JP2018044733A - Circulation type cooler - Google Patents

Circulation type cooler Download PDF

Info

Publication number
JP2018044733A
JP2018044733A JP2016180871A JP2016180871A JP2018044733A JP 2018044733 A JP2018044733 A JP 2018044733A JP 2016180871 A JP2016180871 A JP 2016180871A JP 2016180871 A JP2016180871 A JP 2016180871A JP 2018044733 A JP2018044733 A JP 2018044733A
Authority
JP
Japan
Prior art keywords
temperature
liquid
delivery
supply valve
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016180871A
Other languages
Japanese (ja)
Other versions
JP6542731B2 (en
Inventor
庸平 塚間
Yohei Tsukama
庸平 塚間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAGI REIKI KK
Original Assignee
TAKAGI REIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAGI REIKI KK filed Critical TAKAGI REIKI KK
Priority to JP2016180871A priority Critical patent/JP6542731B2/en
Publication of JP2018044733A publication Critical patent/JP2018044733A/en
Application granted granted Critical
Publication of JP6542731B2 publication Critical patent/JP6542731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a temperature change of cooling liquid caused by a thermal load of liquid supplied from outside.SOLUTION: A supply system 6 supplies liquid into a liquid tank 2. A sending-out system 7 sends out the liquid stored in the liquid tank 2 to outside. A liquid circulation system 4 circulates liquid stored in the liquid tank 2. A cooler 3 cools the liquid circulating in the liquid circulation system 4 through heat exchange with a refrigerant. A temperature sensor 4b detects a sending-out temperature of the liquid sent out by the sending-out system 7. A control section 9 performs control so that the sending-out temperature of the liquid sent out by the sending-out system 7 falls within a constant temperature range by controlling an opening of a supply valve 6a on the basis of the sending-out temperature detected by the temperature sensor 4b.SELECTED DRAWING: Figure 1

Description

本発明は、液体を循環させながら冷却する循環式冷却機に係り、特に、外部からの液体の供給量を調整する供給バルブの制御に関する。   The present invention relates to a circulating cooler that cools while circulating a liquid, and more particularly to control of a supply valve that adjusts the amount of liquid supplied from the outside.

従来より、液体を循環させながら冷却する循環式冷却機が知られている。例えば、特許文献1には、外部の給水源から水槽内に水を供給すると共に、水槽内の水を循環ポンプで循環させながら冷却器(エバポレータ)にて冷却する氷蓄式冷水供給装置が開示されている。この冷水供給装置では、水槽内の水位に応じて、給水バルブ(供給バルブ)の開閉による給水が行われる。すなわち、水位が所定のレベルよりも低くなった場合、給水バルブを開いて給水を実行し、水位が所定レベル以上になった場合、給水バルブを閉じて給水を停止する。   Conventionally, a circulation type cooler that cools while circulating a liquid is known. For example, Patent Literature 1 discloses an ice storage type cold water supply device that supplies water into an aquarium from an external water supply source and cools the water in the aquarium with a circulation pump while circulating the water in the aquarium. Has been. In this cold water supply apparatus, water supply is performed by opening and closing a water supply valve (supply valve) according to the water level in the water tank. That is, when the water level becomes lower than a predetermined level, the water supply valve is opened to execute water supply, and when the water level becomes equal to or higher than the predetermined level, the water supply valve is closed to stop water supply.

特開平8−121931号公報JP-A-8-121931

従来の循環式冷却機において、送出系より送出される冷却液体の温度は、冷媒の循環系に設けられた圧縮機を動作/停止させることによって、一定の温度範囲内に収まるように制御される。また、液体の供給系に設けられた供給バルブの開閉は、液体を貯留する液槽内の液位に応じて行われ、液体の供給時には、常に一定の供給量で液体の供給が行われる。ここで、外部から供給される常温の液体は冷却器にとっての熱負荷となるため、冷却器の冷却能力を超えた熱負荷が大量に加わると、冷却液体の急激な温度変化を招くことになる。   In a conventional circulation type cooler, the temperature of the cooling liquid delivered from the delivery system is controlled to be within a certain temperature range by operating / stopping a compressor provided in the refrigerant circulation system. . The supply valve provided in the liquid supply system is opened and closed according to the liquid level in the liquid tank that stores the liquid. When supplying the liquid, the liquid is always supplied at a constant supply amount. Here, the liquid at normal temperature supplied from the outside becomes a heat load for the cooler. Therefore, if a large amount of heat load exceeding the cooling capacity of the cooler is applied, a sudden temperature change of the cooling liquid will be caused. .

本発明は、かかる事情に鑑みてなされたものであり、その目的は、外部から供給される液体の熱負荷に起因した冷却液体の温度変化を緩和することである。   This invention is made | formed in view of this situation, The objective is to relieve the temperature change of the cooling liquid resulting from the thermal load of the liquid supplied from the outside.

かかる課題を解決すべく、本発明は、液槽と、供給系と、供給バルブと、送出系と、循環系と、冷却器と、制御部とを有し、液体を循環させながら冷却する循環式冷却機を提供する。液槽には、液体が貯留される。供給系は、液槽内に液体を供給する。供給バルブは、供給系に設けられている。送出系は、液槽内に貯留された液体を外部に送出する。循環系は、液槽内に貯留された液体を循環させる。冷却器は、冷媒との熱交換によって、循環系を循環する液体を冷却する。制御部は、供給バルブの開度を制御することによって、送出系より送出される液体の送出温度を一定の温度範囲内に収まるように制御する。   In order to solve this problem, the present invention has a liquid tank, a supply system, a supply valve, a delivery system, a circulation system, a cooler, and a control unit, and a circulation system that cools while circulating a liquid. A cooling machine is provided. Liquid is stored in the liquid tank. The supply system supplies a liquid into the liquid tank. The supply valve is provided in the supply system. The delivery system delivers the liquid stored in the liquid tank to the outside. The circulation system circulates the liquid stored in the liquid tank. The cooler cools the liquid circulating in the circulation system by exchanging heat with the refrigerant. The controller controls the opening temperature of the supply valve so as to keep the delivery temperature of the liquid delivered from the delivery system within a certain temperature range.

ここで、本発明において、上記制御部は、送出温度が第1の温度の場合、供給バルブの開度を第1の開度に設定し、送出温度が第1の温度よりも高い第2の温度の場合、供給バルブの開度を第1の開度よりも小さい第2の開度に設定することが好ましい。この場合、上記制御部は、送出温度が第1の温度から第2の温度に上昇するのに従って、供給バルブの開度を第1の開度から第2の開度に連続的に減少させてもよい。また、これに代えて、上記制御部は、送出温度が第1の温度に低下するまでの間、供給バルブを全閉状態に維持し、送出温度が第2の温度に上昇するまでの間、供給バルブを全開状態に維持してもよい。   Here, in the present invention, when the delivery temperature is the first temperature, the control unit sets the opening degree of the supply valve to the first opening degree, and the delivery temperature is higher than the first temperature. In the case of temperature, it is preferable to set the opening of the supply valve to a second opening that is smaller than the first opening. In this case, the control unit continuously decreases the opening of the supply valve from the first opening to the second opening as the delivery temperature rises from the first temperature to the second temperature. Also good. Alternatively, the control unit maintains the supply valve in a fully closed state until the delivery temperature decreases to the first temperature, and until the delivery temperature rises to the second temperature. The supply valve may be kept fully open.

また、本発明において、上記制御部は、上記供給バルブの開度の制御として、送出温度と設定温度との偏差に基づいたフィードバック制御を行ってもよい。このフィードバック制御は、送出体温度と設定温度との偏差に比例して供給バルブの開度を変化させる比例動作と、この偏差の積分値に基づいて供給バルブの開度を変化させる積分動作と、この偏差の微分値に基づいて供給バルブの開度を変化させる微分動作とを含むPID制御であることが好ましい。   In the present invention, the control unit may perform feedback control based on a deviation between a delivery temperature and a set temperature as control of the opening degree of the supply valve. This feedback control includes a proportional operation for changing the opening of the supply valve in proportion to the deviation between the temperature of the delivery body and the set temperature, an integration operation for changing the opening of the supply valve based on the integral value of the deviation, PID control including differential operation for changing the opening of the supply valve based on the differential value of the deviation is preferable.

さらに、本発明において、送出系より送出される液体の送出温度を検出する温度センサをさらに設けてもよい。この場合、上記制御部は、温度センサによって検出された送出温度に基づいて、供給バルブの開度を制御する。また、上記制御部は、上記送出温度に加えて、冷媒を高圧液化する圧縮機の動作状態、供給系を流れる液体の温度、および、供給系を流れる液体の圧力の少なくとも一つに基づいて、供給バルブの開度を制御してもよい。   Furthermore, in the present invention, a temperature sensor for detecting the delivery temperature of the liquid delivered from the delivery system may be further provided. In this case, the said control part controls the opening degree of a supply valve based on the sending temperature detected by the temperature sensor. Further, the control unit is based on at least one of the operating state of the compressor that liquefies the refrigerant at high pressure, the temperature of the liquid flowing through the supply system, and the pressure of the liquid flowing through the supply system, in addition to the delivery temperature. You may control the opening degree of a supply valve.

本発明によれば、供給バルブの開度を制御することによって、冷却器にとっての熱負荷となる外部からの液体の供給量を動的に調整する。外部より印加される熱負荷の量そのものを調整して、冷却液体の送出温度が一定の温度範囲内に収まるようにすることで、熱負荷に起因した冷却液体の温度変化が緩和され、送出温度を精度よく制御できる。   According to the present invention, by controlling the opening degree of the supply valve, the amount of liquid supplied from the outside that becomes a heat load for the cooler is dynamically adjusted. By adjusting the amount of heat load applied from the outside itself so that the cooling liquid delivery temperature is within a certain temperature range, the temperature change of the cooling liquid due to the thermal load is mitigated, and the delivery temperature Can be accurately controlled.

循環式冷却機の全体構成図Overall configuration diagram of the circulating cooler 制御系のブロック図Block diagram of control system 第1の実施形態に係る送出温度およびバルブ開度の特性を示す図The figure which shows the characteristic of the delivery temperature and valve opening degree which concern on 1st Embodiment 第2の実施形態に係る送出温度およびバルブ開度の特性を示す図The figure which shows the characteristic of the delivery temperature and valve opening degree concerning 2nd Embodiment 第3の実施形態に係る送出温度およびバルブ開度の特性を示す図The figure which shows the characteristic of the delivery temperature and valve opening degree concerning 3rd Embodiment 第4の実施形態に係るバルブ制御の説明図Explanatory drawing of valve control concerning a 4th embodiment PID制御における送出温度およびバルブ開度の経時変化を示す図The figure which shows the time-dependent change of the sending temperature and valve opening degree in PID control 第5の実施形態に係る循環式冷却機の全体構成図Overall configuration diagram of a circulating cooler according to a fifth embodiment 第5の実施形態に係るバルブ制御のブロック図Block diagram of valve control according to the fifth embodiment

(第1の実施形態)
図1は、本実施形態に係る循環式冷却機の概略的な全体構成図である。この循環式冷却機1は、冷却対象となる液体を循環させながら冷却する。冷却対象となる液体として、食品、水産、理化学等の各種分野で使用される冷水、飲料水、塩水、飲料(ジュース、ビール等)、ブラインなどを含めて、流動性を有する様々な液体を任意に用いることができる。
(First embodiment)
FIG. 1 is a schematic overall configuration diagram of a circulation type chiller according to the present embodiment. The circulation type cooler 1 cools while circulating a liquid to be cooled. As liquid to be cooled, various liquids with fluidity are available, including cold water, drinking water, salt water, beverages (juice, beer, etc.), brine, etc. used in various fields such as food, fisheries, and chemistry. Can be used.

循環式冷却機1は、液槽2と、冷却器3と、液体循環系4と、冷媒循環系5と、供給系6と、送出系7とを主体に構成されている。液槽2には、液体が貯留されており、その底面には、冷媒との熱交換によって液体を冷却するための冷却器3が設置されている。液体循環系4は、冷却器3における液体の出入口に接続されており、液槽2内に貯留された液体をポンプ4aで汲み出して冷却器3に供給すると共に、冷却器3によって冷却された液体を液槽2内に放出する。供給系6は、液槽2内に外部から液体(通常は常温)を供給する。   The circulation type cooler 1 is mainly composed of a liquid tank 2, a cooler 3, a liquid circulation system 4, a refrigerant circulation system 5, a supply system 6, and a delivery system 7. Liquid is stored in the liquid tank 2, and a cooler 3 for cooling the liquid by heat exchange with the refrigerant is installed on the bottom surface thereof. The liquid circulation system 4 is connected to the liquid inlet / outlet of the cooler 3, and the liquid stored in the liquid tank 2 is pumped out by the pump 4 a and supplied to the cooler 3, and the liquid cooled by the cooler 3 is used. Is discharged into the liquid tank 2. The supply system 6 supplies liquid (usually normal temperature) into the liquid tank 2 from the outside.

温度センサ4bは、送出系4を介して外部に送出される冷却液体の温度、すなわち、循環式冷却機1によって冷却処理された液体の温度(以下、「送出温度T」という。)を検出する。図1の構成では、液体循環系4における液槽2の下流側かつポンプ4aの上流側の流路が送出系7の一部として共用されているため、この部分に温度センサ4bが設けられている。温度センサ4bの設置位置については、送出系7より送出される冷却液体と実質的に同一温度とみなせる箇所、あるいは、冷却液体の温度を特定可能な箇所であれば、いずれに設置してもよい。図1の構成では、液槽2の内部、液体循環系4の一部(ポンプ4aの下流側かつ冷却器3の上流側)、送出系7は、いずれも実質的に同一温度なので、いずれに温度センサ4bを設置してもよい。本明細書において、「送出温度」とは、送出系4より送出される冷却液体の温度と実質的に同一と見なせる温度、あるいは、冷却液体の温度と相関を有するが故に、冷却液体の温度を特定・推定可能な温度を広く含む概念として用いられる。   The temperature sensor 4 b detects the temperature of the cooling liquid sent to the outside via the delivery system 4, that is, the temperature of the liquid cooled by the circulating cooler 1 (hereinafter referred to as “delivery temperature T”). . In the configuration of FIG. 1, the flow path downstream of the liquid tank 2 and upstream of the pump 4a in the liquid circulation system 4 is shared as a part of the delivery system 7, so that a temperature sensor 4b is provided in this part. Yes. About the installation position of the temperature sensor 4b, as long as it can be regarded as the substantially same temperature as the cooling liquid sent out from the sending system 7, or the place which can specify the temperature of a cooling liquid, you may install in any place. . In the configuration of FIG. 1, the liquid tank 2, a part of the liquid circulation system 4 (downstream of the pump 4 a and upstream of the cooler 3), and the delivery system 7 are all at substantially the same temperature. A temperature sensor 4b may be installed. In this specification, the “delivery temperature” means a temperature that can be regarded as substantially the same as the temperature of the cooling liquid delivered from the delivery system 4 or the temperature of the cooling liquid because it has a correlation with the temperature of the cooling liquid. It is used as a concept that includes a wide range of temperatures that can be specified and estimated.

冷媒循環系5は、冷却器1における冷媒の出入口に接続されており、圧縮機および凝縮器よりなる冷凍機5aと、膨張バルブ5bとを備えている。冷凍機5aの運転中、冷媒は、冷凍サイクルを繰り返しながら冷媒循環系5を循環する。すなわち、冷凍機5aに供給された冷媒は、圧縮機によって圧縮されて高温高圧ガスとなり、凝縮器によって凝縮(液化)された上で、高圧液となって冷凍機5aより放出される。高圧液化された冷媒は、膨張バルブ5bによって減圧され、低圧液となって冷却器3に供給される。低圧液化された冷媒は、冷却器3における液体との熱交換によって蒸発(気化)し、低圧ガスとなって冷凍機5aに戻される。このような冷媒の冷凍サイクルにおいて、冷却器3内を流れる液体は、低圧液化された冷媒が気体に相変化する際の気化熱によって冷却される。また、冷媒循環系5において、冷却器3と冷凍機5aとの間には、冷媒の蒸発圧力(冷凍機5aの入口におけるガス吸入圧力)を検知する蒸発圧力センサ5cが設けられている。   The refrigerant circulation system 5 is connected to the refrigerant inlet / outlet in the cooler 1, and includes a refrigerator 5a including a compressor and a condenser, and an expansion valve 5b. During operation of the refrigerator 5a, the refrigerant circulates in the refrigerant circulation system 5 while repeating the refrigeration cycle. That is, the refrigerant supplied to the refrigerator 5a is compressed by the compressor to become a high-temperature high-pressure gas, condensed (liquefied) by the condenser, and then discharged from the refrigerator 5a as a high-pressure liquid. The high-pressure liquefied refrigerant is depressurized by the expansion valve 5 b and is supplied to the cooler 3 as a low-pressure liquid. The low-pressure liquefied refrigerant is evaporated (vaporized) by heat exchange with the liquid in the cooler 3, and is returned to the refrigerator 5a as low-pressure gas. In such a refrigerant refrigeration cycle, the liquid flowing in the cooler 3 is cooled by the heat of vaporization when the low-pressure liquefied refrigerant changes into a gas. In the refrigerant circulation system 5, an evaporating pressure sensor 5c for detecting the evaporating pressure of the refrigerant (gas suction pressure at the inlet of the refrigerating machine 5a) is provided between the cooler 3 and the refrigerating machine 5a.

レベルセンサ8は、液槽2に貯留された液体の液位(液体表面の高さ)を検知する。このレベルセンサ8によって満液状態からの液位の減少が検知された場合、供給系6に設けられた電動式の供給バルブ6aを介して、外部の供給源より液槽2内に液体が供給・補充される。また、送出系7は、液槽2内に貯留された液体を、冷却器3を介することなく、外部に直接送出する。本実施形態において、送出系7は、液体循環系4における冷却器3の直上流側、具体的には、ポンプ4aの下流側かつ冷却器3の上流側に一端が取り付けられており、ポンプ4aによって汲み出された液体が外部に送出される。また、送出系7には、送出バルブ7aが設けられている。   The level sensor 8 detects the liquid level (the height of the liquid surface) of the liquid stored in the liquid tank 2. When the level sensor 8 detects a decrease in the liquid level from the full liquid state, the liquid is supplied into the liquid tank 2 from an external supply source via the electric supply valve 6 a provided in the supply system 6.・ Replenished. Further, the delivery system 7 directly sends the liquid stored in the liquid tank 2 to the outside without going through the cooler 3. In the present embodiment, the delivery system 7 has one end attached to the upstream side of the cooler 3 in the liquid circulation system 4, specifically, the downstream side of the pump 4a and the upstream side of the cooler 3, and the pump 4a The liquid pumped out by is sent out to the outside. The delivery system 7 is provided with a delivery valve 7a.

図2は、循環式冷却機1における制御系のブロック図である。循環式冷却機1における全体的な動作制御は、制御部9によって行われる。この制御部9には、循環式冷却機1の状態を検出するセンサとして、温度センサ4bと、蒸発圧力センサ5cと、レベルセンサ8とが接続されている。制御部9は、これらのセンサ4b,5c,8からのセンサ信号に基づいて、ポンプ4aと、冷凍機5aと、供給バルブ6aを制御する。   FIG. 2 is a block diagram of a control system in the circulating chiller 1. The overall operation control in the circulating cooler 1 is performed by the control unit 9. A temperature sensor 4b, an evaporation pressure sensor 5c, and a level sensor 8 are connected to the control unit 9 as sensors for detecting the state of the circulating cooler 1. The controller 9 controls the pump 4a, the refrigerator 5a, and the supply valve 6a based on sensor signals from these sensors 4b, 5c, and 8.

つぎに、循環式冷却機1の動作について説明する。循環式冷却機1の動作モードには、初期運転と、定常運転とが存在する。定常運転に先立つ初期運転では、送出バルブ7aが全閉した状態で、電源の投入によって循環式冷却機1を始動させ、液槽2内にある程度冷却された液体が貯留される。具体的には、まず、液槽2内への液体の供給を速やかに行うために、供給バルブ6aの開度θが強制的に全開(100%)に設定され、供給系6の最大供給能力で液体の供給が行われる。つぎに、貯留槽2内の液位が所定値に到達したことがレベルセンサ8によって検知された時点で、ポンプ4aの動作が開始し、これによって、液体循環系4を液体が流れ始める。これ以降、ポンプ4aの動作は、定常運転時も含めて、冷却機5aの動作状態(動作/停止)の如何を問わず継続される。   Next, the operation of the circulating cooler 1 will be described. The operation mode of the circulating cooler 1 includes an initial operation and a steady operation. In the initial operation prior to the steady operation, the circulating cooler 1 is started by turning on the power supply with the delivery valve 7a fully closed, and the liquid cooled to some extent is stored in the liquid tank 2. Specifically, first, in order to quickly supply the liquid into the liquid tank 2, the opening degree θ of the supply valve 6 a is forcibly set to fully open (100%), and the maximum supply capacity of the supply system 6. Then, the liquid is supplied. Next, when the level sensor 8 detects that the liquid level in the storage tank 2 has reached a predetermined value, the operation of the pump 4a starts, whereby the liquid starts flowing through the liquid circulation system 4. Thereafter, the operation of the pump 4a is continued regardless of the operation state (operation / stop) of the cooler 5a, including during steady operation.

その後、ポンプ4aの動作開始よりも若干遅延して、冷凍機5aが動作し始める。これによって、冷却器3における冷媒との熱交換が生じ、液体循環系4を流れる液体の冷却が開始される。ここで、冷凍機5aは、蒸発圧力センサ5cによって検知された冷媒の蒸発圧力に基づいて、蒸発圧力が一定になるように、自己が備える圧縮機の動作周波数が可変に制御される(例えば、80〜30Hz)。これにより、冷凍機5aの停止時間を長く設定できると共に、冷凍機5aの動作/停止の切替頻度(いわゆるハンチング)が抑制されるので、運転効率が向上する(低周波数時)。なお、冷凍機5aは、常時、一定の周波数で動作させてもよい。   Thereafter, the refrigerator 5a starts operating slightly after the start of operation of the pump 4a. As a result, heat exchange with the refrigerant in the cooler 3 occurs, and cooling of the liquid flowing through the liquid circulation system 4 is started. Here, the operating frequency of the compressor included in the refrigerator 5a is variably controlled based on the evaporation pressure of the refrigerant detected by the evaporation pressure sensor 5c so that the evaporation pressure becomes constant (for example, 80-30 Hz). Thereby, the stop time of the refrigerator 5a can be set longer, and the operation / stop switching frequency (so-called hunting) of the refrigerator 5a is suppressed, so that the operation efficiency is improved (at the time of low frequency). The refrigerator 5a may always be operated at a constant frequency.

また、貯留槽2内の液位が所定値に到達したことがレベルセンサ8によって検知された時点で、供給バルブ6aが全閉(0%)して、供給系6からの液体の供給が停止する。これにより、冷却器3によって液体が冷却され、冷却液体の温度が徐々に低下していく。   When the level sensor 8 detects that the liquid level in the storage tank 2 has reached a predetermined value, the supply valve 6a is fully closed (0%), and the supply of liquid from the supply system 6 is stopped. To do. Thereby, the liquid is cooled by the cooler 3, and the temperature of the cooling liquid gradually decreases.

液体の冷却が進行して、温度センサ4bによって検出された送出温度Tが所定値に到達した場合、循環式冷却機1の動作モードが初期運転から定常運転に移行する。これにより、全閉状態にあった送出バルブ7aが全開して、送出系7からの冷却液体の送出が開始される。定常運転時には、供給バルブ6aの開度θをリアルタイムで調整することによって、冷却液体の温度が一定の温度範囲内に収めるように制御される。   When the cooling of the liquid proceeds and the delivery temperature T detected by the temperature sensor 4b reaches a predetermined value, the operation mode of the circulating cooler 1 shifts from the initial operation to the steady operation. As a result, the delivery valve 7a in the fully closed state is fully opened, and delivery of the cooling liquid from the delivery system 7 is started. During steady operation, the temperature of the cooling liquid is controlled to be within a certain temperature range by adjusting the opening degree θ of the supply valve 6a in real time.

図3は、第1の実施形態に係る送出温度Tおよびバルブ開度θの特性を示す図である。定常運転時において、送出温度Tは、A(T1,θ1),B(T2,θ2)の2点間を推移するものとして、予め設定されている。ここで、T1は送出下限温度、T2は送出上限温度、θ1は最大供給開度、θ2は最小供給開度である。送出温度Tが送出下限温度T1の場合、供給バルブ6aの開度θが最大供給開度θ1に設定される。また、送出温度Tが送出上限温度T2(>T1)の場合、供給バルブ6aの開度θが最小供給開度θ2(<θ1)に設定される。2つの点A,B間の中間値については、点A,Bに基づく線形補間(比例制御)によって算出される。これにより、本実施形態では、送出温度Tおよびバルブ開度θの特性は、直線状かつ連続した特性となる。2つの点A,Bは、外部から供給される液体の熱負荷と、冷却器3の冷却能力とがバランスするように、実験やシミュレーションを通じて適切に決定される。なお、2つの点A,Bは、循環式冷却機1の現場環境、使用目的に応じて変化させてもよい。制御部9は、図示した特性に従って、送出温度T(入力)からバルブ開度θ(出力)を算出し、供給バルブ6aの開度θを可変に制御する。   FIG. 3 is a diagram illustrating characteristics of the delivery temperature T and the valve opening degree θ according to the first embodiment. During steady operation, the delivery temperature T is set in advance as a transition between two points A (T1, θ1) and B (T2, θ2). Here, T1 is a delivery lower limit temperature, T2 is a delivery upper limit temperature, θ1 is a maximum supply opening, and θ2 is a minimum supply opening. When the delivery temperature T is the delivery lower limit temperature T1, the opening θ of the supply valve 6a is set to the maximum supply opening θ1. When the delivery temperature T is the delivery upper limit temperature T2 (> T1), the opening degree θ of the supply valve 6a is set to the minimum supply opening degree θ2 (<θ1). An intermediate value between the two points A and B is calculated by linear interpolation (proportional control) based on the points A and B. Thereby, in this embodiment, the characteristics of the delivery temperature T and the valve opening degree θ are linear and continuous characteristics. The two points A and B are appropriately determined through experiments and simulations so that the heat load of the liquid supplied from the outside and the cooling capacity of the cooler 3 are balanced. In addition, you may change two points A and B according to the field environment of the circulation type cooler 1, and the intended purpose. The controller 9 calculates the valve opening θ (output) from the delivery temperature T (input) according to the illustrated characteristics, and variably controls the opening θ of the supply valve 6a.

なお、送出温度T(入力)に基づくバルブ開度θ(出力)の特定手法としては、上述した2つの点A,Bに基づく線形補間の他に、予め用意された一次関数に送出温度Tを代入してバルブ開度θを算出する演算手法や、送出温度Tとバルブ開度θとの関係が記述されたテーブルを参照するテーブル参照手法などを用いてもよい。   In addition, as a method for specifying the valve opening degree θ (output) based on the delivery temperature T (input), in addition to the linear interpolation based on the two points A and B described above, the delivery temperature T is set to a linear function prepared in advance. An arithmetic method for calculating the valve opening θ by substitution, a table reference method for referring to a table in which the relationship between the delivery temperature T and the valve opening θ is described, or the like may be used.

定常運転時において、供給系6からの常温液体の供給と、送出系7からの冷却液体の送出とが並行して行われる場合、常温液体は冷却器3にとっての熱負荷となるため、冷却器3の冷却能力を超えた熱負荷が加わると、冷却液体の上昇を招く。しかしながら、本実施形態では、温度センサ4bによって送出温度Tの上昇が検知されると、供給バルブ6aの開度θが小さくなるように制御される。これにより、冷却器3の冷却能力に見合うように、液体供給による熱負荷が減少して、送出温度Tの上昇率が小さくなる。一方、温度センサ4bによって送出温度Tの低下が検知されると、供給バルブ6aの開度θが大きくなるように制御される。これにより、冷却器3の冷却能力に見合うように、液体供給による熱負荷が増大して、送出温度Tの低下率が小さくなる。このようなプロセスを経ることで、冷却器3の冷却能力に見合った量に熱負荷が動的に調整され、送出温度Tが一定の温度範囲内に収まることになる。   In the normal operation, when the supply of the normal temperature liquid from the supply system 6 and the supply of the cooling liquid from the delivery system 7 are performed in parallel, the normal temperature liquid becomes a heat load for the cooler 3. When a heat load exceeding the cooling capacity of 3 is applied, the cooling liquid rises. However, in this embodiment, when the temperature sensor 4b detects an increase in the delivery temperature T, the opening degree θ of the supply valve 6a is controlled to be small. As a result, the thermal load due to the liquid supply is reduced to match the cooling capacity of the cooler 3, and the rate of increase of the delivery temperature T is reduced. On the other hand, when the temperature sensor 4b detects a decrease in the delivery temperature T, the opening degree θ of the supply valve 6a is controlled to increase. As a result, the thermal load due to the liquid supply increases so as to match the cooling capacity of the cooler 3, and the rate of decrease of the delivery temperature T decreases. By going through such a process, the heat load is dynamically adjusted to an amount commensurate with the cooling capacity of the cooler 3, and the delivery temperature T falls within a certain temperature range.

このように、本実施形態によれば、供給系6に設けられた供給バルブ6aの開度θを制御することによって、冷却器3にとっての熱負荷となる液体の供給量を動的に調整する。すなわち、送出温度TがT1からT2に上昇するのに従って、供給バルブ6aの開度θはθ1からθ2に向かって連続的かつ線形的に減少していく。逆に、送出温度TがT2からT1に減少するのに従って、供給バルブ6aの開度θはθ2からθ1に向かって連続的かつ線形的に増加していく。このように、外部より印加される熱負荷の量そのものを制御して、送出温度Tが一定の温度範囲内に収まるように制御することで、熱負荷に起因した冷却液体の温度変化を緩和でき、冷却液体の温度を精度よく制御できる。   As described above, according to the present embodiment, the supply amount of the liquid serving as a heat load for the cooler 3 is dynamically adjusted by controlling the opening degree θ of the supply valve 6 a provided in the supply system 6. . That is, as the delivery temperature T increases from T1 to T2, the opening θ of the supply valve 6a decreases continuously and linearly from θ1 to θ2. Conversely, as the delivery temperature T decreases from T2 to T1, the opening θ of the supply valve 6a increases continuously and linearly from θ2 to θ1. In this way, by controlling the amount of heat load applied from the outside and controlling the delivery temperature T within a certain temperature range, the temperature change of the cooling liquid due to the heat load can be mitigated. The temperature of the cooling liquid can be accurately controlled.

(第2の実施形態)
図4は、第2の実施形態に係る送出温度Tおよびバルブ開度θの特性を示す図である。第1の実施形態と同様に、定常運転時の送出温度Tは、A(T1,θ1),B(T2,θ2)の2点間を推移するものとして、予め設定されている。2つの点A,B間の特性としては、曲線状(例えば、二次曲線)に連続した特性となる。点A,B間の中間値については、2点A,Bを通る二次関数等に基づいて算出してもよいし、上述したテーブル参照方式などを用いてもよい。制御部9は、図示した特性に従って、送出温度T(入力)からバルブ開度θ(出力)を算出し、供給バルブ6aの開度θを可変に制御する。それ以外の点は、第1の実施形態と同様なので、ここでの説明を省略する。
(Second Embodiment)
FIG. 4 is a diagram showing characteristics of the delivery temperature T and the valve opening degree θ according to the second embodiment. As in the first embodiment, the delivery temperature T during steady operation is set in advance so as to transition between two points A (T1, θ1) and B (T2, θ2). The characteristic between the two points A and B is a continuous characteristic in a curved shape (for example, a quadratic curve). The intermediate value between the points A and B may be calculated based on a quadratic function passing through the two points A and B, or the table reference method described above may be used. The controller 9 calculates the valve opening θ (output) from the delivery temperature T (input) according to the illustrated characteristics, and variably controls the opening θ of the supply valve 6a. Since the other points are the same as in the first embodiment, description thereof is omitted here.

本実施形態によれば、第1の実施形態と同様、熱負荷に起因した冷却液体の温度変化を緩和でき、冷却液体の温度を精度よく制御できる。特に、本実施形態によれば、2つの点A,B間の中間値を第1の実施形態よりも高い自由度で設定することができる。   According to the present embodiment, as in the first embodiment, the temperature change of the cooling liquid due to the thermal load can be alleviated, and the temperature of the cooling liquid can be controlled with high accuracy. In particular, according to the present embodiment, the intermediate value between the two points A and B can be set with a higher degree of freedom than in the first embodiment.

(第3の実施形態)
図5は、第3の実施形態に係る送出温度Tおよびバルブ開度θの特性を示す図である。本実施形態では、バルブ開度θが全開(100%)、全閉(0%)に切り替えられる。定常運転における温度範囲をT1〜T2とすると、送出温度Tが下限値T1に到達するまでの間(温度下降中)、供給バルブ6aの開度θが0%に設定される。これにより、供給系6からの液体の供給が停止した状態で、送出温度Tが減少していく。一方、送出温度Tが上限値T2に到達するまでの間(温度上昇中)、供給バルブ6aの開度θが1000%に設定される。これにより、供給系6からの液体の供給が実行されている状態で、送出温度Tが上昇していく。
(Third embodiment)
FIG. 5 is a diagram showing characteristics of the delivery temperature T and the valve opening degree θ according to the third embodiment. In the present embodiment, the valve opening degree θ is switched between fully open (100%) and fully closed (0%). Assuming that the temperature range in the steady operation is T1 to T2, the opening θ of the supply valve 6a is set to 0% until the delivery temperature T reaches the lower limit value T1 (during temperature decrease). As a result, the delivery temperature T decreases while the supply of the liquid from the supply system 6 is stopped. On the other hand, the opening degree θ of the supply valve 6a is set to 1000% until the delivery temperature T reaches the upper limit value T2 (during temperature rise). As a result, the delivery temperature T rises while the supply of liquid from the supply system 6 is being executed.

本実施形態によれば、上述した各実施形態と同様、熱負荷に起因した冷却液体の温度変化を緩和でき、冷却液体の温度を精度よく制御できる。特に、本実施形態によれば、上限値T2から下限値T1への温度下降中と、下限値T1から上限値T2への温度上昇中とで、供給バルブ6aを異なる状態に維持することで、供給バルブ6aの全開/全閉の切り替えが頻度に生じること(いわゆるハンチング)を抑制できる。   According to the present embodiment, as in the above-described embodiments, the temperature change of the cooling liquid due to the thermal load can be alleviated, and the temperature of the cooling liquid can be accurately controlled. In particular, according to the present embodiment, the supply valve 6a is maintained in a different state during the temperature decrease from the upper limit value T2 to the lower limit value T1 and during the temperature increase from the lower limit value T1 to the upper limit value T2. It is possible to suppress the frequent switching (so-called hunting) of the supply valve 6a.

(第4の実施形態)
上述した各実施形態では、送出温度Tを入力としたバルブ開度θの設定手法について説明したが、本実施形態では、所定の設定温度(目標値)と送出温度T(実際値)との偏差に基づいたフィードバック制御にてバルブ開度θを設定する手法について説明する。このようなフィードバック制御の一例として、PID制御(Proportional-Integral-Differential Controller)を用いることができる。
(Fourth embodiment)
In each of the embodiments described above, the method of setting the valve opening degree θ using the delivery temperature T as an input has been described. However, in this embodiment, the deviation between a predetermined set temperature (target value) and the delivery temperature T (actual value). A method for setting the valve opening θ by feedback control based on the above will be described. As an example of such feedback control, PID control (Proportional-Integral-Differential Controller) can be used.

図6は、本実施形態に係るバルブ制御の説明図である。あるタイミングt1におけるバルブ開度θは、比例動作Pと、積分動作Iと、微分動作Dとを加算合成した、以下の数式よって算出される。比例動作Pでは、設定温度(目標値)と送出温度T(実際値)との現在の偏差eに比例した修正量で、バルブ開度θを変化させる。積分動作Iでは、過去の偏差eの積分値に比例した修正量で、バルブ開度θを変化させる。微分動作Dでは、偏差eの微分値(温度勾配)に基づいて、バルブ開度θを変化させる。   FIG. 6 is an explanatory diagram of valve control according to the present embodiment. The valve opening degree θ at a certain timing t1 is calculated by the following formula obtained by adding and synthesizing the proportional action P, the integral action I, and the differential action D. In the proportional operation P, the valve opening θ is changed by a correction amount proportional to the current deviation e between the set temperature (target value) and the delivery temperature T (actual value). In the integral operation I, the valve opening degree θ is changed by a correction amount proportional to the integral value of the past deviation e. In the differential operation D, the valve opening degree θ is changed based on the differential value (temperature gradient) of the deviation e.

Figure 2018044733
Figure 2018044733

図7は、PID制御における送出温度Tおよびバルブ開度θの経時的な変化を示す図である。送出温度Tが下降している場合には、これに追従して、バルブ開度θが大きくなるように制御される。これにより、冷却器3の冷却能力に見合うように、液体供給による熱負荷が増大して、送出温度Tの下降率が小さくなる。一方、送出温度Tが上昇している場合には、これに追従して、バルブ開度θが小さくなるように制御される。これにより、冷却器3の冷却能力に見合うように、液体供給による熱負荷が減少して、送出温度Tの上昇率が小さくなる。   FIG. 7 is a diagram showing changes over time in the delivery temperature T and the valve opening degree θ in the PID control. When the delivery temperature T is decreasing, the valve opening θ is controlled so as to increase. As a result, the thermal load due to the liquid supply increases so as to match the cooling capacity of the cooler 3, and the rate of decrease in the delivery temperature T decreases. On the other hand, when the delivery temperature T is rising, the valve opening degree θ is controlled so as to be small following this. As a result, the thermal load due to the liquid supply is reduced to match the cooling capacity of the cooler 3, and the rate of increase of the delivery temperature T is reduced.

本実施形態によれば、上述した実施形態と同様、熱負荷に起因した冷却液体の温度変化を緩和でき、冷却液体の温度を精度よく制御できる。特に、本実施形態によれば、フィードバック制御の一種であるPID制御を行うことで、冷却液体の温度をより精度よく制御することが可能となる。   According to the present embodiment, as in the above-described embodiment, the temperature change of the cooling liquid due to the thermal load can be reduced, and the temperature of the cooling liquid can be controlled with high accuracy. In particular, according to the present embodiment, it is possible to control the temperature of the cooling liquid with higher accuracy by performing PID control which is a kind of feedback control.

(第5の実施形態)
図8は、第5の実施形態に係る循環式冷却機1の全体構成図である。図1の構成との相違は、温度センサ6bおよび圧力センサ6cを供給系6に追加した点にあり、それ以外は図1の構成と同じである。温度センサ6bは、供給系6より供給される液体の供給温度を検出する。また、圧力センサ6cは、供給系6より供給される液体の供給圧力を検出する。
(Fifth embodiment)
FIG. 8 is an overall configuration diagram of the circulating chiller 1 according to the fifth embodiment. The difference from the configuration of FIG. 1 is that a temperature sensor 6b and a pressure sensor 6c are added to the supply system 6. Otherwise, the configuration is the same as that of FIG. The temperature sensor 6 b detects the supply temperature of the liquid supplied from the supply system 6. The pressure sensor 6 c detects the supply pressure of the liquid supplied from the supply system 6.

図9は、本実施形態に係るバルブ制御のブロック図である。本実施形態では、上述した温度センサ4bのセンサ値に加えて、温度センサ6bのセンサ値、圧力センサ6cのセンサ値、および、冷媒を高圧液化する圧縮機5aの動作状態の少なくとも一つに基づいて、供給バルブ6aの開度θが制御される。温度センサ6bによって検出された温度、すなわち、供給系6より供給される液体の温度が高くなるほど、冷却器3にとっての熱負荷が大きくなる。よって、この温度を考慮してバルブ開度θを制御すれば、冷却液体の温度をより精度よく制御できる。また、圧力センサ6cによって検出された温度、すなわち、供給系6より供給される液体の圧力が大きくなるほど、単位時間当たりの液体の供給量が増大するため、冷却器3にとっての熱負荷が大きくなる。よって、この圧力を考慮してバルブ開度θを制御すれば、冷却液体の温度をより精度よく制御できる。さらに、圧縮機5aの動作状態として、例えば、圧縮機5aが停止している場合や、低周波数で動作している場合、冷却器3の冷却能力が低下する。よって、この動作状態を考慮してバルブ開度θを制御すれば、冷却液体の温度をより精度よく制御できる。   FIG. 9 is a block diagram of valve control according to the present embodiment. In the present embodiment, in addition to the sensor value of the temperature sensor 4b described above, based on at least one of the sensor value of the temperature sensor 6b, the sensor value of the pressure sensor 6c, and the operating state of the compressor 5a that liquefies the refrigerant at high pressure. Thus, the opening θ of the supply valve 6a is controlled. The higher the temperature detected by the temperature sensor 6b, that is, the temperature of the liquid supplied from the supply system 6, the greater the heat load on the cooler 3. Therefore, if the valve opening θ is controlled in consideration of this temperature, the temperature of the cooling liquid can be controlled more accurately. Further, as the temperature detected by the pressure sensor 6c, that is, the pressure of the liquid supplied from the supply system 6 increases, the amount of liquid supplied per unit time increases, so the heat load on the cooler 3 increases. . Therefore, if the valve opening degree θ is controlled in consideration of this pressure, the temperature of the cooling liquid can be controlled more accurately. Furthermore, as the operating state of the compressor 5a, for example, when the compressor 5a is stopped or operating at a low frequency, the cooling capacity of the cooler 3 is reduced. Therefore, if the valve opening degree θ is controlled in consideration of this operation state, the temperature of the cooling liquid can be controlled more accurately.

1 循環式冷却機
2 液槽
3 冷却器
4 液体循環系
4a ポンプ
4b 温度センサ
5 冷媒循環系
5a 冷凍機
5b 膨張バルブ
5c 蒸発圧力センサ
6 供給系
6a 供給バルブ
6b 温度センサ
6c 圧力センサ
7 送出系
7a 送出バルブ
8 レベルセンサ
9 制御部

DESCRIPTION OF SYMBOLS 1 Circulation type cooler 2 Liquid tank 3 Cooler 4 Liquid circulation system 4a Pump 4b Temperature sensor 5 Refrigerant circulation system 5a Refrigeration machine 5b Expansion valve 5c Evaporation pressure sensor 6 Supply system 6a Supply valve 6b Temperature sensor 6c Pressure sensor 7 Delivery system 7a Delivery valve 8 Level sensor 9 Control unit

かかる課題を解決すべく、本発明は、液槽と、供給系と、供給バルブと、送出系と、送出バルブと、循環系と、冷却器と、温度センサと、制御部とを有し、液体を循環させながら冷却する循環式冷却機を提供する。液槽には、液体が貯留される。供給系は、外部から液槽内に液体を供給する。供給バルブは、供給系に設けられている。送出系は、液槽内に貯留された液体を外部に送出する。送出バルブは、送出系に設けられている。循環系は、液槽内に貯留された液体をポンプで汲み出し、この汲み出された液体を液槽に放出することによって、液体を循環させる。冷却器は、冷媒との熱交換によって、循環系を循環する液体を冷却する。温度センサは、送出系より送出される液体の送出温度を検出する。制御部は、温度センサによって検出された送出温度に基づいて、供給バルブの開度を制御することによって、送出系より送出される液体の送出温度を一定の温度範囲内に収まるように制御する。 In order to solve this problem, the present invention includes a liquid tank, a supply system, a supply valve, a delivery system, a delivery valve, a circulation system, a cooler, a temperature sensor, and a control unit. A circulation type cooler that cools while circulating a liquid is provided. Liquid is stored in the liquid tank. The supply system supplies liquid into the liquid tank from the outside . The supply valve is provided in the supply system. The delivery system delivers the liquid stored in the liquid tank to the outside. The delivery valve is provided in the delivery system. The circulation system circulates the liquid by pumping out the liquid stored in the liquid tank and discharging the pumped liquid into the liquid tank . The cooler cools the liquid circulating in the circulation system by exchanging heat with the refrigerant. The temperature sensor detects the delivery temperature of the liquid delivered from the delivery system. The control unit controls the opening temperature of the supply valve based on the delivery temperature detected by the temperature sensor so that the delivery temperature of the liquid delivered from the delivery system falls within a certain temperature range.

さらに、本発明において、上記制御部は、上記送出温度に加えて、冷媒を高圧液化する圧縮機の動作状態、供給系を流れる液体の温度、および、供給系を流れる液体の圧力の少なくとも一つに基づいて、供給バルブの開度を制御してもよい。   Furthermore, in the present invention, the control unit includes at least one of the operating state of the compressor that liquefies the refrigerant at high pressure, the temperature of the liquid flowing through the supply system, and the pressure of the liquid flowing through the supply system, in addition to the delivery temperature. The opening degree of the supply valve may be controlled based on the above.

Claims (8)

液体を循環させながら冷却する循環式冷却機において、
液体が貯留される液槽と、
前記液槽内に液体を供給する供給系と、
前記供給系に設けられた供給バルブと、
前記液槽内に貯留された液体を外部に送出する送出系と、
前記液槽内に貯留された液体を循環させる循環系と、
冷媒との熱交換によって、前記循環系を循環する液体を冷却する冷却器と、
前記供給バルブの開度を制御することによって、前記送出系より送出される液体の送出温度を一定の温度範囲内に収まるように制御する制御部と
を有することを特徴とする循環式冷却機。
In a circulating cooler that cools while circulating liquid,
A liquid tank in which the liquid is stored;
A supply system for supplying liquid into the liquid tank;
A supply valve provided in the supply system;
A delivery system for delivering the liquid stored in the liquid tank to the outside;
A circulation system for circulating the liquid stored in the liquid tank;
A cooler for cooling the liquid circulating in the circulation system by heat exchange with the refrigerant;
And a controller that controls a delivery temperature of the liquid delivered from the delivery system to be within a certain temperature range by controlling an opening degree of the supply valve.
前記制御部は、前記送出温度が第1の温度の場合、前記供給バルブの開度を第1の開度に設定し、前記送出温度が前記第1の温度よりも高い第2の温度の場合、前記供給バルブの開度を前記第1の開度よりも小さい第2の開度に設定することを特徴とする請求項1に記載された循環式冷却機。   When the delivery temperature is the first temperature, the control unit sets the opening degree of the supply valve to the first opening degree, and the delivery temperature is a second temperature higher than the first temperature. The circulating cooler according to claim 1, wherein the opening degree of the supply valve is set to a second opening degree smaller than the first opening degree. 前記制御部は、前記送出温度が前記第1の温度から前記第2の温度に上昇するのに従って、前記供給バルブの開度を前記第1の開度から前記第2の開度に連続的に減少させることを特徴とする請求項2に記載された循環式冷却機。   The controller continuously increases the opening of the supply valve from the first opening to the second opening as the delivery temperature rises from the first temperature to the second temperature. The circulating cooler according to claim 2, wherein the circulating cooler is reduced. 前記制御部は、前記送出温度が前記第1の温度に低下するまでの間、前記供給バルブを全閉状態に維持し、前記送出温度が前記第2の温度に上昇するまでの間、前記供給バルブを全開状態に維持することを特徴とする請求項2に記載された循環式冷却機。   The control unit maintains the supply valve in a fully-closed state until the delivery temperature drops to the first temperature, and supplies the supply valve until the delivery temperature rises to the second temperature. The circulating cooler according to claim 2, wherein the valve is maintained in a fully open state. 前記制御部は、前記供給バルブの開度の制御として、前記送出温度と設定温度との偏差に基づいたフィードバック制御を行うことを特徴とする請求項1に記載された循環式冷却機。   The circulating cooler according to claim 1, wherein the control unit performs feedback control based on a deviation between the delivery temperature and a set temperature as control of the opening degree of the supply valve. 前記フィードバック制御は、前記偏差に比例して前記供給バルブの開度を変化させる比例動作と、前記偏差の積分値に基づいて前記供給バルブの開度を変化させる積分動作と、前記偏差の微分値に基づいて前記供給バルブの開度を変化させる微分動作とを含むPID制御であることを特徴とする請求項5に記載された循環式冷却機。   The feedback control includes a proportional operation for changing the opening of the supply valve in proportion to the deviation, an integration operation for changing the opening of the supply valve based on an integral value of the deviation, and a differential value of the deviation. The circulating cooler according to claim 5, wherein the PID control includes a differential operation for changing an opening degree of the supply valve based on the pressure. 前記送出系より送出される液体の送出温度を検出する温度センサをさらに有し、
前記制御部は、前記温度センサによって検出された前記送出温度に基づいて、前記供給バルブの開度を制御することを特徴とする請求項1から6のいずれかに記載された循環式冷却機。
A temperature sensor for detecting a delivery temperature of the liquid delivered from the delivery system;
The circulating cooler according to any one of claims 1 to 6, wherein the control unit controls an opening degree of the supply valve based on the delivery temperature detected by the temperature sensor.
前記制御部は、前記冷媒を高圧液化する圧縮機の動作状態、前記供給系を流れる液体の温度、および、前記供給系を流れる液体の圧力の少なくとも一つに基づいて、前記供給バルブの開度を制御することを特徴とする請求項7に記載された循環式冷却機。

The controller controls the opening of the supply valve based on at least one of an operating state of a compressor for liquefying the refrigerant, a temperature of a liquid flowing through the supply system, and a pressure of a liquid flowing through the supply system The circulation type chiller according to claim 7, wherein:

JP2016180871A 2016-09-15 2016-09-15 Circulation cooler Active JP6542731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016180871A JP6542731B2 (en) 2016-09-15 2016-09-15 Circulation cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016180871A JP6542731B2 (en) 2016-09-15 2016-09-15 Circulation cooler

Publications (2)

Publication Number Publication Date
JP2018044733A true JP2018044733A (en) 2018-03-22
JP6542731B2 JP6542731B2 (en) 2019-07-10

Family

ID=61693598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016180871A Active JP6542731B2 (en) 2016-09-15 2016-09-15 Circulation cooler

Country Status (1)

Country Link
JP (1) JP6542731B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121931A (en) * 1994-10-19 1996-05-17 Hoshizaki Electric Co Ltd Ice accumulation cold water feeding device
JPH09192664A (en) * 1996-01-19 1997-07-29 Toshiba Corp Water feeding apparatus
JPH10300312A (en) * 1997-04-23 1998-11-13 Shikoku Sogo Kenkyusho:Kk Chilled water generating equipment
JP2012237485A (en) * 2011-05-11 2012-12-06 Orion Machinery Co Ltd Temperature controller and temperature control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121931A (en) * 1994-10-19 1996-05-17 Hoshizaki Electric Co Ltd Ice accumulation cold water feeding device
JPH09192664A (en) * 1996-01-19 1997-07-29 Toshiba Corp Water feeding apparatus
JPH10300312A (en) * 1997-04-23 1998-11-13 Shikoku Sogo Kenkyusho:Kk Chilled water generating equipment
JP2012237485A (en) * 2011-05-11 2012-12-06 Orion Machinery Co Ltd Temperature controller and temperature control method

Also Published As

Publication number Publication date
JP6542731B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP5855129B2 (en) Outdoor unit and air conditioner
US8484989B2 (en) Refrigeration system having an energy saving operation
EP2988077B1 (en) Systems and methods for operating a refrigeration system
JP2012202672A (en) Expansion valve control device, heat source machine, and expansion valve control method
JP5098472B2 (en) Chiller using refrigerator
JP2018096621A (en) Refrigerant circuit system and process of control for refrigerant circuit system
JP2007225140A (en) Turbo refrigerating machine, and control device and method of turbo refrigerating machine
JP2016099013A (en) Refrigeration device
JP6805612B2 (en) Cooling device and control device
EP3249320B1 (en) Thermal storage air conditioner
JP5956326B2 (en) Refrigeration apparatus and refrigeration cycle apparatus
EP3508802B1 (en) Refrigeration cycle apparatus
JP6542731B2 (en) Circulation cooler
JP6076136B2 (en) Refrigeration equipment
JP2016048125A (en) Supply water heating system
JP2016048126A (en) Supply water heating system
TW202246713A (en) Refrigeration device, control method for refrigeration device, and temperature control system
JP2017146009A (en) Circulation type water cooler
JP2011058650A (en) Ice heat storage type refrigerating device
JP5604228B2 (en) Chiller
JP6491465B2 (en) Cooling system
JP2016080304A (en) Control device and control method of cooling box
JP6549403B2 (en) Cooling system
JP4690574B2 (en) Control method and control device for expansion valve in refrigerator
JP2012242049A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190320

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190613

R150 Certificate of patent or registration of utility model

Ref document number: 6542731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531