JP2018055928A - Contact material for vacuum valve, manufacturing method, and vacuum valve - Google Patents

Contact material for vacuum valve, manufacturing method, and vacuum valve Download PDF

Info

Publication number
JP2018055928A
JP2018055928A JP2016189932A JP2016189932A JP2018055928A JP 2018055928 A JP2018055928 A JP 2018055928A JP 2016189932 A JP2016189932 A JP 2016189932A JP 2016189932 A JP2016189932 A JP 2016189932A JP 2018055928 A JP2018055928 A JP 2018055928A
Authority
JP
Japan
Prior art keywords
fixed
movable
contact
sealed
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016189932A
Other languages
Japanese (ja)
Inventor
吉田 剛
Takeshi Yoshida
剛 吉田
宏通 染井
Hiromichi Somei
宏通 染井
裕希 関森
Hiroki Sekimori
裕希 関森
亙 坂口
Wataru Sakaguchi
亙 坂口
草野 貴史
Takashi Kusano
貴史 草野
丹羽 芳充
Yoshimitsu Niwa
芳充 丹羽
昂 大坊
Akira Daibo
昂 大坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016189932A priority Critical patent/JP2018055928A/en
Priority to PCT/JP2017/014394 priority patent/WO2018061269A1/en
Publication of JP2018055928A publication Critical patent/JP2018055928A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/025Composite material having copper as the basic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain good cutoff performance and excellent withstand voltage performance in a metal of a melting system, and improve welding resistance characteristics.SOLUTION: A vacuum valve according to an embodiment, comprises: a cylindrical ceramic vacuum insulation container; a fixed side sealing metal fitting that is sealed to one end opening part of the vacuum insulation container; a fixed electrode shaft that is penetrated and fixed to the fixed side sealing metal fitting; a fixed contact point that is fixed to the fixed electrode shaft; a movable sealing metal fitting that is sealed to the other opening part of the vacuum insulation container; a movable electrode axis that movably penetrates to the movable sealing metal fitting; a movable contact point that is fixed to the movable electrode axis, and contact and separate to/from the fixed contact point; a freely extendable bellows of which one end is sealed to a middle part of the movable electrode axis, and the other end is sealed to the movable sealing meal fitting; and an arc shield that is sealed in a middle grove part of the vacuum insulation container, and surrounds the fixed contact point and the movable contact point. The fixed contact point and the movable contact point are formed by Cu-Cr-Te alloy including dendrite Cr and Te of a predetermined ratio as an additive material.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、真空バルブ用接点材料、製造方法及び真空バルブに関する。   Embodiments described herein relate generally to a contact material for a vacuum valve, a manufacturing method, and a vacuum valve.

真空バルブに要求される特性には、基本三要件である遮断性能、耐電圧性能、耐溶着特性がある。そのためこれら全ての特性が良好である真空バルブ用接点材料が求められるが、これらの特性には相反する性質のものがある関係上、単一の金属種によって全ての特性を満足させるのは困難である。   The characteristics required for the vacuum valve include the three basic requirements of breaking performance, withstand voltage performance, and welding resistance. For this reason, contact materials for vacuum valves that have all these characteristics are required. However, because these characteristics have conflicting properties, it is difficult to satisfy all the characteristics with a single metal species. is there.

このため、実用化されている真空バルブ用接点材料は、不足する特性を相互に補えるような2種以上の元素、例えば導電成分と耐弧成分を組み合わせて構成され、大電流遮断用や高電圧用等といった所望する用途に応じて使用される。   For this reason, contact materials for vacuum valves that have been put to practical use are composed of a combination of two or more elements, such as a conductive component and an arc-proof component, that can mutually compensate for the lack of characteristics, It is used according to the desired application such as for use.

近年では、多種多様な真空バルブ用接点材料の中でも遮断性能と耐電圧性能を満足する特性を有するものとしては、例えば、特許文献1に記載されているように、導電成分としてのCuと耐弧成分としてのCrを含むCu−Cr系真空バルブ用接点材料が知られている。   In recent years, among various types of contact materials for vacuum valves, those having characteristics satisfying the breaking performance and withstand voltage performance include, for example, Cu as a conductive component and arc resistance as described in Patent Document 1. A contact material for a Cu—Cr based vacuum valve containing Cr as a component is known.

一方、耐溶着特性の向上を目的とし、BiやTeのような溶着防止成分を含有させたCu−Bi、Cu−Te系真空バルブ用接点材料が知られている(例えば、特許文献2あるいは特許文献3参照)。   On the other hand, there are known contact materials for Cu-Bi and Cu-Te based vacuum valves containing an anti-welding component such as Bi or Te for the purpose of improving welding resistance (for example, Patent Document 2 or Patent). Reference 3).

特開昭54−71375号公報JP 54-71375 A 特公昭41−12131号公報Japanese Patent Publication No.41-12131 特公昭44−23751号公報Japanese Patent Publication No. 44-23751

ところで、Cu−Cr系真空バルブ用接点材料は、遮断性能に優れており、さらに焼結法によるものよりも溶解法によるものの方が耐電圧性能の向上を期待することができるが、耐溶着特性は低いという課題があった。
一方、耐溶着特性に優れたCu−Te系、Cu−Bi系真空バルブ用接点材料は、再点弧発生確率が高く耐電圧性能が低いという課題があった。
By the way, the contact material for the Cu-Cr-based vacuum valve is excellent in the breaking performance, and further, the improvement of the withstand voltage performance can be expected by the melting method rather than the sintering method. There was a problem of being low.
On the other hand, the contact materials for Cu-Te and Cu-Bi vacuum valves having excellent welding resistance have a problem that the re-ignition occurrence probability is high and the withstand voltage performance is low.

そこで本発明は、良好な遮断性能と溶解系金属のもつ優れた耐電圧性能を維持しつつ、耐溶着特性も向上させることが可能な真空バルブ用接点材料及び真空バルブを提供することを目的としている。   Accordingly, an object of the present invention is to provide a contact material for a vacuum valve and a vacuum valve capable of improving the welding resistance while maintaining good breaking performance and excellent withstand voltage performance of a molten metal. Yes.

実施形態の真空バルブ用接点材料は、Cu母体中にデンドライト状のCr及び所定比率のTeを添加物として含むCu−Cr−Te合金からなる。   The contact material for a vacuum valve of the embodiment is made of a Cu—Cr—Te alloy containing dendritic Cr and a predetermined ratio of Te as additives in a Cu matrix.

図1は、実施形態の真空バルブの一部断面図である。FIG. 1 is a partial cross-sectional view of a vacuum valve according to an embodiment. 図2は、Te含有量と、溶着力比との関係説明図である。FIG. 2 is an explanatory diagram of the relationship between the Te content and the welding force ratio. 図3は、Te含有量と、遮断性能比との関係説明図である。FIG. 3 is an explanatory diagram of the relationship between the Te content and the blocking performance ratio. 図4は、Cu−Cr−Te合金の製造フローチャートである。FIG. 4 is a manufacturing flowchart of a Cu—Cr—Te alloy. 図5は、実施形態及び従来の焼結法によるCu−Cr−Te合金を比較するための断面顕微鏡写真である。FIG. 5 is a cross-sectional photomicrograph for comparing the Cu—Cr—Te alloy by the embodiment and the conventional sintering method. 図6は、走査型電子顕微鏡(SEM)を用いた元素分布解析の説明図である。FIG. 6 is an explanatory diagram of element distribution analysis using a scanning electron microscope (SEM).

以下、図面を参照して実施形態について詳細に説明する。
図1は、実施形態の真空バルブの一部断面図である。
真空バルブ10は、円筒形状を有したセラミックス製の真空絶縁容器11と、真空絶縁容器11の一端の開口部11Aに封着され、固定電極軸12が嵌め込まれた状態で挿入される開口13Aが設けられた円板状の固定側封着金具13と、真空絶縁容器11の他端の開口部11Bに封着され、可動電極軸14が摺動可能に嵌め込まれた開口15Aが設けられた可動側封着金具15と、真空絶縁容器11内で固定電極軸12の先端に真空ロウ付けされた固定側接点部材16と、真空絶縁容器11内で可動電極軸14の先端に真空ロウ付けされた可動側接点部材17と、固定側接点部材16及び可動側接点部材17の周囲に配置され、固定側接点部材16あるいは可動側接点部材17から蒸発した金属粒子が真空絶縁容器11内面に蒸着されるのを防止するためのアークシールド18と、可動電極軸14の中間部14Mと可動側封着金具15とに封着されて開口15Aを覆うとともに、伸縮自在とされて真空絶縁容器11内の真空を維持するための金属製のベローズ19と、を備えている。
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a partial cross-sectional view of a vacuum valve according to an embodiment.
The vacuum valve 10 is sealed with a ceramic vacuum insulating container 11 having a cylindrical shape, and an opening 13A inserted in a state in which the fixed electrode shaft 12 is fitted into the opening 11A at one end of the vacuum insulating container 11. A movable member provided with an opening 15A in which the movable electrode shaft 14 is slidably fitted and sealed in the provided disc-shaped fixed-side sealing fitting 13 and the opening 11B at the other end of the vacuum insulating container 11. The side sealing fitting 15, the fixed-side contact member 16 vacuum-brazed to the tip of the fixed electrode shaft 12 in the vacuum insulating container 11, and the vacuum-brazed to the tip of the movable electrode shaft 14 in the vacuum insulating container 11 The movable contact member 17, the fixed contact member 16 and the movable contact member 17 are arranged around the metal particles evaporated from the fixed contact member 16 or the movable contact member 17 and deposited on the inner surface of the vacuum insulating container 11. of The arc shield 18 for preventing, the intermediate part 14M of the movable electrode shaft 14 and the movable side sealing metal fitting 15 are sealed to cover the opening 15A, and can be expanded and contracted to maintain the vacuum in the vacuum insulating container 11. And a metal bellows 19 for the purpose.

上記構成において、固定側接点部材16及び可動側接点部材17は、円板形状を有し、固定側接点部材16及び可動側接点部材17の外周面から中心軸に徐々に近づくように螺旋状(スパイラル状)に形成されたスリットSSがそれぞれ複数本(例えば3本)設けられている。この螺旋状のスリットSSによれば、径方向の磁界(横磁界)を発生させることができ、局所的な接点材料の溶融を防止して遮断性能を確保し、向上させることができる。   In the above configuration, the fixed-side contact member 16 and the movable-side contact member 17 have a disk shape, and are spirally shaped so as to gradually approach the central axis from the outer peripheral surfaces of the fixed-side contact member 16 and the movable-side contact member 17 ( A plurality of (for example, three) slits SS formed in a spiral shape are provided. According to the spiral slit SS, a radial magnetic field (transverse magnetic field) can be generated, and the local contact material can be prevented from melting and the interruption performance can be ensured and improved.

より詳細には、固定側接点部材16と可動側接点部材17との間に発生するアークに径方向の磁界を印加して、この磁界とアーク電流との間に生じるローレンツ力によりアークを電極の円周方向に回転駆動することで固定側接点部材16あるいは可動側接点部材17の局所的な溶融を防止し、所望の遮断性能を得ることができるのである。
また、真空バルブ10において、真空絶縁容器11内の圧力は、例えば、10−4Pa以下とされる。
More specifically, a radial magnetic field is applied to the arc generated between the fixed contact member 16 and the movable contact member 17, and the arc is caused by the Lorentz force generated between the magnetic field and the arc current. By rotationally driving in the circumferential direction, local melting of the stationary contact member 16 or the movable contact member 17 can be prevented, and a desired breaking performance can be obtained.
Moreover, in the vacuum valve 10, the pressure in the vacuum insulating container 11 is, for example, 10 −4 Pa or less.

ここで、固定側接点部材16及び可動側接点部材17の形成材料について説明する。
固定側接点部材16及び可動側接点部材17は、銅(Cu)を母材とし、クロム(Cr)及びテルル(Te)を含有するCu−Cr−Te合金で形成されている。
このCu−Cr−Te合金において、原料金属の含有比は、重量比(重量%)で
Cu:Cr:Te=x:y:z (x>y>>z>0、x+y+z=100)
とされている。
ここで、Te含有量の範囲は、0.03≦z≦0.5(重量%)とされている。以下、Te含有量の範囲をこの範囲に設定した理由を述べる。
Here, the material for forming the stationary contact member 16 and the movable contact member 17 will be described.
The fixed-side contact member 16 and the movable-side contact member 17 are made of a Cu—Cr—Te alloy containing copper (Cu) as a base material and containing chromium (Cr) and tellurium (Te).
In this Cu—Cr—Te alloy, the content ratio of the raw material metal is a weight ratio (% by weight): Cu: Cr: Te = x: y: z (x> y >>z> 0, x + y + z = 100)
It is said that.
Here, the range of Te content is 0.03 ≦ z ≦ 0.5 (wt%). The reason why the Te content range is set to this range will be described below.

図2は、Te含有量と、溶着力比との関係説明図である。
ここで、溶着力比とは、Teを全く含まない状態の溶着力を基準(=1)とした溶着力の比であり、その値が低いほど溶着しない状態を表している。
FIG. 2 is an explanatory diagram of the relationship between the Te content and the welding force ratio.
Here, the welding force ratio is a ratio of welding force with reference to the welding force in a state containing no Te at all (= 1), and represents a state in which welding does not occur as the value is lower.

図2によれば、Te含有量が0.03(重量%)以上であれば、十分溶着力が低くなっていることが分かる。
この結果、弱い操作力でも容易に溶着引き外しが行える。
According to FIG. 2, it can be seen that if the Te content is 0.03 (% by weight) or more, the welding force is sufficiently low.
As a result, welding removal can be easily performed even with a weak operating force.

図3は、Te含有量と、遮断性能比との関係説明図である。
ここで、遮断性能比とは、Teを全く含まない状態の遮断性能を基準(=1)とした遮断性能の比であり、その値が高いほど遮断性能を維持している状態を表している。
図3によれば、Te含有量が0.5(重量%)以下であれば、十分に遮断性能が維持されている(遮断性能比0.9以上)ことが分かる。
FIG. 3 is an explanatory diagram of the relationship between the Te content and the blocking performance ratio.
Here, the interruption performance ratio is a ratio of the interruption performance based on the interruption performance in a state containing no Te at all (= 1), and the higher the value, the more the interruption performance is maintained. .
According to FIG. 3, it can be seen that when the Te content is 0.5 (% by weight) or less, the blocking performance is sufficiently maintained (the blocking performance ratio is 0.9 or more).

次にCu−Cr−Te合金の製造方法について概要を述べる。
図4は、Cu−Cr−Te合金の製造フローチャートである。
まずCu(銅)、Cr(クロム)、Te(テルル)を所定重量%(=所定比率)となるように秤量する(ステップS11)。
Next, an outline of a method for producing a Cu—Cr—Te alloy will be described.
FIG. 4 is a manufacturing flowchart of a Cu—Cr—Te alloy.
First, Cu (copper), Cr (chromium), and Te (tellurium) are weighed so as to be a predetermined weight% (= predetermined ratio) (step S11).

次に秤量後の銅、クロム、テルルをるつぼ(坩堝)に入れて真空雰囲気下(真空雰囲気炉)で完全に溶解状態とする(ステップS12)。
続いて、急冷し、凝固させる(ステップS13)。
Next, the weighed copper, chromium and tellurium are put into a crucible (crucible) and completely dissolved in a vacuum atmosphere (vacuum atmosphere furnace) (step S12).
Subsequently, it is rapidly cooled and solidified (step S13).

図5は、実施形態及び従来の焼結法によるCu−Cr−Te合金を比較するための断面顕微鏡写真である。
図5(a)に示すように、本実施形態の溶解法で製造したCu−Cr−Te合金においては、Crが溶解する温度まで温度を上昇させているため、凝固中にCrは、デンドライト(樹枝状結晶)として析出している。
FIG. 5 is a cross-sectional photomicrograph for comparing the Cu—Cr—Te alloy by the embodiment and the conventional sintering method.
As shown in FIG. 5A, in the Cu—Cr—Te alloy manufactured by the melting method of the present embodiment, the temperature is raised to a temperature at which Cr is dissolved. It is precipitated as dendritic crystals).

これに対し図5(b)に示すように従来の焼結法では、Cuが溶解しない温度(Cuの融点1084.6℃であるので、例えば、700℃から1080℃)で型に入れて加圧して成形している。このため、Cr(融点1903℃)が溶解しない温度で焼結を行っているため、Cu−Cr−Te合金中で、Crは粒子状態でばらばらに配置された状態となっている。   On the other hand, as shown in FIG. 5 (b), in the conventional sintering method, it is put in a mold at a temperature at which Cu does not dissolve (the melting point of Cu is 1084.6 ° C., for example, 700 ° C. to 1080 ° C.). Press to mold. For this reason, since the sintering is performed at a temperature at which Cr (melting point: 1903 ° C.) does not dissolve, in the Cu—Cr—Te alloy, Cr is in a state of being dispersed in a particle state.

従って、本実施形態のCu−Cr−Te合金の方が従来の焼結法によるCu−Cr−Te合金よりも各成分が均一に分布した均質な状態となっている。
これにより、安定した品質の電極を構成することができる。
Therefore, the Cu—Cr—Te alloy of this embodiment is in a more homogeneous state in which each component is uniformly distributed than the Cu—Cr—Te alloy obtained by the conventional sintering method.
Thereby, the electrode of the stable quality can be comprised.

図6は、走査型電子顕微鏡(SEM)を用いた元素分布解析の説明図である。
ところで、光学顕微鏡写真では、微量に添加されたTeを特定、同定するのは困難であるため、図6に示すように、SEMを用いた元素分布解析を行って特定及び同定を行った。
FIG. 6 is an explanatory diagram of element distribution analysis using a scanning electron microscope (SEM).
By the way, since it is difficult to identify and identify Te added in a small amount in an optical micrograph, as shown in FIG. 6, element distribution analysis using SEM was performed to identify and identify Te.

図6(a)は、通常のSEM画像であり、Cu母体中にデンドライト状のCrが分布しており、さらにCu母体中に微量のTeが分布している箇所の画像であるが、実際には、このSEM画像のみからはTeが分布しているかを判別することは容易ではない。
そこで、図6(b)〜図6(d)に示すように、特性X線(蛍光X線)を用いて各原子の分布を把握している。
FIG. 6A is a normal SEM image, which is an image of a portion where dendritic Cr is distributed in the Cu matrix and a small amount of Te is distributed in the Cu matrix. It is not easy to determine whether Te is distributed from only this SEM image.
Therefore, as shown in FIGS. 6B to 6D, the distribution of each atom is grasped using characteristic X-rays (fluorescence X-rays).

より詳細には、図6(b)に示すように、Cuの特性X線であるK線(Cu K線)を用いてCuの分布を把握している。図6(b)中、より黒い部分がCuの分布が多いことを示している。   More specifically, as shown in FIG. 6B, the distribution of Cu is grasped using a K line (Cu K line) that is a characteristic X ray of Cu. In FIG. 6B, the blacker portion indicates that the distribution of Cu is large.

同様に図6(c)に示すように、Crの特性X線であるK線(Cr K線)を用いてCrの分布を把握している。図6(c)中、より黒い部分がCrの分布が多いことを示している。   Similarly, as shown in FIG. 6C, the distribution of Cr is grasped using the K line (Cr K line) which is a characteristic X-ray of Cr. In FIG.6 (c), the blacker part has shown that there is much distribution of Cr.

さらに図6(d)に示すように、Teの特性X線であるL線(Te L線)を用いてTeの分布を把握している。図6(d)中、黒点で示される部分にTeが分布していることが分かる。   Further, as shown in FIG. 6D, the Te distribution is grasped by using an L line (Te L line) which is a characteristic X ray of Te. In FIG. 6D, it can be seen that Te is distributed in the portion indicated by the black dots.

これらの結果、図6(a)に示した様にCu母体中にデンドライト状のCrが分布しており、さらにCu母体中に微量のTeが分布していることが分かるのである。   As a result, as shown in FIG. 6A, it can be seen that dendritic Cr is distributed in the Cu matrix, and a small amount of Te is distributed in the Cu matrix.

以上の説明においては、螺旋状のスリットにより横磁界を発生する構成を採っていたが、適用したい電圧系統ならびに想定される遮断容量により、縦磁界を発生させる縦磁界電極を用いるように構成することも可能である。この場合においても、アークを拡散させるような磁界発生により遮断性能を向上させることができる。   In the above description, a configuration in which a transverse magnetic field is generated by a spiral slit is adopted. However, a configuration in which a longitudinal magnetic field electrode that generates a longitudinal magnetic field is used depending on a voltage system to be applied and an assumed breaking capacity is used. Is also possible. Even in this case, the interruption performance can be improved by generating a magnetic field that diffuses the arc.

また、以上の説明においては、固定側接点部材16と可動側接点部材17として、横磁界電極としてのスパイラル電極を用いた場合について説明したが、同じ横磁界電極に分類されるコントレート電極や、カップ型縦磁界電極等の縦磁界電極を用いても同様に適用が可能である。   Moreover, in the above description, the case where the spiral electrode as the transverse magnetic field electrode is used as the fixed side contact member 16 and the movable side contact member 17 has been described, but the control electrode classified into the same transverse magnetic field electrode, The present invention can be similarly applied by using a vertical magnetic field electrode such as a cup-type vertical magnetic field electrode.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10 真空バルブ
11 真空絶縁容器
11A 開口部
11B 開口部
12 固定電極軸
13 固定側封着金具
13A 開口
14 可動電極軸
14M 中間部
15 可動側封着金具
15A 開口
16 固定側接点部材
17 可動側接点部材
18 アークシールド
19 ベローズ
SS スリット
DESCRIPTION OF SYMBOLS 10 Vacuum valve 11 Vacuum insulating container 11A Opening part 11B Opening part 12 Fixed electrode shaft 13 Fixed side sealing metal fitting 13A Opening 14 Movable electrode axis 14M Middle part 15 Movable side sealing metal fitting 15A Opening 16 Fixed side contact member 17 Movable side contact member 18 Arc shield 19 Bellows SS Slit

Claims (8)

Cu母体中にデンドライト状のCr及び所定比率のTeを添加物として含むCu−Cr−Te合金からなる、
真空バルブ用接点材料。
It consists of a Cu-Cr-Te alloy containing dendritic Cr and a predetermined ratio of Te as additives in a Cu matrix.
Contact material for vacuum valves.
前記所定比率を0.03〜0.5重量%とする、
請求項1記載の真空バルブ用接点材料。
The predetermined ratio is 0.03 to 0.5% by weight,
The contact material for a vacuum valve according to claim 1.
それぞれ粉末状のCu、Cr及びTeを所定比率となるように秤量する過程と、
前記秤量したCu、Cr及びTeをるつぼに入れて真空雰囲気下で溶解し溶湯とする過程と、
前記溶湯を急冷し、凝固させて所定形状を有する接点として形成する過程と、
を備えた製造方法。
A process of weighing powdered Cu, Cr and Te so as to have a predetermined ratio,
A process of putting the weighed Cu, Cr and Te into a crucible and melting in a vacuum atmosphere to form a molten metal;
A process of rapidly cooling and solidifying the molten metal to form a contact having a predetermined shape;
A manufacturing method comprising:
前記溶湯を急冷する過程及び前記凝固する過程を複数回繰り返して前記接点を形成する、
請求項3記載の製造方法。
Forming the contact by repeating the process of rapidly cooling the molten metal and the solidifying process a plurality of times;
The manufacturing method of Claim 3.
セラミックス製の筒状の真空絶縁容器と、
前記真空絶縁容器の一方端開口部に封着された固定側封着金具と、
前記固定側封着金具に貫通固定された固定電極軸と、
前記固定電極軸に固着された固定側接点と、
前記真空絶縁容器の他方開口部に封着された可動側封着金具と、
前記可動側封着金具を移動自在に貫通する可動電極軸と、
前記可動電極軸に固着されるとともに前記固定側接点と接離する可動側接点と、
前記可動電極軸の中間部に一方端が封着されるとともに、他方端が前記可動側封着金具に封着された伸縮自在のベローズと、
前記真空絶縁容器の中間溝部にて封着され、前記固定側接点と前記可動側接点を包囲するアークシールドとを備え、
前記固定側接点及び前記可動側接点は、Cu母体中にデンドライト状のCr及び所定比率のTeを添加物として含むCu−Cr−Te合金により形成されている、
真空バルブ。
A cylindrical vacuum insulating container made of ceramics;
A fixed-side sealing fitting sealed at one end opening of the vacuum insulating container;
A fixed electrode shaft penetrating and fixed to the fixed-side sealing metal fitting,
A stationary contact fixed to the stationary electrode shaft;
A movable side sealing fitting sealed to the other opening of the vacuum insulating container;
A movable electrode shaft that movably penetrates the movable side sealing fitting;
A movable contact fixed to the movable electrode shaft and contacting and leaving the fixed contact;
A telescopic bellows having one end sealed to the middle portion of the movable electrode shaft and the other end sealed to the movable-side sealing metal fitting,
An arc shield that is sealed at an intermediate groove of the vacuum insulating container and surrounds the fixed contact and the movable contact;
The fixed-side contact and the movable-side contact are formed of a Cu-Cr-Te alloy containing dendritic Cr and a predetermined ratio of Te as additives in a Cu matrix.
Vacuum valve.
前記固定側接点および前記可動側接点は円盤形状を有し、横磁界電極あるいは縦磁界電極として構成されている、
請求項5記載の真空バルブ。
The fixed side contact and the movable side contact have a disk shape, and are configured as a transverse magnetic field electrode or a longitudinal magnetic field electrode,
The vacuum valve according to claim 5.
前記固定側接点および前記可動側接点は、前記横磁界電極としてのスパイラル状のスパイラル電極あるいはコントレート電極として構成されている、
請求項6記載の真空バルブ。
The fixed-side contact and the movable-side contact are configured as a spiral-shaped spiral electrode or a control electrode as the transverse magnetic field electrode,
The vacuum valve according to claim 6.
前記固定側接点および前記可動側接点は、前記縦磁界電極としてのカップ型縦磁界電極として構成されている、
請求項6記載の真空バルブ。
The fixed contact and the movable contact are configured as a cup-type longitudinal magnetic field electrode as the longitudinal magnetic field electrode,
The vacuum valve according to claim 6.
JP2016189932A 2016-09-28 2016-09-28 Contact material for vacuum valve, manufacturing method, and vacuum valve Pending JP2018055928A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016189932A JP2018055928A (en) 2016-09-28 2016-09-28 Contact material for vacuum valve, manufacturing method, and vacuum valve
PCT/JP2017/014394 WO2018061269A1 (en) 2016-09-28 2017-04-06 Vacuum valve contact material, production method and vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189932A JP2018055928A (en) 2016-09-28 2016-09-28 Contact material for vacuum valve, manufacturing method, and vacuum valve

Publications (1)

Publication Number Publication Date
JP2018055928A true JP2018055928A (en) 2018-04-05

Family

ID=61759436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189932A Pending JP2018055928A (en) 2016-09-28 2016-09-28 Contact material for vacuum valve, manufacturing method, and vacuum valve

Country Status (2)

Country Link
JP (1) JP2018055928A (en)
WO (1) WO2018061269A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223222A (en) * 1982-06-18 1983-12-24 株式会社東芝 Method of producing contact material for vacuum breaker
JPH10324934A (en) * 1997-03-24 1998-12-08 Fuji Electric Co Ltd Production of electrode material for vacuum breaker
JP6178563B2 (en) * 2012-11-21 2017-08-09 株式会社東芝 Vacuum valve

Also Published As

Publication number Publication date
WO2018061269A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
US3246979A (en) Vacuum circuit interrupter contacts
JP2009170372A (en) Electrical contact for vacuum valve
JP2007018835A (en) Electric contact for vacuum circuit breaker and its manufacturing method
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP2012134014A (en) Contact material for vacuum valve
WO2015060022A1 (en) Electrical contact for vacuum valve and process for producing same
JP6050994B2 (en) Electrical contacts, electrical contact manufacturing methods, electrodes, vacuum valves, vacuum switchgear
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JP2018055928A (en) Contact material for vacuum valve, manufacturing method, and vacuum valve
US4147909A (en) Sintered composite material as contact material for medium-voltage vacuum power circuit breakers
JP2017106078A (en) Contact material for vacuum valves, method for producing the same, contact having the contact material and vacuum valve
KR950006738B1 (en) Contact point for a vacuum interrupter
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JP5614721B2 (en) Vacuum circuit breaker electrode
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP6398415B2 (en) Method for producing electrode material
JP4143308B2 (en) Contact material for vacuum valve, manufacturing method thereof, and vacuum valve
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP2006032036A (en) Contact material for vacuum valve
JP2017008381A (en) Method of producing electrode material
JP4619821B2 (en) Contact material and vacuum valve
JP6090388B2 (en) Electrode material and method for producing electrode material
JP6507830B2 (en) Method of manufacturing electrode material and electrode material
JP6018366B2 (en) Manufacturing method of vacuum valve
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201020