質のBET比表面積が1m2/g以上50m2/g以下である、請求項1〜9及び12のいずれか一項に記載の非水系リチウム型蓄電素子。
- 正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
非水系リチウム型蓄電素子において、初期の常温放電内部抵抗をRa(Ω)、初期の常温充電内部抵抗をRf(Ω)、静電容量をF(F)、電力量をE(Wh)、蓄電素子の体積をV(L)としたとき、
以下の(a)、(b)、及び(c):
(a)RaとFとの積Ra・Fが0.3以上3.0以下である;
(b)E/Vが15以上50以下である;及び
(c)Rf/Raが0.5以上1.5以下である;
を満たす、非水系リチウム型蓄電素子。 - 正極活物質以外のリチウム化合物を含む正極と、負極と、ガス吸着剤と、セパレータと、リチウムイオンを含む非水系電解液とを有する、非水系リチウム型蓄電素子であって、
前記非水系リチウム型蓄電素子において、セル電圧4V及び環境温度60℃において2か月間保存した後の25℃における内部抵抗をRd(Ω)としたとき、以下の(d)及び(e):
(d)Rd/Raが0.3以上3.0以下である;
(e)セル電圧4V及び環境温度60℃において2か月間保存したときに発生するガス量が、25℃において30×10−3cc/F以下である;
を満たす、非水系リチウム型蓄電素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016192764A JP2018056440A (ja) | 2016-09-30 | 2016-09-30 | 非水系リチウム型蓄電素子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016192764A JP2018056440A (ja) | 2016-09-30 | 2016-09-30 | 非水系リチウム型蓄電素子 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018056440A true JP2018056440A (ja) | 2018-04-05 |
Family
ID=61836031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016192764A Pending JP2018056440A (ja) | 2016-09-30 | 2016-09-30 | 非水系リチウム型蓄電素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018056440A (ja) |
-
2016
- 2016-09-30 JP JP2016192764A patent/JP2018056440A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017126698A1 (ja) | 非水系リチウム型蓄電素子 | |
JP6957250B2 (ja) | 非水系リチウム型蓄電素子 | |
WO2017126693A1 (ja) | 非水系リチウム蓄電素子 | |
JP2018056427A (ja) | 非水系リチウム型蓄電素子 | |
JPWO2018030280A1 (ja) | 非水系アルカリ金属イオンキャパシタ | |
JP2018026400A (ja) | 非水系リチウム型蓄電素子 | |
JP6976113B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815150B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815126B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056416A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056425A (ja) | 非水系リチウム型蓄電素子 | |
JP6815148B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6754260B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6829572B2 (ja) | 捲回式非水系リチウム型蓄電素子 | |
JP6829573B2 (ja) | 捲回式非水系リチウム型蓄電素子 | |
JP6792978B2 (ja) | 非水系アルカリ金属型蓄電素子 | |
JP6754656B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018056401A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056434A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056430A (ja) | 非水系リチウム型蓄電素子 | |
JP2018056419A (ja) | 非水系リチウム型蓄電素子 | |
JP2018026408A (ja) | 非水系アルカリ土類金属型蓄電素子 | |
JP6754655B2 (ja) | 非水系リチウム型蓄電素子 | |
JP6815146B2 (ja) | 非水系リチウム型蓄電素子 | |
JP2018026391A (ja) | 非水系リチウム型蓄電素子 |