JP2018037626A - Semiconductor device and semiconductor device manufacturing method - Google Patents

Semiconductor device and semiconductor device manufacturing method Download PDF

Info

Publication number
JP2018037626A
JP2018037626A JP2016172259A JP2016172259A JP2018037626A JP 2018037626 A JP2018037626 A JP 2018037626A JP 2016172259 A JP2016172259 A JP 2016172259A JP 2016172259 A JP2016172259 A JP 2016172259A JP 2018037626 A JP2018037626 A JP 2018037626A
Authority
JP
Japan
Prior art keywords
electrode
film
capacitive
middle electrode
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016172259A
Other languages
Japanese (ja)
Inventor
仁人 井上
Masahito Inoue
仁人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2016172259A priority Critical patent/JP2018037626A/en
Publication of JP2018037626A publication Critical patent/JP2018037626A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which can improve a capacitance density of a MIM capacitative element while inhibiting deterioration in design flexibility in an area of a capacitative film.SOLUTION: In a semiconductor device 100 having a laminated structure where a lower electrode 11, a lower capacitative film 12, a middle electrode 13, an upper capacitative film 14 and an upper electrode 15 are laminated in this order on a first interlayer insulation film 2: the lower electrode 11 is not covered with the lower capacitative film 12, the middle electrode 13, the upper capacitative film 14 and the upper electrode 15 and has conduction regions which are electrically connected with vias 16 for the lower electrode, respectively; and the middle electrode 13 is not covered with the upper capacitative film 14 and the upper electrode 15 and has conduction regions which are electrically connected with vias 17 for the middle electrode; and the upper capacitative film 14 and the upper electrode 15 have lamination regions laminated on the lower electrode 11 without involving the lower capacitive film 12 and the middle electrode 13; and the upper electrode 15 has in each lamination region, a conduction region which is electrically connected with vias 18 for the upper electrode.SELECTED DRAWING: Figure 3

Description

本発明は半導体装置及び半導体装置の製造方法に関する。   The present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.

半導体装置の配線層内部に形成される容量素子として、図1に示すMIM(Metal−Insulater−Metal)容量素子がある。このMIM容量素子は、半導体基板101上に、層間絶縁膜102及び下部電極103がこの順に積層され、下部電極103の上に容量膜104及び上部電極105がこの順に積層されて、容量膜104を、下部電極103と上部電極105とで挟んだMIM容量素子110が形成されている。そして、層間絶縁膜102の上に、下部電極103、容量膜104、上部電極105を覆うように層間絶縁膜106が積層され、層間絶縁膜106に、下部電極103に導通するビア107と、上部電極105に導通するビア108とが形成されている。つまり、図1に示すように、断面視で、下部電極103の上に、下部電極103よりも幅の狭い容量膜104と上部電極105との積層体が配置され、下部電極103の上、及び上部電極105の上に、これらに導通するビア107及び108が形成されている。   As a capacitive element formed inside a wiring layer of a semiconductor device, there is an MIM (Metal-Insulator-Metal) capacitive element shown in FIG. In this MIM capacitor element, an interlayer insulating film 102 and a lower electrode 103 are stacked in this order on a semiconductor substrate 101, and a capacitor film 104 and an upper electrode 105 are stacked in this order on the lower electrode 103. A MIM capacitor element 110 sandwiched between the lower electrode 103 and the upper electrode 105 is formed. An interlayer insulating film 106 is laminated on the interlayer insulating film 102 so as to cover the lower electrode 103, the capacitor film 104, and the upper electrode 105, and a via 107 electrically connected to the lower electrode 103 and an upper portion are formed on the interlayer insulating film 106. A via 108 that is electrically connected to the electrode 105 is formed. That is, as shown in FIG. 1, a stacked body of the capacitor film 104 and the upper electrode 105 having a width smaller than that of the lower electrode 103 is disposed on the lower electrode 103 in a cross-sectional view, Vias 107 and 108 are formed on the upper electrode 105 so as to be electrically connected thereto.

ところで、一般的にMIM容量素子には、単位レイアウト面積あたりの容量(以下、容量密度と略称することがある)が高いこと、MIM容量素子に印加された電圧に対して容量密度が変動せず、電荷量と電圧との間に線形性が保たれること、が求められる。なお、MIM容量素子の容量密度は、印加電圧に対してその一乗に比例する項と二乗に比例する項と定数項の和として表されることが知られており、前者の比例係数は一次電圧係数、後者の比例係数は二次電圧係数と呼ばれる。   By the way, in general, the capacitance per unit layout area (hereinafter sometimes abbreviated as “capacitance density”) is high in the MIM capacitance element, and the capacitance density does not vary with respect to the voltage applied to the MIM capacitance element. It is required that linearity be maintained between the charge amount and the voltage. It is known that the capacitance density of the MIM capacitive element is expressed as the sum of a term proportional to the first power, a term proportional to the square and a constant term with respect to the applied voltage, and the former proportionality coefficient is the primary voltage. The coefficient, the latter proportionality coefficient, is called the secondary voltage coefficient.

これらの要求に対して、個々の課題を解決するために様々な取り組みがなされている。
例えば、MIM容量素子の容量密度を高めるため、従来からMIM容量素子の容量膜として使われてきた酸化シリコンSiOに替わり、誘電率の高い窒化シリコンSiNや酸化ハフニウムHfOの導入が進んでいる。
In response to these demands, various efforts have been made to solve individual problems.
For example, in order to increase the capacitance density of the MIM capacitor element, silicon nitride SiN or hafnium oxide HfO having a high dielectric constant has been introduced instead of silicon oxide SiO that has been conventionally used as a capacitor film of the MIM capacitor element.

一方、MIM容量素子を積層することによって、容量密度を高める方法も提案されている。例えば、米国特許出願公開第2003/0197215号明細書(特許文献1)及び特開2012−164714号公報(特許文献2)には、図2に示すように、同一の配線層内部にMIM容量素子を積層し、容量密度を増加させた半導体装置が開示されている。図2に示す半導体装置は、半導体基板111上に、層間絶縁膜112及び下部電極113がこの順に積層され、下部電極113の上に、下部容量膜114及び中部電極115がこの順に積層されて、下部容量膜114を下部電極113及び中部電極115で挟んだ下部MIM容量素子116が形成される。さらに、中部電極115の上に、上部容量膜117及び上部電極118がこの順に積層されて、上部容量膜117を中部電極115及び上部電極118で挟んだ上部MIM容量素子119が形成される。そして、層間絶縁膜112の上に、下部電極113、下部容量膜114、中部電極115、上部容量膜117、及び上部電極118を覆うように、層間絶縁膜120が積層され、層間絶縁膜120に、下部電極113に導通するビア121と、中部電極115に導通するビア122と、上部電極118に導通するビア123とが形成されている。つまり、図2に示すように、断面視で、下部電極113の上に、この下部電極113よりも幅の狭い、下部容量膜114と中部電極115の積層体が配置されて下部MIM容量素子116が形成され、さらに、中部電極115の上に、この中部電極115よりも幅の狭い、上部容量膜117と上部電極118との積層体が配置されて上部MIM容量素子119が形成されている。そして、下部電極113の上、中部電極115の上、上部電極118の上に、これらに導通するビア121、122及び123が形成されている。   On the other hand, a method for increasing the capacitance density by stacking MIM capacitor elements has also been proposed. For example, in US Patent Application Publication No. 2003/0197215 (Patent Document 1) and JP 2012-164714 (Patent Document 2), as shown in FIG. A semiconductor device in which the capacitance density is increased is disclosed. In the semiconductor device shown in FIG. 2, an interlayer insulating film 112 and a lower electrode 113 are stacked in this order on a semiconductor substrate 111, and a lower capacitor film 114 and a middle electrode 115 are stacked in this order on the lower electrode 113. A lower MIM capacitor element 116 is formed by sandwiching the lower capacitor film 114 between the lower electrode 113 and the middle electrode 115. Further, the upper capacitive film 117 and the upper electrode 118 are laminated in this order on the middle electrode 115, thereby forming the upper MIM capacitive element 119 having the upper capacitive film 117 sandwiched between the middle electrode 115 and the upper electrode 118. An interlayer insulating film 120 is laminated on the interlayer insulating film 112 so as to cover the lower electrode 113, the lower capacitor film 114, the middle electrode 115, the upper capacitor film 117, and the upper electrode 118. A via 121 conducting to the lower electrode 113, a via 122 conducting to the middle electrode 115, and a via 123 conducting to the upper electrode 118 are formed. That is, as shown in FIG. 2, a laminated body of the lower capacitive film 114 and the middle electrode 115, which is narrower than the lower electrode 113, is disposed on the lower electrode 113 in a sectional view, and the lower MIM capacitive element 116. Further, a laminated body of the upper capacitive film 117 and the upper electrode 118, which is narrower than the middle electrode 115, is disposed on the middle electrode 115 to form the upper MIM capacitive element 119. Then, vias 121, 122, and 123 are formed on the lower electrode 113, the middle electrode 115, and the upper electrode 118 so as to be electrically connected thereto.

また、MIM容量素子の二次電圧係数を低下させて線形性を向上させるために、特開2002−151649号公報(特許文献3)では正の二次電圧係数を有する窒化シリコンSiNと負の二次電圧係数を有する酸化シリコンSiOの性質を利用し、これらを絶縁容量膜とするMIM容量素子を並列接続することが開示されている。   In order to improve the linearity by lowering the secondary voltage coefficient of the MIM capacitor, Japanese Patent Laid-Open No. 2002-151649 (Patent Document 3) discloses that silicon nitride SiN having a positive secondary voltage coefficient and negative two Using the property of silicon oxide SiO having the next voltage coefficient, it is disclosed that MIM capacitor elements having these as insulating capacitor films are connected in parallel.

米国特許出願公開第2003/0197215号明細書US Patent Application Publication No. 2003/0197215 特開2012−164714号公報JP 2012-164714 A 特開2002−151649号公報JP 2002-151649 A 特開2004−253481号公報JP 2004-253481 A

ここで、MIM容量素子の容量密度を向上させる方法や、線形性を向上させる方法として数々の方法が提案されているが、これらの特性は同時に向上させることが好ましい。
しかしながら、MIM容量素子を積層させる場合、図2に示すように、下部MIM容量素子116の一部である中部電極115の上に、上部MIM容量素子119の一部である上部容量膜117及び上部電極118の積層体が形成され、下部電極113、中部電極115、上部電極118の順に、面積が小さくなるように階段状に形成されている。そして、下部電極113の、中部電極115が形成されていない領域、つまり階段部分にビア121が形成され、中部電極115の、上部電極118が形成されていない階段部分にビア122が形成されている。
Here, a number of methods have been proposed as a method for improving the capacitance density of the MIM capacitor element and a method for improving the linearity. It is preferable to improve these characteristics simultaneously.
However, when the MIM capacitor element is stacked, as shown in FIG. 2, the upper capacitor film 117 and the upper part of the upper MIM capacitor element 119 are formed on the middle electrode 115 which is a part of the lower MIM capacitor element 116 and the upper part. A stacked body of the electrodes 118 is formed, and the lower electrode 113, the middle electrode 115, and the upper electrode 118 are formed in the order of steps so that the area becomes smaller. A via 121 is formed in a region of the lower electrode 113 where the middle electrode 115 is not formed, that is, a stepped portion, and a via 122 is formed in the stepped portion of the middle electrode 115 where the upper electrode 118 is not formed. .

そのため、上面視で、上部電極118の面積、つまり上部MIM容量素子119の上面の面積は、中部電極115の面積、つまり、下部MIM容量素子116の上面の面積から製造マージン125を、中部電極115の全周にわたって差し引いた面積以下にしなければならない。ここで製造マージン125とは、図2に示すように、中部電極115上の上部電極118が積層されていない領域を指し、中部電極115上から上部容量膜117と上部電極118を有する積層体及びビア122が脱落しない為に設けられている。   Therefore, when viewed from above, the area of the upper electrode 118, that is, the area of the upper surface of the upper MIM capacitor 119, has a manufacturing margin 125 from the area of the middle electrode 115, that is, the area of the upper surface of the lower MIM capacitor 116, and the middle electrode 115. Must be less than the area deducted over the entire circumference. Here, as shown in FIG. 2, the manufacturing margin 125 refers to a region where the upper electrode 118 on the middle electrode 115 is not laminated, and a laminated body including the upper capacitor film 117 and the upper electrode 118 from above the middle electrode 115, and The via 122 is provided so as not to drop off.

そして、このような製造マージン125を確保しなければならないという制約があるため、MIM容量素子を積層することによる容量密度の増加が阻害されるだけでなく、上部MIM容量素子119の上面(上部電極118の上面)の面積と下部MIM容量素子116の上面(中部電極115の上面)の面積とを自由に設計することができない。そのため、二次電圧係数の特性の異なる二つのMIM容量素子を並列接続することで、MIM容量素子の電荷量と電圧との間の線形性の向上を図る方法にあっては、MIM容量素子の面積を調整することで線形性の向上を図るようにしているため、線形性の確保に影響を与える可能性がある。   Since there is a restriction that it is necessary to secure such a manufacturing margin 125, not only an increase in capacitance density due to the stacking of MIM capacitor elements is hindered, but also the upper surface (upper electrode) of the upper MIM capacitor element 119. 118) and the area of the upper surface of the lower MIM capacitor 116 (the upper surface of the middle electrode 115) cannot be freely designed. Therefore, in the method of improving the linearity between the charge amount and the voltage of the MIM capacitor by connecting two MIM capacitors having different secondary voltage coefficient characteristics in parallel, Since the linearity is improved by adjusting the area, it may affect the securing of the linearity.

特に、図2に記載の積層したMIM容量素子によって、図1に示す積層されていないMIM容量素子と同じ容量値を得ようとした場合、下部MIM容量素子116のレイアウト面積が小さくなるので、下部MIM容量素子116上に形成する上部MIM容量素子119の面積に対する製造マージン125による制約の影響を著しく受けることになる。
本発明は係る問題点に鑑みてなされたものであって、容量膜の面積の設計の自由度の低下を抑制しつつ、MIM容量素子の容量密度を向上させることの可能な半導体装置及び半導体装置の製造方法を提供することを目的としている。
In particular, when trying to obtain the same capacitance value as that of the non-stacked MIM capacitor shown in FIG. 1 by the stacked MIM capacitor shown in FIG. 2, the layout area of the lower MIM capacitor 116 is reduced. The area of the upper MIM capacitor element 119 formed on the MIM capacitor element 116 is significantly affected by the restriction due to the manufacturing margin 125.
The present invention has been made in view of such problems, and a semiconductor device and a semiconductor device capable of improving the capacitance density of the MIM capacitor element while suppressing a decrease in the degree of freedom in designing the area of the capacitor film It aims at providing the manufacturing method of.

上記目的を達成するために、本発明の一態様による半導体装置によれば、絶縁膜上に、下層側から、下部電極、下部容量膜、中部電極、上部容量膜及び上部電極を積層してなる積層構造と、積層構造を覆う層間絶縁膜と、層間絶縁膜内に形成され、下部電極に導通する下部電極用ビア、中部電極に導通する中部電極用ビア及び上部電極に導通する上部電極用ビアを含む複数のビアと、を備え、下部電極は、下部容量膜、中部電極、上部容量膜及び上部電極で覆われず下部電極用ビアと導通する導通領域を有し、中部電極は、上部容量膜及び上部電極で覆われず中部電極用ビアと導通する導通領域を有し、上部容量膜及び上部電極は、下部容量膜及び中部電極を介さずに下部電極上に積層される積層領域を有し、上部電極は、積層領域に上部電極用ビアと導通する導通領域を有する半導体装置、が提供される。   In order to achieve the above object, according to a semiconductor device of one embodiment of the present invention, a lower electrode, a lower capacitor film, a middle electrode, an upper capacitor film, and an upper electrode are stacked on an insulating film from the lower layer side. A laminated structure, an interlayer insulating film covering the laminated structure, a lower electrode via formed in the interlayer insulating film, electrically connected to the lower electrode, an intermediate electrode via electrically connected to the middle electrode, and an upper electrode via electrically connected to the upper electrode The lower electrode has a conductive region that is not covered by the lower capacitor film, the middle electrode, the upper capacitor film, and the upper electrode, and is electrically connected to the lower electrode via. A conductive region that is not covered by the film and the upper electrode and is electrically connected to the middle electrode via, and the upper capacitor film and the upper electrode have a stacked region that is stacked on the lower electrode without the lower capacitor film and the middle electrode. The upper electrode The semiconductor device having a conductive region electrically connected to the use vias, is provided.

本発明の一態様による半導体装置によれば、MIM容量素子の容量膜の面積の設計の自由度の低下を抑制しつつ、MIM容量素子の容量密度を向上させることができる。   According to the semiconductor device of one embodiment of the present invention, it is possible to improve the capacitance density of the MIM capacitor element while suppressing a reduction in the degree of freedom in designing the area of the capacitor film of the MIM capacitor element.

従来のMIM容量素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional MIM capacitive element. 従来の積層したMIM容量素子の一例を示す断面図である。It is sectional drawing which shows an example of the conventional laminated | stacked MIM capacitive element. 本発明の一実施形態に係る半導体装置の一例を示す平面図である。It is a top view which shows an example of the semiconductor device which concerns on one Embodiment of this invention. 図3のA−A断面図である。It is AA sectional drawing of FIG. 図3のB−B断面図である。It is BB sectional drawing of FIG. 本発明の一実施形態に係る半導体装置の製造工程の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention. 図6の製造工程の続きを示す断面図である。FIG. 7 is a cross-sectional view showing a continuation of the manufacturing process of FIG. 6.

以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の具体的な構成について記載されている。しかしながら、このような特定の具体的な構成に限定されることなく他の実施態様が実施できることは明らかであろう。また、以下の実施形態は、特許請求の範囲に係る発明を限定するものではなく、実施形態で説明されている特徴的な構成の組み合わせの全てを含むものである。また、以下の説明において参照する図は、MIM容量素子を含む半導体装置の構成を説明するためのものであり、図示される各部の大きさや厚さ、寸法等は、実際の寸法関係と異なる場合がある。   In the following detailed description, numerous specific specific configurations are described to provide a thorough understanding of embodiments of the invention. However, it will be apparent that other embodiments may be practiced without limitation to such specific specific configurations. Further, the following embodiments do not limit the invention according to the claims, but include all combinations of characteristic configurations described in the embodiments. The drawings referred to in the following description are for explaining the configuration of the semiconductor device including the MIM capacitor element, and the size, thickness, dimensions, and the like of each part shown in the drawings are different from the actual dimensional relationship. There is.

図3は、本発明の一実施形態に係る半導体装置の一例を示す上面図である。また、図4は、図3のA−A断面を示す模式図、図5は、図3のB−B断面を示す模式図である。
本発明の一実施形態に係る半導体装置100はシリコン基板1上に積層された第一層間絶縁膜2の上に、下部電極11と下部容量膜12と中部電極13と上部容量膜14と上部電極15とがこの順に積層された積層構造10を備え、この積層構造10を覆うように第二層間絶縁膜5が形成されている。積層構造10が、下部MIM容量素子3と上部MIM容量素子4とを構成している。
FIG. 3 is a top view showing an example of a semiconductor device according to an embodiment of the present invention. 4 is a schematic diagram showing the AA cross section of FIG. 3, and FIG. 5 is a schematic diagram showing the BB cross section of FIG.
A semiconductor device 100 according to an embodiment of the present invention includes a lower electrode 11, a lower capacitor film 12, a middle electrode 13, an upper capacitor film 14, and an upper portion on a first interlayer insulating film 2 stacked on a silicon substrate 1. The electrode 15 includes a laminated structure 10 laminated in this order, and a second interlayer insulating film 5 is formed so as to cover the laminated structure 10. The laminated structure 10 constitutes the lower MIM capacitive element 3 and the upper MIM capacitive element 4.

シリコン基板1は、図3に示すように上面視で略正方形である。このシリコン基板1全面に、第一層間絶縁膜2が形成されている。
下部MIM容量素子3は、図4に示すように、第一層間絶縁膜2の上に形成される下部電極11と、下部電極11の上に積層される下部容量膜12と、下部容量膜12の上に積層される中部電極13とを含む。
As shown in FIG. 3, the silicon substrate 1 has a substantially square shape when viewed from above. A first interlayer insulating film 2 is formed on the entire surface of the silicon substrate 1.
As shown in FIG. 4, the lower MIM capacitive element 3 includes a lower electrode 11 formed on the first interlayer insulating film 2, a lower capacitive film 12 stacked on the lower electrode 11, and a lower capacitive film. 12 and a middle electrode 13 stacked on the top.

下部電極11は、図3に示すように、上面視で略正方形に形成される。
下部容量膜12は略長方形を有し、上面視で、下部電極11の略中央部に、下部容量膜12の各辺と下部電極11の各辺とが略平行となるように配置され、且つ、下部容量膜12の長手方向の長さは、下部容量膜12の端部が、上面視で下部電極11の端部よりも多少内側となる長さに設定される。
As shown in FIG. 3, the lower electrode 11 is formed in a substantially square shape when viewed from above.
The lower capacitive film 12 has a substantially rectangular shape, and is disposed at a substantially central portion of the lower electrode 11 so that the sides of the lower capacitive film 12 and the sides of the lower electrode 11 are substantially parallel to each other when viewed from above. The length of the lower capacitive film 12 in the longitudinal direction is set such that the end of the lower capacitive film 12 is slightly inside the end of the lower electrode 11 in a top view.

中部電極13は、上面視で、下部電極11と同一形状を有する。
上部MIM容量素子4は、図5に示すように、中部電極13と、中部電極13の上に形成される上部容量膜14と、上部容量膜14の上に形成される上部電極15とを含む。
上部容量膜14は、図3に示すように、上面視で下部容量膜12と同等幅を有する略長方形を有し、中部電極13の長手方向中央部で中部電極13と交差し、中部電極13を跨いで上部容量膜14の長手方向の両端が下部電極11に直接積層されるように、中部電極13及び下部電極11に亙って配置される。また、上部容量膜14は、上部容量膜14の各辺と下部電極11の各辺とが平行となるように配置され、上部容量膜14の長手方向の長さは、上面視で、上部容量膜14の端部が下部電極11の端部よりも多少内側となる長さに設定される。
The middle electrode 13 has the same shape as the lower electrode 11 in a top view.
As shown in FIG. 5, the upper MIM capacitive element 4 includes a middle electrode 13, an upper capacitive film 14 formed on the middle electrode 13, and an upper electrode 15 formed on the upper capacitive film 14. .
As shown in FIG. 3, the upper capacitive film 14 has a substantially rectangular shape having a width equal to that of the lower capacitive film 12 in a top view, intersects the middle electrode 13 at the center in the longitudinal direction of the middle electrode 13, and the middle electrode 13 The upper capacitive film 14 is disposed over the middle electrode 13 and the lower electrode 11 so that both ends in the longitudinal direction of the upper capacitive film 14 are directly laminated on the lower electrode 11. The upper capacitive film 14 is arranged so that each side of the upper capacitive film 14 and each side of the lower electrode 11 are parallel to each other, and the length of the upper capacitive film 14 in the longitudinal direction is the upper capacitance in a top view. The length of the end portion of the film 14 is set slightly inside the end portion of the lower electrode 11.

上部電極15は、上面視で、上部容量膜14と同一幅を有し、上部容量膜14に沿って中部電極13を跨いで積層される。
第一層間絶縁膜2の上には、下部電極11、中部電極13及び上部電極15を覆うように第二層間絶縁膜5が積層され、第二層間絶縁膜5に、下部電極11と導通するビア(下部電極用ビア)16、中部電極13と導通するビア(中部電極用ビア)17、上部電極15と導通するビア(上部電極用ビア)18が形成されている。具体的には、ビア16は、図3に示すように、下部電極11の、下部容量膜12、中部電極13、上部容量膜14及び上部電極15で覆われていない領域(下部電極用ビアと導通する導通領域)a1に形成される。ビア17は、中部電極13の、上部容量膜14及び上部電極15で覆われていない領域(中部電極用ビアと導通する導通領域)a2に形成される。ビア18は、上部容量膜14及び上部電極15が、下部容量膜12及び中部電極13を介さずに下部電極11上に積層される積層領域a3に含まれる上部電極15内の領域(上部電極用ビアと導通する導通領域)a4に形成される。
The upper electrode 15 has the same width as the upper capacitive film 14 in a top view, and is stacked across the middle electrode 13 along the upper capacitive film 14.
A second interlayer insulating film 5 is laminated on the first interlayer insulating film 2 so as to cover the lower electrode 11, the middle electrode 13, and the upper electrode 15, and the second interlayer insulating film 5 is electrically connected to the lower electrode 11. Vias (lower electrode vias) 16 to be formed, vias (intermediate electrode vias) 17 connected to the middle electrode 13, and vias (upper electrode vias) 18 connected to the upper electrode 15 are formed. Specifically, as shown in FIG. 3, the via 16 is a region of the lower electrode 11 that is not covered with the lower capacitor film 12, the middle electrode 13, the upper capacitor film 14, and the upper electrode 15 (lower electrode via and It is formed in a conducting region a1 that conducts. The via 17 is formed in a region (a conductive region conducting to the middle electrode via) a <b> 2 of the middle electrode 13 that is not covered with the upper capacitive film 14 and the upper electrode 15. The via 18 is a region within the upper electrode 15 (for the upper electrode) included in the stacked region a3 in which the upper capacitor film 14 and the upper electrode 15 are stacked on the lower electrode 11 without the lower capacitor film 12 and the middle electrode 13 interposed therebetween. A conductive region conducting to the via) a4.

上部電極15、中部電極13及び下部電極11は、例えば窒化チタンTiN、チタンTi、窒化タンタルTaN、タンタルTa等で構成される。上部容量膜14及び下部容量膜12は例えば酸化シリコンSiO、窒化シリコンSiN等で構成される。
ビア16〜18は、例えばタングステンWやアルミAlで構成される。また、第一層間絶縁膜2及び第二層間絶縁膜5は例えば酸化シリコンSiOで構成される。
The upper electrode 15, the middle electrode 13, and the lower electrode 11 are made of, for example, titanium nitride TiN, titanium Ti, tantalum nitride TaN, tantalum Ta, or the like. The upper capacitor film 14 and the lower capacitor film 12 are made of, for example, silicon oxide SiO, silicon nitride SiN, or the like.
The vias 16 to 18 are made of, for example, tungsten W or aluminum Al. The first interlayer insulating film 2 and the second interlayer insulating film 5 are made of, for example, silicon oxide SiO.

ここで、上部容量膜14と下部容量膜12として、二次電圧係数の異なる誘電体を用い、上部MIM容量素子4及び下部MIM容量素子3を備えたMIM容量素子全体の電圧依存係数が零となるように、上部容量膜14及び下部容量膜12の面積を調整することで、MIM容量素子全体の線形性を向上させることができる。
つまり、特許文献3に詳細に記載されているように、上部容量膜14及び下部容量膜12として、例えば、正の二次電圧係数を有する窒化シリコンSiNと負の二次電圧係数を有する酸化シリコンSiOを用い、二次電圧係数が零となるように、上部容量膜14及び下部容量膜12の面積を調整する。これにより、上部MIM容量素子4及び下部MIM容量素子3を備えたMIM容量素子全体の電圧依存性が零となるようにすることができ、結果的に、MIM容量素子全体の線形性を向上させることができる。
Here, dielectric materials having different secondary voltage coefficients are used as the upper capacitor film 14 and the lower capacitor film 12, and the voltage dependency coefficient of the entire MIM capacitor element including the upper MIM capacitor element 4 and the lower MIM capacitor element 3 is zero. As described above, by adjusting the areas of the upper capacitor film 14 and the lower capacitor film 12, the linearity of the entire MIM capacitor element can be improved.
That is, as described in detail in Patent Document 3, as the upper capacitor film 14 and the lower capacitor film 12, for example, silicon nitride SiN having a positive secondary voltage coefficient and silicon oxide having a negative secondary voltage coefficient The area of the upper capacitor film 14 and the lower capacitor film 12 is adjusted so that the secondary voltage coefficient becomes zero using SiO. As a result, the voltage dependency of the entire MIM capacitive element including the upper MIM capacitive element 4 and the lower MIM capacitive element 3 can be made zero, and as a result, the linearity of the entire MIM capacitive element is improved. be able to.

また、上面視で、上部電極15を、中部電極13を跨いで上部容量膜14を介して下部電極11と重なるように配置し、上面視で上部電極15が中部電極13と重ならない部分では、上部電極15の上面と中部電極13の上面とが略同程度の高さとなるようにし、この部分にビア18を形成している。このような構成とすることで、ビア17とビア18とは同等の深さとすることができる。ここで、特許文献4に詳細に記載されているように、例えばビア形成のためのビアホールをプラズマエッチング等の手段で形成した場合、ビア17とビア18との深さが異なる場合には、その差分だけより長い時間、上部容量膜14に対して、プラズマ誘起ダメージが加わることになる。しかしながら、ビア17とビア18との深さが同一となるようにしているため、上部容量膜14に対してプラズマ誘起ダメージが加わる時間をより短縮することができる。その結果、プラズマ誘起ダメージが加わることに起因して、上部容量膜14が劣化し、MIM容量素子の信頼性劣化が生じることを抑制することができる。   Further, the upper electrode 15 is disposed so as to overlap the lower electrode 11 through the upper capacitive film 14 across the middle electrode 13 in the top view, and in the portion where the upper electrode 15 does not overlap the middle electrode 13 in the top view, The upper surface of the upper electrode 15 and the upper surface of the middle electrode 13 are made to have substantially the same height, and a via 18 is formed in this portion. With this configuration, the via 17 and the via 18 can have the same depth. Here, as described in detail in Patent Document 4, for example, when a via hole for forming a via is formed by means such as plasma etching, if the depths of the via 17 and the via 18 are different, Plasma-induced damage is applied to the upper capacitive film 14 for a longer time than the difference. However, since the via 17 and the via 18 have the same depth, the time during which plasma-induced damage is applied to the upper capacitive film 14 can be further shortened. As a result, it is possible to suppress the deterioration of the reliability of the MIM capacitor due to the deterioration of the upper capacitor film due to the plasma induced damage.

ここで、上部電極15、中部電極13の膜厚は上部容量膜14の膜厚よりも十分厚く、また上部電極15、中部電極13は互いに同程度の膜厚であることが望ましい。このような構成とすることで、ビア17及び18の深さがより均一化され、MIM容量素子としての半導体装置100全体の信頼性をより向上させることができる。
さらに、上部電極15を、中部電極13の両端は覆わずに中部電極13を跨いで配置し、且つ上部電極15の両端が、上面視で中部電極13及び下部容量膜12とは重ならずに上部容量膜14を介して下部電極11と重なるように配置し、中部電極13の両端に中部電極13用のビア17、上部電極15の両端に上部電極15用のビア18、下部電極11の、中部電極13及び上部電極15が形成されていない領域に下部電極11用のビア16を形成するようにしている。そのため、中部電極13及び上部電極15は、それぞれの両端部分が重ならない形状であり、端部にビア16〜18を形成することができる形状であればよい。つまり、中部電極13と上部電極15とは上面視で同一形状であってもよく、また中部電極13の方が上部電極15よりも大きくてもよい。
Here, it is desirable that the film thickness of the upper electrode 15 and the middle electrode 13 is sufficiently thicker than the film thickness of the upper capacitor film 14, and that the upper electrode 15 and the middle electrode 13 have the same thickness. With such a configuration, the depths of the vias 17 and 18 are made more uniform, and the reliability of the entire semiconductor device 100 as the MIM capacitor element can be further improved.
Further, the upper electrode 15 is disposed so as to straddle the middle electrode 13 without covering both ends of the middle electrode 13, and both ends of the upper electrode 15 do not overlap with the middle electrode 13 and the lower capacitive film 12 in a top view. Arranged so as to overlap the lower electrode 11 through the upper capacitive film 14, vias 17 for the middle electrode 13 at both ends of the middle electrode 13, vias 18 for the upper electrode 15 at both ends of the upper electrode 15, A via 16 for the lower electrode 11 is formed in a region where the middle electrode 13 and the upper electrode 15 are not formed. Therefore, the middle electrode 13 and the upper electrode 15 have a shape in which the both end portions do not overlap with each other, and may have any shape as long as the vias 16 to 18 can be formed at the ends. That is, the middle electrode 13 and the upper electrode 15 may have the same shape in a top view, and the middle electrode 13 may be larger than the upper electrode 15.

したがって、図2に示した従来の積層されたMIM容量素子のように、順に面積が小さくなるように、下部電極113、中部電極115、上部電極118を階段状に積み重ね、各電極の縁部分にビアを形成する場合に比較して、各電極における面積の制約を軽減することができる。つまり、本実施形態における半導体装置100では、上部電極15の面積は、中部電極13の面積から、上部電極15及び上部容量膜14の積層体が、中部電極13から脱落しないための製造マージンを、従来のように、上層にいくほど面積が小さくなるように、下部MIM容量素子及び上部MIM容量素子を積層した場合に比較して、より大きな値とすることができ、設計の自由度が増す。   Therefore, as in the conventional stacked MIM capacitor shown in FIG. 2, the lower electrode 113, the middle electrode 115, and the upper electrode 118 are stacked stepwise so that the area decreases in order, and the edges of each electrode are stacked. Compared with the case where vias are formed, the area restriction on each electrode can be reduced. That is, in the semiconductor device 100 according to this embodiment, the area of the upper electrode 15 is less than the area of the middle electrode 13, and the manufacturing margin for preventing the stacked body of the upper electrode 15 and the upper capacitive film 14 from dropping from the middle electrode 13 is Compared to the case where the lower MIM capacitive element and the upper MIM capacitive element are stacked so that the area becomes smaller as it goes to the upper layer as in the prior art, it can be set to a larger value, and the degree of freedom of design increases.

そのため、上部MIM容量素子4及び下部MIM容量素子3として異なる絶縁容量膜を組み合わせることによりMIM容量素子の線形性を確保する際に、面積調整をより容易に行うことができる。その結果、線形性をより高精度に確保することができ、MIM容量素子の容量密度を増加させることができる。
次に、本発明の一実施形態に係る半導体装置の製造方法を、図6及び図7を伴って説明する。
Therefore, the area adjustment can be performed more easily when the linearity of the MIM capacitive element is ensured by combining different insulating capacitive films as the upper MIM capacitive element 4 and the lower MIM capacitive element 3. As a result, linearity can be ensured with higher accuracy, and the capacitance density of the MIM capacitor element can be increased.
Next, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described with reference to FIGS.

まず、図6(a)に示すようにシリコン基板1上に、図示しない半導体素子を形成した後、第一層間絶縁膜2を例えばCVD法により堆積させる。ここで、薄膜抵抗の下地を平坦化させる目的で、CMP法等により第一層間絶縁膜2の表面を研磨しても良い。
次に、図6(b)に示すように、第一層間絶縁膜2の上に、下部電極11を例えばスパッタ法で成膜し、下部電極11を、フォトリソグラフィとエッチングによってパターニングする。
First, as shown in FIG. 6A, after forming a semiconductor element (not shown) on the silicon substrate 1, a first interlayer insulating film 2 is deposited by, for example, a CVD method. Here, for the purpose of flattening the base of the thin film resistor, the surface of the first interlayer insulating film 2 may be polished by a CMP method or the like.
Next, as shown in FIG. 6B, the lower electrode 11 is formed on the first interlayer insulating film 2 by, for example, sputtering, and the lower electrode 11 is patterned by photolithography and etching.

次いで、図6(c)に示すように、下部電極11の上に、下部容量膜12と中部電極13とをこの順に成膜し、下部容量膜12及び中部電極13の積層体をフォトリソグラフィ及びエッチングを行うことによりパターニングする。このとき、下部容量膜12及び中部電極13の積層体が、図3に示すように、上面視で長方形となり、下部電極11の中央部付近に配置されるようにパターニングする。   Next, as shown in FIG. 6C, a lower capacitive film 12 and a middle electrode 13 are formed in this order on the lower electrode 11, and a laminate of the lower capacitive film 12 and the middle electrode 13 is formed by photolithography and Patterning is performed by etching. At this time, as shown in FIG. 3, the stacked body of the lower capacitor film 12 and the middle electrode 13 has a rectangular shape when viewed from above, and is patterned so as to be disposed near the center of the lower electrode 11.

次に、図7(a)に示すように、中部電極13及び下部電極11を覆うように上部容量膜14及び上部電極15を成膜する。その後、上部容量膜14及び上部電極15の積層体を、フォトリソグラフィ及びエッチングを行うことによりパターニングする。このとき、図3に示すように、上面視で、中部電極13の両端は覆わずに中部部を跨ぎ、上部容量膜14及び上部電極15の積層体が、中部電極13と中央部分で交差し、且つ上部容量膜14が下部電極11上に直接積層された状態にパターニングする。   Next, as shown in FIG. 7A, the upper capacitor film 14 and the upper electrode 15 are formed so as to cover the middle electrode 13 and the lower electrode 11. Thereafter, the stacked body of the upper capacitive film 14 and the upper electrode 15 is patterned by performing photolithography and etching. At this time, as shown in FIG. 3, when viewed from above, both ends of the middle electrode 13 are not covered but straddle the middle part, and the laminated body of the upper capacitive film 14 and the upper electrode 15 intersects the middle electrode 13 at the central portion. In addition, the upper capacitor film 14 is patterned in a state of being directly laminated on the lower electrode 11.

以上のパターニング工程では金属である中部電極13及び上部電極15と絶縁体である下部容量膜12及び上部容量膜14とをエッチングするが、下部容量膜12及び上部容量膜14を完全にエッチングしないことで、下部容量膜12及び上部容量膜14を、中部電極13及び下部電極11に対するハードマスクとして流用し、既にパターニングした電極に対する意図しないエッチングを防止することができる。すなわち、上部容量膜14、上部電極15をパターニングする際に例えば、上部容量膜14の一部を中部電極13上に残すことで、既にパターニングした中部電極13へのエッチングを防ぐことができる。   In the above patterning process, the middle electrode 13 and the upper electrode 15 that are metals and the lower capacitor film 12 and the upper capacitor film 14 that are insulators are etched, but the lower capacitor film 12 and the upper capacitor film 14 are not completely etched. Thus, the lower capacitor film 12 and the upper capacitor film 14 can be used as a hard mask for the middle electrode 13 and the lower electrode 11 to prevent unintended etching on the already patterned electrode. That is, when patterning the upper capacitive film 14 and the upper electrode 15, for example, by leaving a part of the upper capacitive film 14 on the middle electrode 13, etching to the already patterned middle electrode 13 can be prevented.

続いて、図7(b)に示すように、第一層間絶縁膜2上に、下部電極11、下部容量膜12、中部電極13、上部容量膜14及び上部電極15を覆うように第二層間絶縁膜5を、例えばCVD法により堆積させる。そして、図4及び図5に示すように、上面視で、下部容量膜12及び中部電極13の積層体部分を除いた、下部電極11と上部容量膜14と上部電極15とが積層された部分に、上部電極15に導通する上部電極15用のビア18を形成する。また、上面視で、上部容量膜14及び上部電極15の積層体部分を除いた、下部電極11と下部容量膜12と中部電極13とが積層された部分に、中部電極13に導通する中部電極13用のビア17を形成する。同様に、上面視で、中部電極13及び上部電極15が形成されていない下部電極11部分に、下部電極11に導通する、下部電極11用のビア16を形成する。   Subsequently, as shown in FIG. 7B, the second electrode 11, the lower capacitor film 12, the middle electrode 13, the upper capacitor film 14, and the upper electrode 15 are covered on the first interlayer insulating film 2. The interlayer insulating film 5 is deposited by, for example, the CVD method. As shown in FIGS. 4 and 5, a portion where the lower electrode 11, the upper capacitor film 14, and the upper electrode 15 are stacked except for the stacked portion of the lower capacitor film 12 and the middle electrode 13 in a top view. Then, a via 18 for the upper electrode 15 that is electrically connected to the upper electrode 15 is formed. In addition, when viewed from above, a middle electrode that is electrically connected to the middle electrode 13 is formed in a portion where the lower electrode 11, the lower capacitance film 12, and the middle electrode 13 are laminated, excluding the laminated body portion of the upper capacitive film 14 and the upper electrode 15. 13 vias 17 are formed. Similarly, a via 16 for the lower electrode 11 that is electrically connected to the lower electrode 11 is formed in a portion of the lower electrode 11 where the middle electrode 13 and the upper electrode 15 are not formed in a top view.

これにより、図3〜図5に示す、下部MIM容量素子3及び上部MIM容量素子4が積層されたMIM容量素子を有する半導体装置100が形成される。
なお、上記実施形態においては、中部電極13及び上部電極15が、図3に示すように上面視で同等形状となる長方形であり、これらがその中央部で直交するように配置した場合について説明したがこれに限るものではない。例えば、中部電極13及び下部容量膜12の積層体と、上部電極15及び上部容量膜14との積層体とがそれぞれの一端のみで重なるように、L字状に配置された場合であっても適用することができる。また、中部電極13及び下部容量膜12の積層体と、上部電極15及び上部容量膜14との積層体とは異なる幅であってもよく、また、下部容量膜12が下部電極11に直接積層されている部分の面積と、上部容量膜14が下部電極11に直接積層されている部分の面積とは一致しなくてよい。また、下部電極11は上面視で正方形でなくともよく、同様に、中部電極13と下部容量膜12との積層体及び、上部電極15と上部容量膜14との積層体は長方形でなくともよい。
As a result, the semiconductor device 100 having the MIM capacitive element in which the lower MIM capacitive element 3 and the upper MIM capacitive element 4 are stacked as shown in FIGS. 3 to 5 is formed.
In the above-described embodiment, the case where the middle electrode 13 and the upper electrode 15 are rectangles having the same shape in a top view as shown in FIG. 3 and these are arranged so as to be orthogonal to each other at the center thereof has been described. However, it is not limited to this. For example, even when the laminated body of the middle electrode 13 and the lower capacitive film 12 and the laminated body of the upper electrode 15 and the upper capacitive film 14 are arranged in an L shape so as to overlap each other only at one end. Can be applied. Further, the laminated body of the middle electrode 13 and the lower capacitive film 12 and the laminated body of the upper electrode 15 and the upper capacitive film 14 may have different widths, and the lower capacitive film 12 is directly laminated on the lower electrode 11. The area of the portion where the upper capacitance film 14 is directly stacked on the lower electrode 11 may not coincide with the area of the portion where the upper capacitance film 14 is directly laminated on the lower electrode 11. Further, the lower electrode 11 does not have to be square in a top view, and similarly, the stacked body of the middle electrode 13 and the lower capacitive film 12 and the stacked body of the upper electrode 15 and the upper capacitive film 14 may not be rectangular. .

以上、本発明の一実施形態を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although one Embodiment of this invention was described, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the description of the scope of claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

1 シリコン基板
2 第一層間絶縁膜
5 第二層間絶縁膜
11 下部電極
12 下部容量膜
13 中部電極
14 上部容量膜
15 上部電極
16〜18 ビア
DESCRIPTION OF SYMBOLS 1 Silicon substrate 2 1st interlayer insulation film 5 2nd interlayer insulation film 11 Lower electrode 12 Lower capacity film 13 Middle electrode 14 Upper capacity film 15 Upper electrodes 16-18 Via

Claims (3)

絶縁膜上に、下層側から、下部電極、下部容量膜、中部電極、上部容量膜及び上部電極を積層してなる積層構造と、
前記積層構造を覆う層間絶縁膜と、
前記層間絶縁膜内に形成され、前記下部電極に導通する下部電極用ビア、前記中部電極に導通する中部電極用ビア及び前記上部電極に導通する上部電極用ビアを含む複数のビアと、を備え、
前記下部電極は、前記下部容量膜、前記中部電極、前記上部容量膜及び前記上部電極で覆われず前記下部電極用ビアと導通する導通領域を有し、
前記中部電極は、前記上部容量膜及び前記上部電極で覆われず前記中部電極用ビアと導通する導通領域を有し、
前記上部容量膜及び前記上部電極は、前記下部容量膜及び前記中部電極を介さずに前記下部電極上に積層される積層領域を有し、前記上部電極は、前記積層領域に前記上部電極用ビアと導通する導通領域を有することを特徴とする半導体装置。
A laminated structure in which a lower electrode, a lower capacitive film, a middle electrode, an upper capacitive film and an upper electrode are laminated on the insulating film from the lower layer side,
An interlayer insulating film covering the laminated structure;
A plurality of vias formed in the interlayer insulating film and including a lower electrode via that is conductive to the lower electrode, a middle electrode via that is conductive to the middle electrode, and an upper electrode via that is conductive to the upper electrode; ,
The lower electrode has a conductive region that is not covered with the lower capacitive film, the middle electrode, the upper capacitive film, and the upper electrode and is electrically connected to the lower electrode via,
The middle electrode has a conduction region that is not covered with the upper capacitive film and the upper electrode and is electrically connected to the middle electrode via,
The upper capacitor film and the upper electrode have a stacked region that is stacked on the lower electrode without the lower capacitor film and the middle electrode, and the upper electrode has a via hole for the upper electrode in the stacked region. A semiconductor device having a conduction region that conducts with the semiconductor device.
前記中部電極及び前記上部電極は、上面視で前記下部電極内に含まれる長方形であって、
前記下部容量膜及び前記中部電極と前記上部容量膜及び前記上部電極とは、それぞれの両端どうしが互いに重ならないように交差していることを特徴とする請求項1に記載の半導体装置。
The middle electrode and the upper electrode are rectangles included in the lower electrode in a top view,
2. The semiconductor device according to claim 1, wherein the lower capacitor film and the middle electrode and the upper capacitor film and the upper electrode intersect so that both ends do not overlap each other.
絶縁膜上に下部電極を形成する工程と、
前記下部電極の上に下部容量膜と中部電極とをこの順に積層し、前記下部電極の、下部電極用ビアと導通する導通領域を除く領域を覆うようにパターニングする工程と、
前記中部電極及び前記下部電極の上に上部容量膜と上部電極とをこの順に積層し、前記中部電極のうちの中部電極用ビアと導通する導通領域と前記下部電極のうちの前記下部電極用ビアと導通する導通領域とを除く領域を覆うようにパターニングする工程と、
前記下部電極、前記下部容量膜、前記中部電極、前記上部容量膜及び前記上部電極を覆う層間絶縁膜を積層する工程と、
前記下部電極の前記導通領域に導通する前記下部電極用ビアと、前記中部電極の前記導通領域に導通する前記中部電極用ビアと、前記上部電極に導通する前記上部電極用ビアとを形成する工程と、
を備えることを特徴とする半導体装置の製造方法。
Forming a lower electrode on the insulating film;
A step of laminating a lower capacitive film and a middle electrode in this order on the lower electrode, and patterning the lower electrode so as to cover a region excluding a conductive region electrically connected to a lower electrode via;
An upper capacitive film and an upper electrode are stacked in this order on the middle electrode and the lower electrode, and a conduction region that is electrically connected to the middle electrode via of the middle electrode and the lower electrode via of the lower electrode are stacked. Patterning so as to cover a region excluding a conductive region conductive with
Laminating an interlayer insulating film covering the lower electrode, the lower capacitive film, the middle electrode, the upper capacitive film and the upper electrode;
Forming the lower electrode via that is conductive to the conductive region of the lower electrode, the middle electrode via that is conductive to the conductive region of the middle electrode, and the upper electrode via that is conductive to the upper electrode; When,
A method for manufacturing a semiconductor device, comprising:
JP2016172259A 2016-09-02 2016-09-02 Semiconductor device and semiconductor device manufacturing method Pending JP2018037626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016172259A JP2018037626A (en) 2016-09-02 2016-09-02 Semiconductor device and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016172259A JP2018037626A (en) 2016-09-02 2016-09-02 Semiconductor device and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
JP2018037626A true JP2018037626A (en) 2018-03-08

Family

ID=61566417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016172259A Pending JP2018037626A (en) 2016-09-02 2016-09-02 Semiconductor device and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2018037626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167985A1 (en) 2018-03-02 2019-09-06 テルモ株式会社 Guide wire and medical device
DE112021002165T5 (en) 2020-03-30 2023-03-23 Sony Semiconductor Solutions Corporation SEMICONDUCTOR DEVICE AND ELECTRONIC EQUIPMENT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167985A1 (en) 2018-03-02 2019-09-06 テルモ株式会社 Guide wire and medical device
DE112021002165T5 (en) 2020-03-30 2023-03-23 Sony Semiconductor Solutions Corporation SEMICONDUCTOR DEVICE AND ELECTRONIC EQUIPMENT

Similar Documents

Publication Publication Date Title
EP3008762B1 (en) Metal-insulator-metal capacitor structures
US9064927B2 (en) Semiconductor device
US6680521B1 (en) High density composite MIM capacitor with reduced voltage dependence in semiconductor dies
US8085522B2 (en) Capacitor and method of manufacturing the same and capacitor unit
JP4972349B2 (en) Manufacturing method of semiconductor device
JP4707330B2 (en) Semiconductor device and manufacturing method thereof
US8378451B2 (en) Capacitor and a method of manufacturing a capacitor
US9666570B2 (en) Memory device and method of manufacturing the same
JP2018037626A (en) Semiconductor device and semiconductor device manufacturing method
JP6988688B2 (en) Semiconductor device
US20210005597A1 (en) Semiconductor device and method for manufacturing the same
US20090059466A1 (en) Metal-insulator-metal capacitor and method for manufacturing the same
JP2019029537A (en) Capacitor
JP6342728B2 (en) Semiconductor device manufacturing method and semiconductor device
US9269761B2 (en) Metal-insulator-metal capacitor
JP2017199862A (en) Semiconductor device manufacturing method and semiconductor device
JP2023551162A (en) Decoupling capacitor in gate cut trench
JP2008252044A (en) Semiconductor device equipped with mim capacitive element, and manufacturing method therefor
CN115485837A (en) Contact structure in RC network component
KR101159112B1 (en) Variable capacitance capacitor and method for fabricating the same
TW201543637A (en) Semiconductor device and method for manufacturing semiconductor device
JP2016086090A5 (en)
JP6101162B2 (en) Semiconductor device
JP6542428B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP4165202B2 (en) Semiconductor device and manufacturing method thereof