JP2018053359A - Porous sponge copper, manufacturing method of porous sponge copper, porous sponge copper catalyst and manufacturing method of porous sponge copper catalyst - Google Patents

Porous sponge copper, manufacturing method of porous sponge copper, porous sponge copper catalyst and manufacturing method of porous sponge copper catalyst Download PDF

Info

Publication number
JP2018053359A
JP2018053359A JP2017164268A JP2017164268A JP2018053359A JP 2018053359 A JP2018053359 A JP 2018053359A JP 2017164268 A JP2017164268 A JP 2017164268A JP 2017164268 A JP2017164268 A JP 2017164268A JP 2018053359 A JP2018053359 A JP 2018053359A
Authority
JP
Japan
Prior art keywords
porous sponge
copper
sponge copper
aluminum
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017164268A
Other languages
Japanese (ja)
Inventor
安邦 蔡
An Bang Cai
安邦 蔡
聡 亀岡
Satoshi Kameoka
聡 亀岡
一恵 西本
Kazue Nishimoto
一恵 西本
孝之 櫻井
Takayuki Sakurai
孝之 櫻井
弘康 鈴鹿
Hiroyasu Suzuka
弘康 鈴鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
NE Chemcat Corp
Original Assignee
Tohoku University NUC
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, NE Chemcat Corp filed Critical Tohoku University NUC
Publication of JP2018053359A publication Critical patent/JP2018053359A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel porous sponge copper, a manufacturing method of the porous sponge copper and a catalyst consisting of the porous sponge copper.SOLUTION: There is provided a novel porous sponge copper having the number of boundary lines of twin crystal observed by a transmission electron microscope (TEM) of 10 or more per 50 nm. There is provided a porous sponge copper having specific surface area of 0.5 to 50 m/g and twin crystal lamella distance of 0.5 to 10 nm. There is provided a porous sponge copper having reduction rate of specific surface area after a heat treatment at 600°C for 6 hours of 20% or less and reduction value of specific surface after a methanol steam modification reaction of 10% or less. There is provided a manufacturing method of the novel porous sponge copper by a dissolving treatment of aluminum with using a hydrochloric acid solution from particles obtained through dissolving mixing aluminum and copper. There is provided a catalyst consisting of the novel hydrochloric acid for methanol steam modification, methanol synthesis, aqueous gas shift reaction, and hydrogenation or hydrogenation degradation or dehydration or the like of an organic compound.SELECTED DRAWING: Figure 1

Description

本発明は新規な多孔質スポンジ銅、多孔質スポンジ銅の製造方法並びにその触媒用途に関するものである。   The present invention relates to a novel porous sponge copper, a method for producing porous sponge copper, and its catalytic use.

スポンジ金属とは多孔質の金属または合金のことを言い、一般に、2種以上の金属の合金から、合金を構成する金属の少なくとも一種が溶解しないで残る条件で、一部の金属を溶解除去することにより製造される。金属の溶解除去にあたっては、酸やアルカリを使用して除去対象である金属を溶解することが知られている。このようなスポンジ金属はラネー(登録商標)合金として知られており、触媒として使用されるものはラネー触媒と言われている。   Sponge metal refers to a porous metal or alloy. In general, a part of metal is dissolved and removed from an alloy of two or more metals under the condition that at least one of the metals constituting the alloy remains undissolved. It is manufactured by. In dissolving and removing a metal, it is known to dissolve the metal to be removed using an acid or an alkali. Such a sponge metal is known as a Raney (registered trademark) alloy, and what is used as a catalyst is called a Raney catalyst.

スポンジ金属としては、ニッケルやクロムをスポンジ化したものが古くから知られているが、使用する金属の種類やその組合せによって多様な展開があり、ニッケルやクロムの他、金属として金(Au)を使用したスポンジ金属についても報告され、その触媒としての用途も期待されている(特許文献1)。   Sponge metal nickel or chromium has been known for a long time, but there are various developments depending on the type of metal used and its combination. In addition to nickel and chromium, gold (Au) is used as the metal. The sponge metal used was also reported, and its use as a catalyst is also expected (Patent Document 1).

触媒に使用される金属としては、上記のニッケル、クロム、金の他、白金などの貴金属が有名であるが、銅も触媒としての用途が期待される金属である。銅はそのものを触媒として用いる他、貴金属やゼオライトに添加して活性の向上などを図るための助触媒としての用途も知られている。銅系触媒はメタノール水蒸気改質、メタノール合成、水性ガスシフト反応(water−gas shift reaction) ならびに有機化合物の水素化や水素化分解反応などに対し広範に用いられている。   As the metal used for the catalyst, noble metals such as platinum are famous in addition to the above nickel, chromium and gold, but copper is also a metal expected to be used as a catalyst. In addition to using copper itself as a catalyst, copper is also known to be used as a co-catalyst for adding to noble metals and zeolites to improve activity. Copper catalysts are widely used for methanol steam reforming, methanol synthesis, water-gas shift reaction, and hydrogenation and hydrocracking reactions of organic compounds.

スポンジ金属の製法として、2種以上の金属を溶融混合した金属に対し、アルカリ溶液や酸溶液をもって溶融混合物から一部の金属を溶解除去(リーチング)することで多孔質化する方法が知られている。ここで溶解除去される金属としてはアルミニウムが選択されることが多く、アルミニウムと残留させるべき金属とが溶融混合される。このようにアルミニウムを使用する場合は、酸性環境下で不動態を形成して溶解が困難になる場合があることから、リーチング処理には水酸化ナトリウム等のアルカリ溶液を用いることが一般的である。   As a method for producing sponge metal, a method is known in which a metal obtained by melting and mixing two or more metals is made porous by dissolving and removing (leaching) a part of the metal from the molten mixture with an alkali solution or an acid solution. Yes. Here, aluminum is often selected as the metal to be dissolved and removed, and aluminum and the metal to be left are melted and mixed. When aluminum is used in this way, it may be difficult to dissolve by forming a passivity in an acidic environment, and therefore it is common to use an alkali solution such as sodium hydroxide for the leaching treatment. .

特開2015−29974号公報Japanese Patent Laid-Open No. 2015-29974

このように従来から知られているスポンジ金属であるが、産業の発展に伴い従来にない新規な構成のスポンジ金属が求められている。   As described above, the sponge metal is conventionally known, but with the development of the industry, there is a demand for a sponge metal having a novel structure which has not been conventionally used.

本発明者らは鋭意検討を重ねた結果、銅とアルミニウムの溶融混合物に対して塩酸(HCl)水溶液によるリーチングをもってアルミニウムを溶解除去することで、従来に無い新規な多孔質スポンジ銅が得られることを見いだし、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a novel porous sponge copper can be obtained by dissolving and removing aluminum by leaching with a hydrochloric acid (HCl) aqueous solution to a molten mixture of copper and aluminum. As a result, the present invention has been completed.

本発明の多孔質スポンジ銅は、高温で熱処理を施したり、加熱を伴う反応において触媒として使用しても比表面積の減少が少なく熱安定性に優れ、触媒として繰り返しの使用や熱的に過酷な条件での使用においても高い触媒活性を維持することができ、耐久性に優れるものである。 The porous sponge copper of the present invention is heat-treated at a high temperature, and even when used as a catalyst in a reaction involving heating, the specific surface area does not decrease and is excellent in thermal stability. High catalytic activity can be maintained even when used under conditions, and the durability is excellent.

図1は、HCl水溶液でリーチング処理した多孔質スポンジ銅([実施例スポンジ銅])のTEM(透過型電子顕微鏡,Transmission Electron Microscope)による観察画像である。右は細孔部分の拡大画像であり、円で囲んだ部分は表面に付着した酸化物(CuO)である。FIG. 1 is an observation image of a porous sponge copper ([Example Sponge Copper]) leached with an aqueous HCl solution using a transmission electron microscope (Transmission Electron Microscope). On the right is an enlarged image of the pore portion, and the portion surrounded by a circle is an oxide (Cu 2 O) attached to the surface. 図2は、HCl水溶液でリーチング処理した多孔質スポンジ銅のTEM観察画像(左)及び電子線回折パターン(右)である。矢印は双晶成長面の方向を示す。FIG. 2 is a TEM observation image (left) and electron diffraction pattern (right) of porous sponge copper leached with an aqueous HCl solution. Arrows indicate the direction of twin growth planes. 図3は、HCl水溶液でリーチング処理した多孔質スポンジ銅のTEM観察による(111)面の状態を表す画像である。破線は双晶の境界面を示す。FIG. 3 is an image showing the state of the (111) plane of a porous sponge copper leached with an aqueous HCl solution by TEM observation. Dashed lines indicate twin boundaries. 図4は、HCl水溶液でリーチング処理した多孔質スポンジ銅のTEM観察画像であり、細孔表面(空隙)に向けてファセットによる凹凸を有している状態を示す。FIG. 4 is a TEM observation image of porous sponge copper leached with an aqueous HCl solution, and shows a state in which there are irregularities due to facets toward the pore surface (voids). 図5は、HCl水溶液でリーチング処理した多孔質スポンジ銅について、リーチング処理後(触媒反応前)の双晶境界面の距離(双晶ラメラ距離)の頻度分布を示すグラフである。FIG. 5 is a graph showing the frequency distribution of the twin boundary surface distance (twin lamella distance) after the leaching treatment (before the catalytic reaction) for porous sponge copper leached with an aqueous HCl solution. 図6は、HCl水溶液でリーチング処理した多孔質スポンジ銅、水酸化ナトリウム(NaOH)水溶液でリーチング処理した多孔質スポンジ銅([比較例スポンジ銅])、又は銅粉末を触媒としてメタノール水蒸気改質反応(Steam Reforming of Methanole;SRM)を行ったときの反応温度に対する水素生成速度を示したグラフである。FIG. 6 shows a methanol steam reforming reaction using porous sponge copper leached with an aqueous HCl solution, porous sponge copper leached with an aqueous sodium hydroxide (NaOH) solution ([comparative sponge copper]), or copper powder as a catalyst. It is the graph which showed the hydrogen production rate with respect to reaction temperature when performing (Steam Reforming of Methanol; SRM). 図7は、HCl又はNaOH水溶液でリーチング処理した多孔質スポンジ銅の触媒反応前(as leached)、触媒反応後(after SRM)及びアニール処理後(after annealed)におけるXRD(X線回折,X‐ray diffraction)による解析結果を表した図面である。FIG. 7 shows XRD (X-ray diffraction, X-ray) of porous sponge copper leached with HCl or NaOH aqueous solution before catalytic reaction (after SRM), after catalytic reaction (after SRM), and after annealing (after annealed). It is a figure showing the analysis result by diffraction). 図8は、NaOH水溶液でリーチング処理した多孔質スポンジ銅の触媒反応前後におけるSEM(走査型電子顕微,Scanning Electron Microscope)及びTEMによる観察画像である。FIG. 8 is images observed by SEM (Scanning Electron Microscope) and TEM before and after the catalytic reaction of porous sponge copper leached with an aqueous NaOH solution. 図9は、NaOH水溶液でリーチング処理した多孔質スポンジ銅について、触媒反応前後におけるTEMによる観察結果の拡大画像である。FIG. 9 is an enlarged image of observation results by TEM before and after the catalytic reaction for porous sponge copper leached with an aqueous NaOH solution. 図10は、NaOH水溶液でリーチング処理した多孔質スポンジ銅の触媒反応前後におけるTEMによる観察画像である。破線は双晶の境界面を示す。FIG. 10 is an observation image by TEM before and after the catalytic reaction of porous sponge copper leached with an aqueous NaOH solution. Dashed lines indicate twin boundaries. 図11は、NaOH水溶液でリーチング処理した多孔質スポンジ銅について、触媒反応前の双晶境界面の距離(双晶ラメラ距離)の頻度分布を示すグラフである。FIG. 11 is a graph showing the frequency distribution of the twin boundary surface distance (twin lamella distance) before the catalytic reaction for porous sponge copper leached with an aqueous NaOH solution. 図12は、HCl水溶液でリーチング処理した多孔質スポンジ銅の、触媒反応後におけるTEMによる拡大画像(上段左、中央)、及び電子線回折パターン(上段右)である。下段は、電子線回折パターン中の番号(1〜3)を付した面の拡大画像である。FIG. 12 is an enlarged image (upper left, center) and electron beam diffraction pattern (upper right) of a porous sponge copper leached with an aqueous HCl solution by TEM after catalytic reaction. The lower row is an enlarged image of the surface given numbers (1 to 3) in the electron diffraction pattern. 図13は、HCl水溶液でリーチング処理した多孔質スポンジ銅の、触媒反応後における状態を更に拡大したTEM画像である。FIG. 13 is an enlarged TEM image of the porous sponge copper leached with an aqueous HCl solution after the catalytic reaction. 図14は、HCl水溶液でリーチング処理した多孔質スポンジ銅の、リーチング処理後(触媒反応前)の状態(a)、触媒として加熱反応後の状態(b)、アニール処理(600℃)後の状態(c)のTEM画像、及び触媒反応前後の双晶境界面の距離の変化をあらわした図面である。FIG. 14 shows a state of porous sponge copper leached with an aqueous HCl solution after leaching (before catalyst reaction) (a), after heating reaction as a catalyst (b), and after annealing (600 ° C.). It is the TEM image of (c), and the drawing showing the change of the distance of the twin interface before and behind the catalytic reaction. 図15は、NaOH水溶液でリーチング処理をした多孔質スポンジ銅と、HCl水溶液でリーチング処理した多孔質スポンジ銅について、リーチング処理後の状態、触媒として加熱反応後の状態、アニール処理後の状態(HCl水溶液リーチング処理のみ)のTEM画像と、比表面積値の変化を示す図面である。FIG. 15 shows a state of porous sponge copper leached with an aqueous NaOH solution and porous sponge copper leached with an aqueous HCl solution, after leaching, after a heating reaction as a catalyst, and after annealing (HCl It is drawing which shows the TEM image of only aqueous solution leaching process, and the change of a specific surface area value.

本発明の多孔質スポンジ銅は、例えば、アルミニウムと銅の溶融混合を経て得られた粒子から、塩酸水溶液を使用してアルミニウムを溶解除去(リーチング処理)することによって得られるものである。具体的には、例えば、アルミニウム及び銅を所定の組成となるように秤量し、アーク溶解炉にて溶融混合した後、冷却することにより、アルミニウム及び銅からなる金属間化合物のインゴットを得る。このインゴットを必要に応じアニール処理した後、粉砕してアルミニウム及び銅の金属間化合物粒子を得る。アルミニウム合金中の銅の原子%組成比は、10〜40原子%が好ましく、15〜33原子%がより好ましい。また、アルミニウム及び銅の溶融混合物を、ガスアトマイズ法、水アトマイズ法、回転円板遠心噴霧法などの方法によって粒子化してもよい。金属間化合物粒子の粒子径は特に限定されないが、篩分け法等により、10〜120μmの範囲に調整することが好ましく、10〜25μmがより好ましい。   The porous sponge copper of the present invention is obtained, for example, by dissolving and removing aluminum (leaching treatment) from particles obtained through melt mixing of aluminum and copper using an aqueous hydrochloric acid solution. Specifically, for example, aluminum and copper are weighed to have a predetermined composition, melted and mixed in an arc melting furnace, and then cooled to obtain an ingot of an intermetallic compound composed of aluminum and copper. The ingot is annealed as necessary and then pulverized to obtain aluminum and copper intermetallic compound particles. The atomic percent composition ratio of copper in the aluminum alloy is preferably 10 to 40 atomic percent, and more preferably 15 to 33 atomic percent. Moreover, you may granulate the molten mixture of aluminum and copper by methods, such as a gas atomizing method, a water atomizing method, and a rotating disc centrifugal spraying method. The particle size of the intermetallic compound particles is not particularly limited, but is preferably adjusted to a range of 10 to 120 μm, more preferably 10 to 25 μm by a sieving method or the like.

この金属間化合物粒子を塩酸(HCl)水溶液でリーチング処理し、アルミニウムを選択的に溶出させる。塩酸水溶液の濃度は特に限定されないが、5〜37質量%が好ましく、10〜20質量%がより好ましい。この塩酸水溶液の金属間化合物粒子に対する処理量は特に制限されないが、例えば、5gの金属間化合物粒子に対し10質量%塩酸水溶液250g程度で処理すればよい。リーチング処理条件も特に限定されるものではなく、例えば室温で24時間程度行えばよい。リーチング処理による金属間化合物からのアルミニウム溶出量は、金属間化合物中のアルミニウム全量に対して95%以上が好ましく、98%以上がより好ましい。リーチング処理後、水溶液中から残留物を取り出し、必要に応じ、水洗、乾燥、H還元処理等を行うことにより、本発明の多孔質スポンジ銅が得られる。 The intermetallic compound particles are leached with an aqueous hydrochloric acid (HCl) solution to selectively elute aluminum. Although the density | concentration of hydrochloric acid aqueous solution is not specifically limited, 5-37 mass% is preferable and 10-20 mass% is more preferable. The amount of treatment of the aqueous hydrochloric acid solution with respect to the intermetallic compound particles is not particularly limited. For example, the treatment may be performed with about 250 g of 10 mass% aqueous hydrochloric acid solution with respect to 5 g of intermetallic compound particles. The leaching process conditions are not particularly limited, and may be performed, for example, at room temperature for about 24 hours. The amount of aluminum eluted from the intermetallic compound by the leaching treatment is preferably 95% or more, and more preferably 98% or more with respect to the total amount of aluminum in the intermetallic compound. After the leaching treatment, the residue is taken out from the aqueous solution and, if necessary, washed with water, dried, H 2 reduction treatment, etc., to obtain the porous sponge copper of the present invention.

かくして得られる本発明の多孔質スポンジ銅は、高密度の双晶構造を有しており、透過型電子顕微鏡(Transmission Electron Microscope;TEM)により観察される双晶の境界線の数が、50nmあたり10以上、好ましくは15以上である双晶組織を含む。また双晶組織における双晶ラメラ距離(双晶境界面の距離)は1〜5nmであることが好ましく、より好ましくは1.5〜2.5nmである。双晶ラメラ距離は、TEM像によって求められる値である。多孔質スポンジ銅を構成する双晶粒子(リガメント)は、平行な境界面を持って構成される。双晶粒子の大きさ(リガメント径)は20〜200nmが好ましく、60〜200nmがより好ましい。本明細書において、双晶の境界線の数、双晶ラメラ距離、リガメント径は、FEI社製透過型電子顕微鏡、型番:Titan G2 60−300による加速電圧300kVで測定される値である。   The porous sponge copper of the present invention thus obtained has a high density twin structure, and the number of twin boundaries observed by a transmission electron microscope (TEM) is about 50 nm. It contains a twin structure that is 10 or more, preferably 15 or more. Moreover, it is preferable that the twin lamella distance (distance of a twin interface) in a twin structure is 1-5 nm, More preferably, it is 1.5-2.5 nm. The twin lamella distance is a value obtained from a TEM image. The twin particles (ligaments) constituting the porous sponge copper are configured to have parallel boundary surfaces. The size (ligament diameter) of twin particles is preferably 20 to 200 nm, more preferably 60 to 200 nm. In the present specification, the number of twin boundaries, twin lamella distance, and ligament diameter are values measured at an acceleration voltage of 300 kV using a transmission electron microscope manufactured by FEI, model number: Titan G2 60-300.

本発明の多孔質スポンジ銅の比表面積は、好ましくは0.5〜50m/g、より好ましくは1.0〜50m/g、さらに好ましくは1.0〜5.0m/g、特に好ましくは1.0〜4.0m/gである。本明細書において、比表面積はBET法により求められる値である。本発明の多孔質スポンジ銅は、このような多孔質構造に基づき優れた触媒活性を有し、加熱を伴う反応において触媒として使用しても比表面積の減少がほとんどない。例えば、反応温度240〜360℃でのメタノール水蒸気改質反応(Steam Reforming of Methanole;SRM)においても、比表面積の減少はほとんどなく、例えば、比表面積の減少率が好ましくは10%以下、より好ましくは5%以下である。また、より高温で熱処理(アニール処理)しても比表面積の減少はほとんどなく、例えば、600℃熱処理後の比表面積の減少率が、好ましくは20%以下、より好ましくは10%以下である。比表面積の減少率は、下記式によって求められる。
比表面積の減少率(%)=(S−S)×100/S
:SRM反応前または熱処理前の比表面積
:SRM反応後または熱処理後の比表面積
The specific surface area of the porous sponge copper of the present invention is preferably 0.5 to 50 m 2 / g, more preferably 1.0 to 50 m 2 / g, still more preferably 1.0 to 5.0 m 2 / g, particularly Preferably it is 1.0-4.0m < 2 > / g. In the present specification, the specific surface area is a value determined by the BET method. The porous sponge copper of the present invention has excellent catalytic activity based on such a porous structure, and even when used as a catalyst in a reaction involving heating, there is almost no decrease in specific surface area. For example, even in a methanol reforming reaction (SRM) at a reaction temperature of 240 to 360 ° C., there is almost no decrease in the specific surface area. For example, the reduction rate of the specific surface area is preferably 10% or less, more preferably. Is 5% or less. Further, even when heat treatment (annealing) is performed at a higher temperature, the specific surface area hardly decreases. For example, the reduction rate of the specific surface area after heat treatment at 600 ° C. is preferably 20% or less, more preferably 10% or less. The reduction rate of the specific surface area is obtained by the following formula.
Reduction rate of specific surface area (%) = (S 0 −S 1 ) × 100 / S 0
S 0 : Specific surface area before SRM reaction or before heat treatment S 1 : Specific surface area after SRM reaction or after heat treatment

このように、高温でも比表面積の減少が少ないことに基づき、本発明の多孔質スポンジ銅は高温条件でも高い触媒活性を発揮する。例えば、反応温度240〜360℃でのメタノール水蒸気改質反応において、320℃での水素生成速度よりも360℃での水素生成速度の方が高いことが好ましく、より好ましくは1.2倍以上高く、さらに1.5倍以上高いことが好ましい。また昇温時の320℃における水素生成速度に対する降温時の320℃における水素生成速度の減少率が、好ましくは40%以下、より好ましくは30%以下である。水素生成速度の減少率は、下記式によって求められる。
水素生成速度の減少率(%)=(V−V)×100/V
:昇温時の320℃における水素生成速度
:降温時の320℃における水素生成速度
As described above, the porous sponge copper of the present invention exhibits high catalytic activity even under high temperature conditions, based on the fact that the decrease in specific surface area is small even at high temperatures. For example, in the methanol steam reforming reaction at a reaction temperature of 240 to 360 ° C., the hydrogen production rate at 360 ° C. is preferably higher than the hydrogen production rate at 320 ° C., more preferably 1.2 times higher. Further, it is preferably 1.5 times higher. Further, the rate of decrease in the hydrogen production rate at 320 ° C. when the temperature is lowered is preferably 40% or less, more preferably 30% or less, relative to the hydrogen production rate at 320 ° C. when the temperature is raised. The reduction rate of the hydrogen production rate is obtained by the following equation.
Reduction rate of hydrogen production rate (%) = (V 0 −V 1 ) × 100 / V 0
V 0 : Hydrogen production rate at 320 ° C. during temperature increase V 1 : Hydrogen production rate at 320 ° C. during temperature decrease

本発明の多孔質スポンジ銅を粒子のまま本発明の触媒として用いてもよく、押出成形や打錠成形によって成形体としたり、固定床触媒等として使用することもできる。   The porous sponge copper of the present invention may be used as the catalyst of the present invention in the form of particles, or may be formed into a molded body by extrusion molding or tableting, or may be used as a fixed bed catalyst or the like.

以上のように、本発明の多孔質スポンジ銅は、高温で熱処理を施したり、加熱を伴う反応において触媒として使用しても比表面積の減少が少なく熱安定性に優れ、触媒として繰り返しの使用や熱的に過酷な条件での使用において高い触媒活性を維持することができ、耐久性に優れるものである。本発明の触媒は、種々の反応に使用することができ、例えば、メタノール水蒸気改質反応、NO−CO反応等が例示される。また他の触媒を担持させることもできる。   As described above, the porous sponge copper of the present invention is excellent in thermal stability with little reduction in specific surface area even when subjected to heat treatment at a high temperature or used as a catalyst in a reaction involving heating. High catalytic activity can be maintained in use under thermally severe conditions, and the durability is excellent. The catalyst of the present invention can be used for various reactions, and examples thereof include methanol steam reforming reaction and NO-CO reaction. Other catalysts can also be supported.

以下、図面を引用しながら本発明の具体的な実施形態を説明するが、本発明は以下の実施例に限定されるものではなく、その趣旨を逸脱しない限り広く展開可能であることは言うまでもない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples, and it is needless to say that the present invention can be widely deployed without departing from the gist thereof. .

(実施例1)
[多孔質スポンジ銅の製造]:塩酸処理
<金属間化合物の合成工程>
先ず、Cu(純度:99.9質量%)とAl(純度:99.9質量%)とを各2.70g(Cu)、2.30g(Al)秤量し、これらをアーク溶解炉装置(株式会社GES製、「GMAC−1100」)の溶解用チャンバー内に導入して、溶解用チャンバー内のAr圧:500Torr、アーク電極電流:120Aの条件で溶解した後、自然放冷して固体化させ、CuとAlとを含有する金属間化合物のインゴットを製造した。
次に、前記インゴットを石英反応菅に真空封入(1×10−5Torr)し、前記インゴットに対してアニール処理(550℃、24時間)を行った。次いで、アニール処理後の金属間化合物のインゴットを粉砕し微粉末化させ、最終的に篩を用いて25μm以下に整粒し、微粉末状の金属間化合物(組成:AlCu)を得た。なお、このようにして得られた金属間化合物をXRDにより測定したところ、金属間化合物はCuとAlとが原子レベルで混合したAlでもCuでもない別の合金状態となっていることが確認された。
Example 1
[Production of Porous Sponge Copper]: Hydrochloric Acid Treatment <Intermetallic Compound Synthesis Process>
First, 2.70 g (Cu) and 2.30 g (Al) of Cu (purity: 99.9% by mass) and Al (purity: 99.9% by mass) were weighed, and these were weighed into an arc melting furnace apparatus (stock) (GMAC-1100, manufactured by GES, Inc.) and dissolved in the melting chamber under the conditions of Ar pressure: 500 Torr and arc electrode current: 120 A, and then naturally cooled to solidify. An ingot of an intermetallic compound containing Cu and Al was produced.
Next, the ingot was vacuum sealed (1 × 10 −5 Torr) in a quartz reaction vessel, and the ingot was annealed (550 ° C., 24 hours). Next, the ingot of the intermetallic compound after the annealing treatment was pulverized to be finely powdered, and finally sized to 25 μm or less using a sieve to obtain a finely powdered intermetallic compound (composition: Al 2 Cu). . In addition, when the intermetallic compound obtained in this way was measured by XRD, it was confirmed that the intermetallic compound was in another alloy state in which Cu and Al were mixed at the atomic level and neither Al nor Cu. It was.

<Alの選択的溶出(leaching)工程>
先ず、上述のようにして得られた微粉末状の金属間化合物5gを10質量%HCl水溶液250gに投入し(室温、24時間)、金属間化合物からAlを溶出させた。次いで、前記水溶液中から前記金属間化合物の残留物を取り出し、水洗、乾燥(100℃、1時間)、H還元処理してCuを含有する多孔性金属を製造した。なお、Alの溶出量は、前記金属間化合物中のAlの全量に対して99%であった。得られた粒子の比表面積は1.08m/gであった。以下これを[実施例スポンジ銅]という。得られた[実施例スポンジ銅]について、TEMにより組織観察を行った(図1〜4)。[実施例スポンジ銅]は、全体に高密度の双晶が導入され、双晶界面が極めて緻密であることが確認された。TEM画像に基づき求めた双晶間の距離は平均2.3nmであり(図5)、50nmあたり双晶の境界線の数は21.7本であった。またリガメント径は60〜200nmであった。細孔表面には、ファセットによる凹凸構造を有しており、表面に酸化物(CuO)が付着していることが認められた(図1、4)。双晶粒子(リガメント)は平行な境界面をもって構成され、他の平行な境界面をもって構成される双晶粒子と90度の角度で交接していた(図2)。
<Al selective leaching step>
First, 5 g of finely powdered intermetallic compound obtained as described above was added to 250 g of a 10% by mass HCl aqueous solution (room temperature, 24 hours), and Al was eluted from the intermetallic compound. Subsequently, the residue of the intermetallic compound was taken out from the aqueous solution, washed with water, dried (100 ° C., 1 hour), and subjected to H 2 reduction treatment to produce a porous metal containing Cu. The elution amount of Al was 99% with respect to the total amount of Al in the intermetallic compound. The specific surface area of the obtained particles was 1.08 m 2 / g. Hereinafter, this is referred to as [Example Sponge Copper]. About the obtained [Example sponge copper], structure | tissue observation was performed by TEM (FIGS. 1-4). [Example Sponge Copper] was confirmed that a high-density twin was introduced to the whole and the twin interface was extremely dense. The distance between twins obtained based on the TEM image was 2.3 nm on average (FIG. 5), and the number of twin boundaries per 50 nm was 21.7. The ligament diameter was 60 to 200 nm. The surface of the pores had a concavo-convex structure due to facets, and it was recognized that oxides (Cu 2 O) were attached to the surface (FIGS. 1 and 4). Twin grains (ligaments) were composed of parallel boundary surfaces, and were in contact with twin grains composed of other parallel boundary surfaces at an angle of 90 degrees (FIG. 2).

(比較例1)
[スポンジ銅の製造]:水酸化ナトリウム処理
水酸化ナトリウムを使用してアルミニウムのリーチング処理を施した例を以下に示す。
(Comparative Example 1)
[Production of Sponge Copper]: Sodium Hydroxide Treatment An example of aluminum leaching treatment using sodium hydroxide is shown below.

<Alの選択的溶出(leaching)工程>
Alの選択的溶出工程において、10質量%HCl水溶液の代わりに10質量%NaOH水溶液を用いた以外は実施例1と同様にして、Cuを含有する多孔性金属を得た。なお、Alの溶出量は、金属間化合物中のAlの全量に対して96%であった。得られた粒子の比表面積は5.12m/gであった。以下これを[比較例スポンジ銅]という。
<Al selective leaching step>
In the selective elution step of Al, a porous metal containing Cu was obtained in the same manner as in Example 1 except that a 10% by mass NaOH aqueous solution was used instead of the 10% by mass HCl aqueous solution. The elution amount of Al was 96% with respect to the total amount of Al in the intermetallic compound. The specific surface area of the obtained particles was 5.12 m 2 / g. Hereinafter, this is referred to as [Comparative Sponge Copper].

<触媒活性試験> :メタノール水蒸気改質反応
上記の方法で得られた多孔性金属0.6gを秤量し、固定床流通式反応装置で常圧、反応温度240〜360℃(昇温速度10[℃/min])に設定し、水/ メタノールのモル比1.5の混合液を流通させた。ガスの流通条件は、LHSV=60h−1とした。発生ガスをガスクロマトグラフィーにより分析し、水素生成速度により触媒の活性を評価した。この評価においては、[実施例スポンジ銅]と[比較例スポンジ銅]に加え、市販の銅粉末 (和光純薬工業株式会社、粒径75μm未満、製品名:030−18352)についても評価を行った。結果を図6に示す。また反応前後の[実施例スポンジ銅]及び[比較例スポンジ銅]について、BET比表面積測定(表1)、粉末X線回折(図7)、TEMおよびSEMによる組織観察(図8〜15、表1)を行った。なお、[実施例スポンジ銅]及び[比較例スポンジ銅]を熱処理(600℃、6時間;after annealling)したものについても比表面積の測定及びリガメント径の測定を行った。
<Catalyst activity test>: Methanol steam reforming reaction 0.6 g of the porous metal obtained by the above method was weighed and measured at normal pressure and reaction temperature of 240 to 360 ° C. (temperature increase rate of 10 [ [° C./min]), and a water / methanol mixture having a molar ratio of 1.5 was circulated. The gas flow conditions were LHSV = 60 h −1 . The generated gas was analyzed by gas chromatography, and the activity of the catalyst was evaluated by the hydrogen production rate. In this evaluation, in addition to [Example Sponge Copper] and [Comparative Sponge Copper], a commercially available copper powder (Wako Pure Chemical Industries, Ltd., particle size of less than 75 μm, product name: 030-18352) was also evaluated. It was. The results are shown in FIG. Further, for [Example Sponge Copper] and [Comparative Sponge Copper] before and after the reaction, BET specific surface area measurement (Table 1), powder X-ray diffraction (FIG. 7), structure observation by TEM and SEM (FIGS. 8 to 15, Table) 1) was performed. In addition, the specific surface area and the ligament diameter were also measured for [Example Sponge Copper] and [Comparative Example Sponge Copper] heat treated (600 ° C., 6 hours; after annealing).

図6に示すとおり、[比較例スポンジ銅](NaOH)は、320℃から360℃に昇温すると触媒活性が低下し、水素生成速度が減少したが、[実施例スポンジ銅](HCl)は、360℃まで昇温に伴って水素生成速度が増大し続け、高い耐熱性を有していることが実証された。また、[比較例スポンジ銅]は、反応温度を下げていった際の水素生成速度が昇温時の同温度での水素生成速度と比較して著しく低下していたのに対し、[実施例スポンジ銅]は、降温時と昇温時の同温度での触媒活性がほとんど変わらず、320℃での減少率はほぼ20%と僅かなものであった。なお、市販の銅粉末(Powder)は、ほとんど触媒活性を示さなかった。   As shown in FIG. 6, [Comparative Example Sponge Copper] (NaOH) decreased in catalytic activity and reduced hydrogen production rate when heated from 320 ° C. to 360 ° C., but [Example Sponge Copper] (HCl) It was proved that the hydrogen generation rate continued to increase as the temperature rose to 360 ° C., and it had high heat resistance. [Comparative Example Sponge Copper] showed that the hydrogen production rate when the reaction temperature was lowered was significantly lower than the hydrogen production rate at the same temperature when the temperature was raised, whereas [Examples] Sponge copper] showed almost no change in the catalytic activity at the same temperature when the temperature was lowered and when the temperature was raised, and the decrease rate at 320 ° C. was as little as 20%. The commercially available copper powder (Powder) showed almost no catalytic activity.

<BET比表面積>
表1より、[比較例スポンジ銅]では触媒反応の前後における比表面積の減少がみられるのに対し、[実施例スポンジ銅]では比表面積の変化はなかった。さらに600℃熱処理によって、[比較例スポンジ銅]では著しく比表面積が減少するのに対し、[実施例スポンジ銅]はほとんど減少が認められなかった。このことから、本発明の多孔質スポンジ銅は、高い熱的安定性を有し、触媒としての繰り返し使用や熱的に過酷な条件での使用において触媒活性を維持でき、耐久性に優れることが示された。なお、[実施例スポンジ銅]ではリーチング処理後の比表面積値が1.08(m/g)と[比較例スポンジ銅]の5.12(m/g)と比べて低いにも関わらず高い触媒活性を発揮している。
<BET specific surface area>
From Table 1, the specific surface area decreased before and after the catalytic reaction in [Comparative Sponge Copper], whereas the specific surface area did not change in [Example Sponge Copper]. Furthermore, the specific surface area of [Comparative Sponge Copper] is significantly reduced by heat treatment at 600 ° C., whereas [Example Sponge Copper] hardly shows any decrease. From this, the porous sponge copper of the present invention has high thermal stability, can maintain catalytic activity in repeated use as a catalyst and use under severe heat conditions, and is excellent in durability. Indicated. In [Example Sponge Copper], although the specific surface area value after leaching was 1.08 (m 2 / g), it was lower than 5.12 (m 2 / g) of [Comparative Example Sponge Copper]. It exhibits high catalytic activity.

<XRD>
図7に示すとおり、[実施例スポンジ銅]及び[比較例スポンジ銅]はいずれも、SRM反応前後の粉末X線回折パターンにおいて、銅あるいは酸化銅によるピーク変化がほとんど認められなかった。600℃熱処理後も同様に変化はなかった。
<XRD>
As shown in FIG. 7, in [Example Sponge Copper] and [Comparative Sponge Copper], almost no peak change due to copper or copper oxide was observed in the powder X-ray diffraction patterns before and after the SRM reaction. There was no change after heat treatment at 600 ° C.

<組織観察>
[比較例スポンジ銅]では、触媒反応前は、双晶ラメラ距離3.5nmの双晶組織を有し、粒子径(リガメント径)50nm程度の均一なポーラス構造を有していたが、触媒反応後、部分的な凝集・粒成長が生じ、粒子径の増大が認められた(図8〜11)。これに対し、[実施例スポンジ銅]では触媒反応後における粒子径の増大は認められず、多孔質としての状態も維持され、双晶組織も密な状態を保っていることが分かった(図12〜15)。600℃熱処理後も、密な双晶構造は消滅するが、なおポーラス構造は維持される(図14(c))。
<Tissue observation>
[Comparative Sponge Copper] had a twin structure with a twin lamella distance of 3.5 nm and a uniform porous structure with a particle diameter (ligament diameter) of about 50 nm before the catalytic reaction. Later, partial agglomeration and grain growth occurred, and an increase in particle diameter was observed (FIGS. 8 to 11). On the other hand, in [Example Sponge Copper], it was found that the particle diameter did not increase after the catalytic reaction, the porous state was maintained, and the twin structure was kept in a dense state (see FIG. 12-15). Even after heat treatment at 600 ° C., the dense twin structure disappears, but the porous structure is maintained (FIG. 14C).

本発明の多孔質スポンジ銅は、高温で熱処理を施したり、加熱を伴う反応において触媒として使用しても比表面積の減少が少なく、触媒として繰り返しの使用や熱的に過酷な条件での使用において高い触媒活性を維持することができ、耐久性に優れるものである。そのため、メタノール水蒸気改質反応やNO−CO反応など種々の反応における触媒として利用可能である。

The porous sponge copper of the present invention undergoes heat treatment at a high temperature or has a small decrease in specific surface area even when used as a catalyst in a reaction involving heating, and can be used repeatedly and as a catalyst under severe conditions. High catalytic activity can be maintained, and durability is excellent. Therefore, it can be used as a catalyst in various reactions such as methanol steam reforming reaction and NO-CO reaction.

Claims (12)

透過型電子顕微鏡(Transmission Electron Microscope;TEM)により観察される双晶の境界線の数が、50nmあたり10以上である多孔質スポンジ銅。 Porous sponge copper having 10 or more twin boundaries per 50 nm observed by a transmission electron microscope (TEM). 比表面積値が0.5〜50[m/g]である請求項1記載の多孔質スポンジ銅。 The porous sponge copper according to claim 1, which has a specific surface area value of 0.5 to 50 [m 2 / g]. 双晶ラメラ距離が0.5〜10nmである請求項1または2に記載の多孔質スポンジ銅。   The porous sponge copper according to claim 1 or 2, wherein a twin lamella distance is 0.5 to 10 nm. 600℃、6時間熱処理後の比表面積値の減少率が20%以下である請求項1〜3のいずれかの項記載の多孔質スポンジ銅。   The porous sponge copper according to any one of claims 1 to 3, wherein a reduction rate of a specific surface area value after heat treatment at 600 ° C for 6 hours is 20% or less. 請求項1〜4のいずれかの項記載の多孔質スポンジ銅からなる触媒。   The catalyst which consists of porous sponge copper in any one of Claims 1-4. メタノール水蒸気改質反応後の比表面積値の減少率が10%以下である請求項5記載の触媒。   The catalyst according to claim 5, wherein the reduction rate of the specific surface area value after the methanol steam reforming reaction is 10% or less. 反応温度240〜360℃のメタノール水蒸気改質反応において、昇温時に320℃よりも360℃の方が高い水素生成速度を示すものである請求項6記載の触媒。   The catalyst according to claim 6, wherein, in a methanol steam reforming reaction at a reaction temperature of 240 to 360 ° C, a hydrogen production rate is higher at 360 ° C than at 320 ° C when the temperature is raised. 反応温度240〜360℃のメタノール水蒸気改質反応において、昇温時の320℃での水素生成速度に対する降温時の320℃での水素生成速度の減少率が40%以下である請求項6または7に記載の触媒。   8. The methanol steam reforming reaction at a reaction temperature of 240 to 360 ° C., wherein the rate of decrease in the hydrogen production rate at 320 ° C. when the temperature is lowered relative to the hydrogen production rate at 320 ° C. when the temperature is raised is 40% or less. The catalyst according to 1. アルミニウムと銅の溶融混合を経て得られた粒子から、塩酸水溶液を使用してアルミニウムを溶解処理することを特徴とする多孔質スポンジ銅の製造方法。   A method for producing porous sponge copper, characterized in that aluminum is dissolved from a particle obtained by melting and mixing aluminum and copper using an aqueous hydrochloric acid solution. アルミニウムと銅の溶融混合を経て得られた粒子が、アルミニウムと銅からなる金属間化合物を粉砕した粒子である請求項9に記載の多孔質スポンジ銅の製造方法。   The method for producing porous sponge copper according to claim 9, wherein the particles obtained by melt-mixing aluminum and copper are particles obtained by pulverizing an intermetallic compound comprising aluminum and copper. アルミニウムと銅の溶融混合を経て得られた粒子から、塩酸水溶液を使用してアルミニウムを溶解処理することを特徴とする多孔質スポンジ銅触媒の製造方法。   A method for producing a porous sponge copper catalyst, comprising: dissolving aluminum from particles obtained by melt-mixing aluminum and copper using an aqueous hydrochloric acid solution. アルミニウムと銅の溶融混合を経て得られた粒子が、アルミニウムと銅からなる金属間化合物を粉砕した粒子である請求項11に記載の多孔質スポンジ銅触媒の製造方法。

The method for producing a porous sponge copper catalyst according to claim 11, wherein the particles obtained by melt mixing of aluminum and copper are particles obtained by pulverizing an intermetallic compound composed of aluminum and copper.

JP2017164268A 2016-09-22 2017-08-29 Porous sponge copper, manufacturing method of porous sponge copper, porous sponge copper catalyst and manufacturing method of porous sponge copper catalyst Pending JP2018053359A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016184916 2016-09-22
JP2016184916 2016-09-22

Publications (1)

Publication Number Publication Date
JP2018053359A true JP2018053359A (en) 2018-04-05

Family

ID=61835437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017164268A Pending JP2018053359A (en) 2016-09-22 2017-08-29 Porous sponge copper, manufacturing method of porous sponge copper, porous sponge copper catalyst and manufacturing method of porous sponge copper catalyst

Country Status (1)

Country Link
JP (1) JP2018053359A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133001A (en) * 2018-08-23 2019-01-04 杭州氢源素生物科技有限公司 A kind of metal powder and souring activity charcoal composite hydrogen manufacturing material
JP2020122181A (en) * 2019-01-30 2020-08-13 星和電機株式会社 Porous copper and method for producing the same
CN112091207A (en) * 2020-09-10 2020-12-18 安徽德诠新材料科技有限公司 Composite porous copper powder and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187093A (en) * 1981-05-15 1982-11-17 Chiyoda Chem Eng & Constr Co Ltd Treatment of waste water containing thiocyan
JP2014171958A (en) * 2013-03-08 2014-09-22 Nikko Rika Kk Sponge metal catalyst and production method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187093A (en) * 1981-05-15 1982-11-17 Chiyoda Chem Eng & Constr Co Ltd Treatment of waste water containing thiocyan
JP2014171958A (en) * 2013-03-08 2014-09-22 Nikko Rika Kk Sponge metal catalyst and production method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133001A (en) * 2018-08-23 2019-01-04 杭州氢源素生物科技有限公司 A kind of metal powder and souring activity charcoal composite hydrogen manufacturing material
JP2020122181A (en) * 2019-01-30 2020-08-13 星和電機株式会社 Porous copper and method for producing the same
CN112091207A (en) * 2020-09-10 2020-12-18 安徽德诠新材料科技有限公司 Composite porous copper powder and preparation method and application thereof
CN112091207B (en) * 2020-09-10 2024-04-26 安徽德诠新材料科技有限公司 Composite porous copper powder and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2018053359A (en) Porous sponge copper, manufacturing method of porous sponge copper, porous sponge copper catalyst and manufacturing method of porous sponge copper catalyst
JP2009114545A (en) Platinum and platinum alloy powders with high surface areas and low chlorine content, and processes for preparing these powders
JP2009114545A6 (en) High surface area and low chlorine content platinum and platinum alloy powders and processes for preparing these powders
CN112469519B (en) Method for producing a noble metal alloy and noble metal alloy obtained
KR101864602B1 (en) A preparation method of bimetallic catalyst for reverse water-gas shift reaction
Zhang et al. Concave Cu-Pd bimetallic nanocrystals: Ligand-based Co-reduction and mechanistic study
RU2468111C2 (en) Metal powders
Li et al. Shape-controlled synthesis of platinum-based nanocrystals and their electrocatalytic applications in fuel cells
JP4441594B2 (en) Method for producing methanol steam reforming catalyst
WO2010055341A2 (en) Improvements in catalytic processes
JP2003225566A (en) Catalyst for decomposing hydrocarbon and production method therefor
JP6190964B2 (en) Method for producing platinum alloy powder
KR101784626B1 (en) Manufacturing method of 3-demension metal catalyst electrode with coated cocatalyst for electrochemical reduction of carbon dioxide
JP2002226926A (en) Composite functional material and its manufacturing method
JP2008142575A (en) High performance catalyst using composite oxide and method for preparation thereof
JPWO2005072865A1 (en) Intermetallic compound Ni3Al catalyst for methanol reforming and methanol reforming method using the same
JP4446029B2 (en) Method for producing methanol steam reforming catalyst
WO2022009870A1 (en) Alloy, aggregate of alloy nanoparticles, and catalyst
EP3152157A1 (en) Method for producing synthetic diamonds
JP4454239B2 (en) Method for producing heat-resistant catalyst using quasicrystalline Al alloy as a precursor
TW202206201A (en) Alloy, aggregate of alloy nanoparticles, and catalyst
JP6097600B2 (en) Sponge metal catalyst and method for producing the same
KR20130082267A (en) Metal aqueous solution, supported catalyst for cnt, and a method for preparing thereof
JP5162404B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4386662B2 (en) Method for producing compound catalyst ultrafine particles using quasicrystalline Al alloy particles as carrier

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220105