JP2018052766A - Cement-based material for three-dimensional printer - Google Patents

Cement-based material for three-dimensional printer Download PDF

Info

Publication number
JP2018052766A
JP2018052766A JP2016189141A JP2016189141A JP2018052766A JP 2018052766 A JP2018052766 A JP 2018052766A JP 2016189141 A JP2016189141 A JP 2016189141A JP 2016189141 A JP2016189141 A JP 2016189141A JP 2018052766 A JP2018052766 A JP 2018052766A
Authority
JP
Japan
Prior art keywords
cement
mass
catechol
based material
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016189141A
Other languages
Japanese (ja)
Other versions
JP6710616B2 (en
Inventor
耕一郎 弥栄
Koichiro Iyasaka
耕一郎 弥栄
建祐 林
Kensuke Hayashi
建祐 林
亮太 曽我
Ryota Soga
亮太 曽我
俊一郎 内田
Shunichiro Uchida
俊一郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016189141A priority Critical patent/JP6710616B2/en
Publication of JP2018052766A publication Critical patent/JP2018052766A/en
Application granted granted Critical
Publication of JP6710616B2 publication Critical patent/JP6710616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cement-based material for three-dimensional printer, excellent in early bending strength-developing properties, using a powder laminate-molding method and the like.SOLUTION: A cement-based material comprises 0.03-2 pts.mass of one or more catechol-based hardening accelerator selected from catechol and a substituted catechol expressed by formula (1), based on 100 pts.mass of a cement composition comprising 60-100 mass% of a fast-curing cement. (Ris NO, CN, CHO, halogen, or COOR; R is H or a C1-4 alkyl group; and n is an integer of 1-4).SELECTED DRAWING: None

Description

本発明は、早期の強度発現性に優れ、付加製造装置(以下「3Dプリンタ」という。)での使用に適したセメント系材料に関する。   The present invention relates to a cement-based material that is excellent in early strength development and suitable for use in an additive manufacturing apparatus (hereinafter referred to as “3D printer”).

特許文献1には、粉末積層成形法に適した3Dプリンタ用のセメント系材料として、珪砂、オリビン砂、および人工砂等の耐火砂に、速硬性セメントを粘結材として15〜50%配合して混練(混合)した材料に、水性バインダを加えて固化・積層してセメント系硬化体(成形体)を得る技術が開示されている。
ここで、粉末積層成形法とは、積載台(台座)の上に置いた粉体材料の所定の範囲に、インクジェット等のノズルを通して造形液を滴下または噴霧して固化し、逐次、固化した層を積層して所望の形状を造形(成形)する方法である。
Patent Document 1 includes 15-50% of fast-hardening cement as a caking additive in refractory sand such as silica sand, olivine sand, and artificial sand as a cement-based material for 3D printers suitable for the powder lamination molding method. A technique is disclosed in which an aqueous binder is added to a kneaded (mixed) material to solidify and laminate to obtain a cement-based cured body (molded body).
Here, the powder lamination molding method is a layer in which a modeling liquid is dropped or sprayed through a nozzle such as an ink jet into a predetermined range of a powder material placed on a loading table (pedestal) and solidified sequentially. Is a method of forming (forming) a desired shape by laminating the layers.

しかし、特許文献1に記載の材料を用いて3Dプリンタにより作製した成形体は、早期の強度発現性、特に曲げ強度が十分でないため欠損が生じ易く製品の安定供給性に欠き、3Dプリンタによる成形技術の特徴である微細形状品の製造が困難な場合がある。   However, a molded body produced by a 3D printer using the material described in Patent Document 1 has an early strength development property, in particular, bending strength is insufficient, so that it is liable to be damaged and lacks a stable supply of products. In some cases, it is difficult to manufacture a finely shaped product that is a feature of the technology.

特開2011−51010号公報JP 2011-51010 A

したがって、本発明は、早期の曲げ強度発現性に優れ、粉末積層成形法等を用いた3Dプリンタ用のセメント系材料を提供することを課題とする。   Therefore, an object of the present invention is to provide a cement-based material for a 3D printer that is excellent in early flexural strength and uses a powder lamination molding method or the like.

そこで、本発明者は3Dプリンタ用のセメント系材料の早期の曲げ強度を高める方法について鋭意検討した結果、速硬性セメントを主な成分とするセメント組成物と特定の硬化促進剤を組み合わせあれば、前記課題を達成できることを見出し、本発明を完成させた。
すなわち、本発明は下記の構成を有する3Dプリンタ用セメント系材料である。
Then, as a result of earnestly examining the method for increasing the early bending strength of the cement-based material for 3D printer, the present inventor has combined a cement composition mainly composed of a fast-curing cement with a specific curing accelerator, The inventors have found that the above problems can be achieved, and have completed the present invention.
That is, the present invention is a cement-based material for 3D printers having the following configuration.

[1]速硬性セメントを60〜100質量%含むセメント組成物100質量部に対し、カテコール、および下記一般式(1)で表わされる置換カテコールから選ばれる1種以上のカテコール系硬化促進剤を、0.03〜2質量部含有する、3Dプリンタ用セメント系材料。

Figure 2018052766
ただし、一般式(1)において、置換基(R)は、NO(ニトロ基)、CN(シアノ基)、CHO(カルボニル基)、ハロゲン、およびCOOR(カルボン酸エステル基、ただし、RはHまたは炭素数1〜4のアルキル基である。)から選ばれる1種以上、置換基のベンゼン環への結合位置は3〜6位から選ばれる1つ以上、およびnは置換基の個数であって1〜4のいずれかである。
[2]前記置換カテコールが、4−シアノカテコールおよび/または4−ニトロカテコールである、前記[1]に記載の3Dプリンタ用セメント系材料。
[3]さらに、セメント組成物を100質量%として、早強ポルトランドセメントを40質量%以下含む、前記[1]または[2]に記載の3Dプリンタ用セメント系材料。
[4]さらに、炭酸アルカリ金属塩、乳酸アルカリ金属塩、およびケイ酸アルカリ金属塩から選ばれる1種以上のアルカリ金属塩系硬化促進剤を含む、前記[1]〜[3]のいずれかに記載の3Dプリンタ用セメント系材料。
[5]珪砂、オリビン砂、および人工砂等から選ばれる1種以上の細骨材を含む、前記[1]〜[4]のいずれかに記載の3Dプリンタ用セメント系材料。 [1] With respect to 100 parts by mass of a cement composition containing 60 to 100% by mass of a fast-curing cement, one or more catechol-based curing accelerators selected from catechol and a substituted catechol represented by the following general formula (1): A cement-based material for 3D printers containing 0.03 to 2 parts by mass.
Figure 2018052766
However, in the general formula (1), the substituent (R n ) is NO 2 (nitro group), CN (cyano group), CHO (carbonyl group), halogen, and COOR (carboxylic ester group, where R is One or more selected from H or an alkyl group having 1 to 4 carbon atoms), the bonding position of the substituent to the benzene ring is one or more selected from the 3-6 positions, and n is the number of substituents. Any one of 1-4.
[2] The cement-based material for 3D printer according to [1], wherein the substituted catechol is 4-cyanocatechol and / or 4-nitrocatechol.
[3] The cement-based material for 3D printer according to [1] or [2], further including 100% by mass of the cement composition and 40% by mass or less of early strong Portland cement.
[4] In any one of the above [1] to [3], further comprising one or more alkali metal salt curing accelerators selected from alkali metal carbonates, alkali metal lactates, and alkali metal silicates. The cementitious material for 3D printers as described.
[5] The cement-based material for 3D printer according to any one of [1] to [4], including one or more fine aggregates selected from quartz sand, olivine sand, artificial sand, and the like.

本発明の3Dプリンタ用セメント系材料は、曲げ強度の早期発現性に優れているため、粉末積層成形法等による成形品の欠損が生じ難く、微細形状を有する成形品の製作に好適に用いることができる。   Since the cement-based material for 3D printer of the present invention is excellent in the early manifestation of bending strength, it is difficult to cause defects in the molded product by the powder lamination molding method and the like, and should be suitably used for producing a molded product having a fine shape. Can do.

本発明の3Dプリンタ用セメント系材料は、前記のとおり、速硬性セメントを60〜100質量%含むセメント組成物100質量部に対し、カテコール、および前記一般式(1)で表わされる置換カテコールから選ばれる1種以上のカテコール系硬化促進剤を、0.03〜2質量部含有する材料である。
以下、本発明の3Dプリンタ用セメント系材料について、詳細に説明する。
As described above, the cement-based material for a 3D printer of the present invention is selected from catechol and substituted catechol represented by the general formula (1) with respect to 100 parts by mass of the cement composition containing 60 to 100% by mass of fast-setting cement. It is a material containing 0.03 to 2 parts by mass of one or more catechol-based curing accelerators.
Hereinafter, the cementitious material for 3D printer of the present invention will be described in detail.

1.セメント
本発明に用いるセメントは、速硬性セメントであり、さらに速硬性セメント以外のセメントを一部含んでもよい。かかる速硬性セメントは、JIS R 5201「セメントの物理試験方法」に規定する凝結の終結時間が30分以内、好ましくは20分以内、より好ましくは10分以内のセメントである。具体的な商品では、例えば、スーパージェットセメント(小野田ケミコ社製)、ジェットセメント(住友大阪セメント社製)、およびデンカスーパーセメント(デンカ社製)等が挙げられる。
1. Cement The cement used in the present invention is a fast-setting cement, and may further include a part of cement other than the fast-setting cement. Such a fast-hardening cement is a cement having a setting time of 30 minutes or less, preferably 20 minutes or less, more preferably 10 minutes or less as defined in JIS R 5201 “Physical Test Method for Cement”. Specific products include, for example, super jet cement (manufactured by Onoda Chemico), jet cement (manufactured by Sumitomo Osaka Cement), and denka super cement (manufactured by Denka).

前記セメント組成物(速硬性セメント単独、または速硬性セメントと速硬性セメント以外のセメントの混合物)中の速硬性セメントの含有率は、セメント組成物を100質量%として、60〜100質量%、好ましくは70〜100質量%、より好ましくは80〜100質量%である。速硬性セメントの含有率が、60〜100質量%の範囲内にあれば、粉末積層成形法等による成形品は、速硬性と共に取扱い可能な曲げ強度を早期に確保できる。   The content of fast-setting cement in the cement composition (fast-setting cement alone or a mixture of fast-setting cement and cement other than fast-setting cement) is preferably 60 to 100% by weight, based on 100% by weight of the cement composition. Is 70 to 100% by mass, more preferably 80 to 100% by mass. If the content rate of a quick-hardening cement exists in the range of 60-100 mass%, the molded article by a powder lamination molding method etc. can ensure the bending strength which can be handled with quick-hardness at an early stage.

前記速硬性セメント以外のセメントは、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、白色ポルトランドセメント、普通エコセメント、高炉セメント、フライアッシュセメント、シリカセメント、およびシリカフュームプレミックスセメント等から選ばれる1種以上が挙げられる。また、粉末積層成形法等による成形品の曲げ強度を早期に確保する観点等から、早強ポルトランドセメントが特に好ましい。
前記セメント組成物中の速硬性セメント以外のセメントの含有率は、セメント組成物を100質量%として、0〜40質量%、好ましくは0〜30質量%、より好ましくは0〜20質量%である。
The cements other than the fast-curing cements are ordinary Portland cement, early-strength Portland cement, medium heat Portland cement, low heat Portland cement, white Portland cement, ordinary ecocement, blast furnace cement, fly ash cement, silica cement, and silica fume premix cement. 1 type or more chosen from etc. is mentioned. Further, from the viewpoint of ensuring early the bending strength of a molded product by a powder lamination molding method or the like, early strength Portland cement is particularly preferable.
The content of the cement other than the quick-hardening cement in the cement composition is 0 to 40% by mass, preferably 0 to 30% by mass, more preferably 0 to 20% by mass, with the cement composition being 100% by mass. .

2.硬化促進剤
本発明に用いる硬化促進剤は、本発明の3Dプリンタ用セメント系材料において必須の成分であるカテコール系硬化促進剤と、任意の成分であるアルカリ金属塩系硬化促進剤がある。
カテコール系硬化促進剤は、カテコール、および前記一般式(1)で表わされる置換カテコールから選ばれる1種以上の化合物であり、これらの中でも、硬化促進がより高いため、好ましくは4−シアノカテコールおよび/または4−ニトロカテコールである。本発明で云うカテコール系硬化促進剤は、カテコールおよび置換カテコールのアルカリ金属塩、およびアルカリ土類金属塩等の塩類も含む。
前記カテコール系硬化促進剤の含有率は、前記セメント組成物100質量部に対し、0.03〜2質量部、好ましくは0.1〜1.0質量部、より好ましくは0.1〜0.5質量部である。
また、前記カテコール系硬化促進剤とセメント組成物の混合手段は、ヘンシェルミキサ、ホバートミキサ、リボンミキサ、およびパグミキサー等の通常の粉粒体混合装置を用いることができる。
2. Curing accelerator The curing accelerator used in the present invention includes a catechol-based curing accelerator that is an essential component in the cement-based material for a 3D printer of the present invention and an alkali metal salt-based curing accelerator that is an optional component.
The catechol-based curing accelerator is one or more compounds selected from catechol and the substituted catechol represented by the general formula (1). Among these, since the curing acceleration is higher, 4-cyanocatechol and preferably / Or 4-nitrocatechol. The catechol-based curing accelerator referred to in the present invention includes salts such as alkali metal salts of catechol and substituted catechol, and alkaline earth metal salts.
The content of the catechol curing accelerator is 0.03 to 2 parts by weight, preferably 0.1 to 1.0 parts by weight, more preferably 0.1 to 0. 0 parts by weight with respect to 100 parts by weight of the cement composition. 5 parts by mass.
Moreover, the mixing means of the said catechol type | system | group hardening accelerator and cement composition can use normal granule mixing apparatuses, such as a Henschel mixer, a Hobart mixer, a ribbon mixer, and a pug mixer.

また、アルカリ金属塩系硬化促進剤は、炭酸アルカリ金属塩、乳酸アルカリ金属塩、およびケイ酸アルカリ金属塩から選ばれる1種以上であり、具体的には、炭酸リチウム、炭酸ナトリウム、乳酸ナトリウム、ケイ酸ナトリウム、およびケイ酸カリウム等が挙げられる。
前記アルカリ金属塩系硬化促進剤の含有率は、前記セメント組成物100質量部に対し、好ましくは0.5〜10質量部、より好ましくは1〜8質量部、さらに好ましくは3〜6質量部である。硬化促進剤の含有率が0.5〜10質量部であれば、粉末積層成形法等を用いて成形した成形品の速硬性と曲げ強度発現性がさらに向上する。
The alkali metal salt curing accelerator is at least one selected from alkali metal carbonates, alkali metal lactates, and alkali metal silicates. Specifically, lithium carbonate, sodium carbonate, sodium lactate, Examples thereof include sodium silicate and potassium silicate.
The content of the alkali metal salt curing accelerator is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, and further preferably 3 to 6 parts by mass with respect to 100 parts by mass of the cement composition. It is. If the content rate of a hardening accelerator is 0.5-10 mass parts, the quick-hardness and bending strength expression property of the molded article shape | molded using the powder lamination molding method etc. will further improve.

3.細骨材
本発明の3Dプリンタ用セメント系材料は、細骨材を含むこともできる。該細骨材は特に限定されないが、製品の安定供給性の観点から、好ましくは、珪砂、オリビン砂、および人工砂等から選ばれる1種以上である。また、該細骨材の最大粒径は、微細な形状が成形し易いことから、好ましくは1.0mm以下、より好ましくは0.6mm以下、さらに好ましくは0.4mm以下である。
また、細骨材の含有率は、前記セメント組成物100質量部に対し、好ましくは100〜400質量部、より好ましくは150〜350質量部、さらに好ましくは200〜300質量部である。
3. Fine Aggregate The cementitious material for a 3D printer of the present invention can also contain fine aggregate. The fine aggregate is not particularly limited, but is preferably at least one selected from quartz sand, olivine sand, artificial sand and the like from the viewpoint of stable supply of the product. The maximum particle size of the fine aggregate is preferably 1.0 mm or less, more preferably 0.6 mm or less, and further preferably 0.4 mm or less because a fine shape can be easily formed.
The content of fine aggregate is preferably 100 to 400 parts by mass, more preferably 150 to 350 parts by mass, and still more preferably 200 to 300 parts by mass with respect to 100 parts by mass of the cement composition.

また、本発明の3Dプリンタ用セメント系材料と、前記アルカ金属塩系硬化促進剤および/または細骨材の混合手段には、前記と同様に、ヘンシェルミキサ、ホバートミキサ、リボンミキサ、およびパグミキサー等の通常の粉粒体混合装置を用いることができる。   Further, the mixing means for the cement material for 3D printer of the present invention and the alkali metal salt hardening accelerator and / or fine aggregate is the same as described above, Henschel mixer, Hobart mixer, ribbon mixer, and pug mixer. Ordinary powder mixing devices such as the above can be used.

4.水
粉末積層成形法の実施において、3Dプリンタ用セメント系材料に噴霧する噴霧水は、一般の水道水(上水道、工業用水)が使用できる。
噴霧水の噴霧割合は、前記3Dプリンタ用セメント系材料中のセメント組成物100質量部に対し、3〜20質量部、好ましくは5〜15質量部、より好ましくは7〜13質量部である。
4). In the implementation of the water powder lamination molding method, general tap water (water supply, industrial water) can be used as the spray water sprayed onto the cement-based material for the 3D printer.
The spray ratio of spray water is 3 to 20 parts by mass, preferably 5 to 15 parts by mass, and more preferably 7 to 13 parts by mass with respect to 100 parts by mass of the cement composition in the cementitious material for 3D printer.

5.養生方法
粉末積層成形法等を実施して得られた成形体(硬化体)の養生方法は、気中養生、または、気中養生後に続けて水中養生する方法が採用できる。気中および水中の温度は、特に制限されないが、養生のし易さから、好ましくは10〜50℃でよい。
気中養生時間は、十分な強度発現と生産効率の観点から、好ましくは1〜4時間、より好ましくは1.5〜3時間、さらに好ましくは2〜3時間である。また、水中養生時間は、前記気中養生した後に、好ましくは3時間以上、より好ましくは5時間以上、さらに好ましくは8時間以上である。
5. Curing Method As a curing method for a molded body (cured body) obtained by carrying out a powder lamination molding method or the like, an air curing method or a method of underwater curing after air curing can be adopted. The temperature in the air and water is not particularly limited, but is preferably 10 to 50 ° C. for ease of curing.
The air curing time is preferably 1 to 4 hours, more preferably 1.5 to 3 hours, and further preferably 2 to 3 hours from the viewpoint of sufficient strength expression and production efficiency. The underwater curing time is preferably 3 hours or more, more preferably 5 hours or more, and further preferably 8 hours or more after the air curing.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)速硬性セメント:スーパージェットセメント(小野田ケミコ社製、終結時間;10分以内)
(2)速硬性セメント以外のセメント:早強ポルトランドセメント(太平洋セメント社製)
(3)カテコール系硬化促進剤:カテコール(試薬、和光純薬工業社製)、4−シアノカテコール(試薬、東京化成工業社製)、および4−ニトロカテコール(試薬、和光純薬工業社製)
(4)アルカリ金属塩系硬化促進剤:炭酸リチウム(試薬1級、和光純薬工業社製)
(5)非アルカリ金属塩系硬化促進剤:亜硝酸カルシウム(試薬1級、和光純薬工業社製)
(6)砂:珪砂8号(粒径0.3mm以下、東北硅砂社製)
(7)水:水道水
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Materials used (1) Fast-curing cement: Super Jet Cement (manufactured by Onoda Chemico, closing time: within 10 minutes)
(2) Cement other than fast-curing cement: Early strong Portland cement (manufactured by Taiheiyo Cement)
(3) Catechol-based curing accelerator: Catechol (reagent, manufactured by Wako Pure Chemical Industries), 4-cyanocatechol (reagent, manufactured by Tokyo Chemical Industry Co., Ltd.), and 4-nitrocatechol (reagent, manufactured by Wako Pure Chemical Industries, Ltd.)
(4) Alkali metal salt curing accelerator: lithium carbonate (reagent grade 1, manufactured by Wako Pure Chemical Industries, Ltd.)
(5) Non-alkali metal salt hardening accelerator: Calcium nitrite (reagent grade 1, manufactured by Wako Pure Chemical Industries, Ltd.)
(6) Sand: Silica sand No. 8 (particle size 0.3 mm or less, manufactured by Tohoku Sosuna Co., Ltd.)
(7) Water: Tap water

2.セメント系材料による硬化体の作製
表1の配合に従い、前記材料をホバートミキサで乾式混合して3Dプリンタ用セメント系材料を作製した。次に、3Dプリンタ(粉末積層造形装置、商品名:ZPrinter310、Zコーポレーション社製)と前記3Dプリンタ用セメント系材料を用いて、粉末積層成形法により、寸法が縦10mm、横16mm、および長さ80mmの供試体(硬化体)を成形した。
なお、前記供試体の成形で用いた噴霧水の噴霧割合は、前記3Dプリンタ用セメント系材料中のセメント組成物100質量部に対し、10質量部であった。
2. Preparation of hardened body with cement-based material According to the composition shown in Table 1, the material was dry-mixed with a Hobart mixer to prepare a cement-based material for 3D printer. Next, using a 3D printer (powder additive manufacturing apparatus, trade name: ZPrinter310, manufactured by Z Corporation) and the 3D printer cement material, the dimensions are 10 mm in length, 16 mm in width, and length by the powder laminate molding method. An 80 mm specimen (cured body) was molded.
In addition, the spraying ratio of the spray water used in the molding of the specimen was 10 parts by mass with respect to 100 parts by mass of the cement composition in the cement material for the 3D printer.

3.セメント硬化体の曲げ強度の測定
次に、前記供試体を、20℃の気中で2時間養生した後、曲げ強度試験機(型番:MODEL-2257、アイコーエンジニアリング社製)を用いて3点曲げ試験を行った。その結果を表1に示す。
3. Measurement of bending strength of hardened cement body Next, the specimen was cured in the air at 20 ° C for 2 hours, and then bent at three points using a bending strength tester (model number: MODEL-2257, manufactured by Aiko Engineering Co., Ltd.). A test was conducted. The results are shown in Table 1.

Figure 2018052766
Figure 2018052766

表1に示すように、材齢2時間における曲げ強度比は、比較例1〜4で0.79(比較例3)〜1.04(比較例4)であるのに対し、実施例1〜26では1.10(実施例1、2、6、21)〜1.77(実施例14)であるから、本発明の3Dプリンタ用セメント系材料は、材齢2時間という極めて早期における曲げ強度発現性が高いと云える。

As shown in Table 1, the bending strength ratio at the age of 2 hours is 0.79 (Comparative Example 3) to 1.04 (Comparative Example 4) in Comparative Examples 1 to 4, whereas Examples 1 to 4 are used. 26, from 1.10 (Examples 1, 2, 6, 21) to 1.77 (Example 14), the cementitious material for 3D printers of the present invention has an extremely early bending strength of 2 hours of age. It can be said that expression is high.

Claims (5)

速硬性セメントを60〜100質量%含むセメント組成物100質量部に対し、カテコール、および下記一般式(1)で表わされる置換カテコールから選ばれる1種以上のカテコール系硬化促進剤を、0.03〜2質量部含有する、3Dプリンタ用セメント系材料。
Figure 2018052766
ただし、一般式(1)において、置換基(R)は、NO(ニトロ基)、CN(シアノ基)、CHO(カルボニル基)、ハロゲン、およびCOOR(カルボン酸エステル基、ただし、RはHまたは炭素数1〜4のアルキル基である。)から選ばれる1種以上、置換基のベンゼン環への結合位置は3〜6位から選ばれる1つ以上、およびnは置換基の個数であって1〜4のいずれかである。
0.03 of one or more catechol-based curing accelerators selected from catechol and substituted catechol represented by the following general formula (1) with respect to 100 parts by mass of the cement composition containing 60 to 100% by mass of fast-curing cement A cement-based material for 3D printers containing ˜2 parts by mass.
Figure 2018052766
However, in the general formula (1), the substituent (R n ) is NO 2 (nitro group), CN (cyano group), CHO (carbonyl group), halogen, and COOR (carboxylic ester group, where R is One or more selected from H or an alkyl group having 1 to 4 carbon atoms), the bonding position of the substituent to the benzene ring is one or more selected from the 3-6 positions, and n is the number of substituents. Any one of 1-4.
前記置換カテコールが、4−シアノカテコールおよび/または4−ニトロカテコールである、請求項1に記載の3Dプリンタ用セメント系材料。   The cement-based material for 3D printer according to claim 1, wherein the substituted catechol is 4-cyanocatechol and / or 4-nitrocatechol. さらに、セメント組成物を100質量%として、早強ポルトランドセメントを40質量%以下含む、請求項1または2に記載の3Dプリンタ用セメント系材料。   The cement-based material for 3D printer according to claim 1 or 2, further comprising 40 mass% or less of early-strength Portland cement, with the cement composition being 100 mass%. さらに、炭酸アルカリ金属塩、乳酸アルカリ金属塩、およびケイ酸アルカリ金属塩から選ばれる1種以上のアルカリ金属塩系硬化促進剤を含む、請求項1〜3のいずれか1項に記載の3Dプリンタ用セメント系材料。   The 3D printer according to any one of claims 1 to 3, further comprising at least one alkali metal salt-based curing accelerator selected from an alkali metal carbonate, an alkali metal lactate, and an alkali metal silicate. Cement-based material. 珪砂、オリビン砂、および人工砂等から選ばれる1種以上の細骨材を含む、請求項1〜4のいずれか1項に記載の3Dプリンタ用セメント系材料。

The cementitious material for 3D printers according to any one of claims 1 to 4, comprising one or more fine aggregates selected from quartz sand, olivine sand, artificial sand and the like.

JP2016189141A 2016-09-28 2016-09-28 Cement-based material for 3D printer Active JP6710616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189141A JP6710616B2 (en) 2016-09-28 2016-09-28 Cement-based material for 3D printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189141A JP6710616B2 (en) 2016-09-28 2016-09-28 Cement-based material for 3D printer

Publications (2)

Publication Number Publication Date
JP2018052766A true JP2018052766A (en) 2018-04-05
JP6710616B2 JP6710616B2 (en) 2020-06-17

Family

ID=61833558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189141A Active JP6710616B2 (en) 2016-09-28 2016-09-28 Cement-based material for 3D printer

Country Status (1)

Country Link
JP (1) JP6710616B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357551A (en) * 2019-07-31 2019-10-22 淮北市菲美得环保科技有限公司 A kind of 3D printing material and its preparation method and application based on paper mill sludge
JP2020026523A (en) * 2018-08-08 2020-02-20 花王株式会社 Additive for inorganic particle-containing composition
CN113087441A (en) * 2021-03-05 2021-07-09 山西佳维新材料股份有限公司 Fluoride-free liquid alkali-free accelerator and preparation method and application thereof
US11111178B2 (en) * 2018-06-18 2021-09-07 The Board Of Trustees Of The University Of Alabama Renewable admixtures for cementitious compositions

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726562B1 (en) * 1968-04-18 1972-07-18
JPS63260844A (en) * 1987-04-20 1988-10-27 電気化学工業株式会社 Heat curable cement admixing material
JPH1171142A (en) * 1997-08-26 1999-03-16 Chichibu Onoda Cement Corp Ultra quick hardening cement
JP2010110802A (en) * 2008-11-10 2010-05-20 Komatsu Igata Seisakusho:Kk Material for molding, functional agent, molded product and product
JP2011051010A (en) * 2009-11-20 2011-03-17 Hokkaido Research Organization High heat-resistance powder for forming inkjet powder lamination mold
JP2013091583A (en) * 2011-10-26 2013-05-16 Kao Corp Additive for hydraulic composition
JP2014122139A (en) * 2012-12-21 2014-07-03 Kao Corp Hydraulic composition
JP2014122138A (en) * 2012-12-21 2014-07-03 Kao Corp Hydraulic composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726562B1 (en) * 1968-04-18 1972-07-18
JPS63260844A (en) * 1987-04-20 1988-10-27 電気化学工業株式会社 Heat curable cement admixing material
JPH1171142A (en) * 1997-08-26 1999-03-16 Chichibu Onoda Cement Corp Ultra quick hardening cement
JP2010110802A (en) * 2008-11-10 2010-05-20 Komatsu Igata Seisakusho:Kk Material for molding, functional agent, molded product and product
JP2011051010A (en) * 2009-11-20 2011-03-17 Hokkaido Research Organization High heat-resistance powder for forming inkjet powder lamination mold
JP2013091583A (en) * 2011-10-26 2013-05-16 Kao Corp Additive for hydraulic composition
JP2014122139A (en) * 2012-12-21 2014-07-03 Kao Corp Hydraulic composition
JP2014122138A (en) * 2012-12-21 2014-07-03 Kao Corp Hydraulic composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111178B2 (en) * 2018-06-18 2021-09-07 The Board Of Trustees Of The University Of Alabama Renewable admixtures for cementitious compositions
US11814321B2 (en) 2018-06-18 2023-11-14 The Board Of Trustees Of The University Of Alabama Renewable admixtures for cementitious compositions
JP2020026523A (en) * 2018-08-08 2020-02-20 花王株式会社 Additive for inorganic particle-containing composition
CN110357551A (en) * 2019-07-31 2019-10-22 淮北市菲美得环保科技有限公司 A kind of 3D printing material and its preparation method and application based on paper mill sludge
CN110357551B (en) * 2019-07-31 2021-07-09 淮北市菲美得环保科技有限公司 3D printing material based on papermaking sludge and preparation method and application thereof
CN113087441A (en) * 2021-03-05 2021-07-09 山西佳维新材料股份有限公司 Fluoride-free liquid alkali-free accelerator and preparation method and application thereof
CN113087441B (en) * 2021-03-05 2023-04-18 山西佳维新材料股份有限公司 Fluoride-free liquid alkali-free accelerator and preparation method and application thereof

Also Published As

Publication number Publication date
JP6710616B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6710616B2 (en) Cement-based material for 3D printer
WO2018003832A1 (en) Hydraulic composition for additive manufacturing device, and process for producing casting mold
JP4816425B2 (en) Self-flowing hydraulic composition
CZ2019767A3 (en) Gypsum-based plastering mortar, preparing it and mechanical gypsum-based spray suspension
JP2005531484A (en) Rapidly setting cement composition
JPWO2013054833A1 (en) Materials for modeling, functional agents, modeling products and products
JPWO2013146712A1 (en) Rapid hardening cement
JP2018002587A (en) Hydraulic composition for additive manufacturing apparatus, and manufacturing method of mold
JP6644614B2 (en) Cement composition for binder injection type additional manufacturing equipment
JP2018090428A (en) Cement composition for additive manufacturing device, process for producing casting mold, and process for producing design shape product
KR20190023967A (en) Method for manufacturing eco-friendly cement composite using nano-silica sol
JP7038052B2 (en) Liquid fast-strengthening agent for cement concrete
JP2017081763A (en) Silica fume-containing cement composition
JP2019025817A (en) Hydraulic composition for additional production device, and method for producing mold
JP2017178739A (en) Method for manufacturing rapid hardening concrete
JP6762663B2 (en) Method for manufacturing compositions and molds for addition manufacturing equipment
JP5721212B2 (en) Initial expansive cement composition
JP2008162837A (en) Self fluidity hydraulic composition
JP2014015356A (en) Cement admixture, cement composition, and cement mortar using them
JP2021098617A (en) Cement composition for molding
JP2017178671A (en) Cement composition for binder injection type additive manufacturing apparatus
JP5743650B2 (en) Method for producing slag curing composition
JP2017177212A (en) Cement composition for additive manufacturing apparatus, and molding product thereof
KR20150140032A (en) A composition of non-cement type binder, mortar and concrete comprising the same
JP2017178680A (en) Cement composition for binder injection type additive manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200527

R150 Certificate of patent or registration of utility model

Ref document number: 6710616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250