JP2018045804A - Fluid heating device - Google Patents

Fluid heating device Download PDF

Info

Publication number
JP2018045804A
JP2018045804A JP2016178269A JP2016178269A JP2018045804A JP 2018045804 A JP2018045804 A JP 2018045804A JP 2016178269 A JP2016178269 A JP 2016178269A JP 2016178269 A JP2016178269 A JP 2016178269A JP 2018045804 A JP2018045804 A JP 2018045804A
Authority
JP
Japan
Prior art keywords
conductor tube
conductor
fluid
tube
coil element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016178269A
Other languages
Japanese (ja)
Other versions
JP6746136B2 (en
Inventor
深 水嶋
Fukashi Mizushima
深 水嶋
孝次 北野
Koji Kitano
孝次 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2016178269A priority Critical patent/JP6746136B2/en
Publication of JP2018045804A publication Critical patent/JP2018045804A/en
Application granted granted Critical
Publication of JP6746136B2 publication Critical patent/JP6746136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase a contact area between a conductor tube and a fluid by eliminating the need for an electrical connection member for causing a short circuit of the spirally wound conductor tube.SOLUTION: A fluid heating device that heats a fluid, flowing in a conductor tube 3, by heating the conductor tube 3 by electromagnetic induction comprises: two first conductor tubes 31a, 31b spirally wound so as to be parallel in an axial direction; and two second conductor tubes 32a, 32b spirally wound so as to be parallel in the axial direction. A two-layer structure is formed by making the winding diameter of the first conductor tubes 31a, 31b and the winding diameter of the second conductor tubes 32a, 32b different from each other. The winding direction of the first conductor tubes 31a, 31b and the winding direction of the second conductor tubes 32a, 32b are different from each other. The one first conductor tube 31a and the one second conductor tube 32a, and the other first conductor tube 31b and the other second conductor tube 32b, are electrically connected at both ends 31m, 31n, respectively, so as to allow circulation of a fluid.SELECTED DRAWING: Figure 2

Description

本発明は、電磁誘導により発熱する導体管を用いて、例えば水等の流体を加熱する流体加熱装置に関するものである。   The present invention relates to a fluid heating apparatus that heats a fluid such as water using a conductor tube that generates heat by electromagnetic induction.

従来の流体加熱装置としては、例えば特許文献1に示すように、閉磁路鉄心に一次コイルを巻回するとともに、流体が流れる導体管を二次コイルとして螺旋状に巻回したものがある。ここで、導体管は、電気的リアクタンスを低減させて加熱効率を向上させるべく、導体管の外側周面において全ターン部分を、螺旋の軸方向に延びる電気接続部材で溶接等により電気的に接続し、導体管内で短絡回路を形成するように構成されている。そして、この流体加熱装置は、前記一次コイルに交流電圧を印加して、導体管内に短絡電流を流すことにより、導体管をジュール発熱させて流体を加熱している。   As a conventional fluid heating device, for example, as shown in Patent Document 1, there is one in which a primary coil is wound around a closed magnetic circuit iron core and a conductor tube through which a fluid flows is spirally wound as a secondary coil. Here, in order to reduce the electrical reactance and improve the heating efficiency, the conductor tube is electrically connected by welding or the like with an electrical connection member extending in the axial direction of the spiral on the outer peripheral surface of the conductor tube. And it is comprised so that a short circuit may be formed in a conductor pipe. In this fluid heating apparatus, an AC voltage is applied to the primary coil to cause a short-circuit current to flow in the conductor tube, thereby heating the fluid by causing the conductor tube to generate Joule heat.

しかしながら、導体管に電気接続部材が固定されていると、ジュール発熱する導体管が熱変形しようとした際に、大きな応力が発生し、導体管や電気接続部材、あるいは導体管と電気接続部材との固定箇所等に疲労が蓄積したりや破損したりするおそれが生じる。   However, if the electrical connection member is fixed to the conductor tube, a large stress is generated when the Joule-heated conductor tube is about to be thermally deformed, and the conductor tube and the electrical connection member, or the conductor tube and the electrical connection member, There is a risk that fatigue will accumulate or breakage at the fixing points.

一方、流体の加熱効率をさらに向上させることが求められており、そのためには導体管と流体との接触面積を大きくすることが考えられる。導体管の外側周面に電気接続部材を固定する構成であることから、接触面積を簡単に大きくするには、螺旋の軸方向に巻き数を増やす構成が考えられる。   On the other hand, there is a demand for further improving the heating efficiency of the fluid. To that end, it is conceivable to increase the contact area between the conductor tube and the fluid. Since it is the structure which fixes an electrical connection member to the outer peripheral surface of a conductor tube, the structure which increases the number of turns in the axial direction of a spiral can be considered in order to enlarge a contact area easily.

ところが、導体管の巻き数を増やすことによって、導体管の軸方向寸法が大きくなってしまい、それに伴って流体加熱装置全体の大型化を招いてしまう。また、導体管の巻き数を増やすことによって、導体管と電気接続部材との固定箇所が増えてしまい、導体管や電気接続部材、あるいは導体管と電気接続部材との固定箇所等に疲労が蓄積したりや破損したりするおそれが生じやすくなる。   However, increasing the number of windings of the conductor tube increases the axial dimension of the conductor tube, which leads to an increase in the size of the entire fluid heating device. Also, by increasing the number of windings of the conductor tube, the number of fixing points between the conductor tube and the electrical connection member increases, and fatigue accumulates at the conductor tube, the electrical connection member, or the fixing point between the conductor tube and the electrical connection member. Or the possibility of breakage is likely to occur.

特開2010−71624号公報JP 2010-71624 A

そこで本発明は、上記問題点を解決すべくなされたものであり、螺旋状に巻回された導体管を短絡させるための電気接続部材を不要にしつつ、導体管と流体との接触面積を大きくすることをその主たる課題とするものである。   Therefore, the present invention has been made to solve the above-described problems, and it eliminates the need for an electrical connection member for short-circuiting a spirally wound conductor tube, while increasing the contact area between the conductor tube and the fluid. Doing that is the main challenge.

すなわち本発明に係る流体加熱装置は、導体管を電磁誘導により発熱させて当該導体管を流れる流体を加熱する流体加熱装置であって、軸方向に沿って並列となるように螺旋状に巻回された2本の第1導体管と、軸方向に沿って並列となるように螺旋状に巻回された2本の第2導体管とを備え、前記第1導体管及び前記第2導体管の巻径が互いに異なることにより2層構造とされており、前記第1導体管及び前記第2導体管の巻回方向が互いに異なり、一方の前記第1導体管及び一方の前記第2導体管と、他方の前記第1導体管及び他方の前記第2導体管とがそれぞれ、両端部において電気的に接続されるとともに前記流体が通流可能に接続されていることを特徴とする。本発明では、第1導体管の一方及び第2導体管の一方の間で1つの短絡回路が形成され、第1導体管の他方及び第2導体管の他方の間で1つの短絡回路が形成される。   That is, the fluid heating device according to the present invention is a fluid heating device that heats a fluid flowing through the conductor tube by causing the conductor tube to generate heat by electromagnetic induction, and is wound spirally so as to be parallel in the axial direction. Two first conductor tubes and two second conductor tubes wound spirally so as to be parallel in the axial direction, the first conductor tube and the second conductor tube Since the winding diameters of the first conductor tube and the second conductor tube are different from each other, the winding directions of the first conductor tube and the second conductor tube are different from each other. The other first conductor tube and the other second conductor tube are electrically connected at both ends, and are connected so that the fluid can flow therethrough. In the present invention, one short circuit is formed between one of the first conductor tubes and one of the second conductor tubes, and one short circuit is formed between the other of the first conductor tubes and the other of the second conductor tubes. Is done.

この流体加熱装置であれば、巻回方向が互いに逆向きの第1導体管及び第2導体管の一端部同士及び他端部同士を接続しているので、当該第1導体管及び第2導体管の間で短絡回路が形成されるため、電気接続部材を不要にすることができる。
また、2本の第1導体管及び2本の第2導体管からなる2層構造とし、それらの第1導体管及び第2導体管に流体が通流するように構成されているので、導体管を螺旋の軸方向に巻き数を増やすことなく、導体管と流体との接触面積を大きくすることができる。
さらに、二次コイルである導体管の巻き数により、短絡電流及び容量(流体の処理量)の調整が可能となる。
In this fluid heating apparatus, the first conductor tube and the second conductor are connected to each other at one end and the other end of the first conductor tube and the second conductor tube whose winding directions are opposite to each other. Since a short circuit is formed between the tubes, an electrical connection member can be dispensed with.
In addition, since it has a two-layer structure composed of two first conductor tubes and two second conductor tubes, and is configured to allow fluid to flow through these first conductor tubes and second conductor tubes, the conductor The contact area between the conductor tube and the fluid can be increased without increasing the number of turns in the axial direction of the tube.
Furthermore, the short-circuit current and the capacity (fluid throughput) can be adjusted by the number of turns of the conductor tube which is the secondary coil.

第1導体管により加熱される流体の温度、及び第2導体管により加熱される流体の温度を同一にするためには、前記第1導体管と前記第2導体管との導体管長が略同一となるように構成されていることが望ましい。この構成を簡単に実現するためには、前記第1導体管の巻き数が前記第2導体管の巻き数よりも多くすることが考えられる。   In order to make the temperature of the fluid heated by the first conductor tube and the temperature of the fluid heated by the second conductor tube the same, the conductor tube lengths of the first conductor tube and the second conductor tube are substantially the same. It is desirable to be constituted so that. In order to easily realize this configuration, it is conceivable that the number of turns of the first conductor tube is larger than the number of turns of the second conductor tube.

流体を導入する導入ポート及び導体管から流体を導出する導出ポートと導体管との配管構造を容易にするためには、一方の前記第1導体管の一端部及び一方の前記第2導体管の一端部の接続部と、他方の前記第1導体管の一端部及び他方の前記第2導体管の一端部の接続部とが前記流体が通流可能に接続されており、一方の前記第1導体管の他端部及び一方の前記第2導体管の他端部の接続部と、他方の前記第1導体管の他端部及び他方の前記第2導体管の他端部の接続部とが前記流体が通流可能に接続されていることが望ましい。
この構成であれば、一端部に設けられた2つの接続部が接続されており、他端部に設けられた2つの接続部が接続されているので、一端部の2つの接続部に導入ポートを接続し、他端部の2つの接続部に導出ポートを接続することにより、配管構造を容易にすることができる。
In order to facilitate the piping structure of the introduction port for introducing fluid and the lead-out port for extracting fluid from the conductor tube and the conductor tube, one end of one of the first conductor tubes and one of the second conductor tubes The connecting portion at one end and the connecting portion at one end of the other first conductor tube and the other end of the second conductor tube are connected so that the fluid can flow therethrough, A connection portion of the other end portion of the conductor tube and the other end portion of one of the second conductor tubes, and a connection portion of the other end portion of the other first conductor tube and the other end portion of the other second conductor tube. It is desirable that the fluid is connected so that the fluid can flow therethrough.
If it is this structure, since the two connection parts provided in the one end part are connected, and the two connection parts provided in the other end part are connected, the introduction port is connected to the two connection parts of the one end part. And connecting the lead-out port to the two connecting portions at the other end can facilitate the piping structure.

流体加熱装置が、円筒状鉄心と、前記円筒状鉄心の外部に設けられ、前記円筒状鉄心とともに閉磁路を形成する磁路形成部と、前記円筒状鉄心及び前記磁路形成部の間に設けられ、前記円筒状鉄心の内部に磁束を発生させる誘導コイルとをさらに備え、前記第1導体管及び前記第2導体管が、前記円筒状鉄心及び前記磁路形成部の間に設けられていることが望ましい。
この構成であれば、円筒状鉄心及び磁路形成部の間に、熱源である第1導体管及び第2導体管を配置する構成としているので、第1導体管及び第2導体管から外部に漏れ出る熱を、磁路形成部の内側に閉じ込めることができる。
A fluid heating device is provided between a cylindrical iron core, a magnetic path forming portion provided outside the cylindrical iron core and forming a closed magnetic path together with the cylindrical iron core, and the cylindrical iron core and the magnetic path forming portion. And an induction coil for generating magnetic flux inside the cylindrical iron core, wherein the first conductor tube and the second conductor tube are provided between the cylindrical iron core and the magnetic path forming portion. It is desirable.
If it is this structure, since it is set as the structure which arrange | positions the 1st conductor tube and 2nd conductor tube which are heat sources between a cylindrical iron core and a magnetic path formation part, it will be outside from a 1st conductor tube and a 2nd conductor tube. The leaking heat can be confined inside the magnetic path forming part.

このように構成した本発明によれば、螺旋状に巻回された導体管を短絡させるための電気接続部材を不要にしつつ、導体管と流体との接触面積を大きくすることができる。   According to the present invention configured as described above, the contact area between the conductor tube and the fluid can be increased while eliminating the need for an electrical connection member for short-circuiting the spirally wound conductor tube.

本発明の一実施形態に係る流体加熱装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the fluid heating apparatus which concerns on one Embodiment of this invention. 同実施形態の第1導体管及び第2導体管の構成を示す側面図である。It is a side view which shows the structure of the 1st conductor tube and 2nd conductor tube of the embodiment. 同実施形態の第1導体管の構成を示す側面図である。It is a side view showing the composition of the 1st conductor tube of the embodiment. 同実施形態の第2導体管の構成を示す側面図である。It is a side view showing the composition of the 2nd conductor tube of the embodiment. 同実施形態の一方の第1導体管及び一方の第2導体管の接続態様を示す側面図である。It is a side view which shows the connection aspect of one 1st conductor tube and one 2nd conductor tube of the embodiment. 同実施形態の他方の第1導体管及び他方の第2導体管の接続態様を示す側面図である。It is a side view which shows the connection aspect of the other 1st conductor tube and the other 2nd conductor tube of the embodiment.

以下に本発明に係る流体加熱装置の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of a fluid heating device according to the present invention will be described with reference to the drawings.

<1.装置構成>
本実施形態に係る流体加熱装置100は、流体である水を加熱して飽和水蒸気又は過熱水蒸気を生成するものであり、図1に示すように、円筒状鉄心21と、円筒状鉄心21の径方向外側に設けられた円筒状をなす外側磁路形成部22と、円筒状鉄心21及び外側磁路形成部22の軸方向一端部を連結する第1径方向磁路形成部23と、円筒状鉄心21及び前記外側磁路形成部22の軸方向他端部を連結する第2径方向磁路形成部24とを有する閉磁路鉄心要素2を備えている。この閉磁路鉄心要素2は、概略円筒形状をなすものであり、その側周壁内部に概略円筒状の空間を形成するものである。
<1. Device configuration>
The fluid heating apparatus 100 according to the present embodiment heats water, which is a fluid, to generate saturated steam or superheated steam. As shown in FIG. 1, the diameters of the cylindrical iron core 21 and the cylindrical iron core 21 are as follows. A cylindrical outer magnetic path forming portion 22 provided on the outer side in the direction, a first radial magnetic path forming portion 23 connecting the cylindrical iron core 21 and one axial end of the outer magnetic path forming portion 22, and a cylindrical shape. A closed magnetic path core element 2 having an iron core 21 and a second radial magnetic path forming portion 24 that connects the other axial end of the outer magnetic path forming portion 22 is provided. The closed magnetic path core element 2 has a substantially cylindrical shape, and forms a substantially cylindrical space inside its side peripheral wall.

なお、前記円筒状鉄心21及び前記外側磁路形成部22はともに、いわゆるインボリュート鉄心であり、幅方向断面がインボリュート曲線状に湾曲した湾曲部を有する複数の珪素鋼板を円周方向に放射状に積み重ねて円筒状に形成したものである。   The cylindrical iron core 21 and the outer magnetic path forming portion 22 are both so-called involute iron cores, and a plurality of silicon steel plates each having a curved portion whose cross section in the width direction is curved in an involute curve shape are radially stacked in the circumferential direction. And formed into a cylindrical shape.

そして、この流体加熱装置100は、円筒状鉄心21及び外側磁路形成部22の間に設けられ、電磁誘導により発熱して内部を流れる流体を加熱する導体管3と、円筒状鉄心21及び外側磁路形成部22の間に設けられ、円筒状鉄心21の内部に磁束を発生させる誘導コイル4と、第1径方向磁路形成部23に設けられ、導体管3に流入する流体が流れる第1流路S1を形成する第1流路形成部5と、第2径方向磁路形成部24に設けられ、導体管3に流入する流体が流れる第2流路S2を形成する第2流路形成部6とを備えている。   The fluid heating device 100 is provided between the cylindrical iron core 21 and the outer magnetic path forming portion 22, and heats the fluid flowing through the heat generated by electromagnetic induction, and the cylindrical iron core 21 and the outer side. The induction coil 4 provided between the magnetic path forming portions 22 and generating magnetic flux inside the cylindrical iron core 21 and the first radial magnetic path forming portion 23 provided with a fluid flowing into the conductor tube 3 are flown. A second flow path that is provided in the first flow path forming section 5 that forms the first flow path S1 and the second radial magnetic path formation section 24 and that forms the second flow path S2 through which the fluid flowing into the conductor tube 3 flows. And a forming portion 6.

なお、閉磁路鉄心要素2の内部空間において、導体管3及び誘導コイル4以外の部分は断熱材10が充填されている。また、閉磁路鉄心要素2は、導体管3、誘導コイル4及び断熱材10を収容した状態で、軸方向に貫通する締結ボルト等の締結機構13により軸方向から第1径方向磁路形成部23及び第2径方向磁路形成部24を締結して一体化される。   In the internal space of the closed magnetic circuit core element 2, portions other than the conductor tube 3 and the induction coil 4 are filled with a heat insulating material 10. Further, the closed magnetic circuit core element 2 includes the conductor tube 3, the induction coil 4, and the heat insulating material 10, and the first radial magnetic path forming portion from the axial direction by the fastening mechanism 13 such as a fastening bolt penetrating in the axial direction. 23 and the 2nd radial direction magnetic path formation part 24 are fastened and integrated.

導体管3は、図2に示すように、円筒状鉄心21の外周に沿って螺旋状(コイル状)に巻回されたものである。この導体管3は、円筒状鉄心21と同軸上に配置されている。   As shown in FIG. 2, the conductor tube 3 is wound spirally (coiled) along the outer periphery of the cylindrical iron core 21. The conductor tube 3 is arranged coaxially with the cylindrical iron core 21.

具体的に導体管3は、図3に示すように、軸方向に沿って並列となるように螺旋状に巻回された2本の第1導体管31(両者を区別する場合は、31a、31b)と、図4に示すように、軸方向に沿って並列となるように螺旋状に巻回された2本の第2導体管32(両者を区別する場合は、32a、32b)とを備えており、第1導体管31及び第2導体管32の巻径が互いに異なることにより2層構造とされている。本実施形態では第1導体管31の巻径が、第2導体管32の巻径よりも大きく、第1導体管31と第2導体管32とは互いに接触しないように構成されている。また、第1導体管31及び第2導体管32の巻回方向は互いに異なる(逆向き)となるように構成されている。さらに、第1導体管31と第2導体管32とは、管径(内径及び外径)が略同一であり、第1導体管31の巻き数が第2導体管32の巻き数よりも多いことにより、それらの導体管長が略同一となるように構成されている。   Specifically, as shown in FIG. 3, the conductor tube 3 includes two first conductor tubes 31 spirally wound so as to be parallel in the axial direction (in order to distinguish both, 31a, 31b) and two second conductor tubes 32 spirally wound so as to be parallel in the axial direction as shown in FIG. 4 (32a and 32b when the two are distinguished) The first conductor tube 31 and the second conductor tube 32 have a two-layer structure because the winding diameters thereof are different from each other. In this embodiment, the winding diameter of the first conductor tube 31 is larger than the winding diameter of the second conductor tube 32, and the first conductor tube 31 and the second conductor tube 32 are configured not to contact each other. The winding directions of the first conductor tube 31 and the second conductor tube 32 are different from each other (reverse directions). Further, the first conductor tube 31 and the second conductor tube 32 have substantially the same tube diameter (inner diameter and outer diameter), and the number of turns of the first conductor tube 31 is larger than the number of turns of the second conductor tube 32. Thus, the lengths of the conductor tubes are substantially the same.

そして、2本の第1導体管31a、31bのうちの一方及び2本の第2導体管32a、32bのうちの一方は、それらの両端部が電気的に接続されるとともに流体が通流可能に接続されている。また、2本の第1導体管31a、31bのうちの他方及び2本の第2導体管32a、32bのうちの他方は、それらの両端部が電気的に接続されるとともに流体が通流可能に接続されている。これらの構成のために、2本の第1導体管31a、31b及び2本の第2導体管32a、32bはそれぞれ、螺旋部分31x、32xの他に、当該螺旋部分31x、32xの巻き始め部分及び巻き終わり部分に後述する接続部33、34に接続される接続管部31y、32yを有する(図3及び図4参照)。   And, one of the two first conductor tubes 31a and 31b and one of the two second conductor tubes 32a and 32b are electrically connected at both ends thereof, and fluid can flow therethrough. It is connected to the. In addition, the other of the two first conductor tubes 31a and 31b and the other of the two second conductor tubes 32a and 32b are electrically connected at both ends thereof, and fluid can flow therethrough. It is connected to the. Because of these configurations, the two first conductor tubes 31a and 31b and the two second conductor tubes 32a and 32b are respectively wound portions of the spiral portions 31x and 32x in addition to the spiral portions 31x and 32x. And it has connection pipe parts 31y and 32y connected to connecting parts 33 and 34, which will be described later, at the winding end part (see FIGS. 3 and 4).

詳細には、図5及び図6に示すように、第1導体管31の一端部31m及び第2導体管32の一端部32mが導電性を有する接続配管等の一端側接続部33(両者を区別する場合は、33a、33b)により電気的に接続されるとともに流体的に接続されている。第1導体管31の他端部31n及び第2導体管32の他端部32nが導電性を有する接続配管等の他端側接続部34(両者を区別する場合は、34a、34b)により電気的に接続されるとともに流体的に接続されている。これらの接続部33、34は、流体を第1導体管31及び第2導体管32に分流させるための分岐路又は第1導体管31及び第2導体管32を流れた流体を合流させるための合流路を内部に有するものである。   Specifically, as shown in FIGS. 5 and 6, one end 31m of the first conductor tube 31 and one end 32m of the second conductor tube 32 are connected to one end side connecting portion 33 such as a connecting pipe having conductivity. In the case of distinction, they are electrically connected and fluidly connected by 33a, 33b). The other end portion 31n of the first conductor tube 31 and the other end portion 32n of the second conductor tube 32 are electrically connected by the other end side connection portion 34 such as a conductive connection pipe (34a and 34b in the case of distinguishing both). Connected and fluidly connected. These connecting portions 33 and 34 are branched paths for diverting the fluid to the first conductor tube 31 and the second conductor tube 32 or the fluids flowing through the first conductor tube 31 and the second conductor tube 32 are joined together. It has a combined flow path inside.

図5に示すように、一方の第1導体管31aの一端部31m及び一方の第2導体管32aの一端部32mの接続部33である一方の一端側接続部33aと、他方の第1導体管31bの一端部31m及び他方の第2導体管32bの一端部32mの接続部33である他方の一端側接続部33bとは、互いに流体が通流可能に接続されている。   As shown in FIG. 5, one end-side connecting portion 33a which is a connecting portion 33 of one end portion 31m of one first conductor tube 31a and one end portion 32m of one second conductor tube 32a, and the other first conductor The one end 31m of the tube 31b and the other one end side connecting portion 33b which is the connecting portion 33 of the one end 32m of the other second conductor tube 32b are connected to each other so that fluid can flow therethrough.

また、図6に示すように、一方の第1導体管31aの他端部31n及び一方の第2導体管32aの他端部32nの接続部34である一方の他端側接続部34aと、他方の第1導体管31bの他端部31n及び他方の第2導体管32bの他端部32nの接続部34である他方の他端側接続部34bとは、互いに流体が通流可能に接続されている。本実施形態では、図2に示すように、一方の一端側接続部33aと他方の一端側接続部33bとが中間配管35によって接続されることにより、また、一方の他端側接続部34aと他方の他端側接続部34bとが中間配管36によって接続されることにより、互いに流体が通流可能に接続されている。   Also, as shown in FIG. 6, one other end side connection portion 34a which is a connection portion 34 of the other end portion 31n of one first conductor tube 31a and the other end portion 32n of one second conductor tube 32a, The other end side connection part 34b which is the connection part 34 of the other end part 31n of the other 1st conductor pipe | tube 31b and the other end part 32n of the other 2nd conductor pipe | tube 32b is connected so that a fluid can mutually flow. Has been. In the present embodiment, as shown in FIG. 2, one end-side connection portion 33 a and the other end-side connection portion 33 b are connected by an intermediate pipe 35, and the other end-side connection portion 34 a The other end side connection part 34b is connected by the intermediate pipe 36, so that fluids can flow through each other.

そして、本実施形態では、一方の一端側接続部33aから流体が導入され、中間配管35を通じて他方の一端側接続部33bに流入する。なお、一方の一端側接続部33aには、内側中空コイル要素42の下流側端部が接続されている。   In the present embodiment, the fluid is introduced from one end side connection portion 33 a and flows into the other end side connection portion 33 b through the intermediate pipe 35. In addition, the downstream end part of the inner side hollow coil element 42 is connected to one one end side connection part 33a.

一方の一端側接続部33aに流入した流体は、一方の第1導体管31a及び一方の第2導体管32aに分岐して流れる。他方の一端側接続部33bに流入した流体は、他方の第1導体管31b及び他方の第2導体管32bに分岐して流れる。   The fluid that has flowed into the one end-side connection portion 33a branches and flows into one first conductor tube 31a and one second conductor tube 32a. The fluid that has flowed into the other one end side connection portion 33b branches and flows to the other first conductor tube 31b and the other second conductor tube 32b.

一方の第1導体管31a及び一方の第2導体管32aを流れた流体は、一方の他端側接続部34aで合流して流体を導出する。他方の第1導体管31b及び他方の第2導体管32bを流れた流体は、他方の他端側接続部34bで合流して、中間配管36を通じて一方の他端側接続部34aに流れる。一方の他端側接続部34aには、導出ポート12が接続されている。   The fluid that has flowed through one first conductor tube 31a and one second conductor tube 32a merges at one other end side connection portion 34a to derive the fluid. The fluid that has flowed through the other first conductor tube 31b and the other second conductor tube 32b joins at the other end side connection portion 34b and flows to the other end side connection portion 34a through the intermediate pipe 36. The derivation port 12 is connected to one other end side connection part 34a.

誘導コイル4は、図1に示すように、導体管3に流入する流体が流れる中空導体管からなる外側中空コイル要素41及び内側中空コイル要素42と、中実導線からなる中実コイル要素43とを有している。なお、これらコイル要素41〜43は、円筒状鉄心21と同軸上に配置されている。   As shown in FIG. 1, the induction coil 4 includes an outer hollow coil element 41 and an inner hollow coil element 42 made of a hollow conductor tube through which a fluid flowing into the conductor tube 3 flows, and a solid coil element 43 made of a solid conductor. have. These coil elements 41 to 43 are arranged coaxially with the cylindrical iron core 21.

外側中空コイル要素41は、外側磁路形成部22及び導体管3の間、つまり、導体管3の径方向外側に配置されている。また、外側中空コイル要素41は、閉磁路鉄心要素2内の配管構成の簡単化のため、導体管3の軸方向両端部よりも内側に位置する範囲内で中空導体管を巻回して構成されている。なお、図1において、外側中空コイル要素は、単層巻きのものであったが、二層巻き以上のものであっても良い。ここで、外側中空コイル要素41及び導体管3の間には絶縁材11aが設けられている。具体的に絶縁材11aは、外側中空コイル要素41の内側周面に沿って設けられている。   The outer hollow coil element 41 is disposed between the outer magnetic path forming portion 22 and the conductor tube 3, that is, on the radially outer side of the conductor tube 3. Further, the outer hollow coil element 41 is configured by winding a hollow conductor tube within a range located on the inner side of both end portions in the axial direction of the conductor tube 3 in order to simplify the piping configuration in the closed magnetic circuit core element 2. ing. In FIG. 1, the outer hollow coil element has a single-layer winding, but it may have two or more layers. Here, an insulating material 11 a is provided between the outer hollow coil element 41 and the conductor tube 3. Specifically, the insulating material 11 a is provided along the inner peripheral surface of the outer hollow coil element 41.

内側中空コイル要素42は、導体管3及び円筒状鉄心21の間、つまり、導体管3(第2導体管32a、32b)の径方向内側に配置されている。また、内側中空コイル要素42は、円筒状鉄心21の軸方向両端部全体に亘って、つまり、導体管3の軸方向両端部よりも外側に位置する範囲内で中空導体管を巻回して構成されている。なお、図1において、内側中空コイル要素42は、単層巻きのものであったが、二層巻き以上のものであっても良い。ここで、内側中空コイル要素42及び導体管3の間には絶縁材11bが設けられている(図1参照)。具体的に絶縁材11bは、導体管3の内側周面に沿って設けられている。また、内側中空コイル要素42及び円筒状鉄心21の間には絶縁材11cが設けられている。具体的に絶縁材11cは、内側中空コイル要素42の内側周面に沿って設けられている。   The inner hollow coil element 42 is disposed between the conductor tube 3 and the cylindrical iron core 21, that is, on the radially inner side of the conductor tube 3 (second conductor tubes 32a and 32b). Further, the inner hollow coil element 42 is configured by winding the hollow conductor tube over the entire axial end portions of the cylindrical iron core 21, that is, within a range located outside the both end portions in the axial direction of the conductor tube 3. Has been. In FIG. 1, the inner hollow coil element 42 is a single-layer winding, but it may be a two-layer winding or more. Here, an insulating material 11b is provided between the inner hollow coil element 42 and the conductor tube 3 (see FIG. 1). Specifically, the insulating material 11 b is provided along the inner peripheral surface of the conductor tube 3. An insulating material 11 c is provided between the inner hollow coil element 42 and the cylindrical iron core 21. Specifically, the insulating material 11 c is provided along the inner peripheral surface of the inner hollow coil element 42.

中実コイル要素43は、外側中空コイル要素41の外周に巻回して設けられている。また、中実コイル要素43は、外側中空コイル要素41と同様に、導体管3の軸方向両端部よりも内側に位置する範囲内で中空導体管を巻回して構成されている。ここで、中実コイル要素43及び外側磁路形成部22の間には絶縁材11dが設けられ、中実コイル要素43及び外側中空コイル要素41の間には絶縁材11eが設けられている(図1参照)。具体的に絶縁材11dは、中実コイル要素43の外側周面に沿って設けられており、絶縁材11eは、中実コイル要素43の内側周面及び外側中空コイル要素41の外側周面に沿って設けられている。   The solid coil element 43 is wound around the outer periphery of the outer hollow coil element 41. Similarly to the outer hollow coil element 41, the solid coil element 43 is formed by winding a hollow conductor tube within a range located on the inner side of both end portions in the axial direction of the conductor tube 3. Here, an insulating material 11d is provided between the solid coil element 43 and the outer magnetic path forming portion 22, and an insulating material 11e is provided between the solid coil element 43 and the outer hollow coil element 41 ( (See FIG. 1). Specifically, the insulating material 11 d is provided along the outer peripheral surface of the solid coil element 43, and the insulating material 11 e is provided on the inner peripheral surface of the solid coil element 43 and the outer peripheral surface of the outer hollow coil element 41. It is provided along.

そして、外側中空コイル要素41の上流側端部(右側端部)と中実誘導コイル要素43の右側端部とが電気的に接続されている。中実誘導コイル要素43の左側端部には、交流電源の一方の電源端子が接続される外部端子T1が設けられている。   The upstream end (right end) of the outer hollow coil element 41 and the right end of the solid induction coil element 43 are electrically connected. An external terminal T1 to which one power supply terminal of the AC power supply is connected is provided at the left end of the solid induction coil element 43.

また、外側中空コイル要素41の下流側端部(左側端部)と内側中空コイル要素42の上流側端部(左側端部)とが接続されており、外側中空コイル要素41を流れた流体が内側中空コイル要素42に流れるように構成されている。この内側中空コイル要素42の下流側端部には、交流電源の他方の電源端子が接続される外部端子T2が設けられている。   Further, the downstream end (left end) of the outer hollow coil element 41 and the upstream end (left end) of the inner hollow coil element 42 are connected, and the fluid that flows through the outer hollow coil element 41 flows. The inner hollow coil element 42 is configured to flow. An external terminal T2 to which the other power supply terminal of the AC power supply is connected is provided at the downstream end of the inner hollow coil element 42.

さらに、内側中空コイル要素42の下流側端部(右側端部)と、導体管3の上流側端部(右側端部、一方の一端側接続部33a)とが接続されており、内側中空コイル要素42を流れた流体が導体管3に流れるように構成されている。   Furthermore, the downstream end portion (right end portion) of the inner hollow coil element 42 and the upstream end portion (right end portion, one end side connection portion 33a) of the conductor tube 3 are connected, and the inner hollow coil element is connected. The fluid that has flowed through the element 42 is configured to flow into the conductor tube 3.

なお、本実施形態では、内側中空コイル要素42の下流側端部は、第2径方向磁路形成部24の内面に沿って渦巻状に巻き回されている。その他、内側中空コイル要素42の上流側端部を、第1径方向磁路形成部23の内面に沿って渦巻状に巻き回しても良い。   In the present embodiment, the downstream end portion of the inner hollow coil element 42 is spirally wound along the inner surface of the second radial magnetic path forming portion 24. In addition, the upstream end of the inner hollow coil element 42 may be spirally wound along the inner surface of the first radial magnetic path forming portion 23.

前記第1流路形成部5は、前記第1径方向磁路形成部23の外面に沿って円環状の第1流路S1を形成するものであり、外部から第1流路S1に流体を導入する導入ポート7が接続されている。本実施形態では、環状の凹溝を有する第1流路形成部5を第1径方向磁路形成部23の外面に溶接することにより、第1流路S1を形成している。   The first flow path forming part 5 forms an annular first flow path S1 along the outer surface of the first radial magnetic path forming part 23, and fluid is supplied to the first flow path S1 from the outside. An introduction port 7 to be introduced is connected. In the present embodiment, the first flow path S <b> 1 is formed by welding the first flow path forming portion 5 having an annular groove to the outer surface of the first radial magnetic path forming portion 23.

第2流路形成部6は、第2径方向磁路形成部24の外面に沿って円環状の第2流路S2を形成するものである。本実施形態では、環状の凹溝を有する第2流路形成部6を第2径方向磁路形成部24の外面に溶接することにより、第2流路S2を形成している。   The second flow path forming part 6 forms an annular second flow path S <b> 2 along the outer surface of the second radial magnetic path forming part 24. In the present embodiment, the second flow path S <b> 2 is formed by welding the second flow path forming portion 6 having an annular groove to the outer surface of the second radial magnetic path forming portion 24.

そして、第1流路形成部5と第2流路形成部6とは、第1接続配管8により接続されている。具体的に第1接続配管8は、一端(上流端)が第1流路形成部5に接続され、他端(下流端)が第2流路形成部6に接続されている。この第1接続配管8は、円筒状をなす閉磁路鉄心要素2の内部、つまり円筒状鉄心21の内部を通って設けられている。   The first flow path forming part 5 and the second flow path forming part 6 are connected by a first connection pipe 8. Specifically, the first connection pipe 8 has one end (upstream end) connected to the first flow path forming unit 5 and the other end (downstream end) connected to the second flow path forming unit 6. The first connection pipe 8 is provided through the inside of the closed magnetic path core element 2 having a cylindrical shape, that is, the inside of the cylindrical core 21.

また、第2流路形成部6と前記外側中空コイル要素41とは、第2接続配管9により接続されている。具体的に第2接続配管9は、一端(上流端)が第2流路形成部6に接続され、他端(下流端)が外側中空コイル要素41の上流端に接続されている。本実施形態では、第2接続配管9は、外側磁路形成部22の側壁(第2径方向磁路形成部24側の端部)を貫通して、閉磁路鉄心要素2の内部に導入されて外側中空コイル要素41に接続されている。なお、第2接続配管9は、第2径方向磁路形成部24を貫通して、閉磁路鉄心要素2の内部に導入されて外側中空コイル要素41に接続されても良い。   The second flow path forming portion 6 and the outer hollow coil element 41 are connected by a second connection pipe 9. Specifically, one end (upstream end) of the second connection pipe 9 is connected to the second flow path forming unit 6, and the other end (downstream end) is connected to the upstream end of the outer hollow coil element 41. In the present embodiment, the second connecting pipe 9 is introduced into the closed magnetic path core element 2 through the side wall of the outer magnetic path forming portion 22 (the end on the second radial magnetic path forming portion 24 side). And connected to the outer hollow coil element 41. Note that the second connection pipe 9 may be introduced into the closed magnetic path core element 2 through the second radial magnetic path forming portion 24 and connected to the outer hollow coil element 41.

このように構成した本実施形態の流体加熱装置100において、中実コイル要素43の外部端子T1及び内側中空コイル要素42の外部端子T2に交流電源により交流電圧を印加することで、中実コイル要素43、外側中空コイル要素41及び内側中空コイル要素42に電流が流れて閉磁路鉄心要素2に磁束が流れる。当該磁束によって導体管3に短絡電流が流れて、導体管3がジュール発熱する。これにより、導体管3を流れる流体が導体管3によって加熱される。   In the fluid heating apparatus 100 of the present embodiment configured as described above, by applying an AC voltage from an AC power source to the external terminal T1 of the solid coil element 43 and the external terminal T2 of the inner hollow coil element 42, the solid coil element 43, current flows through the outer hollow coil element 41 and the inner hollow coil element 42, and magnetic flux flows through the closed magnetic circuit core element 2. A short-circuit current flows through the conductor tube 3 by the magnetic flux, and the conductor tube 3 generates Joule heat. Thereby, the fluid flowing through the conductor tube 3 is heated by the conductor tube 3.

具体的には、一方の第1導体管31a及び一方の第2導体管32aが互いに逆向きに巻回されているため、一方の第1導体管31aに流れる誘導電流と一方の第2導体管32aに流れる誘導電流とが逆向きとなり、両端部の接続部33a、34aで短絡して、第1導体管31a及び第2導体管32aに短絡電流が流れる。また、他方の第1導体管31b及び他方の第2導体管32bが互いに逆向きに巻回されているため、他方の第1導体管31bに流れる誘導電流と他方の第2導体管32bに流れる誘導電流とが逆向きとなり、両端部の接続部33b、34bで短絡して、第1導体管31b及び第2導体管32bに短絡電流が流れる。このように導体管3には、2つの短絡回路が形成される。   Specifically, since one first conductor tube 31a and one second conductor tube 32a are wound in opposite directions, the induced current flowing in one first conductor tube 31a and one second conductor tube The induced current flowing in 32a is in the opposite direction, short-circuited at the connecting portions 33a and 34a at both ends, and a short-circuit current flows in the first conductor tube 31a and the second conductor tube 32a. Since the other first conductor tube 31b and the other second conductor tube 32b are wound in opposite directions, the induced current flowing in the other first conductor tube 31b and the other second conductor tube 32b flow. The induced current is reversed and short-circuited at the connecting portions 33b and 34b at both ends, and a short-circuit current flows through the first conductor tube 31b and the second conductor tube 32b. In this way, two short circuits are formed in the conductor tube 3.

次に、流体加熱装置100の流体の流れとともに流体の加熱態様について説明する。   Next, the fluid heating mode will be described together with the fluid flow of the fluid heating apparatus 100.

第1流路形成部5に接続された導入ポート7から、流体である水が導入される。そして、流体は、導入ポート7から第1流路S1内に流入して、第1径方向磁路形成部23を冷却するとともに、第1径方向磁路形成部23により予熱される。その後、流体は、第1接続配管8を流れて、第2流路S2内に流入して、第2径方向磁路形成部24を冷却するとともに、第2径方向磁路形成部24により予熱される。なお、第1径方向磁路形成部23及び第2径方向磁路形成部24は、導体管3からの伝熱により加熱されている。   Water, which is a fluid, is introduced from the introduction port 7 connected to the first flow path forming unit 5. Then, the fluid flows from the introduction port 7 into the first flow path S1 to cool the first radial magnetic path forming portion 23 and is preheated by the first radial magnetic path forming portion 23. Thereafter, the fluid flows through the first connection pipe 8 and flows into the second flow path S <b> 2 to cool the second radial magnetic path forming unit 24 and to preheat by the second radial magnetic path forming unit 24. Is done. The first radial magnetic path forming unit 23 and the second radial magnetic path forming unit 24 are heated by heat transfer from the conductor tube 3.

このように第1流路S1及び第2流路S2を流れた流体は、第2接続配管9を流れて、外側中空コイル要素41に流入する。このとき、流体は、外側中空コイル要素41を冷却するとともに、外側中空コイル要素41により予熱される。なお、外側中空コイル要素41は、通電により生じる熱とともに、導体管3からの伝熱により加熱されている。   The fluid that has flowed through the first flow path S1 and the second flow path S2 in this way flows through the second connection pipe 9 and flows into the outer hollow coil element 41. At this time, the fluid cools the outer hollow coil element 41 and is preheated by the outer hollow coil element 41. The outer hollow coil element 41 is heated by heat transfer from the conductor tube 3 together with heat generated by energization.

また、この外側中空コイル要素41を流れた流体は、内側中空コイル要素42に流入する。このとき、流体は、内側中空コイル要素42を冷却するとともに、内側中空コイル要素42により予熱される。なお、内側中空コイル要素42は、通電により生じる熱とともに、導体管3からの伝熱により加熱されている。   The fluid that has flowed through the outer hollow coil element 41 flows into the inner hollow coil element 42. At this time, the fluid cools the inner hollow coil element 42 and is preheated by the inner hollow coil element 42. The inner hollow coil element 42 is heated by heat transfer from the conductor tube 3 as well as heat generated by energization.

そして、第1径方向磁路形成部23、第2径方向磁路形成部24、外側中空コイル要素41及び内側中空コイル要素42により予熱された流体が、導体管3に流入する。そして、導体管3を流れる流体は、誘導加熱された導体管3により加熱されて飽和水蒸気又は過熱水蒸気となり、導体管3の下流端(一方の他端側接続部34a)に接続された導出ポート12から外部又は外部配管に導出される。なお、導体管3は、外側磁路形成部22の側壁(第1径方向磁路形成部23側の端部)を貫通して、閉磁路鉄心要素2の外部に導出されている。なお、導体管3は、第1径方向磁路形成部23を貫通して、閉磁路鉄心要素2の外部に導出されても良い。   Then, the fluid preheated by the first radial magnetic path forming portion 23, the second radial magnetic path forming portion 24, the outer hollow coil element 41 and the inner hollow coil element 42 flows into the conductor tube 3. The fluid flowing through the conductor tube 3 is heated by the induction-heated conductor tube 3 to become saturated water vapor or superheated water vapor, and is connected to the downstream end of the conductor tube 3 (one other end side connection portion 34a). 12 to the outside or external piping. The conductor tube 3 passes through the side wall of the outer magnetic path forming portion 22 (the end portion on the first radial magnetic path forming portion 23 side) and is led out of the closed magnetic path core element 2. The conductor tube 3 may be led out of the closed magnetic circuit core element 2 through the first radial magnetic path forming portion 23.

<2.本実施形態の効果>
このように構成した流体加熱装置100によれば、巻回方向が互いに逆向きの第1導体管31及び第2導体管32の一端部31m、32m同士及び他端部31n、32n同士を接続しているので、当該第1導体管31及び第2導体管32の間で短絡回路が形成されるため、電気接続部材を不要にすることができる。また、2本の第1導体管31a、31b及び2本の第2導体管32a、32bからなる2層構造とし、それらの第1導体管31a、31b及び第2導体管32a、32bに流体が通流するように構成されているので、導体管3を螺旋の軸方向に巻き数を増やすことなく、導体管3と流体との接触面積を大きくすることができる。さらに、二次コイルである導体管3の巻き数により、短絡電流及び容量(流体の処理量)の調整が可能となる。
<2. Effects of this embodiment>
According to the fluid heating apparatus 100 configured as described above, the first conductor tube 31 and the second conductor tube 32 whose winding directions are opposite to each other are connected to the one end portions 31m and 32m and the other end portions 31n and 32n. Therefore, since a short circuit is formed between the first conductor tube 31 and the second conductor tube 32, an electrical connection member can be eliminated. In addition, a two-layer structure including two first conductor tubes 31a and 31b and two second conductor tubes 32a and 32b is provided, and fluid is supplied to the first conductor tubes 31a and 31b and the second conductor tubes 32a and 32b. Since it is configured to flow, the contact area between the conductor tube 3 and the fluid can be increased without increasing the number of turns of the conductor tube 3 in the axial direction of the spiral. Furthermore, the short-circuit current and the capacity (fluid throughput) can be adjusted by the number of turns of the conductor tube 3 that is a secondary coil.

また、本実施形態では、円筒状鉄心21、外側磁路形成部22、第1及び第2径方向磁路形成部23、24により形成された空間内に、熱源である導体管3を配置する構成とし、導体管3の周囲を流体により冷却する構成としているので、導体管3から外部に漏れ出る熱を、閉磁路鉄心要素2の内部に閉じ込めることができる。   Moreover, in this embodiment, the conductor tube 3 which is a heat source is arrange | positioned in the space formed of the cylindrical iron core 21, the outer side magnetic path formation part 22, and the 1st and 2nd radial direction magnetic path formation parts 23 and 24. Since the configuration is such that the periphery of the conductor tube 3 is cooled by a fluid, the heat leaking outside from the conductor tube 3 can be confined inside the closed magnetic circuit core element 2.

具体的には、導体管3を取り囲むように、第1及び第2流路S1、S2、外側中空コイル要素41及び内側中空コイル要素42を配置して、流体が、第1流路S1、第2流路S2、外側中空コイル要素41及び内側中空コイル要素42を流れた後に、導体管3に流入するように構成されているので、導体管3から径方向両側及び軸方向両側に漏れ出た熱を利用して流体を予熱することができる。つまり、導体管3からの放熱による損失を低減して流体を効率良く加熱することができる。   Specifically, the first and second flow paths S1 and S2, the outer hollow coil element 41 and the inner hollow coil element 42 are arranged so as to surround the conductor tube 3, and the fluid flows in the first flow path S1 and the first flow path S1. After flowing through the two flow paths S2, the outer hollow coil element 41 and the inner hollow coil element 42, it is configured to flow into the conductor tube 3, and thus leaked from the conductor tube 3 to both the radial direction side and the axial direction both sides. The fluid can be preheated using heat. That is, the loss due to heat radiation from the conductor tube 3 can be reduced and the fluid can be efficiently heated.

また、第1流路S1、第2流路S2、外側中空コイル要素41及び内側中空コイル要素42が、導体管3から径方向両側及び軸方向両側に漏れ出た熱を遮断する機能を発揮するため、断熱材の使用量を削減しつつ流体加熱装置の熱的安全性を向上させることができる。   Further, the first flow path S1, the second flow path S2, the outer hollow coil element 41, and the inner hollow coil element 42 exhibit a function of blocking heat leaked from the conductor tube 3 to both the radial direction side and the axial direction both sides. Therefore, the thermal safety of the fluid heating device can be improved while reducing the amount of heat insulating material used.

さらに、流体が外側中空コイル要素41を流れた後に内側中空コイル要素42に流れるので、外側中空コイル要素41を流れる流体が、内側中空コイル要素42を流れる流体よりも低い温度となるため、流体加熱装置100の熱的安全性をより一層向上させることができる。   Further, since the fluid flows through the outer hollow coil element 41 and then into the inner hollow coil element 42, the fluid flowing through the outer hollow coil element 41 has a lower temperature than the fluid flowing through the inner hollow coil element 42. The thermal safety of the device 100 can be further improved.

<3.本発明の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<3. Modified Embodiment of the Present Invention>
The present invention is not limited to the above embodiment.

例えば、前記実施形態では誘導コイル4が内側中空コイル要素42を有するものであったが、内側中空コイル要素42を有さないものであっても良い。この場合、外側中空コイル要素41が導体管3に接続されて、外側中空コイル要素41を流れた流体が導体管3に流入する。   For example, in the above-described embodiment, the induction coil 4 has the inner hollow coil element 42, but the induction coil 4 may not have the inner hollow coil element 42. In this case, the outer hollow coil element 41 is connected to the conductor tube 3, and the fluid flowing through the outer hollow coil element 41 flows into the conductor tube 3.

また、内側中空コイル要素42を流れた流体が外側中空コイル要素41を流れるように構成しても良い。この場合、第2接続配管9が第2流路形成部6と内側中空コイル要素42を接続しており、第2流路S2を流れた流体が内側中空コイル要素42に流入する。   Further, the fluid that flows through the inner hollow coil element 42 may flow through the outer hollow coil element 41. In this case, the second connection pipe 9 connects the second flow path forming unit 6 and the inner hollow coil element 42, and the fluid flowing through the second flow path S 2 flows into the inner hollow coil element 42.

さらに、中実コイル要素43を外側中空コイル要素41の径方向内側又は内側中空コイル要素42の径方向内側に配置しても良い。   Further, the solid coil element 43 may be disposed radially inside the outer hollow coil element 41 or radially inside the inner hollow coil element 42.

その上、第1流路形成部5及び第2流路形成部6は、前記実施形態のように、第1径方向磁路形成部23及び第2磁路形成部24の外面との間で流路を形成するものの他、流体が流れる配管により構成しても良い。この場合、第1流路形成部5及び第2流路形成部6となる配管を、第1径方向磁路形成部23及び第2磁路形成部24の外面に接触して設けることが考えられる。   In addition, the first flow path forming portion 5 and the second flow path forming portion 6 are disposed between the outer surfaces of the first radial magnetic path forming portion 23 and the second magnetic path forming portion 24 as in the embodiment. You may comprise by the piping through which a fluid flows besides what forms a flow path. In this case, it is considered that the pipes to be the first flow path forming section 5 and the second flow path forming section 6 are provided in contact with the outer surfaces of the first radial magnetic path forming section 23 and the second magnetic path forming section 24. It is done.

前記実施形態では、内側中空コイル要素42を流れた流体が導体管3に流れるように構成されていたが、第1流路S1又は第2流路S2を流れた流体が直接導体管3に流れるようにしても良いし、導入ポート7から直接導体管3に流れるようにしても良い。   In the above-described embodiment, the fluid that has flowed through the inner hollow coil element 42 is configured to flow to the conductor tube 3. Alternatively, it may flow directly from the introduction port 7 to the conductor tube 3.

前記実施形態では、第1導体管及び第2導体管を導電性を有する接続配管等の単一の接続部により接続して電気的及び流体的に接続するように構成しているが、電気的に接続する構成と、流体的に接続する構成を別体としても良い。例えば、第1導体管及び第2導体管を導電性を有さない接続配管により接続するとともに、第1導体管及び第2導体管の端部同士を導電性部材で互いに接続する構成としても良い。   In the above embodiment, the first conductor tube and the second conductor tube are connected by a single connection portion such as a conductive connection pipe, and are electrically and fluidically connected. It is good also as a separate body from the structure connected to this, and the structure connected fluidly. For example, the first conductor tube and the second conductor tube may be connected by a connection pipe having no conductivity, and the end portions of the first conductor tube and the second conductor tube may be connected to each other by a conductive member. .

前記実施形態では、第1導体管31a及び第2導体管32aを電気的かつ流体的に接続し、第1導体管31b及び第2導体管32bを電気的かつ流体的に接続したものであったが、第1導体管31a及び第2導体管32bを電気的かつ流体的に接続し、第1導体管31b及び第2導体管32aを電気的かつ流体的に接続したものであっても良い。   In the embodiment, the first conductor tube 31a and the second conductor tube 32a are electrically and fluidly connected, and the first conductor tube 31b and the second conductor tube 32b are electrically and fluidly connected. However, the first conductor tube 31a and the second conductor tube 32b may be electrically and fluidly connected, and the first conductor tube 31b and the second conductor tube 32a may be electrically and fluidly connected.

前記実施形態では、2本の第1導体管及び2本の第2導体管を用いて構成しているが、3本以上の第1導体管及び3本以上の第2導体管を用いて構成しても良い。この場合も、前記実施形態と同様に、巻回方向が互いに逆向きの第1導体管及び第2導体管の一端部同士及び他端部同士を接続する。これにより、導体管の本数に対応した3つ以上の短絡回路が形成される。   In the above embodiment, two first conductor tubes and two second conductor tubes are used. However, three or more first conductor tubes and three or more second conductor tubes are used. You may do it. Also in this case, similarly to the above-described embodiment, one end portions and the other end portions of the first conductor tube and the second conductor tube whose winding directions are opposite to each other are connected. Thereby, three or more short circuits corresponding to the number of conductor tubes are formed.

前記実施形態では、導体管を2層構造としていたが、前記実施形態の第1導体管及び第2導体管からなる組を複数用いて2n(nは2以上)層の多層構造としても良い。   In the embodiment, the conductor tube has a two-layer structure. However, a plurality of pairs of the first conductor tube and the second conductor tube of the embodiment may be used to form a multilayer structure of 2n (n is 2 or more) layers.

前記実施形態の流体加熱装置を複数直列に接続しても良い。この場合、前段の流体加熱装置を水から飽和水蒸気を生成する飽和水蒸気生成部とし、後段の流体加熱装置を前記飽和水蒸気から過熱水蒸気を生成する過熱水蒸気生成部として機能させることが考えられる。   A plurality of fluid heating devices of the embodiment may be connected in series. In this case, it is conceivable that the former stage fluid heating device functions as a saturated steam generation unit that generates saturated steam from water, and the latter stage fluid heating device functions as a superheated steam generation unit that generates superheated steam from the saturated steam.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・流体加熱装置
21 ・・・円筒状鉄心
22 ・・・外側磁路形成部
23 ・・・第1径方向磁路形成部
24 ・・・第2径方向磁路形成部
31(31a、31b)・・・第1導体管
31m・・・一端部
31n・・・他端部
32(32a、32b)・・・第2導体管
32m・・・一端部
32n・・・他端部
33(33a、33b)・・・一端側接続部
34(34a、34b)・・・他端側接続部
4 ・・・誘導コイル
DESCRIPTION OF SYMBOLS 100 ... Fluid heating apparatus 21 ... Cylindrical iron core 22 ... Outer magnetic path formation part 23 ... 1st radial direction magnetic path formation part 24 ... 2nd radial direction magnetic path formation part 31 (31a) , 31b) ... first conductor tube 31m ... one end 31n ... other end 32 (32a, 32b) ... second conductor tube 32m ... one end 32n ... other end 33 (33a, 33b) ... one end side connection part 34 (34a, 34b) ... the other end side connection part 4 ... induction coil

Claims (5)

導体管を電磁誘導により発熱させて当該導体管を流れる流体を加熱する流体加熱装置であって、
軸方向に沿って並列となるように螺旋状に巻回された2本の第1導体管と、
軸方向に沿って並列となるように螺旋状に巻回された2本の第2導体管とを備え、
前記第1導体管及び前記第2導体管の巻径が互いに異なることにより2層構造とされており、
前記第1導体管及び前記第2導体管の巻回方向が互いに異なり、
一方の前記第1導体管及び一方の前記第2導体管と、他方の前記第1導体管及び他方の前記第2導体管とがそれぞれ、両端部において電気的に接続されるとともに前記流体が通流可能に接続されている流体加熱装置。
A fluid heating device that heats a fluid flowing through a conductor tube by causing the conductor tube to generate heat by electromagnetic induction,
Two first conductor tubes spirally wound so as to be parallel along the axial direction;
Two second conductor tubes spirally wound so as to be parallel along the axial direction,
The first conductor tube and the second conductor tube have a two-layer structure with different winding diameters,
The winding directions of the first conductor tube and the second conductor tube are different from each other,
One of the first conductor pipe and one of the second conductor pipes, and the other of the first conductor pipe and the other of the second conductor pipes are electrically connected at both ends, and the fluid passes therethrough. Fluid heating device connected to allow flow.
前記第1導体管と前記第2導体管との導体管長が略同一となるように構成されている、請求項1記載の流体加熱装置。   The fluid heating apparatus according to claim 1, wherein the first conductor tube and the second conductor tube are configured to have substantially the same conductor tube length. 前記第1導体管の巻き数が前記第2導体管の巻き数よりも多いことにより、それら導体管長が略同一とされている、請求項2記載の流体加熱装置。   The fluid heating apparatus according to claim 2, wherein the number of turns of the first conductor tube is larger than the number of turns of the second conductor tube, so that the conductor tube lengths are substantially the same. 一方の前記第1導体管の一端部及び一方の前記第2導体管の一端部の接続部と、他方の前記第1導体管の一端部及び他方の前記第2導体管の一端部の接続部とが前記流体が通流可能に接続されており、
一方の前記第1導体管の他端部及び一方の前記第2導体管の他端部の接続部と、他方の前記第1導体管の他端部及び他方の前記第2導体管の他端部の接続部とが前記流体が通流可能に接続されている、請求項1乃至3の何れか一項に記載の流体加熱装置。
One end portion of the first conductor tube and one end portion of the second conductor tube, and one end portion of the other first conductor tube and one end portion of the other second conductor tube Are connected to allow the fluid to flow therethrough,
One end of the first conductor tube and the other end of the second conductor tube, and the other end of the other first conductor tube and the other end of the second conductor tube. The fluid heating apparatus according to any one of claims 1 to 3, wherein the fluid is connected to a connection part of the part so that the fluid can flow therethrough.
円筒状鉄心と、
前記円筒状鉄心の外部に設けられ、前記円筒状鉄心とともに閉磁路を形成する磁路形成部と、
前記円筒状鉄心及び前記磁路形成部の間に設けられ、前記円筒状鉄心の内部に磁束を発生させる誘導コイルとをさらに備え、
前記第1導体管及び前記第2導体管が、前記円筒状鉄心及び前記磁路形成部の間に設けられている、請求項1乃至4の何れか一項に記載の流体加熱装置。
A cylindrical iron core,
A magnetic path forming portion that is provided outside the cylindrical iron core and forms a closed magnetic path together with the cylindrical iron core;
An induction coil provided between the cylindrical iron core and the magnetic path forming portion and generating a magnetic flux inside the cylindrical iron core;
The fluid heating device according to any one of claims 1 to 4, wherein the first conductor tube and the second conductor tube are provided between the cylindrical iron core and the magnetic path forming portion.
JP2016178269A 2016-09-13 2016-09-13 Fluid heating device Active JP6746136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178269A JP6746136B2 (en) 2016-09-13 2016-09-13 Fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178269A JP6746136B2 (en) 2016-09-13 2016-09-13 Fluid heating device

Publications (2)

Publication Number Publication Date
JP2018045804A true JP2018045804A (en) 2018-03-22
JP6746136B2 JP6746136B2 (en) 2020-08-26

Family

ID=61693778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178269A Active JP6746136B2 (en) 2016-09-13 2016-09-13 Fluid heating device

Country Status (1)

Country Link
JP (1) JP6746136B2 (en)

Also Published As

Publication number Publication date
JP6746136B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP5748202B2 (en) Superheated steam generator
TWI822843B (en) Superheated steam generator
JP6760637B2 (en) Fluid heating device
JP2010071624A (en) Fluid heating device
JP5317284B2 (en) Fluid heating device
JP2012163230A (en) Superheated water vapor generator
JP6431717B2 (en) Fluid heating device
JP6494100B2 (en) Fluid heating device
JP2009041885A (en) Fluid heating device
JP7256539B2 (en) Superheated steam generator
JP5947048B2 (en) Fluid heating device
JP6746136B2 (en) Fluid heating device
JP6760636B2 (en) Fluid heating device
JP6516562B2 (en) Fluid heating device
JP7065506B2 (en) Superheated steam generator
JP7407438B2 (en) fluid heating device
JP2023067382A (en) Superheated steam generator
JP7270976B2 (en) Superheated steam generator
JP2023067383A (en) Superheated steam generator
JP2023162578A (en) Superheated steam generation device
JP7065509B2 (en) Superheated steam generator and conductor tube
JP2023162579A (en) Superheated steam generation device
JP6341614B2 (en) Fluid heating device
JP2018051848A (en) Heat medium flowing roller apparatus
ITRM20070434A1 (en) OVERHEATED STEAM GENERATOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200730

R150 Certificate of patent or registration of utility model

Ref document number: 6746136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250