JP2018037436A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2018037436A
JP2018037436A JP2016166655A JP2016166655A JP2018037436A JP 2018037436 A JP2018037436 A JP 2018037436A JP 2016166655 A JP2016166655 A JP 2016166655A JP 2016166655 A JP2016166655 A JP 2016166655A JP 2018037436 A JP2018037436 A JP 2018037436A
Authority
JP
Japan
Prior art keywords
substrate
frame
semiconductor device
semiconductor element
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016166655A
Other languages
Japanese (ja)
Inventor
小林 達也
Tatsuya Kobayashi
達也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2016166655A priority Critical patent/JP2018037436A/en
Publication of JP2018037436A publication Critical patent/JP2018037436A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of eliminating a residual stress caused by heat treatment, and of reducing warpage of a circuit board.SOLUTION: A semiconductor device comprises: a semiconductor element; a frame on whose one principal surface the semiconductor element is placed; and a substrate on whose one principal surface the frame is placed, and has a configuration in which the semiconductor element, the frame, and the substrate are encapsulated by an encapsulation body so as to expose the other principal surface of the substrate. The substrate is a ceramic plate. On one principal surface of the substrate, a relatively thin organic coating layer is arranged by thermal compression bonding at a thermal compression bonding temperature of 50-200°C, and the frame is supported and fixed via the organic coating layer.SELECTED DRAWING: Figure 1

Description

本発明は、半導体素子が樹脂封止体中に封止され、半導体素子の放熱を行う放熱板が樹脂封止体の下面に露出した構成を具備する半導体装置に関する
The present invention relates to a semiconductor device having a configuration in which a semiconductor element is sealed in a resin sealing body, and a heat radiating plate for radiating heat of the semiconductor element is exposed on the lower surface of the resin sealing body.

近年、高放熱性かつ高信頼性の樹脂封止型半導体装置が求められており、半導体素子などの電子部品を搭載する基板には、直接接合法(DBC:Direct Bonding Copper)と呼ばれる接合法を用いて、セラミックス基板上にCuの電気回路を形成したDBC基板が広く用いられている。DBC基板はガラスエポキシ基板と比較して、放熱性が優れており、例えば、アルミナDBC基板や窒化アルミニウムDBC基板などが実用化されている。
In recent years, there has been a demand for a resin-sealed semiconductor device with high heat dissipation and high reliability. For a substrate on which an electronic component such as a semiconductor element is mounted, a bonding method called a direct bonding method (DBC: Direct Bonding Copper) is used. A DBC substrate in which a Cu electric circuit is formed on a ceramic substrate is widely used. The DBC substrate is excellent in heat dissipation compared with the glass epoxy substrate. For example, an alumina DBC substrate, an aluminum nitride DBC substrate, and the like have been put into practical use.

従来技術によれば、DBC基板は、セラミック(AlN)基板にスパッタか蒸着、あるいはメッキにて薄いCu膜を形成した後、Cu膜表面を酸化させる。その酸化膜上にCu板(0.3〜0.5mm)を載置し、高温(1068〜1075℃)で加熱、セラミック基板とCu板を接合することにより、高い接合強度を得ることが知られている。(特許文献1参照)
According to the prior art, a DBC substrate oxidizes the Cu film surface after forming a thin Cu film on a ceramic (AlN) substrate by sputtering, vapor deposition, or plating. It is known that a Cu plate (0.3 to 0.5 mm) is placed on the oxide film, heated at a high temperature (1068 to 1075 ° C.), and the ceramic substrate and the Cu plate are joined to obtain a high joint strength. It has been. (See Patent Document 1)

特開2003−188316号公報JP 2003-188316 A

しかしながら、従来技術では高温で加熱処理する必要があるため、冷却した際に接合時の残留応力が残り、基板に反りが発生する要因になるという課題がある。
However, in the prior art, it is necessary to perform a heat treatment at a high temperature, so that there is a problem that residual stress at the time of bonding remains when it is cooled, which causes warping of the substrate.

従って、本発明は、上述した課題を解決するためになされたものであり、加熱処理による残留応力を無くし、基板の反りを低減した半導体装置を提供することを目的とする。
Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device in which the residual stress due to heat treatment is eliminated and the warpage of the substrate is reduced.

上述の課題を解決するために、本発明は以下に掲げる構成とした。
本発明の半導体装置は、半導体素子と、半導体素子を一方の主面に載置するフレームと、フレームを一方の主面に載置する基板と、基板の他方の主面が露出するように、半導体素子と、フレームと、基板とが、封止体で封止された構成を具備する半導体装置であって、基板は、セラミック板であって、一方の主面に、相対的に薄い有機皮膜層を熱圧着温度50℃〜200℃で熱圧着して配置し、その有機皮膜層を介して、フレームを支持固定することを特徴とする基板を用い、有機皮膜層は、有機材を主材とした高放熱絶縁接着材であり、有機皮膜層の厚みは1μm〜50μmであることを特徴とする。
In order to solve the above-described problems, the present invention is configured as follows.
In the semiconductor device of the present invention, a semiconductor element, a frame for placing the semiconductor element on one principal surface, a substrate for placing the frame on one principal surface, and the other principal surface of the substrate are exposed. A semiconductor device having a configuration in which a semiconductor element, a frame, and a substrate are sealed with a sealing body, wherein the substrate is a ceramic plate and has a relatively thin organic film on one main surface. The substrate is characterized in that the layer is thermocompression-bonded at a thermocompression bonding temperature of 50 ° C. to 200 ° C., and the frame is supported and fixed through the organic coating layer. The organic coating layer is composed mainly of an organic material. The heat radiation insulating adhesive material is characterized in that the thickness of the organic coating layer is 1 μm to 50 μm.

本発明は、以上のように構成されているので、加熱処理による残留応力を無くし、基板の反りを低減した半導体装置を提供することができる効果を奏する。
Since the present invention is configured as described above, it is possible to provide a semiconductor device in which residual stress due to heat treatment is eliminated and the warpage of the substrate is reduced.

本発明の実施例1に係る半導体装置の概要を示す断面模式図である。It is a cross-sectional schematic diagram which shows the outline | summary of the semiconductor device which concerns on Example 1 of this invention.

以下、本発明を実施するための形態について、図を参照して詳細に説明する。なお以下の図面の記載において、同一または類似の部分には、同一または類似の符号で表している。但し、図面は模式的なものであり、寸法関係の比率等は現実のものとは異なる。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and the dimensional relationship ratios and the like are different from the actual ones. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not something specific. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

以下、図面を参照して本発明の実施例に係る半導体装置100を説明する。図1は、本発明の実施例に係る半導体装置の概要を示す断面模式図である。
Hereinafter, a semiconductor device 100 according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an outline of a semiconductor device according to an embodiment of the present invention.

図1に示す半導体装置100は、半導体素子1、誘電性接着材2、フレーム3、有機皮膜層4、基板5、封止体6から成っている。
A semiconductor device 100 shown in FIG. 1 includes a semiconductor element 1, a dielectric adhesive 2, a frame 3, an organic coating layer 4, a substrate 5, and a sealing body 6.

ここでは、半導体素子とフレーム、および基板とフレームを接続する電気配線は省略している。また、封止体の外表面を破線で示している。
Here, the electrical wiring connecting the semiconductor element and the frame and the substrate and the frame is omitted. Moreover, the outer surface of the sealing body is shown by a broken line.

半導体素子1は、導電性接着材2を介して、フレーム3の一方の主面に載置され固定されている。例えばSi半導体、化合物半導体等で構成す半導体素子である。化合物半導体とすればSi半導体に比べて高温状態での動作が可能であり、またスイッチング速度が速く、低損失である。
The semiconductor element 1 is placed and fixed on one main surface of the frame 3 via a conductive adhesive 2. For example, it is a semiconductor element composed of a Si semiconductor, a compound semiconductor, or the like. If it is a compound semiconductor, operation | movement in a high temperature state is possible compared with Si semiconductor, and switching speed is quick, and it is low loss.

導電性接着材2は、半導体素子1とフレーム3との接合に用いられる。導電性と熱伝導性に優れている材料が好ましく、例えば、はんだを用いる。
The conductive adhesive 2 is used for joining the semiconductor element 1 and the frame 3. A material excellent in conductivity and thermal conductivity is preferable, and for example, solder is used.

フレーム3は、導電性接着材2を介して、半導体素子1を一方の主面に載置する。また、フレーム3は、他方の主面と有機皮膜層4の一方の主面とが固着される。フレーム3の一部は、封止体6の側面から突出して外部への電気的接続に用いられる。 フレーム3の材質は、Cu材などの導電性の高い金属材料が好ましい。
The frame 3 places the semiconductor element 1 on one main surface via the conductive adhesive 2. Further, the other main surface of the frame 3 and one main surface of the organic coating layer 4 are fixed. A part of the frame 3 protrudes from the side surface of the sealing body 6 and is used for electrical connection to the outside. The material of the frame 3 is preferably a highly conductive metal material such as a Cu material.

有機皮膜層4は、有機材料であるため、一般的に金属材よりも熱伝導率が低い。このため、有機皮膜層の厚みはできるだけ薄くすることが望ましく、例えば1μm〜50μmが好ましい。
Since the organic coating layer 4 is an organic material, it generally has a lower thermal conductivity than a metal material. For this reason, it is desirable to make the thickness of the organic coating layer as thin as possible, for example, 1 μm to 50 μm is preferable.

基板5は、高熱伝導性で、且つ、高絶縁性の材料が望ましく、例えば窒化アルミニウムが用いられる。基板5の厚みは、例えば0.32mm〜1mmである。半導体装置100の絶縁性は、基板5の厚みで十分に確保されるため、有機皮膜層4は薄くても耐圧上の問題は無い。
The substrate 5 is desirably made of a material having high thermal conductivity and high insulation, and for example, aluminum nitride is used. The thickness of the substrate 5 is, for example, 0.32 mm to 1 mm. Since the insulation of the semiconductor device 100 is sufficiently ensured by the thickness of the substrate 5, there is no problem with the withstand voltage even if the organic coating layer 4 is thin.

封止体6は、樹脂成形金型とプレス装置を使用して、トランスファーモールドとして、樹脂成形されたものである。例えば、封止体6には、熱硬化性エポキシ樹脂が使用される。

以上により、半導体装置100が完成する。
The sealing body 6 is resin-molded as a transfer mold using a resin molding die and a press device. For example, a thermosetting epoxy resin is used for the sealing body 6.

Thus, the semiconductor device 100 is completed.

本発明の実施例に係る半導体装置は、請求項1によれば、第1の基板における絶縁層にて、接地側の絶縁が確保でき、また、第1の基板におけるラミネート層にて、異なる電位を分離絶縁するすることができることから、電位の異なる半導体素子を、同一のパッケージに内蔵した半導体装置を提供することができる。また、第1の基板における金属層にて、各半導体素子で発生した熱を横方向に拡散することができ、放熱効果を向上することができる。   According to claim 1, the semiconductor device according to the embodiment of the present invention can secure the insulation on the ground side in the insulating layer in the first substrate, and has different potentials in the laminate layer in the first substrate. Therefore, it is possible to provide a semiconductor device in which semiconductor elements having different potentials are incorporated in the same package. Further, the heat generated in each semiconductor element can be diffused in the lateral direction by the metal layer in the first substrate, and the heat dissipation effect can be improved.

次に、上述の実施例に係る半導体装置の効果を説明する。
Next, effects of the semiconductor device according to the above-described embodiment will be described.

発明の実施例に係る半導体装置は、基板の一方の主面に、熱圧着温度50℃〜200℃で熱圧着された有機皮膜層を配置する。これにより、従来のDBC基板の熱履歴に比べて極めて低温で加熱処理がなされたことで、残留応力の発生が抑えられ、基板の反りを低減した半導体装置を提供することができる。
In a semiconductor device according to an embodiment of the invention, an organic film layer thermocompression bonded at a thermocompression bonding temperature of 50 ° C. to 200 ° C. is disposed on one main surface of a substrate. As a result, the heat treatment is performed at an extremely low temperature as compared with the heat history of the conventional DBC substrate, so that it is possible to provide a semiconductor device in which the occurrence of residual stress is suppressed and the warpage of the substrate is reduced.

上述のように、本発明を実施するための形態を記載したが、この開示から当業者には様々な代替実施の形態、実施例が可能であることが明らかになるはずである。
As described above, the mode for carrying out the present invention has been described. From this disclosure, it should be apparent to those skilled in the art that various alternative embodiments and examples are possible.

上述の例では、有機皮膜層4は、有機材としているが、フィラーを含有してもよい。これにより熱伝導率が更に向上する。
In the above example, the organic coating layer 4 is made of an organic material, but may contain a filler. This further improves the thermal conductivity.

上述の例では、基板5は、窒化アルミニウムが高熱伝導の材料が好ましいとしたが、同様に高熱伝導材料である窒化ケイ素やアルミナを用いてもよい。例えば、窒化ケイ素の場合の厚さは0.32mm〜1mmである。また、アルミナの場合の厚さは、0.25mm〜1mmである。
In the above-described example, the substrate 5 is preferably made of a material having high thermal conductivity of aluminum nitride, but silicon nitride or alumina which is also a high thermal conductivity material may be used. For example, the thickness in the case of silicon nitride is 0.32 mm to 1 mm. The thickness in the case of alumina is 0.25 mm to 1 mm.

上述の例では、基板の一方の主面に、有機皮膜層を配置しているが、基板の上下面に有機皮膜層を配置してもよい。この際、基板の一方の主面は、有機皮膜層を介して半導体素子等を載置したリードフレームを支持固定する。基板の他方の主面は、封止体から露出しており、有機皮膜層を介してヒートシンクを支持固定することができる。これにより更に放熱性を得ることができる。
In the above example, the organic film layer is disposed on one main surface of the substrate, but the organic film layer may be disposed on the upper and lower surfaces of the substrate. At this time, one main surface of the substrate supports and fixes a lead frame on which a semiconductor element or the like is placed via an organic film layer. The other main surface of the substrate is exposed from the sealing body, and the heat sink can be supported and fixed via the organic coating layer. Thereby, further heat dissipation can be obtained.

上述の例では、有機皮膜層を介して、フレームを支持固定しているが、電気回路形成済みのCu板を支持固定することもできる。これにより、多様な電気回路への利用が可能である。
In the above example, the frame is supported and fixed through the organic coating layer, but a Cu plate on which an electric circuit has been formed can also be supported and fixed. Thereby, utilization to various electric circuits is possible.

また、半導体装置100は、同一のパッケージ内にパワー素子、コントロール素子、保護素子等を納めたIPM(intelligent Power Module)としてもよい。IPMでは、複数の半導体素子や電子部品を基板に搭載するため、基板の反り対策が重要であり、本発明によって反りの低減が可能である。
The semiconductor device 100 may be an IPM (intelligent power module) in which a power element, a control element, a protection element, and the like are housed in the same package. In IPM, since a plurality of semiconductor elements and electronic components are mounted on a substrate, it is important to take measures against warping of the substrate, and the present invention can reduce warpage.

1、半導体素子
2、導電性接着材
3、フレーム
4、有機皮膜層
5、基板
6、封止体
100、半導体装置
DESCRIPTION OF SYMBOLS 1, Semiconductor element 2, Conductive adhesive material 3, Frame 4, Organic membrane layer 5, Board | substrate 6, Sealing body 100, Semiconductor device

半導体装置100は、基板5の他方の主面を、高熱伝導性接着材を介して外部の実装基板あるいはヒートシンクの一方の主面に固定され、半導体装置100において発生した熱を放熱することができる。   The semiconductor device 100 can dissipate heat generated in the semiconductor device 100 by fixing the other main surface of the substrate 5 to one main surface of an external mounting substrate or a heat sink via a high thermal conductive adhesive. .

Claims (2)

半導体素子と、前記半導体素子を一方の主面に載置するフレームと、前記フレームを一方の主面に載置する基板と、前記基板の他方の主面が露出するように、前記半導体素子と、前記フレームと、前記基板とが、封止体で封止された構成を具備する半導体装置であって、前記基板は、セラミック板であって、一方の主面に、相対的に薄い有機皮膜層を熱圧着温度50℃〜200℃で熱圧着して配置し、その有機皮膜層を介して、前記フレームを支持固定することを特徴とする基板を用いた半導体装置。   A semiconductor element, a frame for mounting the semiconductor element on one main surface, a substrate for mounting the frame on one main surface, and the semiconductor element so that the other main surface of the substrate is exposed. The frame and the substrate are a semiconductor device having a structure sealed with a sealing body, and the substrate is a ceramic plate and has a relatively thin organic film on one main surface. A semiconductor device using a substrate, characterized in that the layers are arranged by thermocompression bonding at a thermocompression bonding temperature of 50 ° C. to 200 ° C., and the frame is supported and fixed through the organic coating layer. 前記有機皮膜層は、有機材を主材とした高放熱絶縁接着材であり、有機皮膜層の厚みは1μm〜50μmであることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the organic coating layer is a high heat dissipation insulating adhesive mainly composed of an organic material, and the thickness of the organic coating layer is 1 μm to 50 μm.
JP2016166655A 2016-08-29 2016-08-29 Semiconductor device Pending JP2018037436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166655A JP2018037436A (en) 2016-08-29 2016-08-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166655A JP2018037436A (en) 2016-08-29 2016-08-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2018037436A true JP2018037436A (en) 2018-03-08

Family

ID=61565987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166655A Pending JP2018037436A (en) 2016-08-29 2016-08-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2018037436A (en)

Similar Documents

Publication Publication Date Title
US8058722B2 (en) Power semiconductor module and method of manufacturing the same
US9196604B2 (en) Power semiconductor module having pattern laminated region
JP5472498B2 (en) Power module manufacturing method
US20100295172A1 (en) Power semiconductor module
WO2012165045A1 (en) Semiconductor device and wiring substrate
KR102231769B1 (en) Semiconductor package having exposed heat sink for high thermal conductivity and manufacturing method thereof
JP2016018866A (en) Power module
US20120104621A1 (en) Power package module and method for fabricating the same
JP2011216564A (en) Power module and method of manufacturing the same
KR102172689B1 (en) Semiconductor package and method of fabricating the same
JP2019071412A (en) Chip package
KR102163662B1 (en) Dual side cooling power module and manufacturing method of the same
JP2017017109A (en) Semiconductor device
JP2016181536A (en) Power semiconductor device
JP2013098451A (en) Semiconductor device and wiring board
US20150270201A1 (en) Semiconductor module package and method of manufacturing the same
JP7163583B2 (en) semiconductor equipment
JP6811310B2 (en) Power module
JP7088224B2 (en) Semiconductor modules and semiconductor devices used for them
JP2017028174A (en) Semiconductor device
WO2020189508A1 (en) Semiconductor module and semiconductor device used therefor
JP2014143342A (en) Semiconductor module and manufacturing method of the same
JP2018037436A (en) Semiconductor device
KR101067190B1 (en) Power package module and manufacturing method
KR101897304B1 (en) Power module

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160830