JP2018042392A - Power receiving device for vehicle - Google Patents

Power receiving device for vehicle Download PDF

Info

Publication number
JP2018042392A
JP2018042392A JP2016175554A JP2016175554A JP2018042392A JP 2018042392 A JP2018042392 A JP 2018042392A JP 2016175554 A JP2016175554 A JP 2016175554A JP 2016175554 A JP2016175554 A JP 2016175554A JP 2018042392 A JP2018042392 A JP 2018042392A
Authority
JP
Japan
Prior art keywords
power
amount
power supply
vehicle
required drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016175554A
Other languages
Japanese (ja)
Inventor
勝忠 弓削
Katsutada Yuge
勝忠 弓削
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2016175554A priority Critical patent/JP2018042392A/en
Publication of JP2018042392A publication Critical patent/JP2018042392A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To effectively control a power supply amount from a power supply unit with respect to the drive power of a vehicle in response to transmission efficiency between the power supply unit and a power receiving unit.SOLUTION: A power receiving device for a vehicle comprises: a power receiving unit 11 for receiving power from a power supply unit F which is installed outside a vehicle 1; necessary drive power amount calculation means 12 for calculating a necessary drive power amount X according to a drive state of the vehicle 1; and required power supply amount calculation means 13 for calculating a required power supply amount Z to the power receiving unit 11 on the basis of the necessary drive power amount X. When the necessary drive power amount X exceeds a preset first prescribed power amount α, the required power supply amount calculation means 13 performs second control for setting the required power supply amount Z small with respect to the necessary drive power amount X, and when the necessary drive power amount X goes below a second prescribed power amount β which is set to a value smaller than the first prescribed power amount α, setting the required power supply amount Z large with respect to the necessary drive power amount X.SELECTED DRAWING: Figure 1

Description

この発明は、車両の外部に設けられた給電ユニットから、走行用の電力を受電するため
に車両側に設けられる車両用受電装置に関する。
The present invention relates to a vehicle power receiving device provided on a vehicle side for receiving power for traveling from a power supply unit provided outside the vehicle.

近年、車両の外部、例えば、路面上や側壁等に設けられた給電ユニットから電力を受電して、受電した電力で車両を走行する技術の研究、開発が進められている。将来的には、電気自動車やプラグインハイブリッド車の走行中における給電が、本格的に実用化される見込みである。     In recent years, research and development of technology for receiving electric power from a power supply unit provided on the outside of a vehicle, for example, on a road surface or a side wall, and traveling the vehicle with the received electric power have been advanced. In the future, it is expected that power supply during running of electric vehicles and plug-in hybrid vehicles will be put into practical use.

走行中の給電には、駐車中における通常の給電(充電)との比較で、電力伝送の際の利便性や、伝送効率、コスト等の面で、メリットとデメリットがある。このため、走行中の給電を行う際には、そのメリットを生かし、デメリットを低減するようにうまく制御する必要がある。     The power supply during traveling has advantages and disadvantages in terms of convenience in power transmission, transmission efficiency, cost, and the like, compared with normal power supply (charging) while parking. For this reason, when power is supplied during traveling, it is necessary to take advantage of the merit and control well to reduce the demerit.

例えば、特許文献1においては、ドライバのアクセルペダルの踏み込み量(要求トルク)や車速に対応してモータトルクが決定され、このモータトルクに対応して、車両に設けられた複数のバッテリから供給される電力と、外部の給電ユニットから供給される電力の配分が決定される。これにより、外部の給電ユニットから供給される電力量を、適切な量に設定できるようになっている(特許文献1の段落0074〜0077、図7参照)。   For example, in Patent Document 1, a motor torque is determined in accordance with the accelerator pedal depression amount (required torque) of the driver and the vehicle speed, and is supplied from a plurality of batteries provided in the vehicle corresponding to the motor torque. And distribution of power supplied from an external power supply unit is determined. Thus, the amount of power supplied from the external power supply unit can be set to an appropriate amount (see paragraphs 0074 to 0077 of FIG. 7 and FIG. 7).

特開2009−296848号公報JP 2009-296848 A

走行中の給電に対応した車両用受電装置には、外部の給電ユニットから無線方式で電力を受電する無線電力伝送方式と、有線方式で電力を受電する有線電力伝送方式とがある。   Vehicle power receiving devices that support power supply during traveling include a wireless power transmission method that receives power from an external power supply unit in a wireless manner, and a wired power transmission method that receives power in a wired manner.

一般に、有線電力伝送方式では、給電電力が大きくなるにつれ、電力伝送の際の伝送効率が低下する。すなわち、電力伝送の際の電力損失(電流×電流×抵抗)が増大し、その電力損失により給電の効率が低下する傾向がある。   In general, in the wired power transmission system, the transmission efficiency at the time of power transmission decreases as the feed power increases. That is, power loss (current × current × resistance) during power transmission increases, and power supply efficiency tends to decrease due to the power loss.

この点、特許文献1に記載された発明では、外部に設けられる給電ユニットと車両側に設けられる車両用受電装置との間の給電効率は何ら考慮されていない。このため、走行中の給電のメリットとデメリットをうまく使いわけていないといえる。   In this regard, in the invention described in Patent Document 1, no consideration is given to the power feeding efficiency between the power feeding unit provided outside and the vehicle power receiving device provided on the vehicle side. For this reason, it can be said that the merit and demerit of the electric power supply during driving are not properly used.

そこで、この発明の課題は、給電ユニットと受電ユニットとの間の伝送効率に対応して、車両の駆動電力に対する給電ユニットからの給電量を効率的に制御することである。   Therefore, an object of the present invention is to efficiently control the amount of power supplied from the power supply unit to the driving power of the vehicle in correspondence with the transmission efficiency between the power supply unit and the power reception unit.

上記の課題を解決するために、この発明は、車両の外部に設置された給電ユニットから電力を受電する受電ユニットと、車両の運転状態に応じて必要駆動電力量を算出する必要駆動電力量算出手段と、前記必要駆動電力量に基づいて前記受電ユニットへの要求給電電力量を算出する要求給電電力量算出手段と、を備え、前記要求給電電力量算出手段は、前記必要駆動電力量に基づいて前記必要駆動電力量に対する前記要求給電電力量の比率を設定する車両用受電装置を採用した。   In order to solve the above-described problems, the present invention provides a power receiving unit that receives power from a power feeding unit installed outside the vehicle, and a required driving power amount calculation that calculates a required driving power amount according to the driving state of the vehicle. And a required power supply amount calculating means for calculating a required power supply amount to the power receiving unit based on the required drive power amount, wherein the required power supply amount calculating means is based on the required drive power amount. Thus, a vehicle power receiving device that sets a ratio of the required power supply amount to the required drive power amount is employed.

ここで、前記要求給電電力量算出手段は、前記必要駆動電力量が予め設定された第一所定電力量を超える場合に前記必要駆動電力量に対して要求給電電力量を小さく設定する第一制御を行う構成を採用することができる。   Here, the required power supply amount calculating means sets the required power supply amount to be smaller than the required drive power amount when the required drive power amount exceeds a preset first predetermined power amount. The structure which performs can be employ | adopted.

また、その第一制御に加えて又は代えて、前記要求給電電力量算出手段は、前記必要駆動電力量が予め設定された第二所定電力量を下回る場合に前記必要駆動電力量に対して要求給電電力量を大きく設定する第二制御を行う構成を採用することができる。   In addition to or instead of the first control, the required power supply power amount calculation means requests the required drive power amount when the required drive power amount is lower than a preset second predetermined power amount. It is possible to employ a configuration in which the second control for setting the amount of power supply to be large is performed.

前記第一制御を行う場合において、前記車両に駆動用電力を供給するバッテリを備え、前記要求給電電力量算出手段は、前記バッテリの充電量が予め設定された第一所定充電率を超える場合にのみ前記第一制御を行う構成を採用することができる。   In the case where the first control is performed, the battery includes a battery for supplying driving power to the vehicle, and the required power supply amount calculation unit is configured so that the charge amount of the battery exceeds a preset first predetermined charge rate. Only the configuration for performing the first control can be employed.

また、前記第二制御を行う場合において、前記車両に駆動用電力を供給するバッテリを備え、前記要求給電電力量算出手段は、前記バッテリの充電量が予め設定された第二所定充電率を下回る場合にのみ前記第二制御を行う構成を採用することができる。   In addition, when performing the second control, a battery that supplies driving power to the vehicle is provided, and the requested power supply amount calculation unit is configured such that a charge amount of the battery is lower than a second predetermined charge rate that is set in advance. A configuration in which the second control is performed only in such a case can be employed.

ここで、前記要求給電電力量算出手段は、前記第一制御において、前記必要駆動電力量が予め設定された第一所定電力量未満とならない範囲で要求給電電力量を小さく設定する構成を採用することができる。   Here, in the first control, the required power supply amount calculation means employs a configuration in which the required power supply amount is set small within a range in which the required drive power amount does not become less than a preset first predetermined power amount. be able to.

また、前記要求給電電力量算出手段は、前記第二制御において、前記必要駆動電力量が予め設定された第二所定電力量を上回らない範囲で要求給電電力量を大きく設定する構成を採用することができる。   Further, the required power supply amount calculation means adopts a configuration in which the required power supply amount is set large in a range in which the required drive power amount does not exceed a preset second predetermined power amount in the second control. Can do.

この発明は、車両の運転状態に応じた必要駆動電力量に応じて、その必要駆動電力量に対する要求給電電力量の比率を設定するようにしたので、給電ユニットと受電ユニットとの間の給電に伴う電力損失を極力少なくすることができる。すなわち、車両の駆動電力に対する給電ユニットからの給電量を、伝送効率に応じて効率的に制御することができる。   In the present invention, since the ratio of the required power supply amount to the required drive power amount is set according to the required drive power amount according to the driving state of the vehicle, power supply between the power supply unit and the power reception unit is performed. The accompanying power loss can be minimized. That is, the amount of power supplied from the power supply unit for the driving power of the vehicle can be efficiently controlled according to the transmission efficiency.

この発明に係る車両用受電装置を備えた車両の一例を示す概略図Schematic which shows an example of the vehicle provided with the power receiving apparatus for vehicles which concerns on this invention 給電ユニットから車両へ有線方式で給電を行う態様を示す概略図Schematic showing how power is supplied from the power supply unit to the vehicle in a wired manner 駆動電力(必要駆動電力量)と伝送効率との関係を示すグラフ図Graph showing the relationship between drive power (required drive power) and transmission efficiency 駆動電力(必要駆動電力量)に対して要求電力(要求給電電力量)を補正する場合を示すグラフ図The graph which shows the case where request | requirement electric power (required electric power supply amount) is correct | amended with respect to drive electric power (required drive electric energy) 駆動電力(必要駆動電力量)に対して要求電力(要求給電電力量)を補正する場合を示すグラフ図The graph which shows the case where request | requirement electric power (required electric power supply amount) is correct | amended with respect to drive electric power (required drive electric energy) 要求電力(要求給電電力量)の決定フローの一例を示すフローチャートA flowchart showing an example of a flow for determining required power (required power supply amount)

この発明に係る車両用受電装置10を備えた車両1の概略図を図1に示す。ここでは、車両1として電気自動車を例示しているが、この車両用受電装置10は、電気自動車以外にも、例えば、エンジンを搭載するプラグインハイブリッド車のように、車両1の外部に設けられた給電ユニットF(図2参照)から供給される電力やバッテリ20に充電された電力でモータ21を駆動する全てのタイプの車両1に、幅広く適用することができる。   FIG. 1 shows a schematic diagram of a vehicle 1 including a vehicle power receiving device 10 according to the present invention. Here, an electric vehicle is illustrated as the vehicle 1, but the vehicle power receiving device 10 is provided outside the vehicle 1, such as a plug-in hybrid vehicle equipped with an engine, in addition to the electric vehicle. The present invention can be widely applied to all types of vehicles 1 that drive the motor 21 with the power supplied from the power supply unit F (see FIG. 2) or the power charged in the battery 20.

車両1には、図1に示すように、外部の給電ユニットFから電力を受電する車両用受電装置10(以下、単に受電装置10と称する)の他、バッテリ20、モータ21、車輪22、交流/直流コンバータ23、直流/直流コンバータ24、インバータ25等が設けられている。また、車両1の前輪側と後輪側のそれぞれにモータ21等を設けた構成としたが、単独のモータ21で全ての車輪22を駆動する構成とすることもできる。   As shown in FIG. 1, the vehicle 1 includes a vehicle power receiving device 10 (hereinafter simply referred to as a power receiving device 10) that receives power from an external power supply unit F, a battery 20, a motor 21, wheels 22, an alternating current. / DC converter 23, DC / DC converter 24, inverter 25, etc. are provided. Further, although the motor 21 and the like are provided on the front wheel side and the rear wheel side of the vehicle 1, all the wheels 22 may be driven by a single motor 21.

バッテリ20は、外部の給電ユニットFから供給される電力とともに、モータ21を駆動するための電力を供給する駆動電源の一つとして機能する。   The battery 20 functions as one of drive power sources that supplies power for driving the motor 21 together with power supplied from the external power supply unit F.

給電ユニットFと受電装置10との間の電力のやり取りは、図2に示すように、接触式の有線方式で行われる。この有線方式の給電において、給電ユニットFは、例えば、送電線や送電レール等の長尺状の接触部材を地上側に備え、受電装置10は、導体からなる送電アームL等の接触子を車両1側に備え、これらの接触子や接触部材を介して、給電ユニットFから受電装置10へ電力が送られる。   As shown in FIG. 2, the exchange of electric power between the power supply unit F and the power receiving apparatus 10 is performed by a contact type wired system. In this wired power supply, the power supply unit F includes, for example, a long contact member such as a power transmission line or a power transmission rail on the ground side, and the power receiving device 10 includes a contact such as a power transmission arm L made of a conductor. Power is sent from the power supply unit F to the power receiving device 10 through these contacts and contact members.

給電ユニットFの接触部材は、道路の走行方向に沿って連続的、又は、断続的に設けられているので、接触子が接触部材に接触することによって、給電ユニットFと車両用受電装置10とを導通させている間に給電が行われる。   Since the contact member of the power supply unit F is provided continuously or intermittently along the traveling direction of the road, when the contactor contacts the contact member, the power supply unit F and the vehicle power receiving device 10 Power is supplied while the power is on.

給電ユニットFから受電装置10に供給された電力は、交流/直流コンバータ23、直流/直流コンバータ24及びインバータ25を介してモータ21に送られる。なお、直流/直流コンバータ24は省略できる場合もある。   The electric power supplied from the power supply unit F to the power receiving device 10 is sent to the motor 21 via the AC / DC converter 23, the DC / DC converter 24 and the inverter 25. In some cases, the DC / DC converter 24 may be omitted.

また、受電装置10とバッテリ20との間の交流/直流コンバータ23は、交流電流として給電ユニットFから受電装置10に供給された電力を直流電流に変換して、バッテリ20に充電することができる。なお、給電ユニットFから直流電流が受電装置10に供給される場合は、交流/直流コンバータ23を省略できる。   In addition, the AC / DC converter 23 between the power receiving device 10 and the battery 20 can charge the battery 20 by converting the power supplied from the power supply unit F to the power receiving device 10 as an AC current into a DC current. . Note that, when a direct current is supplied from the power supply unit F to the power receiving device 10, the AC / DC converter 23 can be omitted.

受電装置10は、給電ユニットFから電力を受電するとともに、その受電した電力をモータ21やバッテリ20に送り出す受電ユニット11のほかに、車両1の運転状態に応じて必要駆動電力量Xを算出する必要駆動電力量算出手段12と、必要駆動電力量Xに基づいて受電ユニット11への要求給電電力量Zを算出する要求給電電力量算出手段13とを備えている。   The power receiving device 10 receives power from the power supply unit F, and calculates the necessary drive power amount X according to the driving state of the vehicle 1 in addition to the power receiving unit 11 that sends the received power to the motor 21 and the battery 20. A required drive power amount calculating means 12 and a required power supply power amount calculating means 13 for calculating a required power supply power amount Z to the power receiving unit 11 based on the required drive power amount X are provided.

必要駆動電力量算出手段12や要求給電電力量算出手段13は、この車両1の機能全般を制御する電子制御ユニットが備えることもできるし、電子制御ユニットとは別のコンピュータ等に備えてもよい。   The required drive power amount calculation means 12 and the required power supply power amount calculation means 13 can be provided in an electronic control unit that controls the overall functions of the vehicle 1 or in a computer or the like separate from the electronic control unit. .

必要駆動電力量算出手段12は、モータ21へ実際に供給されている電力や、あるいは、そのモータ21や周辺機器からの情報により、車両1の走行に必要な必要駆動電力量Xを算出することができる。要求給電電力量算出手段13は、車両1の走行に必要な必要駆動電力量Xに基づいて、その必要駆動電力量Xに対する要求給電電力量Zの比率を設定するようになっている。ここで、要求給電電力量Z÷必要駆動電力量X=補正係数Yとし、その補正係数Yが条件に応じて設定される。   The required drive power amount calculation means 12 calculates the required drive power amount X required for traveling of the vehicle 1 based on the power actually supplied to the motor 21 or information from the motor 21 and peripheral devices. Can do. The required power supply amount calculation means 13 is configured to set the ratio of the required power supply amount Z to the required drive power amount X based on the required drive power amount X necessary for traveling of the vehicle 1. Here, the required power supply amount Z ÷ the required drive power amount X = the correction coefficient Y, and the correction coefficient Y is set according to the conditions.

例えば、図3に示すように、横軸に示す時間の経過に合わせて必要駆動電力量Xは変動する。ここで、図3のグラフ中に符号Aで示す付近の運転領域は、必要駆動電力量Xが比較的大きく、電力伝送の際の電力損失が増大し伝送効率が低下する伝送効率低下領域Aである。それに対して、符号Bで示す付近の運転領域は、必要駆動電力量Xが比較的小さく、電力伝送の際の電力損失が減少し伝送効率が良化する伝送効率良化領域Bである。   For example, as shown in FIG. 3, the required drive power amount X varies with the passage of time shown on the horizontal axis. Here, the operation region in the vicinity indicated by the symbol A in the graph of FIG. 3 is a transmission efficiency decrease region A in which the required drive power amount X is relatively large, power loss during power transmission increases, and transmission efficiency decreases. is there. On the other hand, the driving region in the vicinity indicated by the symbol B is a transmission efficiency improving region B in which the required drive power amount X is relatively small, the power loss during power transmission is reduced, and the transmission efficiency is improved.

一般に、走行中はアクセルペダルの踏み込み量等に応じて、必要駆動電力量Xにばらつきが生じる。必要駆動電力量Xが大きいほど要求給電電力量Zは大きく設定されるので、給電される電力量の増大とともに、伝送効率が悪化する傾向がある。   In general, the required drive power amount X varies depending on the amount of depression of the accelerator pedal during traveling. Since the required power supply amount Z is set larger as the required drive power amount X is larger, the transmission efficiency tends to deteriorate as the amount of power supplied increases.

なお、給電を要求する場合に、通常は、要求給電電力量Zは必要駆動電力量Xと等しく、又は、必要駆動電力量X以上に設定される。ただし、給電する電力量が必要駆動電力量Xに満たない場合は、バッテリ20からの電力をモータ21の駆動等に用いることとなる。   When requesting power supply, normally, the required power supply amount Z is set equal to or greater than the required drive power amount X. However, when the amount of power to be supplied is less than the required drive power amount X, the power from the battery 20 is used for driving the motor 21 and the like.

そこで、給電ユニットFから電力を受電する際に、図4に示すように、伝送効率を考慮して、要求給電電力量算出手段13は、必要駆動電力量Xが予め設定された第一所定電力量αを超える場合に、必要駆動電力量Xに対して要求給電電力量Zを小さく設定する第一制御を行う。このとき、要求給電電力量Zは第一所定電力量α未満とならない範囲で設定されることが好ましい。   Therefore, when receiving power from the power supply unit F, as shown in FIG. 4, the required power supply power amount calculation means 13 takes into account the transmission efficiency and the first predetermined power in which the required drive power amount X is preset. When the amount α is exceeded, the first control for setting the required power supply power amount Z to be smaller than the required drive power amount X is performed. At this time, it is preferable that the required power supply amount Z is set in a range that does not become less than the first predetermined power amount α.

また、要求給電電力量算出手段13は、必要駆動電力量Xが第一所定電力量αよりも低い値に設定された第二所定電力量βを下回る場合に、必要駆動電力量Xに対して要求給電電力量Zを大きく設定する第二制御を行う。このとき、要求給電電力量Zは第二所定電力量βを上回らない範囲で設定されることが好ましい。   Further, the required power supply amount calculation means 13 determines the required drive power amount X when the required drive power amount X is lower than the second predetermined power amount β set to a value lower than the first predetermined power amount α. Second control for setting the required power supply amount Z large is performed. At this time, it is preferable that the required power supply amount Z is set in a range not exceeding the second predetermined power amount β.

すなわち、伝送効率の悪い伝送効率低下領域Aでは第一制御を行って通常よりも少ない目に給電し、伝送効率の良い伝送効率良化領域Bでは第二制御を行って通常よりも多い目に給電する。この第一制御と第二制御は、その両方が、それぞれの該当する運転領域で実行されるようにすることが望ましいが、車両1の仕様や用途によっては、必要に応じて、第一制御のみ、又は、第二制御のみが、それぞれの該当する運転領域で実行されるようにしてもよい。   That is, in the transmission efficiency lowering area A where the transmission efficiency is poor, the first control is performed and power is supplied to less eyes than usual, and in the transmission efficiency improving area B where the transmission efficiency is good, the second control is performed and more eyes than usual. Supply power. It is desirable that both the first control and the second control are executed in the corresponding operation region. However, depending on the specifications and applications of the vehicle 1, only the first control is necessary. Alternatively, only the second control may be executed in each corresponding operation region.

ただし、バッテリ20の充電量に余裕がない場合、すなわち、バッテリの電気容量に対する、その時点で充電されている電気量の比率(State of charge)、すなわち、バッテリ20の満充電状態に対する充電率が所定の比率を下回る場合には、必要駆動電力量Xが比較的大きい大電力域で、無理に要求給電電力量Zを抑制する必要はなく、伝送効率が悪くとも早期により多く充電を行った方がよい場合もあると考えられる。このため、要求給電電力量Zを抑制する第一制御は、バッテリの充電量が予め設定された第一所定充電率を超えて、その充電量に余裕がある場合にのみ行われるようにしてもよい。   However, when there is no allowance for the charge amount of the battery 20, that is, the ratio of the amount of electricity that is charged at that time to the battery capacity (State of charge), that is, the charge rate for the fully charged state of the battery 20 is If the required drive power amount X is less than the predetermined ratio, it is not necessary to forcibly reduce the required power supply amount Z in a large power range where the required drive power amount X is relatively large. May be good. For this reason, the first control for suppressing the required power supply power amount Z is performed only when the charge amount of the battery exceeds a preset first predetermined charge rate and there is a margin in the charge amount. Good.

また、バッテリ20の充電量に余裕がある場合、すなわち、バッテリの電気容量に対する、その時点で充電されている電気量の比率(State of charge)、すなわち、バッテリ20の満充電状態に対する充電率が所定の比率を超える場合には、必要駆動電力量Xが比較的小さい小電力域で、無理に要求給電電力量Zを増大させる必要はないと考えられる。このため、要求給電電力量Zを増大させる第二制御は、バッテリ20の充電量が予め設定された第二所定充電率を下回って、その充電量に余裕がない場合にのみ行われるように設定されるようにしてもよい。   Further, when there is a margin in the charge amount of the battery 20, that is, the ratio of the amount of electricity charged at that time to the battery capacity (State of charge), that is, the charge rate with respect to the fully charged state of the battery 20 When the predetermined ratio is exceeded, it is considered unnecessary to increase the required power supply amount Z forcibly in a small power range where the required drive power amount X is relatively small. Therefore, the second control for increasing the required power supply amount Z is set to be performed only when the charge amount of the battery 20 falls below a preset second predetermined charge rate and there is no allowance for the charge amount. You may be made to do.

ここで、バッテリ20の満充電率(例えば100%)>第一所定充電率>第二所定充電率>バッテリの使用限界充電率(例えば0%)の関係である。   Here, the full charge rate of the battery 20 (for example, 100%)> first predetermined charge rate> second predetermined charge rate> battery use limit charge rate (for example, 0%).

この図4の制御に代えて、図5に示す制御を採用してもよい。図5の制御では、第二所定電力量βと第一所定電力量αを、それぞれ同じ値であるγに設定したものである。すなわち、第一制御を行う基準電力量として第一所定電力量γを、第二制御を行う基準電力量として第二所定電力量γを採用する。   Instead of the control of FIG. 4, the control shown in FIG. 5 may be adopted. In the control of FIG. 5, the second predetermined power amount β and the first predetermined power amount α are set to γ that is the same value. That is, the first predetermined power amount γ is employed as the reference power amount for performing the first control, and the second predetermined power amount γ is employed as the reference power amount for performing the second control.

図5に示す制御では、伝送効率を考慮して、要求給電電力量算出手段13は、必要駆動電力量Xが予め設定された第一所定電力量γを超える場合に、必要駆動電力量Xに対して要求給電電力量Zを小さく設定する第一制御を行う。また、要求給電電力量算出手段13は、必要駆動電力量Xが第一所定電力量γと同じ値に設定された第二所定電力量γを下回る場合に、必要駆動電力量Xに対して要求給電電力量Zを大きく設定する第二制御を行う。   In the control shown in FIG. 5, in consideration of transmission efficiency, the required power supply power amount calculation means 13 sets the required drive power amount X when the required drive power amount X exceeds a preset first predetermined power amount γ. On the other hand, the first control for setting the required power supply amount Z small is performed. The required power supply amount calculation means 13 requests the required drive power amount X when the required drive power amount X is lower than the second predetermined power amount γ set to the same value as the first predetermined power amount γ. Second control is performed to set the power supply amount Z large.

これらの各実施形態において、第一制御における必要駆動電力量Xに対する要求給電電力量Zの比率、すなわち、前述の補正係数Yを、その必要駆動電力量Xに応じて増減させる設定を行ってもよい。例えば、必要駆動電力量Xが第一所定電力量α,γを超える場合に、その必要駆動電力量Xが大きいほど、必要駆動電力量Xに対する要求給電電力量Zの比率を小さくし、必要駆動電力量Xが小さいほど、必要駆動電力量Xに対する要求給電電力量Zの比率を大きく設定することができる。
In each of these embodiments, the ratio of the required power supply amount Z to the required drive power amount X in the first control, that is, the above-described correction coefficient Y may be set to increase or decrease according to the required drive power amount X. Good. For example, when the required drive power amount X exceeds the first predetermined power amounts α and γ, the larger the required drive power amount X, the smaller the ratio of the required feed power amount Z to the required drive power amount X, and the required drive. As the power amount X is smaller, the ratio of the required power supply amount Z to the required drive power amount X can be set larger.

例えば、図5の左寄り部分に示すように、必要駆動電力量P1となる場合における、その必要駆動電力量P1に対する要求給電電力量P1’の比率P1’/P1(<1)に対し、必要駆動電力量P2となる場合における、その必要駆動電力量P2に対する要求給電電力量P2’の比率P2’/P2(<1)を大きく設定することができる。ここで、P1>P2であり、(P1’/P1)<(P2’/P2)である。   For example, as shown in the leftmost part of FIG. 5, when the required drive power amount P1 is reached, the required drive power with respect to the ratio P1 ′ / P1 (<1) of the required feed power amount P1 ′ with respect to the required drive power amount P1. The ratio P2 ′ / P2 (<1) of the required power supply amount P2 ′ with respect to the required drive power amount P2 in the case of the power amount P2 can be set large. Here, P1> P2, and (P1 ′ / P1) <(P2 ′ / P2).

また、同様に、第二制御における必要駆動電力量Xに対する要求給電電力量Zの比率、すなわち、補正係数Yを、その必要駆動電力量Xに応じて増減させる設定を行ってもよい。例えば、必要駆動電力量Xが第二所定電力量β,γを下回る場合に、その必要駆動電力量Xが小さいほど、必要駆動電力量Xに対する要求給電電力量Zの比率を大きくし、必要駆動電力量Xが大きいほど、必要駆動電力量Xに対する要求給電電力量Zの比率を小さく設定することができる。   Similarly, the ratio of the required power supply amount Z to the required drive power amount X in the second control, that is, the correction coefficient Y may be set to increase or decrease according to the required drive power amount X. For example, when the required drive power amount X is lower than the second predetermined power amounts β and γ, the smaller the required drive power amount X is, the larger the ratio of the required feed power amount Z to the required drive power amount X is. As the power amount X is larger, the ratio of the required power supply power amount Z to the required drive power amount X can be set smaller.

例えば、図5の右寄り部分に示すように、必要駆動電力量P3となる場合における、その必要駆動電力量P3に対する要求給電電力量P3’の比率P3’/P3(>1)に対し、必要駆動電力量P4となる場合における、その必要駆動電力量P4に対する要求給電電力量P4’の比率P4’/P4(>1)を小さく設定することができる。ここで、P3<P4であり、(P3’/P3)>(P4’/P4)である。   For example, as shown in the right side portion of FIG. 5, when the required drive power amount P3 is reached, the required drive power with respect to the ratio P3 ′ / P3 (> 1) of the required feed power amount P3 ′ with respect to the required drive power amount P3. The ratio P4 ′ / P4 (> 1) of the required power supply amount P4 ′ with respect to the required drive power amount P4 in the case of the power amount P4 can be set small. Here, P3 <P4 and (P3 '/ P3)> (P4' / P4).

なお、バッテリ20の充電量を考慮して給電量を設定する場合、要求給電電力量算出手段13は、車両1の種別、例えば、その車両1が電気自動車であるか、プラグインハイブリッド車であるかによって、要求給電電力量の設定条件を変更してもよい。   When the power supply amount is set in consideration of the charge amount of the battery 20, the required power supply power amount calculation means 13 is a type of the vehicle 1, for example, the vehicle 1 is an electric vehicle or a plug-in hybrid vehicle. Depending on how, the setting condition of the required power supply amount may be changed.

例えば、車両1がエンジンを搭載しない電気自動車である場合は、エンジンを搭載するプラグインハイブリッド車よりも、バッテリ20の充電量を高く維持しておくことが望ましい。電気自動車はバッテリ20の充電量が不足すると、その場で走行不能となってしまうのに対し、プラグインハイブリッド車はバッテリ20の充電量が不足しても、エンジンの駆動力で走行を継続することが可能だからである。このため、エンジン搭載の有無の違いを除く同一の車両条件、及び、同一の運転条件下において、電気自動車の場合は、プラグインハイブリッド車の場合よりも、必要駆動電力量Xに対する要求給電電力量Zの比率を高く設定することが望ましい。
For example, when the vehicle 1 is an electric vehicle not equipped with an engine, it is desirable to maintain the charge amount of the battery 20 higher than that of a plug-in hybrid vehicle equipped with an engine. An electric vehicle cannot run on the spot if the amount of charge of the battery 20 is insufficient, whereas a plug-in hybrid vehicle continues to run with the driving force of the engine even if the amount of charge of the battery 20 is insufficient. Because it is possible. For this reason, in the case of an electric vehicle under the same vehicle conditions and the same driving conditions except for the difference in whether or not the engine is mounted, the required power supply electric energy for the required drive electric energy X is greater than in the case of a plug-in hybrid vehicle. It is desirable to set the Z ratio high.

また、前述のように、給電する電力量が必要駆動電力量Xに満たない場合は、給電ユニットFからの供給電力のみでは、車両1を駆動することができない。このため、不足する電力量を、バッテリ20から供給することとなる。不足する電力量をバッテリ20から供給させる指示は、この受電装置10が備える制御手段が、必要駆動電力量算出手段12や要求給電電力量算出手段13からの必要駆動電力量X、要求給電電力量Z等の情報に基づいて行うことができる。   Further, as described above, when the amount of power to be fed is less than the required drive power amount X, the vehicle 1 cannot be driven only by the power supplied from the power feeding unit F. For this reason, the insufficient amount of electric power is supplied from the battery 20. The instruction to supply the insufficient power amount from the battery 20 is such that the control means included in the power receiving device 10 requires the required drive power amount X and the required supply power amount from the required drive power amount calculation means 12 and the required supply power amount calculation means 13. This can be done based on information such as Z.

この受電装置10による制御の一例を、図6のフローチャートに基づいて説明する。   An example of control by the power receiving apparatus 10 will be described based on the flowchart of FIG.

ステップS1で制御を開始する。ステップS2で、必要駆動電力量Xを算定し、その必要駆動電力量Xが、第一所定電力量α(又は、第一所定電力量γとしてもよい。)を超えるかどうかが判別される。   In step S1, control is started. In step S2, the required drive power amount X is calculated, and it is determined whether the required drive power amount X exceeds the first predetermined power amount α (or the first predetermined power amount γ).

必要駆動電力量Xが、第一所定電力量αを超えていれば、ステップS8へ移行する。ステップS8では、必要駆動電力量Xに対する要求給電電力量Zの比率である補正係数Yが1未満に設定される第一制御が行われ、要求給電電力量Zは必要駆動電力量Xよりも低く抑えられる。   If the required drive power amount X exceeds the first predetermined power amount α, the process proceeds to step S8. In step S8, the first control is performed in which the correction coefficient Y, which is the ratio of the required power supply amount Z to the required drive power amount X, is set to less than 1, and the required power supply amount Z is lower than the required drive power amount X. It can be suppressed.

必要駆動電力量Xが、第一所定電力量αを超えていなければ、ステップS3へ移行する。ステップS3では、必要駆動電力量Xが、第二所定電力量β(又は、第二所定電力量γとしてもよい。)を下回るかどうかが判別される。   If the required drive power amount X does not exceed the first predetermined power amount α, the process proceeds to step S3. In step S3, it is determined whether or not the required drive power amount X is less than the second predetermined power amount β (or may be the second predetermined power amount γ).

必要駆動電力量Xが、第二所定電力量βを下回っていなければ、ステップS6へ移行する。ステップS6では、必要駆動電力量Xに対する要求給電電力量Zの比率である補正係数Yが1に設定され、要求給電電力量Zは必要駆動電力量Xに等しく設定される。   If the required drive power amount X is not less than the second predetermined power amount β, the process proceeds to step S6. In step S6, the correction coefficient Y, which is the ratio of the required power supply amount Z to the required drive power amount X, is set to 1, and the required power supply power amount Z is set equal to the required drive power amount X.

必要駆動電力量Xが、第二所定電力量βを下回っていれば、ステップS4へ移行する。ステップS4では、バッテリ20の充電状態が第一所定充電率C(%)を超えているかどうかが判別される。   If the required drive power amount X is less than the second predetermined power amount β, the process proceeds to step S4. In step S4, it is determined whether or not the state of charge of the battery 20 exceeds the first predetermined charging rate C (%).

バッテリ20の充電状態が第一所定充電率C(%)を超えていれば、ステップS5へ移行する。ステップS5では、必要駆動電力量Xに対する要求給電電力量Zの比率である補正係数Yが1に設定され、要求給電電力量Zは必要駆動電力量Xに等しく設定される。   If the state of charge of the battery 20 exceeds the first predetermined charging rate C (%), the process proceeds to step S5. In step S5, the correction coefficient Y, which is the ratio of the required power supply amount Z to the required drive power amount X, is set to 1, and the required power supply amount Z is set equal to the required drive power amount X.

バッテリ20の充電状態が第一所定充電率C(%)を超えていなければ、ステップS7へ移行する。ステップS7では、必要駆動電力量Xに対する要求給電電力量Zの比率である補正係数Yが1よりも大きく設定され、要求給電電力量Zは必要駆動電力量Xよりも高く設定される。   If the state of charge of the battery 20 does not exceed the first predetermined charging rate C (%), the process proceeds to step S7. In step S7, the correction coefficient Y, which is the ratio of the required power supply amount Z to the required drive power amount X, is set to be greater than 1, and the required power supply power amount Z is set to be higher than the required drive power amount X.

すなわち、要求給電電力量Zは、必要駆動電力量Xに補正係数Yを乗じて算定され、要求給電電力量Zの設定を終了すれば、その要求給電電力量Zに基づく給電が開始されるとともに、ステップS9からステップS1へ復帰し、同様の制御を繰り返す。   That is, the required power supply amount Z is calculated by multiplying the required drive power amount X by the correction coefficient Y. When the setting of the required power supply amount Z is completed, power supply based on the required power supply amount Z is started. The process returns from step S9 to step S1, and the same control is repeated.

1 車両
10 車両用受電装置
11 受電ユニット
12 必要駆動電力量算出手段
13 要求給電電力量算出手段
20 バッテリ
21 モータ
22 車輪
23 交流/直流コンバータ
24 直流/直流コンバータ
25 インバータ
L 送電アーム
F 給電ユニット
DESCRIPTION OF SYMBOLS 1 Vehicle 10 Vehicle power receiving apparatus 11 Power receiving unit 12 Required drive electric energy calculation means 13 Required electric power supply calculation means 20 Battery 21 Motor 22 Wheel 23 AC / DC converter 24 DC / DC converter 25 Inverter L Power transmission arm F Power supply unit

Claims (7)

車両の外部に設置された給電ユニットから電力を受電する受電ユニットと、
車両の運転状態に応じて必要駆動電力量を算出する必要駆動電力量算出手段と、
前記必要駆動電力量に基づいて前記受電ユニットへの要求給電電力量を算出する要求給電電力量算出手段と、
を備え、
前記要求給電電力量算出手段は、前記必要駆動電力量に基づいて前記必要駆動電力量に対する前記要求給電電力量の比率を設定する
車両用受電装置。
A power receiving unit that receives power from a power supply unit installed outside the vehicle;
A required drive power amount calculating means for calculating a required drive power amount according to the driving state of the vehicle;
A required power supply amount calculation means for calculating a required power supply amount to the power receiving unit based on the required drive power amount;
With
The required power supply amount calculation unit is a vehicle power receiving device that sets a ratio of the required power supply amount to the required drive power amount based on the required drive power amount.
前記要求給電電力量算出手段は、前記必要駆動電力量が予め設定された第一所定電力量を超える場合に前記必要駆動電力量に対して要求給電電力量を小さく設定する第一制御を行う
請求項1に記載の車両用受電装置。
The required power supply amount calculation means performs a first control for setting a required power supply amount to be smaller than the required drive power amount when the required drive power amount exceeds a preset first predetermined power amount. Item 14. The vehicle power receiving device according to Item 1.
前記要求給電電力量算出手段は、前記必要駆動電力量が予め設定された第二所定電力量を下回る場合に前記必要駆動電力量に対して要求給電電力量を大きく設定する第二制御を行う
請求項1又は2に記載の車両用受電装置。
The required power supply amount calculation means performs second control for setting the required power supply amount to be larger than the required drive power amount when the required drive power amount is lower than a preset second predetermined power amount. Item 3. The vehicle power receiving device according to Item 1 or 2.
前記車両に駆動用電力を供給するバッテリを備え、
前記要求給電電力量算出手段は、前記バッテリの充電量が予め設定された第一所定充電率を超える場合にのみ前記第一制御を行う
請求項2に記載の車両用受電装置。
A battery for supplying driving power to the vehicle;
The vehicle power receiving device according to claim 2, wherein the requested power supply amount calculation unit performs the first control only when a charge amount of the battery exceeds a preset first predetermined charge rate.
前記車両に駆動用電力を供給するバッテリを備え、
前記要求給電電力量算出手段は、前記バッテリの充電量が予め設定された第二所定充電率を下回る場合にのみ前記第二制御を行う
請求項3に記載の車両用受電装置。
A battery for supplying driving power to the vehicle;
4. The vehicle power receiving device according to claim 3, wherein the required power supply amount calculation unit performs the second control only when a charge amount of the battery is lower than a second predetermined charge rate set in advance. 5.
前記要求給電電力量算出手段は、前記第一制御において、前記必要駆動電力量が予め設定された第一所定電力量未満とならない範囲で要求給電電力量を小さく設定する
請求項2に記載の車両用受電装置。
The vehicle according to claim 2, wherein the required power supply amount calculation means sets the required power supply amount small in the first control in a range where the required drive power amount does not become less than a preset first predetermined power amount. Power receiving device.
前記要求給電電力量算出手段は、前記第二制御において、前記必要駆動電力量が予め設定された第二所定電力量を上回らない範囲で要求給電電力量を大きく設定する
請求項3に記載の車両用受電装置。
The vehicle according to claim 3, wherein the required power supply amount calculation means sets the required power supply amount large in a range in which the required drive power amount does not exceed a preset second predetermined power amount in the second control. Power receiving device.
JP2016175554A 2016-09-08 2016-09-08 Power receiving device for vehicle Pending JP2018042392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016175554A JP2018042392A (en) 2016-09-08 2016-09-08 Power receiving device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175554A JP2018042392A (en) 2016-09-08 2016-09-08 Power receiving device for vehicle

Publications (1)

Publication Number Publication Date
JP2018042392A true JP2018042392A (en) 2018-03-15

Family

ID=61626643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175554A Pending JP2018042392A (en) 2016-09-08 2016-09-08 Power receiving device for vehicle

Country Status (1)

Country Link
JP (1) JP2018042392A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280113A (en) * 2005-03-29 2006-10-12 Toshiba Corp Control unit for railway vehicle
JP2013123280A (en) * 2011-12-09 2013-06-20 Mitsubishi Heavy Ind Ltd Charge/discharge control device, charge control method, discharge control method, and program
WO2015020579A1 (en) * 2013-08-06 2015-02-12 Volvo Truck Corporation Hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006280113A (en) * 2005-03-29 2006-10-12 Toshiba Corp Control unit for railway vehicle
JP2013123280A (en) * 2011-12-09 2013-06-20 Mitsubishi Heavy Ind Ltd Charge/discharge control device, charge control method, discharge control method, and program
WO2015020579A1 (en) * 2013-08-06 2015-02-12 Volvo Truck Corporation Hybrid vehicle

Similar Documents

Publication Publication Date Title
JP4957827B2 (en) Power supply system and vehicle equipped with the same
JP4193704B2 (en) Power supply device and automobile equipped with the same
US9694688B2 (en) Electric vehicle drive system
JP5346988B2 (en) Electric vehicle control device
KR102186032B1 (en) Method and device for managing the energy of a hybrid vehicle
JP4352339B2 (en) Rotating electric machine control device for hybrid vehicle
JP6032216B2 (en) Hybrid vehicle control device
JP6493992B2 (en) Electric vehicle control device and electric vehicle
KR100957274B1 (en) Compensation method for auxiliary power of hybrid electric vehicle
JP2008154302A (en) Power supply system, vehicle equipped with the same, and control method thereof
JP2017178056A (en) Vehicular travel drive apparatus
JP2015140052A (en) hybrid vehicle
JP5580914B1 (en) Power control device
US10926661B2 (en) Transient battery power management
JP2018170854A (en) Control device for electric vehicle
WO2015063556A1 (en) Power system of hybrid vehicle
JP6926547B2 (en) Electric vehicle power supply
JP2011073611A (en) Control device of hybrid vehicle
JP3991942B2 (en) Vehicle regeneration control device and regeneration control method
JP2015098302A (en) Hybrid vehicle
JP2018042392A (en) Power receiving device for vehicle
JP2013133061A (en) Hybrid vehicle
JP2003087907A (en) Fuel cell car
JP6686597B2 (en) Vehicle power receiving device
CN203844620U (en) Electric car brake energy feedback control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200929