JP2018043214A - Sewage treatment equipment and method - Google Patents

Sewage treatment equipment and method Download PDF

Info

Publication number
JP2018043214A
JP2018043214A JP2016181180A JP2016181180A JP2018043214A JP 2018043214 A JP2018043214 A JP 2018043214A JP 2016181180 A JP2016181180 A JP 2016181180A JP 2016181180 A JP2016181180 A JP 2016181180A JP 2018043214 A JP2018043214 A JP 2018043214A
Authority
JP
Japan
Prior art keywords
water
tank
treated
membrane separation
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016181180A
Other languages
Japanese (ja)
Other versions
JP6775364B2 (en
Inventor
康信 岡島
Yasunobu Okajima
康信 岡島
公博 石川
Kimihiro Ishikawa
公博 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2016181180A priority Critical patent/JP6775364B2/en
Publication of JP2018043214A publication Critical patent/JP2018043214A/en
Application granted granted Critical
Publication of JP6775364B2 publication Critical patent/JP6775364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide sewage treatment equipment capable of ensuring a stable upward flow even when a membrane separation device is installed in a compact space and capable of reducing operation cost.SOLUTION: Sewage treatment equipment 10 comprises: an anoxic tank 2 which is maintained in a dissolved oxygen-free state and performs denitrification treatment for reducing at least nitrate nitrogen contained in water to be treated; an aerobic tank 4 which is maintained in an aerobic state and performs nitrification treatment for nitrifying ammonia nitrogen contained in the water to be treated flowing in from the anoxic tank 2; and a plurality of membrane separation devices 7 which are disposed so as to be immersed in the water to be treated having been subjected to the nitrification treatment and performs solid-liquid separation treatment for obtaining permeated water from the water to be treated. A trough 8 extending toward the anoxic tank is disposed in a space above each membrane separation device, and concentrated water after the solid-liquid separation treatment is overflowed into the trough 8 by an upward flow of the water to be treated caused by air diffused from a diffusing mechanism 7A provided in the membrane separation device 7 and returned to the anoxic tank 2.SELECTED DRAWING: Figure 1

Description

本発明は、下水汚泥や食品工場で発生する排水等の有機性排水を浄化する汚水処理設備及び汚水処理方法に関する。   The present invention relates to a sewage treatment facility and a sewage treatment method for purifying organic wastewater such as sewage sludge and wastewater generated in a food factory.

特許文献1には、被処理液を嫌気処理する嫌気槽(無酸素槽)と、被処理液を曝気する曝気槽(好気槽)と、被処理液から透過液を得る膜分離装置が浸漬配置された膜分離槽を備えた膜分離活性汚泥処理装置が開示されている。   Patent Document 1 includes an anaerobic tank (anoxic tank) for anaerobically treating the liquid to be treated, an aeration tank (aerobic tank) for aeration of the liquid to be treated, and a membrane separation device for obtaining a permeate from the liquid to be treated. A membrane separation activated sludge treatment apparatus including a membrane separation tank disposed is disclosed.

膜分離槽内の余剰汚泥は槽外に引き抜かれ、ポンプを介して一部が嫌気槽(無酸素槽)に循環供給されている。この循環汚泥量は嫌気槽(無酸素槽)への流入汚泥量Qに対して4Q程度に設定されている。   Excess sludge in the membrane separation tank is drawn out of the tank, and a part thereof is circulated and supplied to the anaerobic tank (anoxic tank) via a pump. This circulating sludge amount is set to about 4Q with respect to the inflow sludge amount Q to the anaerobic tank (anoxic tank).

特許文献2には、原水を流入させる嫌気槽と、嫌気槽の下流側に隔壁を介して連接され、嫌気性微生物により被処理水を脱窒する無酸素槽と、無酸素槽の下流側に隔壁を介して配置され、無酸素槽から流出した被処理水に含まれるアンモニアを好気性微生物で硝化する好気槽と、好気槽で硝化された被処理水の一部を無酸素槽に返送するエアリフトポンプ装置を備えた汚水処理設備が開示されている。   In Patent Document 2, an anaerobic tank into which raw water is introduced, an anaerobic tank connected to a downstream side of the anaerobic tank via a partition wall, and denitrifying the water to be treated by anaerobic microorganisms; An aerobic tank that is disposed through a partition wall and nitrifies ammonia contained in the treated water flowing out of the anaerobic tank with an aerobic microorganism, and a part of the treated water that has been nitrified in the aerobic tank into the anoxic tank Disclosed is a sewage treatment facility equipped with an air lift pump device for returning.

好気槽は、散気機構が設置された第一領域と膜分離装置が配置された第二領域とに分離壁を介して領域区画され、無酸素槽から流出した被処理水が第一領域で好気処理され、膜分離槽として機能する第二領域の下流側にエアリフトポンプ装置が設置されている。   The aerobic tank is divided into a first area where an air diffusion mechanism is installed and a second area where a membrane separation device is arranged via a separation wall, and the water to be treated flowing out of the anoxic tank is the first area. The air lift pump device is installed on the downstream side of the second region which is aerobically treated and functions as a membrane separation tank.

特許文献3には、被処理液の液溜まり中に浸されて、前記被処理液から透過液を生成する濾過膜ユニットと、前記濾過膜ユニットを収容する立ち上げ管と、前記濾過膜ユニットの下方に配置され、前記濾過膜ユニットへスクラビングエアを供給する散気部と、前記立ち上げ管の上部に接続された、前記スクラビングエアと共に前記立ち上げ管内を上昇する被処理液を側方に移送するための移送路と、を備えた、濾過及びエアリフト兼用装置が開示されている。   In Patent Document 3, a filtration membrane unit that is immersed in a liquid pool of a liquid to be treated to generate a permeate from the liquid to be treated, a rising pipe that accommodates the filtration membrane unit, and a filter membrane unit An aeration unit that is disposed below and supplies scrubbing air to the filtration membrane unit, and a liquid to be processed that rises in the riser pipe together with the scrubbing air connected to the upper part of the riser pipe is transferred to the side. An apparatus for both filtration and air lift, including a transfer path for performing the above-described process, is disclosed.

特開2013−22549号公報JP 2013-22549 A 特開2011−1918号公報JP 2011-1918 A 特開2014−57906号公報JP 2014-57906 A

図2には、膜分離槽に浸漬配置された膜分離装置の一例が示されている。当該膜分離装置は、上下が開口した膜ケース71の内部に多数枚の板状の膜エレメントが、各膜面が縦姿勢となるように一定間隔を隔てて配列されており、さらに膜ケース71の下方に散気機構7Aを備えている。   FIG. 2 shows an example of a membrane separation device immersed in a membrane separation tank. In the membrane separation apparatus, a large number of plate-like membrane elements are arranged in a membrane case 71 having upper and lower openings so that each membrane surface has a vertical posture, and further, the membrane case 71 Is provided with an air diffusion mechanism 7A.

散気機構7Aは複数の散気孔が形成された散気管13を備え、散気管13に接続された散気ヘッダ14を介して槽外に設置されたブロワBやコンプレッサなどの給気源に接続されている。   The diffuser mechanism 7A includes a diffuser tube 13 having a plurality of diffuser holes, and is connected to an air supply source such as a blower B or a compressor installed outside the tank via an diffuser header 14 connected to the diffuser tube 13. Has been.

散気機構7Aから放出される気泡のエアリフト効果によって被処理水の上向流が形成され、膜面に沿って流れる上向流により各膜エレメントの膜面に付着したファウリング原因物質が除去される。   The upward flow of the water to be treated is formed by the air lift effect of the bubbles released from the air diffusion mechanism 7A, and the fouling causative substances attached to the membrane surface of each membrane element are removed by the upward flow flowing along the membrane surface. The

効率的にファウリング原因物質を除去するために、汚泥性状と運転フラックス(単位面積当たりの透過水量)に応じて一定以上の膜間流速を与える必要があり、そのために膜ケース71の下部開口から上部開口に抜ける安定した流れが形成される必要があった。   In order to efficiently remove the fouling-causing substances, it is necessary to provide a transmembrane flow rate above a certain level according to the sludge properties and the operation flux (permeated water amount per unit area). There was a need to form a stable flow through the top opening.

そこで、従来は膜ケース71の下部開口から上部開口に流れた上向流が膜ケース71の外側で下降流となるようなスムーズな旋回流が得らえるように、膜分離装置の周りに適切なサイズの空間を確保する必要があった。   Therefore, conventionally, an appropriate flow around the membrane separation device is obtained so that a smooth swirling flow in which the upward flow flowing from the lower opening to the upper opening of the membrane case 71 becomes a downward flow outside the membrane case 71 can be obtained. It was necessary to secure a space of a proper size.

しかし、そのために膜分離装置を設置する膜分離槽が大きくなり、設備コストが嵩むという問題があった。さらに膜ケース71の下部開口から上部開口に流れる被処理水の上向流によって膜面の汚れが抑制されるが、旋回流を形成するために必要とされた下向流は直接的な付加価値を生むことはなく、散気機構に費やされる動力が無駄に消費されるという問題もあった。   However, there is a problem that the membrane separation tank in which the membrane separation apparatus is installed becomes large for that purpose, and the equipment cost increases. Further, the upward flow of the water to be treated flowing from the lower opening to the upper opening of the membrane case 71 suppresses the contamination of the membrane surface, but the downward flow required for forming the swirl flow is a direct added value. There is also a problem that power consumed in the air diffusion mechanism is wasted.

特許文献3に記載された濾過及びエアリフト兼用装置によれば、1つの装置で、被処理液の濾過と濾過膜ユニットの洗浄と被処理液の移送とを実現することができ、より少ない消費動力で被処理液を移送できるようになる。   According to the combined filtration and air lift device described in Patent Document 3, filtration of the liquid to be treated, cleaning of the filtration membrane unit, and transfer of the liquid to be treated can be realized with a single device, and less power consumption. It becomes possible to transfer the liquid to be processed.

しかし、膜分離槽に浸漬配置された複数の濾過装置のうち、還流路の近傍に設置される濾過及びエアリフト兼用装置以外の濾過装置については、特許文献1,2と同様に、スムーズな循環流が得られるように濾過装置の周囲に適切なサイズの空間を確保する必要があり、大きな容量の膜分離槽が必要になるという問題があった。   However, among the plurality of filtration devices immersed in the membrane separation tank, the filtration devices other than the filtration and air lift combined device installed in the vicinity of the reflux path are smoothly circulated similarly to Patent Documents 1 and 2. Therefore, there is a problem that it is necessary to secure an appropriate size space around the filtration device, and a large capacity membrane separation tank is required.

また、濾過及びエアリフト兼用装置と、濾過及びエアリフト兼用装置以外の濾過装置とでは機能が異なるため、それぞれの散気量が異なり、濾過及びエアリフト兼用装置と、濾過及びエアリフト兼用装置以外の濾過装置とで膜の透過性能にアンバランスが生じる虞があった。   Also, since the functions of the filtration and air lift combined device and the filtration device other than the filtration and air lift combined device are different, the amount of air diffused is different, and the filtration and air lift combined device and the filtration device other than the filtration and air lift combined device This may cause an imbalance in the permeation performance of the membrane.

さらに、嫌気槽及び無酸素槽に隣接して還流路を設ける必要があり、設備を設置するために広い敷地が必要になるという問題もあった。   Furthermore, it is necessary to provide a reflux path adjacent to the anaerobic tank and the oxygen-free tank, and there is a problem that a large site is required to install the equipment.

本発明の目的は、上述した問題点に鑑み、コンパクトな空間に膜分離装置設置しても安定した上向流が確保でき、しかも運転コストを低減できる汚水処理設備及び汚水処理方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a sewage treatment facility and a sewage treatment method capable of ensuring a stable upward flow even when a membrane separation apparatus is installed in a compact space, and reducing operating costs. It is in.

上述の目的を達成するため、本発明による汚水処理設備の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、溶存酸素が存在しない状態に維持され少なくとも被処理水に含まれる硝酸性窒素を還元する脱窒処理が行なわれる無酸素槽と、好気状態に維持され前記無酸素槽から流入した被処理水に含まれるアンモニア性窒素を硝化する硝化処理が行なわれる好気槽と、前記硝化処理が行なわれた被処理水に浸漬配置され被処理水から透過水を得る固液分離処理が行なわれる複数の膜分離装置と、を備えている汚水処理設備であって、各膜分離装置の上方空間に前記無酸素槽に向けて延出するトラフが配置され、前記膜分離装置に備えた散気機構からの散気により生じる被処理水の上向流により前記固液分離処理後の濃縮水を前記トラフに溢流させて前記無酸素槽に返送するように構成されている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the sewage treatment facility according to the present invention is, as described in claim 1 of the claims, maintained at a state in which no dissolved oxygen is present and at least water to be treated. An oxygen-free tank in which denitrification treatment is performed to reduce nitrate nitrogen contained in the water, and a nitrification treatment in which ammonia nitrogen contained in the water to be treated that is maintained in an aerobic state and flows from the oxygen-free tank is nitrified. A sewage treatment facility comprising an aerobic tank and a plurality of membrane separation devices that are immersed in the treated water that has been subjected to the nitrification treatment and that perform a solid-liquid separation process for obtaining permeated water from the treated water. The trough extending toward the oxygen-free tank is disposed in the upper space of each membrane separation device, and the above-described flow of the water to be treated caused by the diffusion from the diffusion mechanism provided in the membrane separation device Concentrated water after solid-liquid separation treatment Serial by overflow into the trough in that it is configured to return to the anoxic tank.

散気機構から放出される気泡によるエアリフト効果で発生した上向流により膜分離装置を下方から上方へ流れる被処理水、つまり膜ろ過後の濃縮水が、膜分離装置の上方に設けられたトラフに流れ込み、トラフを介して無酸素槽に返送されて脱窒処理されるようになる。従って、濃縮水を無酸素槽に返送するための別途のポンプ機構を備える必要が無く、それだけ動力に費やされる運転コストを低減することができる。また、膜分離装置から上方に流出した被処理水が膜分離装置の周囲に下降して循環するような旋回流を形成するための余分な空間を確保する必要が無くなり、膜分離装置の設置空間をコンパクトに構成し、設備コストを低減することができるようになる。例えば、好気槽の一区画に膜分離装置が浸漬配置されても、好気処理のために設置された散気装置から放出される気泡の動きが乱されることがなく、より一層コンパクトな汚水処理設備を構築できるようになる。さらに、旋回流の形成が不要となるために散気量をそれほど多量に設定する必要が無く、緩やかな上向流と膜面との十分な接触時間が確保できるようになり、膜面にストレスを与えることなく十分な洗浄効果が得られるようになる。   The to-be-treated water that flows upward from the lower side of the membrane separation device by the upward flow generated by the air lift effect caused by the air bubbles released from the air diffusion mechanism, that is, the concentrated water after membrane filtration is provided in the trough provided above the membrane separation device. It is returned to the anoxic tank via the trough and denitrified. Therefore, it is not necessary to provide a separate pump mechanism for returning the concentrated water to the oxygen-free tank, and the operating cost spent on power can be reduced accordingly. In addition, it is not necessary to secure an extra space for forming a swirling flow in which the water to be treated that has flowed upward from the membrane separator descends and circulates around the membrane separator, and the installation space for the membrane separator is eliminated. It becomes possible to reduce the equipment cost. For example, even if a membrane separation device is immersed in a section of an aerobic tank, the movement of bubbles released from the air diffuser installed for aerobic treatment is not disturbed, and the device is more compact. Sewage treatment facilities can be constructed. Furthermore, since it is not necessary to form a swirling flow, it is not necessary to set a large amount of air diffusion, and it is possible to secure a sufficient contact time between the gentle upward flow and the membrane surface, thereby stressing the membrane surface. A sufficient cleaning effect can be obtained without imparting.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、平面視で、直線状に配列された各膜分離装置を挟むように、一対の前記トラフが対向配置されている点にある。   In addition to the first feature configuration described above, the second feature configuration includes a pair of the above-described membrane separation devices arranged in a straight line in plan view. The troughs are located opposite each other.

散気機構からの散気により生じる被処理水の上向流が直線状に配列された各膜分離装置の上方空間で配列方向と交差する水平流に転じる際に、平面視で各膜分離装置を挟むように各膜分離装置の上方空間に配置された一対のトラフに流入するようになり、各膜分離装置で固液分離処理された後の濃縮水が効率的に流入するシンプルな構成のトラフを実現できる。   When the upward flow of the water to be treated generated by the air diffused from the air diffusion mechanism turns into a horizontal flow intersecting the arrangement direction in the upper space of each membrane separation device arranged in a straight line, each membrane separation device in plan view It flows into a pair of troughs arranged in the upper space of each membrane separation device so as to sandwich the membrane, and the concentrated water after solid-liquid separation processing in each membrane separation device efficiently flows A trough can be realized.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記好気槽を挟んで両側に無酸素槽が配置され、前記固液分離処理後の濃縮水が各無酸素槽に返送されるように前記トラフが共用されている点にある。   In the third feature configuration, in addition to the first or second feature configuration described above, an oxygen-free tank is disposed on both sides of the aerobic tank, and the solid liquid The trough is shared so that the concentrated water after separation treatment is returned to each oxygen-free tank.

好気槽で硝化処理された被処理水が膜分離装置により固液分離されて透過水が取り出される。このとき散気機構から放出される気泡によるエアリフト効果で発生した上向流によってろ過されなかった濃縮水が共用のトラフに流入し、好気槽の両側に配置された無酸素槽のそれぞれに返流されて脱窒処理されるようになり、コンパクトな汚水処理設備を構築できるようになる。   Water to be treated that has been nitrified in an aerobic tank is subjected to solid-liquid separation by a membrane separation device, and permeated water is taken out. At this time, the concentrated water that has not been filtered by the upward flow generated by the air lift effect caused by the bubbles released from the air diffuser flows into the common trough and returns to each of the anaerobic tanks arranged on both sides of the aerobic tank. The denitrification treatment will be carried out and a compact sewage treatment facility can be constructed.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記好気槽が被処理水の流れに交差する幅方向に沿って複数領域に区画され、各領域の境界に前記膜分離装置が配置されている点にある。   In the fourth feature configuration, as described in claim 4, in addition to any one of the first to third feature configurations described above, the aerobic tank extends in the width direction intersecting the flow of water to be treated. The membrane separator is divided into a plurality of regions along the boundary, and the membrane separation device is disposed at the boundary between the regions.

複数領域に区画された好気槽の各領域の境界に配置された膜分離装置によって被処理水がろ過され、各膜分離装置の上方空間に配置されたトラフを介して濃縮水が無酸素槽に返送される結果、各膜分離装置で生じる上向流がその周囲で下向流に転じて循環するような大きな被処理水の流れが生じることがない。従って、各領域内で好気処理される被処理水の流れが乱されることなく安定的に好気処理されるコンパクトな汚水処理設備を構築できるようになる。   The water to be treated is filtered by the membrane separation device arranged at the boundary of each region of the aerobic tank divided into a plurality of regions, and the concentrated water is passed through the trough arranged in the upper space of each membrane separation device. As a result, the flow of water to be treated does not occur so that the upward flow generated in each membrane separation device circulates by turning to the downward flow around it. Therefore, it becomes possible to construct a compact sewage treatment facility that can stably perform aerobic treatment without disturbing the flow of water to be treated in each region.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記硝化処理が行なわれた被処理水が流入する膜分離槽が設けられ、前記膜分離槽に前記膜分離装置が浸漬配置されている点にある。   In the fifth feature configuration, as described in claim 5, in addition to any of the first to third feature configurations described above, the membrane separation tank into which the water to be treated into which the nitrification treatment has been performed flows. Is provided, and the membrane separation device is immersed in the membrane separation tank.

好気槽で硝化処理が行なわれた被処理水が、膜分離装置が浸漬配置された膜分離槽に流入して膜分離されるように、好気槽と膜分離槽とが区画され、膜分離槽に備えた膜分離装置の上方空間から前記無酸素槽に向けて延出するトラフが配置されていてもよい。このような構成でも、被処理水の循環流を形成する必要が無くなるのでコンパクトな膜分離槽を得ることができる。   The aerobic tank and the membrane separation tank are partitioned so that the water to be treated that has been subjected to nitrification in the aerobic tank flows into the membrane separation tank in which the membrane separation device is immersed and separated. A trough extending from the upper space of the membrane separation device provided in the separation tank toward the oxygen-free tank may be disposed. Even in such a configuration, it is not necessary to form a circulation flow of the water to be treated, so that a compact membrane separation tank can be obtained.

本発明による汚水処理方法の第一の特徴構成は、同請求項6に記載した通り、溶存酸素が存在しない状態に維持された無酸素槽で少なくとも被処理水に含まれる硝酸性窒素を還元する脱窒処理と、好気状態に維持された好気槽で前記無酸素槽から流入した被処理水に含まれるアンモニア性窒素を硝化する硝化処理と、前記硝化処理された被処理水に浸漬配置された複数の膜分離装置により被処理水から透過水を得る固液分離処理と、を実行する汚水処理方法であって、各膜分離装置の下方に備えた散気機構からの散気により生じる被処理水の上向流により、各膜分離装置の上方空間に前記無酸素槽に向けて延出するように配置されたトラフに、前記固液分離処理後の濃縮水を溢流させて前記無酸素槽に返送する点にある。   The first characteristic configuration of the sewage treatment method according to the present invention is to reduce at least nitrate nitrogen contained in water to be treated in an oxygen-free tank maintained in a state in which no dissolved oxygen exists, as described in claim 6. Denitrification treatment, nitrification treatment for nitrifying ammonia nitrogen contained in water to be treated flowing from the oxygen-free tank in an aerobic tank maintained in an aerobic state, and immersion arrangement in the nitrification treated water And a solid-liquid separation method for obtaining permeate from treated water by a plurality of membrane separation devices, which is caused by aeration from an aeration mechanism provided below each membrane separation device. By the upward flow of the water to be treated, the trough arranged to extend toward the oxygen-free tank in the upper space of each membrane separation apparatus overflows the concentrated water after the solid-liquid separation treatment, and It is in the point of returning to the anoxic tank.

以上説明した通り、本発明によれば、コンパクトな空間に膜分離装置設置しても安定した上向流が確保でき、しかも運転コストを低減できる汚水処理設備及び汚水処理方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a sewage treatment facility and a sewage treatment method capable of ensuring a stable upward flow even when a membrane separation device is installed in a compact space, and reducing the operating cost. It became so.

(a)は汚水処理設備の平面図、(b)は(a)のA−A線断面図、(c)は(a)のB−B線断面図(A) is a plan view of a sewage treatment facility, (b) is a cross-sectional view taken along line AA of (a), and (c) is a cross-sectional view taken along line BB of (a). 膜分離装置の説明図Illustration of membrane separator 膜エレメントの説明図Illustration of membrane element (a)は第1の別実施例を示す汚水処理設備の平面図、(b)は第2の別実例を示す汚水処理設備の平面図、(c)は第3の別実例を示す汚水処理設備の平面図(A) is a plan view of a sewage treatment facility showing a first alternative embodiment, (b) is a plan view of a sewage treatment facility showing a second alternative example, and (c) is a sewage treatment showing a third alternative example. Plan of equipment 第4の別実施例を示す汚水処理設備の平面図The top view of the sewage treatment facility which shows a 4th another Example 図1(c)に対応し、第5の別実施例を示す汚水処理設備の断面図Sectional drawing of the sewage treatment equipment which respond | corresponds to FIG.1 (c) and shows a 5th another Example

以下、本発明による汚水処理設備を説明する。
図1(a),(b),(c)には、有機性排水を浄化処理する汚水処理設備10が示されている。
Hereinafter, the sewage treatment facility according to the present invention will be described.
1A, 1B, and 1C show a sewage treatment facility 10 that purifies organic wastewater.

汚水処理設備10は、溶存酸素が存在しない状態に維持され少なくとも被処理水に含まれる硝酸性窒素を還元する脱窒処理が行なわれる無酸素槽2と、底部に設置された散気装置4Aからの散気によって好気状態に維持され無酸素槽2から流入した被処理水に含まれるアンモニア性窒素を硝化する硝化処理が行なわれる好気槽4と、硝化処理が行なわれた被処理水に浸漬配置され被処理水から透過水を得る固液分離処理が行なわれる複数の膜分離装置7とを備えている。   The sewage treatment facility 10 includes an oxygen-free tank 2 in which denitrification treatment is performed to reduce nitrate nitrogen contained in water to be treated, and at least a diffuser 4A installed at the bottom. The aerobic tank 4 in which nitrification treatment is performed to nitrify ammonia nitrogen contained in the water to be treated which has been maintained in an aerobic state and has flowed in from the anoxic tank 2 and the water to be treated in which the nitrification treatment has been performed. And a plurality of membrane separation devices 7 for performing solid-liquid separation processing for obtaining permeated water from the water to be treated.

無酸素槽2及び好気槽4はコンクリート躯体で構成され、それぞれの間が隔壁3で仕切られている。隔壁3の下端の一部が開放され、無酸素槽2に流入した原水である被処理水は、活性汚泥とともに好気槽4に流入して好気処理される。   The anaerobic tank 2 and the aerobic tank 4 are composed of a concrete frame, and are partitioned by a partition wall 3. A part of the lower end of the partition wall 3 is opened, and the water to be treated which is raw water flowing into the anoxic tank 2 flows into the aerobic tank 4 together with the activated sludge and is subjected to aerobic treatment.

図2に示すように、膜分離装置7は、上下が開口した膜ケース71の内部に100枚の板状の膜エレメント7Bが、各膜面が縦姿勢となるように、かつ6mmから10mm程度(本実施形態では8mm)の一定間隔を隔てて配列されており、さらに膜ケース71の下方に散気機構7Aを備えている。   As shown in FIG. 2, the membrane separation device 7 has 100 plate-like membrane elements 7 </ b> B inside a membrane case 71 that is open at the top and bottom so that each membrane surface is in a vertical posture and about 6 mm to 10 mm. (In this embodiment, 8 mm) are arranged at regular intervals, and further, an air diffusion mechanism 7A is provided below the membrane case 71.

散気機構7Aは複数の散気孔が形成された散気管13を備え、散気管13に接続された散気ヘッダ14を介して槽外に設置されたブロワBやコンプレッサなどの給気源に接続されている。本実施形態では、給気源としてブロワBが用いられている。   The diffuser mechanism 7A includes a diffuser tube 13 having a plurality of diffuser holes, and is connected to an air supply source such as a blower B or a compressor installed outside the tank via an diffuser header 14 connected to the diffuser tube 13. Has been. In this embodiment, the blower B is used as an air supply source.

膜エレメント7Bには集水管17を介して槽外に設置された吸引機構としてのポンプP1が接続され、槽内の被処理水が膜エレメント7Bの膜面を透過するように吸引ろ過される。   A pump P1 as a suction mechanism installed outside the tank is connected to the membrane element 7B via a water collecting pipe 17, and the water to be treated in the tank is suction filtered so as to pass through the membrane surface of the membrane element 7B.

図3に示すように、膜エレメント7Bは、縦1000mm×横490mmの樹脂製の膜支持体10の表裏両面に、スペーサ11を介して分離膜12が配置され、分離膜12の周縁の辺部13が膜支持体10に超音波や熱で溶着、または接着剤等を用いて接着されている。   As shown in FIG. 3, the membrane element 7 </ b> B has separation membranes 12 disposed on both front and back surfaces of a resin membrane support 10 having a length of 1000 mm × width of 490 mm via spacers 11. 13 is bonded to the membrane support 10 by ultrasonic waves or heat, or is bonded using an adhesive or the like.

分離膜12は、平均孔径が約0.2μmの微多孔性膜で、不織布に多孔性を有する樹脂が塗布及び含浸された有機ろ過膜である。尚、膜エレメント7Bはこのような構成に限るものではなく、分離膜12を膜支持体10の表裏両面に巻き付けるように配置し、分離膜12の端部を接着または溶着処理したものであってもよい。   The separation membrane 12 is a microporous membrane having an average pore diameter of about 0.2 μm, and is an organic filtration membrane in which a nonwoven fabric is coated and impregnated with a porous resin. The membrane element 7B is not limited to such a configuration, and the separation membrane 12 is disposed so as to be wound on both the front and back surfaces of the membrane support 10, and the end of the separation membrane 12 is bonded or welded. Also good.

膜支持体10の表面には長手方向に沿って深さ2mm、幅2mm程度の溝部10bが複数本形成され、その上端部には各溝部10bを連通する水平溝部10cが形成されている。表裏両面に形成された水平溝部10cが連通孔10dを介して連通され、膜支持体10の上縁部に形成されたノズル10aに連通されている。   A plurality of groove portions 10b having a depth of about 2 mm and a width of about 2 mm are formed along the longitudinal direction on the surface of the membrane support 10, and a horizontal groove portion 10c that communicates with each groove portion 10b is formed at the upper end portion thereof. Horizontal groove portions 10c formed on both front and back surfaces are communicated with each other via a communication hole 10d and communicated with a nozzle 10a formed on the upper edge portion of the membrane support 10.

各ノズル10aは、チューブ16を介して集水管17に接続され、集水管17には吸引機構としてのポンプP1が接続され、ポンプP1で吸引された透過水が処理水槽8に移送されるように構成されている(図2参照)。   Each nozzle 10a is connected to a water collecting pipe 17 through a tube 16, and a pump P1 as a suction mechanism is connected to the water collecting pipe 17 so that permeated water sucked by the pump P1 is transferred to the treated water tank 8. It is configured (see FIG. 2).

このような膜分離装置7の散気機構7Aを作動させることにより膜エレメント7Bの間隙に下方から上方に向けて被処理水及び活性汚泥の混合水の上向流が形成され、分離膜12の膜面に堆積したファウリング物質や夾雑物を除去することができ、吸引機構P1を作動させることにより被処理水を分離膜12に透過させた透過水を得ることができる。   By operating the air diffusion mechanism 7A of the membrane separation device 7 as described above, an upward flow of mixed water of the water to be treated and the activated sludge is formed in the gap of the membrane element 7B from the lower side to the upper side. Fouling substances and contaminants deposited on the membrane surface can be removed, and permeated water in which the water to be treated has permeated the separation membrane 12 can be obtained by operating the suction mechanism P1.

図1(a),(b),(c)に戻り、説明を続ける。
好気槽4には、無酸素槽2から好気槽4へ向けた被処理水の流れ方向に交差する幅方向中央領域に上述した膜分離装置7が前記流れ方向に沿って複数台浸漬配置され、膜分離装置7が浸漬配置された領域により機能的に膜分離槽6が形成されている。尚、膜分離装置7が浸漬配置される区画は前記幅方向中央領域に限るものではなく、好気槽4の一区画であればよい。
Returning to FIGS. 1A, 1B, and 1C, the description will be continued.
In the aerobic tank 4, a plurality of the above-described membrane separation devices 7 are immersed in the central direction in the width direction intersecting the flow direction of the water to be treated from the anaerobic tank 2 to the aerobic tank 4 along the flow direction. The membrane separation tank 6 is functionally formed by the region where the membrane separation device 7 is immersed. The section in which the membrane separation device 7 is immersed is not limited to the central region in the width direction, but may be one section of the aerobic tank 4.

好気槽4に流入した被処理水に含まれるアンモニア性窒素は好気槽4に備えた散気装置4Aからの散気の下で好気性微生物によって亜硝酸性窒素や硝酸性窒素に硝化処理された後に、膜分離装置7によって透過水と活性汚泥とに固液分離され、膜分離装置7を透過した被処理水は河川に放流される。   Ammonia nitrogen contained in the water to be treated flowing into the aerobic tank 4 is nitrified to nitrite nitrogen and nitrate nitrogen by aerobic microorganisms under the aeration from the aeration device 4A provided in the aerobic tank 4 After that, the membrane separation device 7 performs solid-liquid separation into permeated water and activated sludge, and the treated water that has passed through the membrane separation device 7 is discharged into the river.

平面視で、直線状に配列された各膜分離装置7を挟むように、各膜分離装置7の上方空間に無酸素槽2に向けて延出する一対のトラフ8が対向配置されている。   In plan view, a pair of troughs 8 extending toward the anaerobic tank 2 are opposed to each other in the upper space of each membrane separation device 7 so as to sandwich each membrane separation device 7 arranged linearly.

散気機構7Aからの散気により生じる被処理水の上向流が、平面視で直線状に配列された各膜分離装置7の上方空間で配列方向と交差する水平流に転じる際に、同じく平面視で各膜分離装置7を挟むように各膜分離装置7の上方空間に配置された一対のトラフ8に流入するようになる。トラフ8に流入する被処理水は主に各膜分離装置7で固液分離処理された後の濃縮水である。   When the upward flow of the water to be treated generated by the air diffused from the air diffuser mechanism 7A turns into a horizontal flow intersecting the arrangement direction in the upper space of the membrane separation devices 7 arranged linearly in plan view, It flows into a pair of troughs 8 arranged in a space above each membrane separation device 7 so as to sandwich each membrane separation device 7 in plan view. The treated water flowing into the trough 8 is mainly concentrated water after being subjected to solid-liquid separation processing in each membrane separation device 7.

トラフ8は断面がJ字状に形成されたコンクリート構造体で構成され、膜分離装置7への対向面となるトラフ8の立上り部の上端は、被処理水の上向流によって好気槽4の水位より僅かに上昇する水位に構成されている。また、トラフ8の上部には同じくコンクリート構造体で構成された通路9が配置され、通路9の両側に安全柵9Aが配置されている。   The trough 8 is composed of a concrete structure having a J-shaped cross section, and the upper end of the rising portion of the trough 8 which is a surface facing the membrane separation device 7 is aerobic tank 4 due to the upward flow of the water to be treated. The water level is slightly higher than the water level. In addition, a passage 9 that is also made of a concrete structure is disposed above the trough 8, and safety fences 9 </ b> A are disposed on both sides of the passage 9.

膜分離装置7の散気機構7Aから放出される気泡によるエアリフト効果で発生した上向流により膜分離装置7を下方から上方へ流れる被処理水は、トラフ8の立上り部の上端を溢流してトラフ8に流入し、トラフ8を流れて無酸素槽2に返送される。   The water to be treated that flows from the lower side to the upper side of the membrane separator 7 due to the upward flow generated by the air lift effect caused by the air bubbles released from the air diffusion mechanism 7A of the membrane separator 7 overflows the upper end of the rising portion of the trough 8. It flows into the trough 8, flows through the trough 8, and is returned to the anoxic tank 2.

活性汚泥とともに無酸素槽2に返送された被処理水に含まれる硝酸性窒素及び/または亜硝酸性窒素は、無酸素槽2の脱窒微生物によって還元されて窒素ガスとして除去、つまり脱窒処理される。無酸素槽2で十分な脱窒処理が行なわれるように、トラフ8の終端は無酸素槽2の上流側に位置するように設定されていることが好ましい。   Nitrate nitrogen and / or nitrite nitrogen contained in the treated water returned to the anoxic tank 2 together with the activated sludge is reduced by the denitrifying microorganisms in the anoxic tank 2 and removed as nitrogen gas, that is, denitrifying treatment Is done. It is preferable that the end of the trough 8 is set to be positioned upstream of the anaerobic tank 2 so that sufficient denitrification treatment is performed in the anaerobic tank 2.

この様に構成すれば、濃縮水を無酸素槽2に返送するための別途のポンプ機構を備える必要が無く、それだけ動力に費やされる運転コストを低減することができる。   If comprised in this way, it is not necessary to provide the separate pump mechanism for returning concentrated water to the anaerobic tank 2, and the operating cost spent for motive power can be reduced that much.

また、膜分離装置7から上方に流出した被処理水が膜分離装置7の周囲に下降して循環するような旋回流を形成するための余分な空間を確保する必要が無くなり、膜分離装置7の設置空間をコンパクトに構成し、設備コストを低減することができるようになる。   In addition, it is not necessary to secure an extra space for forming a swirling flow in which the water to be treated that has flowed upward from the membrane separation device 7 descends and circulates around the membrane separation device 7. The installation space can be made compact, and the equipment cost can be reduced.

例えば、好気槽4の一区画に膜分離装置7が浸漬配置されても、好気処理のための散気装置4Aから放出される気泡の動きが乱されることがなく、より一層コンパクトな汚水処理設備を構築できるようになる。   For example, even if the membrane separation device 7 is immersed in a section of the aerobic tank 4, the movement of bubbles released from the aeration device 4A for aerobic treatment is not disturbed, and it is even more compact. Sewage treatment facilities can be constructed.

さらに、旋回流の形成が不要となるために散気量をそれほど多量に設定する必要が無く、緩やかな上向流と膜面との十分な接触時間が確保できるようになり、膜面にストレスを与えることなく十分な洗浄効果が得られるようになる。   Furthermore, since it is not necessary to form a swirling flow, it is not necessary to set a large amount of air diffusion, and it is possible to secure a sufficient contact time between the gentle upward flow and the membrane surface, thereby stressing the membrane surface. A sufficient cleaning effect can be obtained without imparting.

以下、別実施形態を説明する。
上述した実施形態では、生物処理槽が無酸素槽2と好気槽4と好気槽4内に備えた膜分離槽6で構成される態様を説明したが、図4(a)に示すように、無酸素槽2の上流側に嫌気槽1を備え、嫌気条件下で嫌気性微生物により原水に含まれるBOD成分が取り込まれるように構成してもよい。
Hereinafter, another embodiment will be described.
In the above-described embodiment, the biological treatment tank has been described with the anoxic tank 2, the aerobic tank 4, and the membrane separation tank 6 provided in the aerobic tank 4, but as shown in FIG. In addition, the anaerobic tank 1 may be provided upstream of the anaerobic tank 2 so that the BOD component contained in the raw water is taken in by anaerobic microorganisms under anaerobic conditions.

この場合、嫌気槽1でリン化合物が加水分解されて正リン酸として液中に放出され、好気槽4で被処理水中の正リン酸がポリリン酸として汚泥に取り込まれ、余剰汚泥とともにリンを除去することができるようになる。尚、図4(a)中、破線で示すように、トラフ8から返送される濃縮水の一部が嫌気槽1に返送されるように構成してもよい。   In this case, the phosphorus compound is hydrolyzed in the anaerobic tank 1 and released into the liquid as normal phosphoric acid, and the normal phosphoric acid in the water to be treated is taken into the sludge as polyphosphoric acid in the aerobic tank 4, and phosphorus is added together with the excess sludge. Can be removed. In addition, you may comprise so that a part of concentrated water returned from the trough 8 may be returned to the anaerobic tank 1 as shown with a broken line in Fig.4 (a).

図4(b)に示すように、好気槽4を挟んで両側にそれぞれ無酸素槽2,2が配置され、共用のトラフ8を介して各無酸素槽2,2に被処理水の一部が返送されるように構成されていてもよい。   As shown in FIG. 4 (b), anaerobic tanks 2, 2 are arranged on both sides of the aerobic tank 4. The part may be configured to be returned.

好気槽4で硝化処理された被処理水が、好気槽4の一区画に浸漬配置された膜分離装置7により固液分離される。そのとき膜分離装置7に流れる被処理水の上向流がトラフ8に流入し、好気槽4の両側に配置された無酸素槽2,2のそれぞれに返流されて脱窒処理されるコンパクトな汚水処理設備10を構築できるようになる。   The water to be treated that has been nitrified in the aerobic tank 4 is subjected to solid-liquid separation by a membrane separation device 7 that is immersed in a section of the aerobic tank 4. At that time, the upward flow of the water to be treated flowing into the membrane separation device 7 flows into the trough 8 and is returned to each of the anoxic tanks 2 and 2 disposed on both sides of the aerobic tank 4 for denitrification treatment. A compact sewage treatment facility 10 can be constructed.

図4(c)に示すように、好気槽4とは隔壁5を隔てて区画され硝化処理が行なわれた被処理水が流入する膜分離槽6を構成し、当該膜分離槽6に膜分離装置7を浸漬配置し、上述と同様のトラフ8を介して被処理水を活性汚泥とともに無酸素槽2に返送してもよい。   As shown in FIG. 4 (c), the aerobic tank 4 is separated from the aerobic tank 4, and a membrane separation tank 6 into which water to be treated that has been subjected to nitrification treatment flows is configured. The separation device 7 may be immersed and the water to be treated may be returned to the anoxic tank 2 along with the activated sludge through the trough 8 similar to that described above.

膜分離槽6に備えた膜分離装置7の上方空間から無酸素槽2に向けて延出するトラフ8が配置されていてもよい。このような構成でも、被処理水の循環流を形成する必要が無くなるのでコンパクトな膜分離槽を得ることができる。   A trough 8 extending from the upper space of the membrane separation device 7 provided in the membrane separation tank 6 toward the anoxic tank 2 may be arranged. Even in such a configuration, it is not necessary to form a circulation flow of the water to be treated, so that a compact membrane separation tank can be obtained.

図5に示すように、好気槽4が被処理水の流れに交差する幅方向に沿って複数領域に区画され、各領域の境界に膜分離装置7が配置されていてもよい。   As shown in FIG. 5, the aerobic tank 4 may be divided into a plurality of regions along the width direction intersecting the flow of the water to be treated, and the membrane separation device 7 may be disposed at the boundary of each region.

複数領域に区画された好気槽4の各領域の境界に配置された膜分離装置7によって被処理水がろ過され、各膜分離装置7の上方空間に配置されたトラフ8を介して濃縮水が無酸素槽2に返送される結果、各膜分離装置7で生じる上向流がその周囲で下向流に転じて循環するような大きな被処理水の流れが生じることがない。従って、各領域内で好気処理される被処理水の流れが乱されることなく安定的に好気処理されるコンパクトな汚水処理設備を構築できるようになる。   The treated water is filtered by the membrane separation device 7 arranged at the boundary of each region of the aerobic tank 4 divided into a plurality of regions, and the concentrated water is passed through the trough 8 arranged in the upper space of each membrane separation device 7. As a result of returning the water to the anaerobic tank 2, there is no large flow of water to be treated such that the upward flow generated in each membrane separation device 7 turns around and circulates downward. Therefore, it becomes possible to construct a compact sewage treatment facility that can stably perform aerobic treatment without disturbing the flow of water to be treated in each region.

図6に示すように、トラフ8は断面がJ字状に形成されたコンクリート構造体で構成され、トラフ8の立上り部のうち、膜分離装置7への対向面にパンチングメタルのような多孔板8Aが配置されていてもよい。   As shown in FIG. 6, the trough 8 is composed of a concrete structure having a J-shaped cross section, and a perforated plate such as a punching metal on the surface facing the membrane separation device 7 in the rising portion of the trough 8. 8A may be arranged.

被処理水の上向流によって好気槽4の水位より僅かに上昇する膜分離槽6の水位に対応した位置に当該多孔板8Aが配置され、多孔板8Aの孔からトラフ8に濃縮水が流入してトラフ8を流れ、無酸素槽2に返送されるように構成してもよい。   The perforated plate 8A is arranged at a position corresponding to the water level of the membrane separation tank 6 slightly rising from the water level of the aerobic tank 4 due to the upward flow of the water to be treated, and the concentrated water is supplied to the trough 8 from the hole of the perforated plate 8A. It may be configured such that it flows in, flows through the trough 8, and is returned to the anoxic tank 2.

以上説明した図1、4(a),(b),(c)、図5、図6に示した各構成を適宜組み合わせた態様の汚水処理設備10を構築してもよい。   The sewage treatment facility 10 having a mode in which the configurations shown in FIGS. 1, 4 (a), (b), (c), FIG. 5, and FIG. 6 described above are appropriately combined may be constructed.

上述した実施形態では、平面視で、直線状に配列された各膜分離装置7を挟むように、一対のトラフ8が対向配置された例を説明したが、必ずしも各膜分離装置7を挟むように一対のトラフ8が設けられている必要はなく、膜分離装置7内部の上向流が流入するようにトラフ8が設けられていればよい。例えば、壁面に近接して配列された膜分離装置7であれば、膜分離装置7の上方空間で壁面から離隔する側に単一のトラフを設置してもよい。   In the above-described embodiment, the example in which the pair of troughs 8 are opposed to each other so as to sandwich the membrane separation devices 7 arranged in a straight line in plan view is described. However, the membrane separation devices 7 are not necessarily sandwiched. It is not necessary that the pair of troughs 8 is provided, and it is only necessary that the troughs 8 are provided so that the upward flow inside the membrane separation device 7 flows. For example, in the case of the membrane separation device 7 arranged close to the wall surface, a single trough may be installed on the side separated from the wall surface in the space above the membrane separation device 7.

上述した実施形態では、複数の膜分離装置7が直線状に配列され、直線状のトラフ8が膜分離装置7の配列方向に沿って配置された例を説明したが、トラフ8が複数の膜分離装置7に沿って配置されていればよく、必ずしも直線状に配列されていなくてもよい。   In the above-described embodiment, the example in which the plurality of membrane separation devices 7 are arranged in a straight line and the linear trough 8 is arranged along the arrangement direction of the membrane separation device 7 has been described. However, the trough 8 has a plurality of membranes. It only needs to be arranged along the separation device 7 and does not necessarily have to be arranged linearly.

上述した実施形態では、複数の膜分離装置7を備え、トラフが膜分離装置7の配列方向に沿って配置された例を説明したが、例えば単一のケーシングに多数の膜エレメントが収容された大型の膜分離装置であれば、単一の膜分離装置7であっても、本発明を適用することができる。   In the embodiment described above, an example in which a plurality of membrane separation devices 7 are provided and troughs are arranged along the arrangement direction of the membrane separation devices 7 has been described. For example, a plurality of membrane elements are accommodated in a single casing. The present invention can be applied to a single membrane separator 7 as long as it is a large membrane separator.

この様な汚水処理設備10によって、溶存酸素が存在しない状態に維持された無酸素槽で少なくとも被処理水に含まれる硝酸性窒素を還元する脱窒処理と、好気状態に維持された好気槽で無酸素槽から流入した被処理水に含まれるアンモニア性窒素を硝化する硝化処理と、硝化処理された被処理水に浸漬配置された複数の膜分離装置により被処理水から透過水を得る固液分離処理と、を実行する汚水処理方法であって、各膜分離装置の下方に備えた散気機構からの散気により生じる被処理水の上向流により、各膜分離装置の上方空間に前記無酸素槽に向けて延出するように配置されたトラフに、固液分離処理後の濃縮水を溢流させて無酸素槽に返送する汚水処理方法が実行される。   By such a sewage treatment facility 10, a denitrification treatment that reduces at least nitrate nitrogen contained in the water to be treated in an anaerobic tank that is maintained in a state in which no dissolved oxygen is present, and aerobic that is maintained in an aerobic state. The permeated water is obtained from the water to be treated by nitrification treatment for nitrifying ammonia nitrogen contained in the water to be treated which flows from the oxygen-free tank in the tank, and a plurality of membrane separation devices immersed in the water to be treated for nitrification. A sewage treatment method for performing a solid-liquid separation process, wherein an upper space of each membrane separation device is caused by an upward flow of water to be treated generated by aeration from an aeration mechanism provided below each membrane separation device. Then, a sewage treatment method is performed in which the trough disposed so as to extend toward the anaerobic tank overflows the concentrated water after the solid-liquid separation treatment and returns it to the anoxic tank.

本発明による汚水処理設備は、下水汚泥や食品工場の排水等の各種の有機性排水の処理に用いることができる。下水汚泥の処理に適用する場合には、原水を直ちに生物処理槽に投入するのではなく、前処理設備や流量調整槽を前段にそなえてもよい。前処理設備には原水に混入している夾雑物を除去するバースクリーン等が設けられ、バースクリーン等で夾雑物が除去された被処理水が流量調整槽に一旦貯留され、流量調整槽から一定流量の被処理水が生物処理槽に安定供給されるように構成してもよい。   The sewage treatment facility according to the present invention can be used for the treatment of various organic effluents such as sewage sludge and food factory effluent. When applied to the treatment of sewage sludge, the raw water may not be immediately put into the biological treatment tank, but a pretreatment facility and a flow rate adjustment tank may be provided in the previous stage. The pretreatment equipment is provided with a bar screen that removes contaminants mixed in the raw water, and the treated water from which the contaminants have been removed by the bar screen etc. is temporarily stored in the flow adjustment tank, and then fixed from the flow adjustment tank. You may comprise so that the to-be-processed water of a flow volume may be stably supplied to a biological treatment tank.

上述した実施形態は本発明の一態様であり、該記載により本発明が限定されるものではなく、各部の具体的構成や制御態様は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   The above-described embodiment is one aspect of the present invention, and the present invention is not limited by the description. Specific configurations and control aspects of each part can be appropriately changed and designed within the scope of the effects of the present invention. Needless to say.

2:無酸素槽
4:好気槽
6:膜分離槽
7:膜分離装置
8:トラフ
2: Anoxic tank 4: Aerobic tank 6: Membrane separation tank 7: Membrane separation device 8: Trough

Claims (6)

溶存酸素が存在しない状態に維持され少なくとも被処理水に含まれる硝酸性窒素を還元する脱窒処理が行なわれる無酸素槽と、
好気状態に維持され前記無酸素槽から流入した被処理水に含まれるアンモニア性窒素を硝化する硝化処理が行なわれる好気槽と、
前記硝化処理が行なわれた被処理水に浸漬配置され被処理水から透過水を得る固液分離処理が行なわれる複数の膜分離装置と、
を備えている汚水処理設備であって、
各膜分離装置の上方空間に前記無酸素槽に向けて延出するトラフが配置され、前記膜分離装置に備えた散気機構からの散気により生じる被処理水の上向流により前記固液分離処理後の濃縮水を前記トラフに溢流させて前記無酸素槽に返送するように構成されている汚水処理設備。
An anaerobic tank in which a denitrification treatment is performed to reduce nitrate nitrogen contained in at least water to be treated while maintaining no dissolved oxygen,
An aerobic tank that is maintained in an aerobic state and is subjected to a nitrification treatment that nitrifies ammoniacal nitrogen contained in the water to be treated flowing from the anoxic tank;
A plurality of membrane separation devices in which solid-liquid separation processing is performed so as to be immersed in the water to be treated that has undergone the nitrification treatment to obtain permeated water from the water to be treated;
A sewage treatment facility comprising:
A trough extending toward the anaerobic tank is disposed in the upper space of each membrane separation device, and the solid liquid is caused by the upward flow of the water to be treated generated by the diffusion from the diffusion mechanism provided in the membrane separation device. A sewage treatment facility configured to allow the concentrated water after separation to overflow into the trough and return to the oxygen-free tank.
平面視で、直線状に配列された各膜分離装置を挟むように、一対の前記トラフが対向配置されている請求項1記載の汚水処理設備。   The sewage treatment facility according to claim 1, wherein the pair of troughs are opposed to each other so as to sandwich the membrane separation devices arranged in a straight line when seen in a plan view. 前記好気槽を挟んで両側に無酸素槽が配置され、前記固液分離処理後の濃縮水が各無酸素槽に返送されるように前記トラフが共用されている請求項1または2記載の汚水処理設備。   The oxygen-free tank is arrange | positioned on both sides on both sides of the aerobic tank, and the trough is shared so that the concentrated water after the solid-liquid separation treatment is returned to each oxygen-free tank. Sewage treatment equipment. 前記好気槽が被処理水の流れに交差する幅方向に沿って複数領域に区画され、各領域の境界に前記膜分離装置が配置されている請求項1から3の何れかに記載の汚水処理設備。   The sewage according to any one of claims 1 to 3, wherein the aerobic tank is divided into a plurality of regions along a width direction intersecting a flow of water to be treated, and the membrane separation device is disposed at a boundary between the regions. Processing equipment. 前記硝化処理が行なわれた被処理水が流入する膜分離槽が設けられ、前記膜分離槽に前記膜分離装置が浸漬配置されている請求項1から3の何れかに記載の汚水処理設備。   The sewage treatment facility according to any one of claims 1 to 3, wherein a membrane separation tank into which treated water that has undergone the nitrification treatment flows is provided, and the membrane separation device is immersed in the membrane separation tank. 溶存酸素が存在しない状態に維持された無酸素槽で少なくとも被処理水に含まれる硝酸性窒素を還元する脱窒処理と、
好気状態に維持された好気槽で前記無酸素槽から流入した被処理水に含まれるアンモニア性窒素を硝化する硝化処理と、
前記硝化処理された被処理水に浸漬配置された複数の膜分離装置により被処理水から透過水を得る固液分離処理と、
を実行する汚水処理方法であって、
各膜分離装置の下方に備えた散気機構からの散気により生じる被処理水の上向流により、各膜分離装置の上方空間に前記無酸素槽に向けて延出するように配置されたトラフに、前記固液分離処理後の濃縮水を溢流させて前記無酸素槽に返送する汚水処理方法。
A denitrification treatment that reduces at least nitrate nitrogen contained in the water to be treated in an oxygen-free tank maintained in a state in which no dissolved oxygen exists;
A nitrification treatment for nitrifying ammonia nitrogen contained in the water to be treated flowing from the anoxic tank in an aerobic tank maintained in an aerobic state;
A solid-liquid separation process for obtaining permeated water from the water to be treated by a plurality of membrane separation devices that are immersed in the water to be treated that has been subjected to nitrification;
A sewage treatment method for performing
Arranged so as to extend toward the oxygen-free tank in the upper space of each membrane separation device by the upward flow of the water to be treated generated by the diffusion from the diffusion mechanism provided below each membrane separation device A sewage treatment method in which the concentrated water after the solid-liquid separation treatment is overflowed on a trough and returned to the anoxic tank.
JP2016181180A 2016-09-16 2016-09-16 Sewage treatment equipment and sewage treatment method Active JP6775364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016181180A JP6775364B2 (en) 2016-09-16 2016-09-16 Sewage treatment equipment and sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016181180A JP6775364B2 (en) 2016-09-16 2016-09-16 Sewage treatment equipment and sewage treatment method

Publications (2)

Publication Number Publication Date
JP2018043214A true JP2018043214A (en) 2018-03-22
JP6775364B2 JP6775364B2 (en) 2020-10-28

Family

ID=61693377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016181180A Active JP6775364B2 (en) 2016-09-16 2016-09-16 Sewage treatment equipment and sewage treatment method

Country Status (1)

Country Link
JP (1) JP6775364B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117794A (en) * 1995-10-26 1997-05-06 Mitsubishi Kakoki Kaisha Ltd Biological denitrification device
JP2000042586A (en) * 1998-07-30 2000-02-15 Kubota Corp Membrane separation type combined septic tank
JP2004230348A (en) * 2003-01-31 2004-08-19 Tsukishima Kikai Co Ltd Filtration apparatus
JP2005254078A (en) * 2004-03-10 2005-09-22 Kubota Corp Method for treating water and its apparatus
JP2006007103A (en) * 2004-06-25 2006-01-12 Kobelco Eco-Solutions Co Ltd Membrane separation type sewage treatment apparatus and operating method therefor
JP2006075784A (en) * 2004-09-13 2006-03-23 Toyota Auto Body Co Ltd Biological purifying and circulating system tray
JP2014057906A (en) * 2012-09-14 2014-04-03 Kawasaki Heavy Ind Ltd Apparatus for both of filtration and air lift, and water treatment system
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117794A (en) * 1995-10-26 1997-05-06 Mitsubishi Kakoki Kaisha Ltd Biological denitrification device
JP2000042586A (en) * 1998-07-30 2000-02-15 Kubota Corp Membrane separation type combined septic tank
JP2004230348A (en) * 2003-01-31 2004-08-19 Tsukishima Kikai Co Ltd Filtration apparatus
JP2005254078A (en) * 2004-03-10 2005-09-22 Kubota Corp Method for treating water and its apparatus
JP2006007103A (en) * 2004-06-25 2006-01-12 Kobelco Eco-Solutions Co Ltd Membrane separation type sewage treatment apparatus and operating method therefor
JP2006075784A (en) * 2004-09-13 2006-03-23 Toyota Auto Body Co Ltd Biological purifying and circulating system tray
JP2014057906A (en) * 2012-09-14 2014-04-03 Kawasaki Heavy Ind Ltd Apparatus for both of filtration and air lift, and water treatment system
JP2016140783A (en) * 2015-01-30 2016-08-08 株式会社クボタ Organic wastewater treatment method and apparatus

Also Published As

Publication number Publication date
JP6775364B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP7105162B2 (en) Organic wastewater treatment equipment
US11643345B2 (en) Method for treating organic wastewater, and device for treating organic wastewater
JPH07155758A (en) Waste water treating device
JPH1076264A (en) Sewage treatment apparatus using immersion type membrane separator
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JPH1015574A (en) Sewage treatment apparatus
JP2007098368A (en) Immersed-membrane separation apparatus and method therefor
JP2010069359A (en) Water treatment device and water treatment method
JP5448287B2 (en) Membrane separation activated sludge treatment equipment
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JPH0813359B2 (en) Wastewater treatment equipment containing nitrogen
JP6775364B2 (en) Sewage treatment equipment and sewage treatment method
JP6624926B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP2005246308A (en) Method for bio-treating wastewater
JP4307275B2 (en) Wastewater treatment method
JP3278560B2 (en) Water treatment equipment
JP6194161B2 (en) Filtration and air lift combined device and water treatment system
JP2001047046A (en) Membrane separation type water treatment apparatus
JPH07256294A (en) Living waste water treatment apparatus
JP2019076887A (en) Waste water treatment apparatus and waste water treatment method
JP3807945B2 (en) Method and apparatus for treating organic wastewater
KR101530298B1 (en) Membrane elements, membrane module, and membrane separation system
JP2003275546A (en) Apparatus for treating membrane separated waste water
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH10165984A (en) Nitrogen removing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201006

R150 Certificate of patent or registration of utility model

Ref document number: 6775364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150