JP2018054280A - Air-conditioner - Google Patents

Air-conditioner Download PDF

Info

Publication number
JP2018054280A
JP2018054280A JP2016203920A JP2016203920A JP2018054280A JP 2018054280 A JP2018054280 A JP 2018054280A JP 2016203920 A JP2016203920 A JP 2016203920A JP 2016203920 A JP2016203920 A JP 2016203920A JP 2018054280 A JP2018054280 A JP 2018054280A
Authority
JP
Japan
Prior art keywords
water
cooling
heat exchanger
cooler
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016203920A
Other languages
Japanese (ja)
Inventor
寛 ▲高▼田
寛 ▲高▼田
Hiroshi Takada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016203920A priority Critical patent/JP2018054280A/en
Publication of JP2018054280A publication Critical patent/JP2018054280A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and energy saving air-conditioner that can achieve stable performance even when power supply and demand is tight when a temperature is high in summer.SOLUTION: Cooling capacity is improved for cooling a heat exchanger provided to an outdoor unit as a condenser using a plurality of cooling means, that is, cooling by ambient air and cooling by a cooler into which cooling water flows. Low-temperature cooling water using drain water of an indoor unit is utilized as cooling water for the cooler, and cooling of the heat exchanger of the outdoor unit is performed continuously and stably. Stable cooling performance is exhibited when a temperature is high in summer or a temperature is abnormally high.SELECTED DRAWING: Figure 1

Description

本発明は室外機に冷却器を設けたことを特徴とする空気調和機に関する。  The present invention relates to an air conditioner in which an outdoor unit is provided with a cooler.

従来の一体型やセパレート型空気調和機(以下空調機と称す)において、一般的に提供されている空調機は、冷房時に室内機で発生したドレン水を廃水として室外に放出されていた。  In conventional integrated type and separate type air conditioners (hereinafter referred to as air conditioners), generally provided air conditioners have been drained out of the drain water generated in the indoor units during cooling as waste water.

また、従来の空調機の凝縮器として用いられる室外機の熱交換器の冷却は、一般的にはファンにより外気を取込んで冷却していたが、更に省エネルギー化を図るものとして、例えば公知の顕熱抑制技術(技術文献、ヒートアイランド対策技術)におけるドレン水や水道水を利用して熱交換器のフィンを濡らすことで潜熱を利用して熱交換器を冷却することで省エネルギー化を図っていた。  In addition, the cooling of the heat exchanger of the outdoor unit used as a condenser of a conventional air conditioner is generally cooled by taking in the outside air with a fan. Energy saving was achieved by cooling the heat exchanger using latent heat by wetting the fins of the heat exchanger using drain water and tap water in sensible heat suppression technology (technical literature, heat island countermeasure technology). .

従来技術の参考文献
技術文献 ヒートアイランド対策技術 空冷室外機から発生する顕熱抑制技術 実証試験結果報告書(平成16年度)
Reference Documents on Prior Art Technical Literature Heat Island Countermeasure Technology Suppressing Sensible Heat Generated from Air-cooled Outdoor Units Report of Verification Test Results (2004)

発考案が解決しようとする課題Problems that the idea tries to solve

近年、温暖化現象による夏場の異常高温が頻繁に発生しており、冷房時の空調機の高性能化が切望されていた。更に、空調機は室内を冷房すると必然的に室外への熱の放出が生じ、外気の高温化に拍車をかけていた。  In recent years, abnormally high temperatures in the summer due to global warming have frequently occurred, and there has been a strong demand for high-performance air conditioners during cooling. Further, when the air conditioner cools the room, the heat is inevitably released to the outside, which has spurred the temperature rise of the outside air.

室外機に凝縮器として設ける熱交換器は、一般的には外気により冷却される。この場合、外気温が空調機の凝縮能力を大きく左右する。従って、夏季高温時は冷房時に大きなエネルギーを消費することになっていた。特に異常高温時には電力需要がひっ迫するほど社会問題化しており、異常高温下においても省エネルギーで安価で安定した性能を発揮する空調機が切望されていた。  A heat exchanger provided as a condenser in an outdoor unit is generally cooled by outside air. In this case, the outside air temperature greatly affects the condensing capacity of the air conditioner. Therefore, a large amount of energy is consumed during cooling at high summer temperatures. In particular, the demand for electric power has become more of a social problem at abnormally high temperatures, and there has been a strong demand for air conditioners that are energy-saving, inexpensive, and have stable performance even under abnormally high temperatures.

次に、マンション等のベランダは、洗濯物を干すことや家庭菜園等の多様な用途があり、室外機をできるだけコンパクトにすることが求められていた。また、従来の空調機の高性能化、省エネルギー化の取組みは、圧縮機、熱交換器、制御システム、冷媒等の主要素品の開発に多大な費用や時間を要していた。  Next, verandas such as apartments have various uses such as drying laundry and kitchen gardens, and it has been required to make the outdoor unit as compact as possible. Further, efforts to improve the performance and energy saving of conventional air conditioners have required enormous costs and time to develop main components such as a compressor, a heat exchanger, a control system, and a refrigerant.

(1)省エネルギー化を図るものとして、例えば公知の顕熱抑制技術等の潜熱を活用する場合、ドレン水や水道水を室外機の熱交換器のエレメントに流して該エレメントを構成するフィン(一般的に材料はアルミニウム板を使用)表面を濡らし、ファンで外気を送風することで熱交換器の冷却を図るが、該フィンにドレン水や水道水や外気中の不純物が該フィンの表面に付着し腐食を加速し、該熱交換器の耐久性及び性能を低下させた。同様に、該室外機本体や機器にも同様に耐久性等への影響が生じた。
(2)また、ファンがフィン表面の水滴を飛散し、該室外機の設置面で課題が生じた。例えばマンション等のベランダの設置には適していなかった。
(3)ドレン水を利用する場合、低温のドレン水は潜熱活用の効果は大きいが、冷房時の室内空気は除湿され、発生するドレン水は徐々に減少し、該熱交換器へのドレン水の供給ができなくなる。よってドレン水を貯水して使用することになり、常時ドレン水を供給できなかった。ドレン水の利用については、常時安定してドレン水を供給できることが切望されていた。
(1) In order to save energy, for example, when utilizing latent heat such as a known sensible heat suppression technique, fins (general) that flow drain water or tap water through the elements of the heat exchanger of the outdoor unit (general (Aluminum plate is used as the material) Wet the surface and blow the outside air with a fan to cool the heat exchanger, but drain fins, tap water, and impurities in the outside air adhere to the fin surface. Corrosion was accelerated and the durability and performance of the heat exchanger were reduced. Similarly, the outdoor unit main body and equipment also have an effect on durability and the like.
(2) In addition, the fan scattered water droplets on the fin surface, causing a problem in the installation surface of the outdoor unit. For example, it was not suitable for installing verandas in condominiums.
(3) When drain water is used, low-temperature drain water has a great effect of utilizing latent heat, but the indoor air during cooling is dehumidified, and the generated drain water gradually decreases, and the drain water to the heat exchanger Cannot be supplied. Therefore, the drain water is stored and used, and the drain water cannot always be supplied. Regarding the use of drain water, it has been eagerly desired that drain water can be supplied stably at all times.

次に、空調機の熱交換器やフィルターの汚れや目詰り等は空調機の性能を低下する。そこで、室内機に設ける熱交換器については、性能低下を防止するために、定期的に該熱交換器やフィルターの洗浄が必要であった。近年は室内機に設けるフィルターの自動清掃機能付きの空調機が提供されていたが、該熱交換器の洗浄については手動洗浄が必要であった。すなわち、該熱交換器の洗浄には高圧洗浄機等の特殊な器具や技術が必要で手軽に洗浄できるものではなかった。そこで一般的には外部に委託することになり、費用面からも適時的確に、手軽に洗浄することはできなかった。その結果、洗浄後から次の洗浄までの期間、徐々に空調機の性能が低下することになっており、一定以上の性能を維持するために該熱交換器の洗浄を適時的確に容易に行える空調機が望まれていた。  Next, dirt and clogging of the heat exchanger and filter of the air conditioner deteriorate the performance of the air conditioner. Therefore, with respect to the heat exchanger provided in the indoor unit, it is necessary to periodically clean the heat exchanger and the filter in order to prevent performance degradation. In recent years, an air conditioner with an automatic cleaning function for a filter provided in an indoor unit has been provided. However, manual cleaning is required for cleaning the heat exchanger. In other words, the cleaning of the heat exchanger requires special instruments and techniques such as a high-pressure washer and cannot be easily cleaned. Therefore, it was generally entrusted to the outside, and it was not possible to clean it easily and timely in terms of cost. As a result, the performance of the air conditioner gradually decreases during the period from washing to the next washing, and the heat exchanger can be easily and timely washed to maintain a certain level of performance. An air conditioner was desired.

課題を解決するための手段Means for solving the problem

本発明は冷房時に室外機に凝縮器として設ける熱交換器の冷却を、従来の外気による冷却と冷却器による冷却の複数の冷却手段を提供するものである。更に、冷房時に発生するドレン水の低温特性を活用し、該ドレン水を該冷却器の冷却水として活用し、室外機の熱交換器の冷却を継続安定化することで空調機の冷房能力を格段に向上させ、夏季高温時あるいは異常高温時にも安定した冷房能力を発揮させることができ、省エネルギー化とコンパクト化を実現したことを特徴とする空調機を供給するものである。  The present invention provides a plurality of cooling means for cooling a heat exchanger provided as a condenser in an outdoor unit during cooling, that is, conventional cooling by outside air and cooling by a cooler. Furthermore, by utilizing the low temperature characteristics of the drain water generated during cooling, the drain water is used as cooling water for the cooler, and the cooling of the heat exchanger of the outdoor unit is continuously stabilized to improve the cooling capacity of the air conditioner. The air conditioner is characterized in that it can be remarkably improved and can exhibit stable cooling ability even at high temperatures in summer or at abnormally high temperatures, and has achieved energy saving and compactness.

発明の効果Effect of the invention

本発明によれば、室外機の熱交換器の冷却にコンパクトな構造の冷却器を設け、ドレン水や水道水等やこれらの混合水(以下冷却水と称す)を活用することで容易に室外機の熱交換器の凝縮能力を向上し、空調機の高性能化、高省エネルギー化を、室外機のコンパクト化を阻害しない構造の冷却器を設けることにより、従来にない新しいタイプの空調機を提供することができた。  According to the present invention, a cooler having a compact structure is provided for cooling the heat exchanger of the outdoor unit, and drainage water, tap water, or a mixed water thereof (hereinafter referred to as cooling water) can be easily used outdoors. By installing a cooler with a structure that does not hinder downsizing of the outdoor unit, improving the condensation capacity of the heat exchanger of the machine, improving the performance and energy saving of the air conditioner, and creating an unprecedented new type of air conditioner Could be provided.

冷却器を制御する制御機器は、外気や冷却水温や流量等を検知し、冷却水の温度や流量を自動調節することで、より効率よく安定して熱交換器の冷却ができた。また、水道水とドレン水を併用した冷却水の場合、水道水は流速や流量をより速く多量に自送できるため冷却器の冷却能力を向上できるので、ドレン水だけの場合より熱交換器の凝縮能力を向上できた上に、常時安定した凝縮性能で冷房能力の安定性が図れた。  The control device that controls the cooler detects the outside air, cooling water temperature and flow rate, etc., and automatically adjusts the temperature and flow rate of the cooling water, so that the heat exchanger can be cooled more efficiently and stably. In addition, in the case of cooling water using both tap water and drain water, tap water can be sent in a large amount at a faster flow rate and flow rate, so the cooling capacity of the cooler can be improved. In addition to improving the condensation capacity, the cooling capacity was stable with stable condensation performance at all times.

夏季の冷房運転で発生するドレン水は概略10°C〜24°Cであり、発生する量は室内の湿度にもよるが、家庭用空調機六畳用の場合、1時間運転当たり1リットル程度発生する。該ドレン水を利用した冷却水を冷却器に活用することで、送風機で吸い込まれた外気を冷却器で効率よく容易に下げることができ、夏季高温時や異常高温時にも性能を維持することができた。  The drain water generated during the cooling operation in summer is approximately 10 ° C to 24 ° C, and the amount generated depends on the humidity in the room, but for a 6-tatami home air conditioner, about 1 liter per hour of operation. Occur. By using the cooling water using the drain water for the cooler, the outside air sucked in by the blower can be efficiently and easily lowered by the cooler, and the performance can be maintained even at high temperatures in summer or at abnormally high temperatures. did it.

更に、本発明によれば、セパレート型空調機の室外機の高性能化が図れ、室外機をコンパクトにすることで、マンション等のベランダの有効活用を図れた。  Furthermore, according to the present invention, the performance of the outdoor unit of the separate type air conditioner can be improved, and the outdoor unit can be made compact so that a veranda such as an apartment can be effectively used.

以下、本発明の実施例について、図1、図2、図3、図4、図5に基づいて説明する。尚、本実施例では、冷却水としてドレン水を使用する。
(イ)室外機(A)の本体(1)は前板(2)、右側板(3)、左側板(4)、天板(5)、底板(6)で形成する。
(ロ)本体(1)には室外機(A)を据え付ける脚(1a)を設け、室外機(A)をバランスよく設置できるようにする。
(ハ)本体(1)の正面に、右側板(3)、左側板(4)、天板(5)、底板(6)で開口部(X)を形成する。右側板(3)には通気孔(3a)を設ける。開口部(X)や通気孔(3a)は外気の吸排ができる構造であれば本実施例によらなくても差し支えない。前板(2)には、開口部(X)に相対する位置に通風口(2a)を設け、ファンガード(7)を装着する。ファンガード(7)は、空気の通りが容易なように網目状等に形成する。
(ニ)底板(6)に熱交換器(8)、圧縮機(9)、ファン(10)、制御機器部(11)等を定置する。熱交換器(8)や圧縮機(9)等の冷媒系統の機器は接続配管(図示せず)で接続し、図5に示す室内機(B)と接続することで冷媒回路を形成する(冷媒回路や制御装置については従来の多数の公知の技術によるので、詳細は省略している)。
(ホ)ファン(10)は、モーター(10a)に羽根(10b)を取着し、モーター台(10c)に装着する。本実施例ではファン(10)は開口部(X)から外気(i)を吸入し通風口(2a)から排出する。設置環境や機能面等で通風口(2a)から外気(i)を吸入し開口部(X)から排出しても差支えないが、冷却器(12)の設置は熱交換器(8)の風上に設置する。
(ヘ)熱交換器(8)は設計上から設定する所定数のフィン(8a)と所定数の伝熱管(8b)でエレメント(8e)を形成する。熱交換器(8)は一般的な公知の構造に形成する。エレメント(8e)の前後にはエンドプレート前(8c)とエンドプレート後(8d)を取着し、熱交換器(8)を底板(6)に取着する。尚、本実施例では熱交換器(8)は冷房時の凝縮器として機能する。
(ト)熱交換器(8)は開口部(X)に近設する。熱交換器(8)はL字状に形成する。開口部(X)はエレメント(8e)の長手部(8f)の面積と同程度にし、右側板(3)の通気孔(3a)は熱交換器(8)の短手部(8g)に吸気し冷却するものである。通気孔(3a)は開口部(X)と同様に開口していても差し支えない。ファン(10)により開口部(X)と通気孔(3a)から吸入した外気(i)は、熱交換器(8)のエレメント(8e)を通過して熱交換する。従って、開口部(X)と通気孔(3a)は本実施例によらなくても機能的に問題がなければ差支えない。
(チ)冷却器(12)は吸気側の熱交換器(8)に近設する。本実施例では、本体(1)の開口部(X)に装着する。すなわち、右側板(3)と左側板(4)のそれぞれの外面に、冷却器(12)に取着した取付具右(12d)、取付具左(12e)で装着する。勿論、右側板(3)と左側板(4)のそれぞれの内面に取着してもよい。
(リ)冷却器(12)は、冷却水の流路を通水管(12a)で形成する。通水管(12a)の上部にドレン水の入水口(12b)を設け、通水管(12a)の下部にドレン水の排水口(12c)を設ける。通水管(12a)は複数段からなり、それぞれの段はテーパをつけたヘヤピン状になっており、ドレン水は重力により自然に流れ、通水管(12a)の排水口(12c)から排水される。本実施例の冷却器(12)は、通水管(12a)に冷却水としてドレン水を通水することで冷却器として機能する。
(ヌ)図5に示すように、冷却器(12)の通水管(12a)の入水口(12b)は、室内機(B)で発生したドレン水を排出するドレン水排管(13)の排水部(13a)と接続する。本実施例では、接続具(14)を利用して接続する。通水管(12a)の室外部分やドレン水排管(13)の室外部分には、高温外気の影響を受けないように断熱材(15)を取着する。以上のように形成することで、室内機(B)で発生したドレン水は、冷却器(12)に流入し重力により通水管(12a)を流れることで、冷却器(12)を通過した外気が冷却され熱交換器(8)を冷却することができる。ドレン水は、冷却器(12)の通水管(12a)の排水口(12c)から室外に排水する。入水口(12b)と排水部(13a)との接続は、脱着可能な接続具を使用すれば、空調機の据え付けやドレン水排管(13)や冷却器(12)のメンテナンスを容易にできる。ドレン水の流量や温度等の所要能力を変更するには、流量調整器等の機器を利用すれば精度の高い運用ができる。また、冷却器(12)の管径や管長を変更することでも対応できる。
(ル)ファン(10)により開口部(X)と通気孔(3a)から吸入した外気(i)は、冷却器(12)を通過することで温度が下がった状態で熱交換器(8)を冷却して前板(2)に設けた通風口(2a)から外部に排出する。以上により、冷房時に熱交換器(8)は容易に、しかも効率よく安定して冷却することができる。
(オ)以上のように本発明によれば、ドレン水を通水した冷却器(12)により吸入外気を冷却し、熱交換器(8)を通過させて熱交換をすることで、熱交換器(8)は単なる外気で冷却する場合より凝縮能力を大きく向上できる。
(ワ)本発明によれば、ドレン水を直接熱交換器(8)に流すことがなく、熱交換器(8)を形成するフィンの腐食は発生しない。従って、フィンの劣化による熱交換器や室外機の凝縮能力や耐久性の低下が生じることがない。
Embodiments of the present invention will be described below with reference to FIGS. 1, 2, 3, 4, and 5. In this embodiment, drain water is used as the cooling water.
(A) The main body (1) of the outdoor unit (A) is formed of a front plate (2), a right side plate (3), a left side plate (4), a top plate (5), and a bottom plate (6).
(B) The main body (1) is provided with legs (1a) for mounting the outdoor unit (A) so that the outdoor unit (A) can be installed in a well-balanced manner.
(C) An opening (X) is formed on the front surface of the main body (1) by the right side plate (3), the left side plate (4), the top plate (5), and the bottom plate (6). A vent hole (3a) is provided in the right side plate (3). The opening (X) and the vent hole (3a) may be omitted according to the present embodiment as long as the structure can absorb and discharge outside air. The front plate (2) is provided with a vent (2a) at a position facing the opening (X), and a fan guard (7) is attached. The fan guard (7) is formed in a mesh or the like so that air can be easily passed.
(D) A heat exchanger (8), a compressor (9), a fan (10), a control device unit (11) and the like are placed on the bottom plate (6). The refrigerant system devices such as the heat exchanger (8) and the compressor (9) are connected by a connecting pipe (not shown), and are connected to the indoor unit (B) shown in FIG. 5 to form a refrigerant circuit ( Since the refrigerant circuit and the control device are based on many conventional techniques, details are omitted).
(E) The fan (10) attaches the blade (10b) to the motor (10a) and attaches it to the motor base (10c). In this embodiment, the fan (10) sucks outside air (i) from the opening (X) and discharges it from the vent (2a). Although the outside environment (i) may be sucked from the ventilation port (2a) and discharged from the opening (X) in terms of installation environment and functions, the cooler (12) is installed in the air flow of the heat exchanger (8). Install on top.
(F) The heat exchanger (8) forms an element (8e) with a predetermined number of fins (8a) and a predetermined number of heat transfer tubes (8b) set from the design. The heat exchanger (8) is formed in a general known structure. Before and after the element (8e), the front end plate (8c) and the rear end plate (8d) are attached, and the heat exchanger (8) is attached to the bottom plate (6). In this embodiment, the heat exchanger (8) functions as a condenser during cooling.
(G) The heat exchanger (8) is placed close to the opening (X). The heat exchanger (8) is formed in an L shape. The opening (X) has the same area as the longitudinal part (8f) of the element (8e), and the vent hole (3a) of the right side plate (3) is sucked into the short part (8g) of the heat exchanger (8). And cool it. The ventilation hole (3a) may be opened similarly to the opening (X). The outside air (i) sucked from the opening (X) and the vent hole (3a) by the fan (10) passes through the element (8e) of the heat exchanger (8) and exchanges heat. Therefore, the opening (X) and the vent hole (3a) can be used as long as there is no functional problem even if they are not according to this embodiment.
(H) The cooler (12) is placed close to the heat exchanger (8) on the intake side. In this embodiment, it is attached to the opening (X) of the main body (1). That is, it attaches to the outer surface of each of the right side plate (3) and the left side plate (4) with the fixture right (12d) and the fixture left (12e) attached to the cooler (12). Of course, you may attach to each inner surface of a right side board (3) and a left side board (4).
(Li) The cooler (12) is formed with a water flow path (12a) through the flow path of the cooling water. A drain water inlet (12b) is provided at the upper part of the water pipe (12a), and a drain water outlet (12c) is provided at the lower part of the water pipe (12a). The water pipe (12a) has a plurality of stages, and each stage has a tapered hair pin shape. The drain water flows naturally by gravity and is drained from the drain (12c) of the water pipe (12a). . The cooler (12) of this embodiment functions as a cooler by passing drain water as cooling water through the water pipe (12a).
(Nu) As shown in FIG. 5, the water inlet (12b) of the water pipe (12a) of the cooler (12) is connected to the drain water discharge pipe (13) for discharging the drain water generated in the indoor unit (B). It connects with a drainage part (13a). In this embodiment, the connection is made using the connection tool (14). A heat insulating material (15) is attached to the outdoor portion of the water pipe (12a) and the outdoor portion of the drain water discharge pipe (13) so as not to be affected by high temperature outside air. By forming as described above, the drain water generated in the indoor unit (B) flows into the cooler (12) and flows through the water pipe (12a) by gravity, so that the outside air that has passed through the cooler (12). Is cooled and the heat exchanger (8) can be cooled. The drain water is drained from the drain port (12c) of the water pipe (12a) of the cooler (12) to the outside of the room. The connection between the water inlet (12b) and the drainage part (13a) can facilitate the installation of the air conditioner and the maintenance of the drain water discharge pipe (13) and the cooler (12) by using a detachable connector. . In order to change the required capacity such as the flow rate and temperature of the drain water, it is possible to operate with high accuracy by using a device such as a flow rate regulator. Moreover, it can respond also by changing the pipe diameter and pipe length of a cooler (12).
(L) The outside air (i) sucked from the opening (X) and the vent hole (3a) by the fan (10) passes through the cooler (12) and the temperature is lowered, so that the heat exchanger (8) Is cooled and discharged to the outside through the vent (2a) provided in the front plate (2). As described above, the heat exchanger (8) can be easily and efficiently cooled stably during cooling.
(E) As described above, according to the present invention, the intake outside air is cooled by the cooler (12) through which drain water has passed, and the heat exchange is performed by passing through the heat exchanger (8). The vessel (8) can greatly improve the condensing capacity as compared with the case of cooling with simple outside air.
(W) According to the present invention, drain water does not flow directly to the heat exchanger (8), and corrosion of the fins forming the heat exchanger (8) does not occur. Therefore, the condensation capacity and durability of the heat exchanger and the outdoor unit are not reduced due to the deterioration of the fins.

[0015]の実施例において、熱交換器(8)の吸気側にエヤフィルターを装着する場合やエヤフィルターを熱交換器(8)の吸気側に近設する場合、エヤフィルターに冷却器(12)を取付けても[0015]に示す場合と同じ効果がある。また、エヤフィルターと冷却器を一体構造にすれば高機能化とコンパクト化が図れる。  In the embodiment of [0015], when an air filter is attached to the intake side of the heat exchanger (8), or when the air filter is placed close to the intake side of the heat exchanger (8), a cooler (12 ) Has the same effect as shown in [0015]. Moreover, if the air filter and the cooler are integrated, high functionality and compactness can be achieved.

図6の他の実施例1に示すように、ファン(210)が通風口(22a)から外気(ia)を吸気し、開口部(Xa)及び網目状に形成したファンガード(27)の通風孔(23a)から排気する室外機(Aa)の場合、室外機(Aa)に設ける冷却器(212)を熱交換器(28)の内面側に取着する。すなわち、冷却器(212)に設けた取付具右(212d)、取付具左(212e)で底板(26)に取着する。以上のように形成することで、ファン(210)により通風口(22a)から吸入した外気(ia)は、冷却器(212)の通水管(212a)を通過し冷却され、その後に熱交換器(28)を冷却し開口部(Xa)、通気孔(23a)から排出する。尚、図中(27)はファンガードを示す。以上から明らかなように、他の実施例1は[0015]に示す実施例と同様の効果がある。  As shown in another example 1 in FIG. 6, the fan (210) sucks outside air (ia) from the vent (22a), and ventilates the opening (Xa) and the fan guard (27) formed in a mesh shape. In the case of the outdoor unit (Aa) exhausted from the hole (23a), the cooler (212) provided in the outdoor unit (Aa) is attached to the inner surface side of the heat exchanger (28). That is, it attaches to a baseplate (26) with the fixture right (212d) and fixture left (212e) which were provided in the cooler (212). By forming as described above, the outside air (ia) sucked from the vent (22a) by the fan (210) passes through the water pipe (212a) of the cooler (212) and is cooled, and then the heat exchanger (28) is cooled and discharged from the opening (Xa) and the vent hole (23a). In the figure, (27) indicates a fan guard. As is clear from the above, the other embodiment 1 has the same effect as the embodiment shown in [0015].

図7の他の実施例2に示すように、室外機(Ab)(図示せず)に設ける熱交換器(38)に冷却器(312)を取着する。冷却器(312)の通水管(312a)を複数分岐にすることで冷却水は各段の通水管に分流し、熱交換器(38)の全面を均等に冷却する。すなわち、通水管(312a)の入水口(312b)に分岐管(312f)を設けることで通水管(312aa)、(312ab)、(312ac)、(312ad)に均等に冷却水を通水できる。分岐方法は公知の方法であれば特に問題がない。また、熱交換器(38)の大きさや冷却水の量や流速等により、通水管(312a)の各段をいくつか統合して分岐してもよい。冷却水は通水管(312aa)、(312ab)、(312ac)、(312ad)を流れ、集水管(312g)に集水し排水口(312c)から排水される。  As shown in another embodiment 2 in FIG. 7, a cooler (312) is attached to a heat exchanger (38) provided in an outdoor unit (Ab) (not shown). By making the water pipe (312a) of the cooler (312) into a plurality of branches, the cooling water is diverted to the water pipes of each stage, and the entire surface of the heat exchanger (38) is evenly cooled. That is, by providing the branch pipe (312f) at the water inlet (312b) of the water pipe (312a), the cooling water can be evenly passed through the water pipes (312aa), (312ab), (312ac), and (312ad). If the branching method is a known method, there is no problem. Further, depending on the size of the heat exchanger (38), the amount of cooling water, the flow rate, etc., several stages of the water pipe (312a) may be integrated and branched. The cooling water flows through the water pipes (312aa), (312ab), (312ac), and (312ad), collects water in the water collecting pipe (312g), and is discharged from the drain port (312c).

冷却器をファンガードとして使用すれば安価にできる。本発明の他の実施例3について、図8に基づき説明する。
(イ)室外機(Ac)の本体(41)の前板(42)に通風口(42a)を設ける。
(ロ)冷却器(412)の通水管(412a)は、冷却水として使用するドレン水が通水管(412a)を流れるように円弧状に形成する。
(ハ)冷却器(412)は、冷却器(412)に取着した取付け金具(412g)で通風口(42a)に装着する。
(二)ドレン水は冷却器(412)の上部の入水口(412b)から流入し、通水管(412a)を流れ、下部の排水口(412c)から室外に排出する。
(ホ)ファン(410)は通風口(42a)から外気を吸入し、熱交換器(48)を冷却して通風口(42a)の対面で室外機(Ac)の正面に設けた開口部から排気する。
(ヘ)以上により、冷却器(412)はファンガード兼冷却器として機能する。
If a cooler is used as a fan guard, the cost can be reduced. Another embodiment 3 of the present invention will be described with reference to FIG.
(A) A ventilation opening (42a) is provided in the front plate (42) of the main body (41) of the outdoor unit (Ac).
(B) The water pipe (412a) of the cooler (412) is formed in an arc shape so that drain water used as cooling water flows through the water pipe (412a).
(C) The cooler (412) is attached to the ventilation port (42a) with a mounting bracket (412g) attached to the cooler (412).
(2) Drain water flows from the upper water inlet (412b) of the cooler (412), flows through the water pipe (412a), and is discharged to the outside through the lower water outlet (412c).
(E) The fan (410) sucks outside air from the ventilation port (42a), cools the heat exchanger (48), and opens from the opening provided in front of the outdoor unit (Ac) on the opposite side of the ventilation port (42a). Exhaust.
(F) As described above, the cooler (412) functions as a fan guard and cooler.

本発明の空調機の他の実施例4について、図9、図10、図11、図12に基づいて説明する。本実施例では、冷却水としてドレン水を使用する。
(イ)室外機(Ad)の本体(51)は前板(52)、右側板(53)、左側板(54)、天板(55)、底板(56)で形成する。
(ロ)本体(51)には室外機(Ad)を据え付ける脚(51a)を設け、室外機(Ad)をバランスよく設置できるようにする。
(ハ)本体(51)の正面に、右側板(53)、左側板(54、)天板(55)、底板(56)で開口部(Xb)を形成する。右側板(53)には通気孔(53a)(図示せず)を設ける。開口部(Xb)や通気孔(53a)(図示せず)は外気の吸排ができる構造であれば本実施例によらなくても差し支えない。前板(52)には、開口部(Xb)に相対する位置に通風口(52a)を設け、ファンガード(57)を装着する。ファンガード(57)は、空気の通りが容易なように網目状等に形成する。
(ニ)底板(56)に熱交換器(58)、圧縮機(59)、ファン(510)、制御機器部(511)等を定置する。熱交換器(58)や圧縮機(59)等の冷媒系統の機器は接続配管(図示せず)で接続し、図5に示す室内機(B)と接続することで冷媒回路を形成する(冷媒回路や制御装置については従来の多数の公知の技術によるので、詳細は省略している)。
(ホ)本実施例ではファン(510)は、開口部(Xb)から外気(ib)を吸入し通風口(52a)から排出する。設置環境や機能面等で通風口(52a)から外気を吸入し開口部(Xb)から排出しても差支えない。
(ヘ)熱交換器(58)は、設計上から設定する所定数のフィン(58a)と所定数の伝熱管(58b)でエレメント(58e)を形成する。熱交換器(58)は一般的な公知の構造にする。エレメント(58e)の前後にはエンドプレート前(58c)とエンドプレート後(58d)を取着し、熱交換器(58)を底板(56)に取着する。尚、本実施例では熱交換器(58)は冷房時の凝縮器として機能する。
(ト)熱交換器(58)は開口部(Xb)に近設する。本実施例の熱交換器(58)はL字状に形成し、右側板(53)には通気孔(53a)(図示せず)を設けている。開口部(Xb)はエレメント(58e)の長手部(58f)の面積と同等にし、右側板(53)の通気孔(53a)(図示せず)は熱交換器(58)のL字上の短手部に吸気するためのものである。通気孔(53a)(図示せず)は開口部(Xb)と同様に開口していても差し支えない。ファン(510)により開口部(Xb)と通気孔(53a)から吸入した外気(ib)は、熱交換器(58)のエレメント(58e)を通過して熱交換する。従って、開口部(Xb)と通気孔(53a)は外気(ib)をエレメント(58e)に容易に供給できる構造であればよい。
(チ)熱交換器(58)の開口部(Xb)側のエレメント(58e)に冷却器(512)を装着する。すなわち、ヘヤピン状の複数段からなる冷却器(512)の通水管(512a)を熱交換器(58)のエレメント(58e)に挿着する。
(リ)通水管(512a)の挿着は図11、図12に示すように、本実施例では熱交換器(58)のエレメント(58e)を構成する全てのフィン(58a)に通水管(512a)が挿着できるようにU型の溝(58h)を設ける。U型の溝(58h)の幅は、冷却器(512)の通水管(512a)が嵌装できる幅にする。溝(58h)の底部は通水管(512a)と密着性が高い形状にする。すなわち、通水管(512a)の外径と同程度にする。全てのフイン(58a)に設ける溝(58h)は、エレメント(58e)に通水管(512a)が挿着できるように各フィン(58a)の溝の位置と幅と深さを均一に形成する。
(ヌ)通水管(512a)の挿着は、フィン(58a)のU型の溝(58h)の開口から通水管(512a)を挿入し、U型の溝(58h)の底面に通水管(512a)が密着するまで挿入する。通水管(512a)を挿着した時に、フィン(58a)のU型の端面と通水管(512a)が密着するように形成することでエレメント(58e)と通水管(512a)の伝熱効率を高める。溝(58h)の深さは溝(58h)の形状から明らかなように、通水管(512a)の外径の1/2以上にする。溝(58h)はエレメント(58e)に通水管(512a)を挿着できるように各フィン(58a)の溝(58h)を形成する。
(ル)エンドプレート前(58c)とエンドプレート後(58d)にも同様に溝を設ける。すなわち、エレメント(58e)各段のU型の溝(58h)の位置に合致するようにエンドプレート前(58c)とエンドプレート後(58d)にも溝を設ける。当該溝は通水管(512a)が容易に挿入できる溝幅にする。当該溝の深さは通水管(512a)が溝(58h)の底面に密着するのを妨げない深さにする。
(オ)冷却水は通水管(512a)の入水口(512b)から流入し、通水管(512a)内を流れ、排水口(512c)から排水される。冷却水の流量や温度等の所要能力を変更するには、流量調整器等の機器を利用すれば精度の高い運用ができる。また、冷却器(12)の管径や管長を変更することでも対応できる。
(ワ)ファン(510)により開口部(Xb)及び通風口(52a)から吸入した外気(ib)は、熱交換器(58)のエレメント(58e)と通水管(512a)との伝熱を高め、熱交換器(58)の凝縮能力を格段に高める。外気(ib)は、熱交換器(58)を通過して前板(52)に設けた吸気口(52a)から外部に排出する。
(カ)以上のように、本発明によれば熱交換器(58)に冷却器(512)の通水管(512a)を挿着し嵌装することで、熱交換器(58)の凝縮能力は格段に向上できるわけである。
Another embodiment 4 of the air conditioner according to the present invention will be described with reference to FIGS. 9, 10, 11, and 12. In this embodiment, drain water is used as the cooling water.
(A) The main body (51) of the outdoor unit (Ad) is formed of a front plate (52), a right side plate (53), a left side plate (54), a top plate (55), and a bottom plate (56).
(B) The main body (51) is provided with legs (51a) for mounting the outdoor unit (Ad) so that the outdoor unit (Ad) can be installed in a well-balanced manner.
(C) The opening (Xb) is formed on the front surface of the main body (51) by the right side plate (53), the left side plate (54,), the top plate (55), and the bottom plate (56). The right side plate (53) is provided with a vent hole (53a) (not shown). The opening (Xb) and the vent hole (53a) (not shown) may be omitted according to the present embodiment as long as the outside air can be sucked and discharged. The front plate (52) is provided with a vent (52a) at a position facing the opening (Xb), and a fan guard (57) is attached. The fan guard (57) is formed in a mesh or the like so that air can be easily passed.
(D) A heat exchanger (58), a compressor (59), a fan (510), a control device unit (511) and the like are placed on the bottom plate (56). The refrigerant system devices such as the heat exchanger (58) and the compressor (59) are connected by a connection pipe (not shown), and are connected to the indoor unit (B) shown in FIG. 5 to form a refrigerant circuit ( Since the refrigerant circuit and the control device are based on many conventional techniques, details are omitted).
(E) In this embodiment, the fan (510) sucks outside air (ib) from the opening (Xb) and discharges it from the vent (52a). There is no problem even if outside air is sucked from the vent (52a) and discharged from the opening (Xb) in terms of installation environment and functional aspects.
(F) The heat exchanger (58) forms an element (58e) with a predetermined number of fins (58a) and a predetermined number of heat transfer tubes (58b) set from the design. The heat exchanger (58) has a generally known structure. Before and after the element (58e), the front end plate (58c) and the rear end plate (58d) are attached, and the heat exchanger (58) is attached to the bottom plate (56). In this embodiment, the heat exchanger (58) functions as a condenser during cooling.
(G) The heat exchanger (58) is placed close to the opening (Xb). The heat exchanger (58) of the present embodiment is formed in an L shape, and the right side plate (53) is provided with a vent hole (53a) (not shown). The opening (Xb) is made equal to the area of the longitudinal part (58f) of the element (58e), and the vent hole (53a) (not shown) of the right side plate (53) is on the L-shape of the heat exchanger (58). This is for inhaling the short part. The vent hole (53a) (not shown) may be opened in the same manner as the opening (Xb). The outside air (ib) sucked from the opening (Xb) and the vent hole (53a) by the fan (510) passes through the element (58e) of the heat exchanger (58) and exchanges heat. Therefore, the opening (Xb) and the vent hole (53a) may be any structure that can easily supply outside air (ib) to the element (58e).
(H) A cooler (512) is mounted on the element (58e) on the opening (Xb) side of the heat exchanger (58). That is, the water pipe (512a) of the cooler (512) composed of a plurality of hairpin-shaped stages is inserted into the element (58e) of the heat exchanger (58).
(I) As shown in FIGS. 11 and 12, the water pipe (512a) is inserted into all fins (58a) constituting the element (58e) of the heat exchanger (58) in this embodiment. A U-shaped groove (58h) is provided so that 512a) can be inserted. The width of the U-shaped groove (58h) is set such that the water pipe (512a) of the cooler (512) can be fitted. The bottom of the groove (58h) has a shape with high adhesion to the water pipe (512a). That is, the outer diameter of the water pipe (512a) is set to the same level. The grooves (58h) provided in all the fins (58a) form the positions, widths and depths of the fins (58a) uniformly so that the water pipes (512a) can be inserted into the elements (58e).
(N) The water pipe (512a) is inserted by inserting the water pipe (512a) through the opening of the U-shaped groove (58h) of the fin (58a) and inserting the water pipe (512a) into the bottom surface of the U-shaped groove (58h). Insert until 512a) comes into close contact. When the water pipe (512a) is inserted, the heat transfer efficiency of the element (58e) and the water pipe (512a) is improved by forming the U-shaped end face of the fin (58a) and the water pipe (512a) in close contact with each other. . As is apparent from the shape of the groove (58h), the depth of the groove (58h) is set to 1/2 or more of the outer diameter of the water pipe (512a). The groove (58h) forms a groove (58h) for each fin (58a) so that the water pipe (512a) can be inserted into the element (58e).
(L) Grooves are also provided in the same manner before the end plate (58c) and after the end plate (58d). That is, grooves are also provided in front of the end plate (58c) and after the end plate (58d) so as to match the position of the U-shaped groove (58h) of each stage of the element (58e). The groove has a groove width that allows the water pipe (512a) to be easily inserted. The depth of the groove is set so as not to prevent the water pipe (512a) from coming into close contact with the bottom surface of the groove (58h).
(E) The cooling water flows from the water inlet (512b) of the water pipe (512a), flows through the water pipe (512a), and is discharged from the water outlet (512c). In order to change the required capacity such as the flow rate and temperature of the cooling water, a highly accurate operation can be performed by using a device such as a flow rate regulator. Moreover, it can respond also by changing the pipe diameter and pipe length of a cooler (12).
(W) The outside air (ib) sucked from the opening (Xb) and the ventilation port (52a) by the fan (510) conducts heat transfer between the element (58e) of the heat exchanger (58) and the water pipe (512a). To increase the condensation capacity of the heat exchanger (58). The outside air (ib) passes through the heat exchanger (58) and is discharged to the outside from the intake port (52a) provided in the front plate (52).
(F) As described above, according to the present invention, the condensation capacity of the heat exchanger (58) is obtained by inserting and fitting the water pipe (512a) of the cooler (512) into the heat exchanger (58). Can be greatly improved.

実施例では冷房時の例を示したが、冬季の暖房時には室外機の熱交換器の凍結による暖房能力低下を懸念されるが、本発明の空調機によれば、[0025]の他の実施例6に示すように水道水を通水することで、暖房運転中の室外機に設ける熱交換器のエレメントの凍結防止や氷結による機能低下を防止できる。  Although the example at the time of cooling was shown in the embodiment, there is a concern about a decrease in the heating capacity due to freezing of the heat exchanger of the outdoor unit during heating in winter, but according to the air conditioner of the present invention, other implementations of [0025] By passing the tap water as shown in Example 6, it is possible to prevent freezing of the elements of the heat exchanger provided in the outdoor unit during the heating operation and deterioration of the function due to freezing.

[0020]において、冷却器(512)の通水管(512a)を熱交換器(58)に単に取付けても良い。この場合、通水管(512a)をエレメント(58e)に密着して取着すればより伝熱効果がある。  In [0020], the water conduit (512a) of the cooler (512) may simply be attached to the heat exchanger (58). In this case, if the water pipe (512a) is attached in close contact with the element (58e), there is more heat transfer effect.

[0020]において図13の他の実施例5に示すように、熱交換器(68)(図示せず)のフィン(68a)の溝(68h)に立上げ部(68i)を設ければ、フィン(68a)と冷却器(612)の通水管(612a)との伝熱面積が広がり更に熱伝導性が向上する。  In [0020], as shown in another embodiment 5 of FIG. 13, if a rising portion (68i) is provided in the groove (68h) of the fin (68a) of the heat exchanger (68) (not shown), The heat transfer area between the fin (68a) and the water pipe (612a) of the cooler (612) is widened, and the thermal conductivity is further improved.

本発明の空調機によれば、冷却器を複数設ければ更なる効果を発揮できる。例えば、[0015]に示す実施例と[0019]に示す他の実施例3を併用することや、更にその他の実施例を複数組み合わせて使用すれば冷却能力を一段と向上させることができる。  According to the air conditioner of the present invention, further effects can be exhibited if a plurality of coolers are provided. For example, if the embodiment shown in [0015] and the other embodiment 3 shown in [0019] are used in combination, or a plurality of other embodiments are used in combination, the cooling capacity can be further improved.

本発明の他の実施例6について、図14に基づいて説明する。
(イ)室外機(Ae)の熱交換器に設ける冷却器(712)の通水管(712a)の入水口(712b)と室内機(B)のドレン水排管(713)の排水部(713a)と水道水管(716)を流量調整器(717)に接続し、室外機(Ae)の本体(71)の外面に取付けた冷却器(712)の通水管(712a)に冷却水として水道水とドレン水を取り入れる。
(ロ)流量調整器(717)は制御回路(図示せず)により冷却水の流量や水温を制御する。すなわち、外気温やドレン水量、あるいはドレン水温や水道水温等のデータを解析し適時設定した冷却水を供給する。勿論、室内温度等も制御の要因とすれば、更に省エネルギー化や高性能化を図れる。
(ハ)冷却水の制御は流量調整器(717)によらなくても、水道水とドレン水を切り変える電磁弁、あるいは別途に流量調整装置を設け、接続は単なる接続具を使用しても差し支えはない。
(二)冷却水に水道水を使用した場合、ドレン水のみの時よりも供給水温は高くなるが、流量を増加させることで熱交換器(78)の冷却効果を維持、あるいは増加できる。
Another embodiment 6 of the present invention will be described with reference to FIG.
(A) Water inlet (712b) of the water pipe (712a) of the cooler (712) provided in the heat exchanger of the outdoor unit (Ae) and the drainage part (713a) of the drain water discharge pipe (713) of the indoor unit (B) ) And a tap water pipe (716) are connected to the flow rate regulator (717), and tap water is supplied as cooling water to the water pipe (712a) of the cooler (712) attached to the outer surface of the main body (71) of the outdoor unit (Ae). And drain water.
(B) The flow rate regulator (717) controls the flow rate and temperature of the cooling water by a control circuit (not shown). That is, cooling water set in a timely manner is analyzed by analyzing data such as the outside air temperature, the amount of drain water, or the temperature of the drain water or the tap water temperature. Of course, if the room temperature or the like is also a control factor, further energy saving and higher performance can be achieved.
(C) Even if the cooling water is not controlled by the flow rate regulator (717), a solenoid valve that switches between tap water and drain water or a separate flow rate adjustment device is provided, and the connection can be made using a simple connector. There is no problem.
(2) When tap water is used as the cooling water, the supply water temperature is higher than when only the drain water is used, but the cooling effect of the heat exchanger (78) can be maintained or increased by increasing the flow rate.

[0025]の他の実施例6において、冷却水にドレン水と水道水を使用できることで新たな性能安定が図れる。すなわち、[0024]で開示した複数の冷却器を室外機に設け、ドレン水と水道水を各々の該冷却器で通水選択をすることで、該室外機の熱交換器の冷却が格段に向上できる。また、室内空気の湿度が低下し低温のドレン水が不足した場合、水道水の流量や流速を増加し、該冷却器全体としての冷却性能の低下を防止できる。  [0025] In another embodiment 6, drain water and tap water can be used as cooling water, and new performance stability can be achieved. That is, by providing a plurality of coolers disclosed in [0024] in the outdoor unit and selecting drainage water and tap water through each of the coolers, the cooling of the heat exchanger of the outdoor unit is remarkably reduced. It can be improved. Moreover, when the humidity of indoor air falls and low temperature drain water is insufficient, the flow volume and flow velocity of tap water can be increased, and the fall of the cooling performance as the whole cooler can be prevented.

[0015]示す実施例や[0019]に示す他の実施例3において、[0025]に示す他の実施例6に基づき、冷却水に水道水を使用すれば送水圧により冷却水が強制的に流れる。従って、重力により冷却水を流すことを考慮する必要がない。すなわち、冷却器の構造を自在に形成することができ、更に高所にも冷却水を送水することができ、室内機にも冷却水を供給することができる。勿論、ポンプ等を設ければ強制的に冷却水を送水できる。  [0015] In the embodiment shown in [0015] and the other embodiment 3 shown in [0019], if tap water is used as the cooling water based on the other embodiment 6 shown in [0025], the cooling water is forced by the water supply pressure. Flowing. Therefore, it is not necessary to consider flowing cooling water by gravity. That is, the structure of the cooler can be freely formed, the cooling water can be sent to a high place, and the cooling water can be supplied to the indoor unit. Of course, if a pump etc. are provided, cooling water can be forcedly sent.

本発明の他の実施例7について、図15図、16に基づき説明する。尚、本実施例は他の実施例6に機能を追加したものであるので、他の実施例6(図14)を準用する。また、他の実施例7の室内機内部の詳細は図16に示し、図15の全体図では省略する。尚、室内機(B)は家屋の壁(C)に設置している。
(イ)図15において、ドレンパン(723)のドレン水を室外機(Ae)の熱交換器(78)の外面に設けた冷却する冷却器(712)に送水するドレン水排管(713)の一部に切換え弁(751)を設ける。
(ロ)ドレン水排管1(713−1)の一端をドレンパン(723)に接続し、他端を切換え弁(751)のドレン口1(751a)に接続する。ドレン水排管2(713−2)の一端を切換え弁(751)のドレン口2(751b)に接続し、他端を流量調整器(717)に接続する。
(ハ)切換え弁(751)の給水口(751c)に給水管(752)の一端を接続し、他端を室内機(B)の給水接続部(753)に接続する。
(二)給水接続部(753)は、設置面から室内機(B)の室内熱交換器(729)の後部の背板(754)に設ける。
(ホ)水道管(716)を流量調整器(717)に取り付ける。流量調整器(717)は制御手段に合せて適合する弁類を設けても良い。
(ヘ)図16に示すように、室内機(B)の室内熱交換器(729)の背面部にモーターを動力とする室内ファン(756)を装着する。室内ファン(756)は室内空気(ic)を吸入し、熱交換後の冷気(id)を室内に送風する。
(ト)図16において、給水接続部(753)に加湿器(755)を設ける。加湿器(755)は、水蒸気を発生させる発生器(755a)と噴出ノズル(755b)で形成する。勿論、公知の加湿装置を設置しても差支えがなく、給水接続部(753)と加湿器(755)は一体にしてもよい。吸入した室内空気(ic)は室内熱交換器(729)で冷却され、加湿器(755)で発生させた水蒸気を巻き込み、室内ファン(756)により、加湿された冷気(id)を室内に送風する。加湿は空調機に設けた制御機器(図示せず)により、データを収集・分析し冷却器の能力が常に最良になるように制御する。
(チ)切換え弁(751)は本実施例では、配管本数を削減するためにドレン水と水道水を切り変える構造にしている。機能上必要ならば他の流路が同時に使用できる複数路の弁等を設ければ制御面において利点がある。切換え弁(751)に補助口(751d)を設け、水道管(716)や洗浄液を供給する機器を取付ければ、ドレンパン(723)や給水口(751)に他の配管を使用せずに供給できるので加湿や洗浄時に便利である。
(リ)また、ドレン水あるいは水道水の流路の往路と復路毎に給水管(752)やドレン水排管2(713−2)を複設することで、切換えをすることなく種々の冷却水を流すことができる。従って、冷却水が時間差なく給排水できるので、回路は複雑になるが制御面で容易になる。
(ヌ)冷却器の性能を高めるために、ドレン水と水道水を必要な混合比率で混合し、流量調整器(717)や切替え弁(751)等を制御する制御回路(図示せず)を設けて冷却器(712)や加湿器(755)に給水する。空調機(B)に統合した制御回路を設ければ更に合理化が図れる。
(ル)以上から明らかなように、給水接続部(753)に必要とする機能、すなわち、加湿だけでなく洗浄等に対応する器具や装置等を取付けることで多様な機能を付加することができる。切替え弁(751)に補助口(751d)を設け、洗浄液や配管清浄液等を供給すれば新たな用途に有用である。
Another embodiment 7 of the present invention will be described with reference to FIGS. In addition, since the present Example adds a function to the other Example 6, other Example 6 (FIG. 14) is applied mutatis mutandis. Further, details of the interior of the indoor unit of the other embodiment 7 are shown in FIG. 16, and are omitted in the overall view of FIG. The indoor unit (B) is installed on the wall (C) of the house.
(A) In FIG. 15, the drain water drain pipe (713) for feeding the drain water of the drain pan (723) to the cooler (712) for cooling provided on the outer surface of the heat exchanger (78) of the outdoor unit (Ae). A switching valve (751) is provided in a part.
(B) One end of the drain water discharge pipe 1 (713-1) is connected to the drain pan (723), and the other end is connected to the drain port 1 (751a) of the switching valve (751). One end of the drain water discharge pipe 2 (713-2) is connected to the drain port 2 (751b) of the switching valve (751), and the other end is connected to the flow rate regulator (717).
(C) One end of the water supply pipe (752) is connected to the water supply port (751c) of the switching valve (751), and the other end is connected to the water supply connection part (753) of the indoor unit (B).
(2) The water supply connection part (753) is provided on the back plate (754) of the rear part of the indoor heat exchanger (729) of the indoor unit (B) from the installation surface.
(E) A water pipe (716) is attached to the flow regulator (717). The flow regulator (717) may be provided with valves adapted to the control means.
(F) As shown in FIG. 16, an indoor fan (756) powered by a motor is mounted on the back surface of the indoor heat exchanger (729) of the indoor unit (B). The indoor fan (756) sucks indoor air (ic) and blows cool air (id) after heat exchange into the room.
(G) In FIG. 16, a humidifier (755) is provided in the water supply connection part (753). The humidifier (755) is formed by a generator (755a) for generating water vapor and an ejection nozzle (755b). Of course, there may be no problem even if a known humidifier is installed, and the water supply connection part (753) and the humidifier (755) may be integrated. The sucked indoor air (ic) is cooled by the indoor heat exchanger (729), entrained with water vapor generated by the humidifier (755), and the humidified cold air (id) is blown into the room by the indoor fan (756). To do. Humidification is controlled by a control device (not shown) provided in the air conditioner so that the capacity of the cooler is always the best by collecting and analyzing data.
(H) In this embodiment, the switching valve (751) has a structure for switching between drain water and tap water in order to reduce the number of pipes. If necessary in terms of function, providing a plurality of valves or the like that can be used simultaneously with other channels is advantageous in terms of control. If the switching valve (751) is provided with an auxiliary port (751d) and a water pipe (716) or a device for supplying cleaning liquid is attached, the drain pan (723) and the water supply port (751) are supplied without using other piping. This is useful when humidifying or cleaning.
(I) In addition, by providing multiple water supply pipes (752) and drain water discharge pipes 2 (713-2) for each forward and return path of the drain water or tap water flow, various cooling can be performed without switching. Water can flow. Therefore, since the cooling water can be supplied and drained without time difference, the circuit becomes complicated but the control becomes easy.
(N) In order to improve the performance of the cooler, a control circuit (not shown) for mixing drain water and tap water at a necessary mixing ratio and controlling the flow rate regulator (717), the switching valve (751), etc. It is provided and water is supplied to the cooler (712) and the humidifier (755). Further rationalization can be achieved by providing an integrated control circuit in the air conditioner (B).
(L) As is clear from the above, various functions can be added by attaching functions and functions required for the water supply connection part (753), that is, not only humidification but also equipment and devices corresponding to cleaning and the like. . If an auxiliary port (751d) is provided in the switching valve (751) and a cleaning liquid, a pipe cleaning liquid, or the like is supplied, it is useful for a new application.

[0028]の実施例7に示すように冷却器(712)の冷却能力を安定化することができる。すなわち、冷房運転を続けることで室内空気(ic)の湿度が下がり、低温のドレン水の発生量が減少した場合、湿度感知装置(本実施例では加湿器に内蔵)が感知し、加湿器(755)が作動し室内空気(ic)を加湿する。すなわち、ドレン水を自在に発生させることができるわけである。従って、室内の湿度を制御し、ドレン水量を安定して冷却器(712)に供給することで冷却器(712)の能力を常時自在に制御できる。しかも、本実施例では水道水を利用して冷却水を生成できることから、室内機(B)に水圧により給水できることで揚水動力を必要としないので、省エネルギーで冷却器(712)の冷却能力を安定し、空調機の性能を格段に向上できる。  [0028] As shown in Example 7 of the present invention, the cooling capacity of the cooler (712) can be stabilized. That is, when the humidity of the indoor air (ic) decreases and the generation amount of low-temperature drain water decreases by continuing the cooling operation, the humidity sensing device (built in the humidifier in this embodiment) senses the humidifier ( 755) is activated to humidify the room air (ic). That is, drain water can be freely generated. Therefore, the capacity of the cooler (712) can be controlled freely at any time by controlling the humidity in the room and stably supplying the drain water amount to the cooler (712). In addition, since the cooling water can be generated using the tap water in this embodiment, the pumping power is not required by supplying water to the indoor unit (B) by the water pressure, so the cooling capacity of the cooler (712) is stabilized with energy saving. In addition, the performance of the air conditioner can be significantly improved.

更に、本発明の他の実施例7の機能により、室内空気(ic)が乾燥することにより、ウイルス等の繁殖による風邪引きや乾燥肌症状等、空気が乾燥することで発症する病気を防止できる。すなわち、室内空気(ic)の乾燥度を自動的に検出し適宜的確に室内空気を加湿することでこれらの発症を防止できる。  Furthermore, by the function of the seventh embodiment of the present invention, the room air (ic) is dried, so that it is possible to prevent illnesses caused by drying of the air, such as cold catches caused by the propagation of viruses and the like, and dry skin symptoms. That is, the onset of these can be prevented by automatically detecting the degree of dryness of the room air (ic) and humidifying the room air appropriately and appropriately.

本発明の空調機の他の実施例8について、図17、図18に基づいて説明する。
(イ)貯水タンク(818)は、上部にオーバーフローした冷却水を外部に放出する逃水管(818a)を設け、貯水タンク(818)が一定量以上貯水できないようにする。貯水タンク(818)の上部にポンプ(819)を載設する。貯水タンク(818)とポンプ(819)は、外気の影響を受けないように断熱材(図示せず)で被覆する。設置地域の環境等から必要がなければ特に被覆しなくてもよい。
(ロ)ポンプ(819)の吐出口(819a)に配管1(820)の一端を接続し、配管1(820)の他端は制御弁1(821)の吸入口1(821a)に接続する。
(ハ)水道管(816)を制御弁1(821)の吸入口2(821b)に接続する。
(ニ)ドレン水排管(813)の一端を室内機(B)のドレンパン(823)に接続する。ドレン水排管(813)の排水部(813a)は制御弁2(824)の吸入口3(824a)に接続する。
(ホ)配管2(822)の一端を制御弁1(821)の排出口1(821c)に接続し、他端を制御弁2(824)の吸入口4(824b)に接続する。
(ヘ)室外機(Af)に設けた冷却器(812)の通水管(812a)の一端の入水口(812b)を制御弁2(824)の排出口3(824c)に接続する。通水管(812a)の他端の排水口(812c)は貯水タンク(818)の戻水口(818b)に接続する。
(ト)熱交換器(88)を冷却する冷却器(812)は、本発明の実施例や他の実施例で示した位置に設ければ機能する。また、ドレン水排管(813)、通水管(812a)、水道管(816)、配管1(820)、配管2(822)等の外気影響を受ける部分にはそれぞれ断熱材を取着すれば冷却力が向上する。
(チ)装着した制御弁1(821)、制御弁2(824)、ポンプ(819)等の制御、冷却水(洗浄水)の流量、流速等の制御は、自動制御回路(図示せず)を設けて制御する。
(リ)本発明の他の実施例8によれば、ドレン水、水道水、貯水等を組み合わせ、多種の冷却水を生成し冷却器(812)に通水できる。従って、自動制御回路と連携することで、室外機(Af)に設けた熱交換器(88)の冷却効率を向上させることで、空調機の性能を格段に向上し室外機のコンパクト化、省エネルギー化を実現できる。
(ヌ)以上のように形成することで、冷却水の循環回路を形成する。循環回路の冷却水中の不純物については、ポンプや配管の詰りを発生し循環を阻害する。従って、循環回路の各所にストレーナー等を設けることで対応する。また、不純物を集中捕獲するようにすれば管理が容易である。
(ル)以上により、図18に示すように冷却水の循環の基本回路は下記のように形成される。(図中▲1▼〜▲12▼は冷却水の流路ポイントを示す)

Figure 2018054280
Another embodiment 8 of the air conditioner according to the present invention will be described with reference to FIGS.
(A) The water storage tank (818) is provided with a drain pipe (818a) for discharging the overflowed cooling water to the outside so that the water storage tank (818) cannot store more than a certain amount of water. A pump (819) is placed on top of the water storage tank (818). The water storage tank (818) and the pump (819) are covered with a heat insulating material (not shown) so as not to be affected by outside air. If there is no need from the environment of the installation area, it is not necessary to cover it.
(B) One end of the pipe 1 (820) is connected to the discharge port (819a) of the pump (819), and the other end of the pipe 1 (820) is connected to the suction port 1 (821a) of the control valve 1 (821). .
(C) The water pipe (816) is connected to the suction port 2 (821b) of the control valve 1 (821).
(D) One end of the drain water discharge pipe (813) is connected to the drain pan (823) of the indoor unit (B). The drainage part (813a) of the drain water discharge pipe (813) is connected to the suction port 3 (824a) of the control valve 2 (824).
(E) One end of the pipe 2 (822) is connected to the discharge port 1 (821c) of the control valve 1 (821), and the other end is connected to the suction port 4 (824b) of the control valve 2 (824).
(F) The water inlet (812b) at one end of the water pipe (812a) of the cooler (812) provided in the outdoor unit (Af) is connected to the outlet 3 (824c) of the control valve 2 (824). The drain port (812c) at the other end of the water pipe (812a) is connected to the return port (818b) of the water storage tank (818).
(G) The cooler (812) for cooling the heat exchanger (88) functions if provided at the position shown in the embodiments of the present invention and other embodiments. In addition, if a drainage pipe (813), a water pipe (812a), a water pipe (816), a pipe 1 (820), a pipe 2 (822), etc. are affected by outside air, a heat insulating material is attached respectively. Cooling power is improved.
(H) Control of mounted control valve 1 (821), control valve 2 (824), pump (819), etc., control of the flow rate, flow rate, etc. of cooling water (wash water) is an automatic control circuit (not shown) To control.
(I) According to another embodiment 8 of the present invention, drain water, tap water, water storage, and the like can be combined to generate various types of cooling water and to pass through the cooler (812). Therefore, in cooperation with the automatic control circuit, the cooling efficiency of the heat exchanger (88) provided in the outdoor unit (Af) is improved, thereby greatly improving the performance of the air conditioner, making the outdoor unit more compact and energy-saving. Can be realized.
(Nu) By forming as mentioned above, the circulating circuit of cooling water is formed. About impurities in the cooling water of the circulation circuit, clogging of pumps and pipes is generated to hinder circulation. Therefore, this can be dealt with by providing strainers or the like at various points in the circulation circuit. In addition, management is easy if impurities are concentrated and trapped.
(L) From the above, as shown in FIG. 18, the basic circuit for circulating the cooling water is formed as follows. ((1) to (12) in the figure indicate cooling water flow points)
Figure 2018054280

次に他の実施例9について、図19、図20に基づいて説明する。他の実施例9は[0031]の他の実施例8に回路を追加するものであるので、他の実施例8(図17)、(図18)を準用する。
(イ)貯水タンク(818)は、上部にオーバーフローした冷却水を外部に放出する逃水管(818a)を設け、貯水タンク(818)が一定量以上貯水できないようにする。貯水タンク(818)の上部にポンプ(819)を載設する。貯水タンク(818)とポンプ(819)は、外気の影響を受けないように断熱材(図示せず)で被覆する。但し、設置地域の環境等から必要がなければ被覆しないでもよい。
(ロ)ポンプ(819)の吐出口(819a)に配管1(820)の一端を接続し、配管1(820)の他端は制御弁1(821)の吸入口1(821a)に接続する。
(ハ)水道管(816)を制御弁1(821)の吸入口2(821b)に接続する。
(ニ)配管2(822)の一端を制御弁1(821)の排出口1(821c)に接続し、他端を制御弁2(824)の吸入口4(824b)に接続する。
(ホ)配管3(825)(図17に追加した配管)の一端を制御弁1(821)の排出口2(821d)に接続し、配管3(825)の他端を室内機(B)の上部に設けた給水口(826)に接続する。
(ヘ)ドレン水配管(813)の一端を室内機(B)のドレンパン(823)に接続する。ドレン水排管(813)の排水部(813a)は制御弁2(824)の吸入口3(824a)に接続する。
(ト)室外機(Af)に設けた冷却器(812)の通水管(812a)の一端の入水口(812b)を制御弁2(824)の排出口3(824c)に接続する。通水管(812a)の他端の排水口(812c)は貯水タンク(818)の戻水口(818b)に接続する。
(チ)装着した制御弁1(821)、制御弁2(824)、ポンプ(819)の制御、冷却水(洗浄水)の流量、流速等の制御は、自動制御回路(図示せず)を設けて制御する。
(リ)配管4(828)(図17に追加した配管)の一端を制御弁2(824)の排出口4(824d)に接続し、他端を冷却器(812)の通水管(812a)の排水口(812c)と接合する。配管4(828)(図17に追加した配管)の他端は、直接貯水タンク(818)に接続してもよい。
(ヌ)室外機(Af)に設けた冷却器(812)は、熱交換器(88)を冷却するものである。従って、本発明の実施例や他の実施例で示した位置に設ければよい。また、ドレン水排管(813)、通水管(812a)の入水口(812b)や排水口(812c)、水道管(816)、配管1(820)、配管2(822)、配管3(825)(図17に追加した配管)等の外気影響を受ける部分にはそれぞれ断熱材を取着する。
(ル)以上のように形成することで、冷却水の循環回路を形成する。循環回路の冷却水中の不純物については、ポンプや配管の詰りを発生し循環を阻害する。従って、循環回路の各給水側や貯水タンクの冷却水の戻り部や吐出部にストレーナー等を設けることで対応する。
(オ)冷却水の流路(図20)の基本回路は下記の様に形成される。基本回路は用途により、機器や配管の組合せや追加、変更等をすることで対応できる。
(図中▲1▼〜▲14▼は冷却水の流路ポイントを示す)

Figure 2018054280
(ワ)本発明の他の実施例9の冷却水の循環回路により、室内熱交換器(829)の洗浄ができる。すなわち、冷却水が配管3(825)から室内機(B)の給水口(826)から室内機(B)に設けた洗浄装置(図示せず)を経由して室内熱交換器(829)を洗浄する。制御弁1(821)は制御回路により制御し、洗浄に最適の冷却水を供給し、室内熱交換器(829)の自動洗浄ができる。例えば、洗浄装置(図示せず)が高速の冷却水で洗浄できるようにすれば、洗浄力を高めることができる。また、室内熱交換器(829)の汚れや目詰まり等を自動感知し適時的確に洗浄することで常時安定した冷房ができる。洗浄方法や構造は、公知の自動洗浄の技術を利用すれば、洗浄剤等を使用して洗浄することもできる。
(カ)図20に示すように、洗浄の基本回路は下記のように形成される。
(図中▲1▼〜▲15▼は冷却水の流路ポイントを示す)
Figure 2018054280
Figure 2018054280
Next, another embodiment 9 will be described with reference to FIGS. Since the other embodiment 9 is a circuit added to the other embodiment 8 of [0031], the other embodiment 8 (FIG. 17) and FIG. 18 are applied mutatis mutandis.
(A) The water storage tank (818) is provided with a drain pipe (818a) for discharging the overflowed cooling water to the outside so that the water storage tank (818) cannot store more than a certain amount of water. A pump (819) is placed on top of the water storage tank (818). The water storage tank (818) and the pump (819) are covered with a heat insulating material (not shown) so as not to be affected by outside air. However, it may not be covered if it is not necessary from the environment of the installation area.
(B) One end of the pipe 1 (820) is connected to the discharge port (819a) of the pump (819), and the other end of the pipe 1 (820) is connected to the suction port 1 (821a) of the control valve 1 (821). .
(C) The water pipe (816) is connected to the suction port 2 (821b) of the control valve 1 (821).
(D) One end of the pipe 2 (822) is connected to the discharge port 1 (821c) of the control valve 1 (821), and the other end is connected to the suction port 4 (824b) of the control valve 2 (824).
(E) One end of the pipe 3 (825) (the pipe added to FIG. 17) is connected to the discharge port 2 (821d) of the control valve 1 (821), and the other end of the pipe 3 (825) is the indoor unit (B). It connects with the water supply opening (826) provided in the upper part.
(F) One end of the drain water pipe (813) is connected to the drain pan (823) of the indoor unit (B). The drainage part (813a) of the drain water discharge pipe (813) is connected to the suction port 3 (824a) of the control valve 2 (824).
(G) The water inlet (812b) at one end of the water pipe (812a) of the cooler (812) provided in the outdoor unit (Af) is connected to the outlet 3 (824c) of the control valve 2 (824). The drain port (812c) at the other end of the water pipe (812a) is connected to the return port (818b) of the water storage tank (818).
(H) Control of the mounted control valve 1 (821), control valve 2 (824), pump (819), flow rate of cooling water (washing water), flow rate, etc., an automatic control circuit (not shown) Provide and control.
(L) One end of the pipe 4 (828) (the pipe added to FIG. 17) is connected to the discharge port 4 (824d) of the control valve 2 (824), and the other end is connected to the water pipe (812a) of the cooler (812). And the drainage port (812c). The other end of the pipe 4 (828) (the pipe added to FIG. 17) may be directly connected to the water storage tank (818).
(Nu) The cooler (812) provided in the outdoor unit (Af) cools the heat exchanger (88). Therefore, it may be provided at the position shown in the embodiments of the present invention and other embodiments. Also, a drain water discharge pipe (813), a water inlet (812b) and a water outlet (812c), a water pipe (816), a pipe 1 (820), a pipe 2 (822), and a pipe 3 (825) of a water pipe (812a). ) (Insulating pipes added to FIG. 17), etc., heat insulating material is attached to each part affected by outside air.
(L) By forming as described above, a circulating circuit for cooling water is formed. About impurities in the cooling water of the circulation circuit, clogging of pumps and pipes is generated to hinder circulation. Therefore, it is possible to cope with this by providing a strainer or the like at each water supply side of the circulation circuit or at the cooling water return portion or discharge portion of the water storage tank.
(E) The basic circuit of the cooling water flow path (FIG. 20) is formed as follows. The basic circuit can be handled by combining, adding, or changing the equipment and piping depending on the application.
((1) to (14) in the figure indicate cooling water flow points)
Figure 2018054280
(W) The indoor heat exchanger (829) can be cleaned by the cooling water circulation circuit of another embodiment 9 of the present invention. That is, the cooling water is supplied to the indoor heat exchanger (829) from the pipe 3 (825) through the water supply port (826) of the indoor unit (B) through the cleaning device (not shown) provided in the indoor unit (B). Wash. The control valve 1 (821) is controlled by a control circuit, supplies cooling water optimal for cleaning, and can automatically clean the indoor heat exchanger (829). For example, if a cleaning device (not shown) can be cleaned with high-speed cooling water, the cleaning power can be increased. In addition, the indoor heat exchanger (829) can be stably cooled at all times by automatically detecting dirt, clogging, and the like and cleaning it in a timely and accurate manner. The cleaning method and structure can be cleaned using a cleaning agent or the like if a known automatic cleaning technique is used.
(F) As shown in FIG. 20, the basic circuit for cleaning is formed as follows.
((1) to (15) in the figure indicate the flow points of cooling water)
Figure 2018054280
Figure 2018054280

次に他の実施例10ついて、図21に基づいて説明する。尚、本実施例は[0032]の他の実施例9に回路を追加するものであるので、図19、図20を準用する。本実施例は、室外機の熱交換器の冷却と室内熱交換器の洗浄の基本的な回路の実施例であり、回路や機器の変更や追加をすることで用途を拡張できる。
(イ)ドレン水排管(813)の一部に制御弁3(827)を設ける。すなわち、ドレンパン(823)と制御弁2(824)の間に制御弁3(827)を設け、配管5(830)(図19に追加した回路)を接続する。
(ロ)配管5(830)(図19に追加した回路)の他端は外部に開放する。
(ハ)貯水タンク(818)に貯水された洗浄水を、ポンプ(819)が吐出し制御弁1(821)を経由して室内機(B)に供給する。
(二)制御弁3(827)にドレン水排管(813)を接続する。
(ホ)室内熱交換器(829)の洗浄装置(図示せず)を室内機(B)に設置する。室内熱交換器(829)の洗浄時は、給水口(826)に洗浄装置を装着し、空調機に組み込まれた自動制御回路(図示せず)でポンプ(819)、制御弁1(821)、制御弁2(824)、制御弁3(827)等を制御し、所定水量を室内機(B)に給水し洗浄装置が働き洗浄する。給水口(826)に高速水や低速水、あるいは噴霧水等を流出するノズル等の機器を組込めば、室内熱交換器(829)を効率よく洗浄することができる。
(ヘ)水道水を使用して室内機(B)に供給し洗浄する場合、ポンプ(819)を使用する必要がない。すなわち、水道水の水圧により制御弁(821)を経由して室内機(B)に給水ができる。流量や洗浄装置の制御は、本実施例の説明(ホ)の場合と同様に制御する。
(ト)洗浄後の洗浄水はドレンパン(823)で受け、配管5(830)(図19に追加した回路)から室外に排水される。勿論、洗浄液等が混入するので、冷却水の使用に影響がなければ他の共用回路を使用しても差し支えない。
(チ)冷却回路の制御と空調機の制御を総合して自動制御を行えば、利便性を高めるとともに空調機の性能、省エネルギー化をより高めることができる。
(リ)以上により、図21の冷却水の洗浄の基本回路は下記のように形成される。
(図中▲1▼〜▲17▼は冷却水の流路ポイントを示す)

Figure 2018054280
Figure 2018054280
(ヌ)本発明の実施例の冷却水の流路回路は[0037]に準じており、[0037]の他の実施例11で示すので本実施例では省略をする。Next, another embodiment 10 will be described with reference to FIG. Since this embodiment adds a circuit to another embodiment 9 of [0032], FIGS. 19 and 20 apply mutatis mutandis. This embodiment is an embodiment of a basic circuit for cooling an outdoor unit heat exchanger and cleaning an indoor heat exchanger, and the application can be expanded by changing or adding circuits and equipment.
(A) A control valve 3 (827) is provided in a part of the drain water discharge pipe (813). That is, the control valve 3 (827) is provided between the drain pan (823) and the control valve 2 (824), and the pipe 5 (830) (circuit added to FIG. 19) is connected.
(B) The other end of the pipe 5 (830) (the circuit added to FIG. 19) is opened to the outside.
(C) The wash water stored in the water storage tank (818) is discharged by the pump (819) and supplied to the indoor unit (B) via the control valve 1 (821).
(2) A drain water discharge pipe (813) is connected to the control valve 3 (827).
(E) A cleaning device (not shown) for the indoor heat exchanger (829) is installed in the indoor unit (B). When cleaning the indoor heat exchanger (829), a cleaning device is attached to the water supply port (826), and an automatic control circuit (not shown) incorporated in the air conditioner is used to pump (819) and control valve 1 (821). The control valve 2 (824), the control valve 3 (827), etc. are controlled, a predetermined amount of water is supplied to the indoor unit (B), and the cleaning device works to perform cleaning. If a device such as a nozzle that discharges high-speed water, low-speed water, spray water, or the like is incorporated in the water supply port (826), the indoor heat exchanger (829) can be efficiently cleaned.
(F) When supplying and cleaning the indoor unit (B) using tap water, it is not necessary to use the pump (819). That is, water can be supplied to the indoor unit (B) via the control valve (821) by the water pressure of tap water. The flow rate and the cleaning device are controlled in the same manner as in the description (e) of this embodiment.
(G) Washing water after washing is received by a drain pan (823) and drained from the pipe 5 (830) (circuit added to FIG. 19) to the outside. Of course, since a cleaning solution or the like is mixed, other shared circuits may be used as long as the use of the cooling water is not affected.
(H) If the control of the cooling circuit and the control of the air conditioner are integrated and automatically controlled, the convenience and the performance and energy saving of the air conditioner can be improved.
(I) As described above, the basic circuit for cleaning the cooling water in FIG. 21 is formed as follows.
((1) to (17) in the figure indicate cooling water flow points)
Figure 2018054280
Figure 2018054280
(N) The flow path circuit of the cooling water according to the embodiment of the present invention conforms to [0037], and will be omitted in this embodiment because it is shown in another embodiment 11 of [0037].

本発明の他の実施例10によれば、室内機の熱交換器の洗浄が自動で安全にできることで、特に高齢者等に利便性が高い。また、洗浄を原因とする火災等に対しては、設計面で対処することで安全面の課題を解消できる。  According to another embodiment 10 of the present invention, the heat exchanger of the indoor unit can be automatically and safely cleaned, which is particularly convenient for elderly people. In addition, it is possible to solve the safety problem by dealing with the fire caused by the cleaning in terms of design.

冷却水回路内における配管詰りを防止するために冷却水回路内にストレーナーを設ける。該ストレーナーは脱着自在にすれば経年的にも問題がない。これらの技術は公知の技術であるので容易に対応できる。また、洗浄後に該冷却回路内の配管に異物等により詰りが発生しないように、異物や不純物をバイパス回路を設けて、自動的にあるいは手動で集積廃棄することで利便性が高くなる。  In order to prevent piping clogging in the cooling water circuit, a strainer is provided in the cooling water circuit. If the strainer is detachable, there is no problem over time. Since these techniques are known techniques, they can be easily handled. Further, it is possible to increase the convenience by automatically or manually collecting and discarding foreign matters and impurities by providing a bypass circuit so that the piping in the cooling circuit is not clogged with foreign matters after cleaning.

次に室内機のフィルターを自動清掃する空調機の場合、室内熱交換器の清掃は手動で熱交換器を洗浄する。室内機は天井付近に据え付けられることが多く、高齢者が洗浄するには不安全であった。また、洗浄時に洗浄液が電子機器等に付着し、埃等と結合し火災を発生させることがあったが、本発明の空調機の場合、室内機に安全を考慮した自動洗浄制御装置(図示せず)を設けることで安全に洗浄できるので、室内熱交換器の洗浄を安全で適時的確に行うことができる。  Next, in the case of an air conditioner that automatically cleans an indoor unit filter, the indoor heat exchanger is manually cleaned by washing the heat exchanger. Indoor units are often installed near the ceiling, making it unsafe for elderly people to clean. In addition, the cleaning liquid may adhere to electronic devices and the like during cleaning, and may combine with dust and cause a fire. However, in the case of the air conditioner of the present invention, an automatic cleaning control device (not shown) considering safety in the indoor unit. 3), the indoor heat exchanger can be cleaned safely and in a timely manner.

次に冷却水回路の他の実施例11について、図22、図23に基づいて説明する。
(イ)ドレン水排管1(913−1)の一端をドレンパン(923)に接続し他端を制御弁3(927)の吸入口5(927a)に接続する。ドレン水排管2(913−2)の一端を制御弁3(927)の排出口5(927b)に接続し、他端を制御弁2(924)の吸入口3(924a)に接続する。
(ロ)室外機(Ag)に設けた冷却器(912)の通水管(912a)の入水口(912b)を制御弁2(924)の排出口3(924c)に接続する。通水管(912a)の排水口(912c)を配管4(928)に接続する。本実施例ではロー付けにより接続し、冷却水が円滑に流れるように流路を確保している。
(ハ)配管1(920)の一端をポンプ(919)の吐出口(919a)に接続し、他端を制御弁1(921)の吸入口1(921a)に接続する。貯水タンク(918)に貯水された冷却水を、ポンプ(919)が吐出し制御弁1(921)を経由して室内機(B)に供給する。
(二)配管2(922)の一端を制御弁2(924)の吸入口4(924b)に接続し、他端を制御弁1(921)の排出口2(921d)に接続する。
(ホ)制御弁3(927)の排出口6(927c)に配管5(930)の一端を接続し他端は外部に開放する。
(ヘ)水道管(916)を制御弁1(921)の吸入口2(924b)に接続する。その結果、冷却器(912)による室外機の熱交換器を冷却するだけでなく、室内空気の加湿等の機能を付加でき新たな効果を創出する事ができる。
(ト)配管3(925)の一端を制御弁1(921)の排出口2(921d)に接続し、他端を室内機(B)の背板(954)の給水接続部(953)に設けた制御弁4(931)の吸入口5(931a)に接続する。
(チ)制御弁4(931)の排出口6(931b)に配管6(932)の一端を接続し、他端に加湿装置(933)を装着する。加湿装置(933)は制御回路(図示せず)により室内の湿度を感知し、冷却器(912)へのドレン水量を最適にするために加湿することで、冷却器(912)の冷却能力の低下を防ぎ、あるいは夏季異常高温時に冷却能力を高める。加湿装置(933)は制御弁4(931)と一体にすれば配管6(932)を削減できる。
(リ)制御弁4(931)の排出口7(931c)に配管7(934)の一端を接続し、他端に洗浄装置(935)を装着する。洗浄装置(935)は室内熱交換器(929)のエレメントの全長を同時に洗浄する構造にする。洗浄装置(935)をエレメントの全長に渡り可動するようにすれば、全長を同時に洗浄する構造にする必要はない。
(ヌ)室内熱交換器(929)の洗浄は、水道水あるいは混合水を使用する。洗浄装置(935)の自動制御回路(図示せず)がポンプ(919)、制御弁1(921)、制御弁2(924)、制御弁4(931)を制御し、所定水量を室内機(B)に給水し洗浄装置が働き洗浄する。洗浄装置(935)にノズル等を取着すれば、高速の冷却水で室内熱交換器(929)を効率よく洗浄することができる。洗浄後の冷却水はドレンパン(923)で受水し配管5(930)から室外に排水される。
(ル)水道水を使用して室内機(B)に供給し加湿や洗浄を行う場合、ポンプ(919)を使用しなくても、水道水の水圧により給水接続部(953)に給水することができる。
(オ)室内機の湿度を感知し加湿制御を行うことや、室内熱交換器の汚れ状況を感知し洗浄する等の諸機能については、総合的な自動制御装置を空調機に設けることで、使い易さを格段に高めることができる。
(ワ)以上により、図23の冷却水の基本回路は下記のように形成される。
(図中▲1▼〜▲17▼は冷却水の流路ポイントを示す)

Figure 2018054280
Figure 2018054280
(カ)以上により、図23の加湿の基本回路は下記のように形成される。
(図中▲1▼〜▲18▼は冷却水の流路ポイントを示す)
Figure 2018054280
(ヨ)以上により、図23の洗浄の基本回路は下記のように形成される。
(図中▲1▼〜▲19▼は冷却水の流路ポイントを示す)
Figure 2018054280
(タ)本実施例は、室外機の熱交換器の冷却や室内空気の加湿や室内熱交換器の洗浄の基本的な回路の実施例であり、回路や機器の変更や追加をして用途を拡張することができる。Next, another example 11 of the cooling water circuit will be described with reference to FIGS.
(A) One end of the drain water discharge pipe 1 (913-1) is connected to the drain pan (923), and the other end is connected to the suction port 5 (927a) of the control valve 3 (927). One end of the drain water discharge pipe 2 (913-2) is connected to the discharge port 5 (927b) of the control valve 3 (927), and the other end is connected to the suction port 3 (924a) of the control valve 2 (924).
(B) The water inlet (912b) of the water pipe (912a) of the cooler (912) provided in the outdoor unit (Ag) is connected to the outlet 3 (924c) of the control valve 2 (924). The drain port (912c) of the water pipe (912a) is connected to the pipe 4 (928). In this embodiment, the connection is made by brazing, and the flow path is secured so that the cooling water flows smoothly.
(C) One end of the pipe 1 (920) is connected to the discharge port (919a) of the pump (919), and the other end is connected to the suction port 1 (921a) of the control valve 1 (921). The cooling water stored in the water storage tank (918) is discharged by the pump (919) and supplied to the indoor unit (B) via the control valve 1 (921).
(2) One end of the pipe 2 (922) is connected to the suction port 4 (924b) of the control valve 2 (924), and the other end is connected to the discharge port 2 (921d) of the control valve 1 (921).
(E) One end of the pipe 5 (930) is connected to the discharge port 6 (927c) of the control valve 3 (927), and the other end is opened to the outside.
(F) The water pipe (916) is connected to the suction port 2 (924b) of the control valve 1 (921). As a result, not only can the heat exchanger of the outdoor unit be cooled by the cooler (912), but a function such as humidification of indoor air can be added and a new effect can be created.
(G) One end of the pipe 3 (925) is connected to the discharge port 2 (921d) of the control valve 1 (921), and the other end is connected to the water supply connection part (953) of the back plate (954) of the indoor unit (B). It connects with the inlet 5 (931a) of the provided control valve 4 (931).
(H) One end of the pipe 6 (932) is connected to the discharge port 6 (931b) of the control valve 4 (931), and a humidifier (933) is attached to the other end. The humidifier (933) senses the humidity in the room by a control circuit (not shown), and humidifies it to optimize the amount of drain water to the cooler (912), thereby controlling the cooling capacity of the cooler (912). Prevent cooling, or increase cooling capacity during summer high temperatures. If the humidifier (933) is integrated with the control valve 4 (931), the pipe 6 (932) can be reduced.
(I) One end of the pipe 7 (934) is connected to the discharge port 7 (931c) of the control valve 4 (931), and a cleaning device (935) is attached to the other end. The cleaning device (935) is configured to simultaneously clean the entire length of the elements of the indoor heat exchanger (929). If the cleaning device (935) is movable over the entire length of the element, it is not necessary to have a structure for cleaning the entire length at the same time.
(Nu) Cleaning of the indoor heat exchanger (929) uses tap water or mixed water. An automatic control circuit (not shown) of the cleaning device (935) controls the pump (919), the control valve 1 (921), the control valve 2 (924), and the control valve 4 (931), and sets a predetermined amount of water to the indoor unit ( Water is supplied to B), and the cleaning device works to perform cleaning. If a nozzle or the like is attached to the cleaning device (935), the indoor heat exchanger (929) can be efficiently cleaned with high-speed cooling water. The cooling water after washing is received by a drain pan (923) and drained from the pipe 5 (930) to the outside.
(L) When supplying tap water to the indoor unit (B) for humidification or cleaning, water is supplied to the water supply connection (953) by tap water pressure without using the pump (919). Can do.
(E) For various functions such as sensing the humidity of the indoor unit to control humidification and sensing and cleaning the soil condition of the indoor heat exchanger, installing a comprehensive automatic control device in the air conditioner, Ease of use can be greatly improved.
(W) As described above, the basic circuit of the cooling water in FIG. 23 is formed as follows.
((1) to (17) in the figure indicate cooling water flow points)
Figure 2018054280
Figure 2018054280
(F) From the above, the humidifying basic circuit of FIG. 23 is formed as follows.
((1) to (18) in the figure indicate the flow points of cooling water)
Figure 2018054280
(E) As described above, the basic circuit for cleaning in FIG. 23 is formed as follows.
((1) to (19) in the figure indicate the flow points of cooling water)
Figure 2018054280
(T) This example is an example of a basic circuit for cooling an outdoor unit heat exchanger, humidifying indoor air, and cleaning an indoor heat exchanger. Can be extended.

循環回路は冷却水の消費を削減する省資源効果があり、夏季に生じる水不足にも対応できる。また、循環回路にすることで、環境面でクリーン度が高まる。尚、貯水タンク等の循環回路を構成する機器類を室外機と一体に設ければ、循環回路付空調機として利便性やコスト面のメリットが高くなる。  The circulation circuit has a resource-saving effect that reduces cooling water consumption, and can cope with water shortages that occur in summer. In addition, the use of a circulation circuit increases the cleanliness in terms of environment. In addition, if the apparatus which comprises circulation circuits, such as a water storage tank, is provided integrally with an outdoor unit, the merit of convenience and a cost side will become high as an air conditioner with a circulation circuit.

(1)本発明は、以上の各実施例の説明から明らかなように、室外機の熱交換器の冷却に冷却器を設け、冷却水として種々の水を活用することで、安価にクリーンに省エネルギー化を実現した空調機である。
(2)また、冷却水にドレン水を利用し、冷房時の室外機の凝縮能力を向上するもので、室外機の熱交換器に水をかけて凝縮を高める必要がなく、熱交換器のフィンの腐食や環境への課題や設置面の制約も発生しない。
(3)更に、室内空気を加湿する機能で冷却水中のドレン水量を自在に変動し、室外機の凝縮能力を高め、空調機の冷房性能を高めることができた。
(4)また、室内機の熱交換器の洗浄機能を設けることができ、自動洗浄を可能にすることもできた。
(1) As is clear from the description of each of the above embodiments, the present invention provides a cooler for cooling the heat exchanger of the outdoor unit, and uses various water as the cooling water, so that it is cheap and clean. It is an air conditioner that realizes energy saving.
(2) Also, drain water is used as cooling water to improve the condensation capacity of the outdoor unit during cooling, and it is not necessary to increase the condensation by applying water to the heat exchanger of the outdoor unit. There are no fin corrosion, environmental problems, or installation limitations.
(3) Furthermore, the function of humidifying the indoor air allows the amount of drain water in the cooling water to be freely changed, increasing the condensation capacity of the outdoor unit, and improving the cooling performance of the air conditioner.
(4) Moreover, the washing | cleaning function of the heat exchanger of an indoor unit could be provided, and automatic washing | cleaning could also be enabled.

本発明によれば様々な冷却水を適時的確に選択し制御して使用することで、様々な外気温度に対応できる空調機を提供できた。すなわち、ドレン水や水道水の比率を自在に変動して高温時の外気に対応することができた。例えば、夏季高温時には室内空気の強制加湿でドレン水比率高めて室外機に設けた冷却器の冷却力を安定し、該室外機の熱交換器の凝縮能力を外部環境に素早く対応して常時空調機の省エネルギー化や高性能を維持することができた。  According to the present invention, it is possible to provide an air conditioner that can cope with various outside air temperatures by properly selecting, controlling, and using various cooling waters in a timely manner. That is, the ratio of drain water and tap water can be freely changed to cope with the outside air at a high temperature. For example, during summer high temperatures, the indoor air is forced to humidify and the drain water ratio is increased to stabilize the cooling power of the cooler installed in the outdoor unit, and the condensing capacity of the outdoor unit's heat exchanger is quickly adapted to the external environment for constant air conditioning. The machine was able to save energy and maintain high performance.

また、本発明によれば冷房時の室外機の熱交換器の冷却を外気送風による冷却と、冷却器による冷却の複数の全く相違する冷却手段を設け、尚且つ種々の冷却水を活用し、外気送風量や風速を合せて変化させることで、夏季高温時や猛暑等の異常高温時等のいかなる外部環境においても、該室外機の該熱交換器の凝縮能力を低下させず、空調機の冷房能力を格段に向上できる新たな省エネルギーの空調機を提供することができた。  Further, according to the present invention, the cooling of the heat exchanger of the outdoor unit at the time of cooling is provided with a plurality of completely different cooling means of cooling by outside air blowing and cooling by the cooler, and further utilizing various cooling waters, By changing the air flow rate and wind speed according to the outside air temperature, the condensation capacity of the heat exchanger of the outdoor unit is not reduced in any external environment such as high temperatures in summer or extremely high temperatures such as extreme heat. We were able to provide a new energy-saving air conditioner that can significantly improve the cooling capacity.

また、本発明によれば、室内機に給水することができる。従って、室内空気の湿度低下時には、冷却水給水、加湿しドレン水比率を変動させて、外気の変動に影響されることなく、空調機の性能を格段に向上することができた。また、室内空気乾燥時に加湿することで乾燥による健康阻害を緩和することもできた。  Moreover, according to this invention, water can be supplied to an indoor unit. Therefore, when the humidity of the indoor air is reduced, the cooling water supply and humidification drain water ratios are changed, and the performance of the air conditioner can be greatly improved without being affected by the fluctuation of the outside air. In addition, it was possible to mitigate health problems caused by drying by humidifying the indoor air.

各実施例の説明から明らかなように、本発明に設ける冷却器は公知の熱交換器を選択して室外機に装着した場合でも、本発明の効果を得られる。また、冷却器の材質は熱伝導性の高いものが望ましいが、本発明の機能により外部環境等で耐食性や耐塩性材料や高強度の材料を使用しても差し支えない。  As is apparent from the description of each embodiment, the cooler provided in the present invention can obtain the effects of the present invention even when a known heat exchanger is selected and installed in an outdoor unit. The cooler is preferably made of a material having high thermal conductivity, but the function of the present invention may use a corrosion-resistant or salt-resistant material or a high-strength material in an external environment or the like.

以上のように、本発明の空調機は夏季におけるいかなる気温の変動にも自在に対応し、常時安定した冷房性能を発揮できる。尚、本発明の空調機は冬季暖房運転時に何ら支障がなく、冷暖房機として使用しても何ら支障がないことは明らかである。  As described above, the air conditioner of the present invention can freely respond to any temperature fluctuation in the summer and can always exhibit stable cooling performance. In addition, it is clear that the air conditioner of the present invention has no trouble at the time of heating operation in winter and can be used as an air conditioner without any trouble.

本発明の室外機の平面断面図  Plan sectional view of the outdoor unit of the present invention 本発明の室外機の正面図  Front view of the outdoor unit of the present invention 本発明の室外機の右側面図  Right side view of the outdoor unit of the present invention 本発明の室外機の一部を断面とした背面図  The rear view which made a part of outdoor unit of the present invention a section 本発明の実施例の空調機の全体図  Overall view of an air conditioner according to an embodiment of the present invention 本発明の他の実施例1の平面断面図  Plan sectional drawing of other Example 1 of this invention 本発明の他の実施例2の冷却器を取着した熱交換器の斜視図  The perspective view of the heat exchanger which attached the cooler of other Example 2 of this invention. 本発明の他の実施例3の背面図  The rear view of other Example 3 of this invention 本発明の他の実施例4の正面図  Front view of other embodiment 4 of the present invention 本発明の他の実施例4の背面図  Rear view of other embodiment 4 of the present invention 本発明の他の実施例4の冷却器を挿着した熱交換器の斜視図  The perspective view of the heat exchanger which inserted the cooler of other Examples 4 of the present invention. 本発明の他の実施例4の熱交換器のエレメントの部分図  The fragmentary view of the element of the heat exchanger of other Example 4 of this invention 本発明の他の実施例5の熱交換器のエレメントの部分図  The fragmentary view of the element of the heat exchanger of other Example 5 of this invention 本発明の他の実施例6の空調機の全体図  Overall view of air conditioner of other embodiment 6 of the present invention 本発明の他の実施例7の空調機の全体図  Overall view of air conditioner of other embodiment 7 of the present invention 本発明の他の実施例7の室内機の側面断面図  Side surface sectional drawing of the indoor unit of other Example 7 of this invention 本発明の他の実施例8の空調機の全体図及び冷却水の回路図  Overall view of air conditioner of other embodiment 8 of the present invention and circuit diagram of cooling water 本発明の他の実施例8の冷却水の流路図  Flow chart of cooling water according to another embodiment 8 of the present invention 本発明の他の実施例9の空調機の全体図及び冷却水の回路図  Overall view of air conditioner of other embodiment 9 of the present invention and circuit diagram of cooling water 本発明の他の実施例9の冷却水の流路図  Flow chart of cooling water according to another embodiment 9 of the present invention 本発明の他の実施例10の冷却水の流路図  Flow chart of cooling water according to another embodiment 10 of the present invention 本発明の他の実施例11の空調機の全体図及び冷却水の回路図  General view of air conditioner of other embodiment 11 of the present invention and circuit diagram of cooling water 本発明の他の実施例11の冷却水の流路図  Flow chart of cooling water according to another embodiment 11 of the present invention

A、Aa、Ab、Ac、Ad、Ae、Af、Ag 室外機
B 室内機
C 壁
X、Xa、Xb、Xc 開口部
1、41、51、71 本体
1a、51a 脚
2、42、52 前板
2a、22a、42a、52a 通風口
3、53 右側板
3a、23a 通気孔
4、54 左側板
5、55 天板
6、26、56 底板
7、27、57 ファンガード
8、28、38、58、68、78、88 熱交換器
8a、58a、68a フィン
8b、58b 伝熱管
8c、58c エンドプレート前
8d、58d エンドプレート後
8e、58e エレメント
8f、58f 長手部
8g 短手部
58h、68h 溝
68i 立上げ部
9、59 圧縮機
10、210、410 ファン
10a モーター
10b 羽根
10c モーター台
11、511 制御機器部
12、212、312、412、512、712 冷却器
812、912 冷却器
12a、212a、312a、412a、512a 通水管
612a、712a、812a、912a 通水管
312aa、312ab、312ac、312ad 通水管
12b、312b、412b、512b 入水口
712b、812b 入水口
12c、312c、412c、512c、712c 排水口
812c、912c 排水口
12d、212d 取付具右
12e、212e 取付具左
312f 分岐管
312g 集水管
412g 取付金具
13、713、813、913 ドレン水排管
713−1、913−1 ドレン水排管1
713−2、913−2 ドレン水排管2
13a、713a、813a 排水部
14 接続具
15 断熱材
716、816、916 水道管
717 流量調整器
818 貯水タンク
818a 逃水管
818b 戻水部
819,919 ポンプ
819a、919a 吐出口
820、920 配管1
821、921 制御弁1
821a、921a 吸入口1
821b、921b 吸入口2
821c、921c 排出口1
821d、921d 排出口2
822、922 配管2
723、823、923 ドレンパン
824、924 制御弁2
824a、924a 吸入口3
824b、924b 吸入口4
824c 排出口3
824d 排出口4
825、925 配管3
826 給水口
827、927 制御弁3
927a 吸入口5
927b 排出口5
927c 排出口6
828、928 配管4
729、829、929 室内熱交換器
830、930 配管5
931 制御弁4
931a 吸入口5
931b 排出口6
931c 排出口7
932 配管6
933 加湿装置
934 配管7
935 洗浄装置
751 切換え弁
751a ドレン口1
751b ドレン口2
751c 給水口
751d 補助口
752 給水管
753、953 給水接続部
754,954 背板
755 加湿器
755a 発生器
755b 噴出ノズル
756、956 室内ファン
i、ia、ib 外気
ic 室内空気
id 冷気
A, Aa, Ab, Ac, Ad, Ae, Af, Ag Outdoor unit B Indoor unit C Wall X, Xa, Xb, Xc Opening 1, 41, 51, 71 Body 1a, 51a Leg 2, 42, 52 Front plate 2a, 22a, 42a, 52a Ventilation port 3, 53 Right side plate 3a, 23a Vent hole 4, 54 Left side plate 5, 55 Top plate 6, 26, 56 Bottom plate 7, 27, 57 Fan guard 8, 28, 38, 58, 68, 78, 88 Heat exchanger 8a, 58a, 68a Fin 8b, 58b Heat transfer tube 8c, 58c End plate front 8d, 58d End plate rear 8e, 58e Element 8f, 58f Long section 8g Short section 58h, 68h Groove 68i Standing Raising section 9, 59 Compressor 10, 210, 410 Fan 10a Motor 10b Blade 10c Motor base 11, 511 Control equipment section 12, 212, 312, 412, 512, 12 Cooler 812, 912 Cooler 12a, 212a, 312a, 412a, 512a Water pipe 612a, 712a, 812a, 912a Water pipe 312aa, 312ab, 312ac, 312ad Water pipe 12b, 312b, 412b, 512b Water inlet 712b, 812b Water outlet 12c, 312c, 412c, 512c, 712c Drain outlet 812c, 912c Drain outlet 12d, 212d Fitting right 12e, 212e Fitting left 312f Branch pipe 312g Drain pipe 412g Fitting metal 13, 713, 813, 913 Drain water drain pipe 713 -1,913-1 drain water discharge pipe 1
713-2, 913-2 Drain water discharge pipe 2
13a, 713a, 813a Drain part 14 Connector 15 Heat insulating material 716, 816, 916 Water pipe 717 Flow regulator 818 Water storage tank 818a Water discharge pipe 818b Water return part 819, 919 Pump 819a, 919a Discharge port 820, 920 Piping 1
821, 921 Control valve 1
821a, 921a Inlet 1
821b, 921b Suction port 2
821c, 921c Outlet 1
821d, 921d Outlet 2
822, 922 Piping 2
723, 823, 923 Drain pan 824, 924 Control valve 2
824a, 924a Inlet 3
824b, 924b Inlet 4
824c outlet 3
824d outlet 4
825, 925 Piping 3
826 Water supply port 827, 927 Control valve 3
927a Intake port 5
927b Outlet 5
927c Outlet 6
828, 928 Piping 4
729, 829, 929 Indoor heat exchangers 830, 930 Piping 5
931 Control valve 4
931a Inlet 5
931b Outlet 6
931c outlet 7
932 piping 6
933 Humidifier 934 Pipe 7
935 Cleaning device 751 Switching valve 751a Drain port 1
751b Drain port 2
751c Water supply port 751d Auxiliary port 752 Water supply pipes 753, 953 Water supply connection portions 754, 954 Back plate 755 Humidifier 755a Generator 755b Jet nozzle 756, 956 Indoor fan i, ia, ib Outside air ic Indoor air id Cold air

Claims (10)

室外機に冷却器を設け冷却水を通水したことを特徴とする空気調和機。  An air conditioner in which an outdoor unit is provided with a cooler and water is passed through the cooling water. 冷却水をドレン水にしたことを特徴とする請求項1の空気調和機。  The air conditioner according to claim 1, wherein the cooling water is drain water. 冷却器の通水を複数に分流したことを特徴とする請求項1、請求項2の空気調和機。  The air conditioner according to claim 1 or 2, wherein the water passing through the cooler is divided into a plurality of flows. 冷却器を熱交換器に近設したことを特徴とする請求項1、請求項2、請求項3の空気調和機。  4. The air conditioner according to claim 1, wherein the cooler is provided close to the heat exchanger. 冷却器を熱交換器に装着したことを特徴とする請求項1、請求項2、請求項3、請求項4の空気調和器。  The air conditioner according to claim 1, 2, 3, or 4, wherein the cooler is attached to a heat exchanger. 室外機に設けるファンガードと冷却器を一体にしたことを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5の空気調和器。  6. The air conditioner according to claim 1, 2, 3, 4, or 5, wherein a fan guard and a cooler provided in the outdoor unit are integrated. 冷却器を複設したことを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6の空気調和機。  The air conditioner according to claim 1, 2, 3, 4, 5, or 6, wherein a plurality of coolers are provided. 室内機に冷却水を給水することを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7の空気調和器。  The air conditioner according to any one of claims 1 to 3, wherein the indoor unit is supplied with cooling water. 室内空気を加湿することを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8の空気調和器。  The air conditioner according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7, or claim 8, wherein indoor air is humidified. 冷却水を循環することを特徴とする請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9の空気調和器。  Cooling water is circulated, and the air conditioner according to claim 1, 2, 3, 4, 4, 5, 6, 7, 8, and 9.
JP2016203920A 2016-09-27 2016-09-27 Air-conditioner Pending JP2018054280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016203920A JP2018054280A (en) 2016-09-27 2016-09-27 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016203920A JP2018054280A (en) 2016-09-27 2016-09-27 Air-conditioner

Publications (1)

Publication Number Publication Date
JP2018054280A true JP2018054280A (en) 2018-04-05

Family

ID=61836385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016203920A Pending JP2018054280A (en) 2016-09-27 2016-09-27 Air-conditioner

Country Status (1)

Country Link
JP (1) JP2018054280A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553384A (en) * 2018-05-31 2019-12-10 浙江美尔凯特智能厨卫股份有限公司 Air conditioner and condensate water treatment system thereof
CN110617556A (en) * 2019-08-23 2019-12-27 石狮影见机械科技有限责任公司 Spraying energy saver of floor heating air conditioning equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110553384A (en) * 2018-05-31 2019-12-10 浙江美尔凯特智能厨卫股份有限公司 Air conditioner and condensate water treatment system thereof
CN110617556A (en) * 2019-08-23 2019-12-27 石狮影见机械科技有限责任公司 Spraying energy saver of floor heating air conditioning equipment

Similar Documents

Publication Publication Date Title
CN110748969B (en) Air conditioning system and control method thereof
JP4051487B2 (en) Heat pump shower booth
JP2013224813A (en) Spot air conditioner
JP4735573B2 (en) Ventilation air conditioner
KR101549691B1 (en) Energy-saving type thermo-hygrostat
CN110748963B (en) Air conditioner system, air conditioner and control method of air conditioner
JP2018054280A (en) Air-conditioner
CN108344086B (en) Refrigerating system based on evaporative condenser and control method thereof
KR20170089049A (en) air conditioner
KR101061884B1 (en) Airconditioner and Outdoor Heat Exchanger therefor
JP5913151B2 (en) Air conditioning and ventilation system
CN211146705U (en) Air conditioning system
CN108931070B (en) Wet film type low-temperature total heat recovery air-cooled heat pump unit
CN101619878B (en) Water film type air conditioner and indoor heat exchanger used thereby
CN214949408U (en) Ceiling air conditioner
JP5369260B2 (en) Air heat exchange system and air heat exchanger used
CN104154607A (en) Air-conditioner synergy device
CN101922772B (en) Multistage countercurrent flow heat exchange-evaporation-refrigeration device
KR100846000B1 (en) The whole type air conditioning system which becomes module
CN107238190A (en) A kind of air-conditioning
KR20210035684A (en) Small-Type Air Conditioner Mounted in Bathroom
HU228723B1 (en) Device for producing cold water for the purpose of cooling rooms
CN215951584U (en) Air conditioner
CN215951583U (en) Air conditioner
RU187300U1 (en) INTERNAL AIR CONDITIONING UNIT