JP2018035129A - Pyrimidine derivative, luminescent material consisting of the same and organic el element using the same - Google Patents

Pyrimidine derivative, luminescent material consisting of the same and organic el element using the same Download PDF

Info

Publication number
JP2018035129A
JP2018035129A JP2016208548A JP2016208548A JP2018035129A JP 2018035129 A JP2018035129 A JP 2018035129A JP 2016208548 A JP2016208548 A JP 2016208548A JP 2016208548 A JP2016208548 A JP 2016208548A JP 2018035129 A JP2018035129 A JP 2018035129A
Authority
JP
Japan
Prior art keywords
group
dpepo
mmol
energy
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016208548A
Other languages
Japanese (ja)
Other versions
JP6813876B2 (en
Inventor
久宏 笹部
Hisahiro Sasabe
久宏 笹部
城戸 淳二
Junji Kido
淳二 城戸
龍太郎 小松
Ryutaro Komatsu
龍太郎 小松
晃平 中尾
Kohei Nakao
晃平 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Publication of JP2018035129A publication Critical patent/JP2018035129A/en
Application granted granted Critical
Publication of JP6813876B2 publication Critical patent/JP6813876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel pyrimidine derivative as a heat activation delayed fluorescence (TADF) material capable of efficiently up-conversion of triplet exciton to singlet exciton, a luminescent material and an organic EL element using the same.SOLUTION: There is provided a pyrimidine derivative represented by the following general formula (1) and having energy difference (ΔE) between excited singlet energy (E) and triplet excitation energy (ΔE) of 0.25 eV or less. (1), where Rrepresents a hydrogen atom, an alkyl group, an alkoxy group, a thioalkoxy group or an amino group as an electron-donating group, or an aryl group, a cyano group, a carbonyl group or a sulfonyl group as an electron-attracting group, Rrepresents a methyl group, an aryl group, an alkoxy group, an acyl group or a cyano group, n represents an integer of 1 to 3, a substituents D each independently represents a hydrogen atom or an electron-donating group, and a phenyl group having the substituents D has a symmetric structure or an asymmetric structure when n is 2 or 3.SELECTED DRAWING: None

Description

本発明は、発光効率の高い新規ピリミジン誘導体、それを用いた発光材料及び有機EL素子に関する。   The present invention relates to a novel pyrimidine derivative having high luminous efficiency, a light emitting material using the same, and an organic EL device.

有機エレクトロニクス(EL)素子では、一対の電極間に電圧を印加することにより、陽極から正孔が、陰極から電子が、発光材料として有機化合物を含む発光層にそれぞれ注入され、注入された電子及び正孔が再結合することによって、発光性の有機化合物中に励起子が形成され、励起された有機化合物から発光を得ることができる。   In an organic electronics (EL) element, by applying a voltage between a pair of electrodes, holes from the anode, electrons from the cathode, and a light emitting layer containing an organic compound as a light emitting material are injected, and the injected electrons and When holes recombine, excitons are formed in the light-emitting organic compound, and light emission can be obtained from the excited organic compound.

このような有機EL素子の実用性を向上させる手段の一つは、発光効率を上げることにある。有機化合物が形成する励起子には、一重項励起子(ES1)及び三重項励起子(ET1)があり、一重項励起子(ES1)からの蛍光発光と、三重項励起子(ET1)からのリン光発光とがあるが、素子におけるこれらの統計的な生成比率は、ES1:ET1=1:3であり、蛍光発光を用いる有機EL素子では内部量子効率25%が限界といわれていた。そのため、電子からフォトンへの変換効率(内部量子効率)を向上させるべく、三重項励起状態を発光に変換することが可能なリン光性化合物を用いた発光素子の開発が近年盛んに行われてきた。しかしながら、リン光性化合物はその多くが、イリジウムや白金などの貴金属を中心金属とした錯体であり、そのコストや供給の安定性の面で課題があった。 One means for improving the practicality of such an organic EL element is to increase the luminous efficiency. Excitons formed by organic compounds include singlet excitons (E S1 ) and triplet excitons (E T1 ). Fluorescence emission from singlet excitons (E S1 ) and triplet excitons (E Although there are a phosphorescence from T1), these statistical generation ratio in elements, E S1: E T1 = 1 : 3, and limit the internal quantum efficiency of 25% on an organic EL element using the fluorescent emission It was said. Therefore, in recent years, development of a light-emitting element using a phosphorescent compound capable of converting a triplet excited state into light emission has been actively performed in order to improve the conversion efficiency (internal quantum efficiency) from electrons to photons. It was. However, most of the phosphorescent compounds are complexes having a noble metal such as iridium or platinum as a central metal, and there are problems in terms of cost and supply stability.

最近、このようなリン光性化合物を用いずに、三重項励起状態の一部を発光に変換可能な材料として、遅延蛍光を発する材料の研究が行われている。具体的には、三重項励起子(ET1)を一重項励起子(ES1)へアップコンバージョンさせる、熱活性化遅延蛍光(thermally activated delayed fluorescence;TADF)材料を利用した有機EL素子が開発されている。このTADF材料を用いれば、一重項励起子(ES1)は蛍光を発光する一方で、三重項励起子(ET1)は、素子や周囲の熱を吸収して励起一重項へ逆項間交差されて蛍光を発光するため、電流励起によって生成するすべての励起子を光エネルギーとして取り出すことができ、同時に内部量子効率100%を実現することができる。 Recently, materials that emit delayed fluorescence have been studied as materials that can convert part of the triplet excited state into light emission without using such a phosphorescent compound. Specifically, an organic EL device using a thermally activated delayed fluorescence (TADF) material that upconverts triplet excitons (E T1 ) to singlet excitons (E S1 ) has been developed. ing. Using this TADF material, singlet excitons (E S1 ) emit fluorescence, while triplet excitons (E T1 ) absorb the heat of the element and surroundings and cross back to the excited singlet. In order to emit fluorescence, all excitons generated by current excitation can be extracted as light energy, and at the same time, an internal quantum efficiency of 100% can be realized.

例えば、非特許文献1では、金属を含まないリン光性化合物として、カルバゾリルジシアノベンゼン(CDCB)誘導体が報告され、該CDCB誘導体が、一重項励起状態と三重項励起状態との間のエネルギー差(ΔEST)が小さく、高い発光量子収率を維持しながら、励起三重項状態から励起一重項励起子への高効率なアップコンバージョンを促進することが報告されている。 For example, in Non-Patent Document 1, a carbazolyl dicyanobenzene (CDCB) derivative is reported as a phosphorescent compound containing no metal, and the CDCB derivative has an energy between a singlet excited state and a triplet excited state. It has been reported that the difference (ΔE ST ) is small and promotes highly efficient up-conversion from the excited triplet state to the excited singlet exciton while maintaining a high emission quantum yield.

さらに、TADF材料は、上記した発光機構ゆえに、高い内部量子収率だけでなく、外部量子収率の向上も期待できる。外部量子効率に関しては、従来の蛍光材料では7.5%程度であったのが、緑色TADF材料ではリン光発光材料に匹敵する30%に迫る外部量子効率が実現されている。   Furthermore, the TADF material can be expected to improve not only a high internal quantum yield but also an external quantum yield because of the above-described light emission mechanism. Regarding the external quantum efficiency, it was about 7.5% with the conventional fluorescent material, but with the green TADF material, the external quantum efficiency approaching 30%, which is comparable to the phosphorescent material, has been realized.

非特許文献2では、TADFを示す青色発光有機分子のデザインルールのひとつが示され、該デザインルールに基づく有機分子は、広範囲で電子が非局在化したHOMO(Highest Occupied Molecular Orbital;最高被占軌道)及びLUMO(Lowest Unoccupied Molecular Orbital;最低空軌道)を有し、2つの波動関数の重なりが小さい場合でも、高い振動子強度が誘導されて発光量子収率が高くなることが報告されている。そして、前記有機分子は、高い発光量子収率、及び三重項励起子から一重項励起子への効率的なアップコンバージョンを示し、発光効率及び内部量子効率ともに100%に近い状態を実現する旨の開示がある。   Non-Patent Document 2 shows one of the design rules for blue-emitting organic molecules exhibiting TADF, and organic molecules based on the design rules are HOMO (Highest Occupied Molecular Orbital) with a wide range of delocalized electrons Orbital) and LUMO (Lowest Unoccupied Molecular Orbital), and even when the overlap of the two wave functions is small, high oscillator strength is induced and the emission quantum yield is reported to increase. . The organic molecule exhibits high emission quantum yield and efficient up-conversion from triplet excitons to singlet excitons, and realizes that the emission efficiency and internal quantum efficiency are close to 100%. There is disclosure.

遅延蛍光発光材料を発光層に用いた有機EL素子は、高い外部量子効率を示すと考えられる。遅延蛍光を高効率で得るためには、三重項準位から励起一重項準位へ逆項間交差するだけでなく、励起一重項から効率良く発光が得られることが必要である。このような発光材料を得るためには、例えば、一重項と三重項とのエネルギー差(ΔEST)を小さくするため、有機化合物において、ドナー性を持つ電子供与基と、アクセプター性を持つ電子求引基とを適切に選択して組み合わせる、といった精密な分子設計が必要である。 An organic EL device using a delayed fluorescent material for the light emitting layer is considered to exhibit high external quantum efficiency. In order to obtain delayed fluorescence with high efficiency, it is necessary not only to cross back from the triplet level to the excited singlet level but also to efficiently emit light from the excited singlet. In order to obtain such a light-emitting material, for example, in order to reduce an energy difference (ΔE ST ) between a singlet and a triplet, in an organic compound, an electron-donating group having a donor property and an electron request having an acceptor property are obtained. Precise molecular design is necessary, such as appropriately selecting and combining the pulling group.

特許文献1では、有機EL素子に用いる発光材料として、カルバゾール構造を含むトリアジン化合物やカルバゾール構造を含むピリミジン化合物がTADF材料になりうることが報告されている。   In Patent Document 1, it is reported that a triazine compound containing a carbazole structure or a pyrimidine compound containing a carbazole structure can be a TADF material as a light-emitting material used for an organic EL element.

さらに、非特許文献3では、TADF材料として9,10−ジヒドロアクリジン/ジフェニルスルホン誘導体を用いた青色の有機EL素子が記載され、既存のリン光有機EL素子に匹敵する性能を有し、該TADF材料を含む素子は外部量子効率19.5%を示し、高輝度時の発光効率低下を抑制することが報告されている。   Furthermore, Non-Patent Document 3 describes a blue organic EL device using a 9,10-dihydroacridine / diphenylsulfone derivative as a TADF material, and has performance comparable to that of an existing phosphorescent organic EL device. It has been reported that a device including a material exhibits an external quantum efficiency of 19.5% and suppresses a decrease in light emission efficiency at high luminance.

上記文献はいずれもTADF材料の分子設計を行っている。しかしながら、現在のところ、例えば、より高い発光エネルギーを必要とする青色TADF材料では、要求される発光効率が充分に達成できておらず、低い値にとどまっている。よって、TADF材料へのさらなる検討が望まれている。   All of the above documents perform molecular design of TADF materials. However, at present, for example, with a blue TADF material that requires higher light emission energy, the required light emission efficiency is not sufficiently achieved, and the value remains low. Therefore, further studies on TADF materials are desired.

特許第5679496号公報Japanese Patent No. 5679496

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,492, 234.H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,492, 234. S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nature Materials 2015, 14, 330.S. Hirata, Y. Sakai, K. Masui, H. Tanaka, SY Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi , Nature Materials 2015, 14, 330. Q. Zhang, B. Li, S. P. Huang, H. Nomura, H. Tanaka, C. Adachi, Nature Photonics 2014, 8, 326.Q. Zhang, B. Li, S. P. Huang, H. Nomura, H. Tanaka, C. Adachi, Nature Photonics 2014, 8, 326.

本発明では、HOMO−LUMO間のエネルギー差(ΔEH-L)、及び、一重項励起状態と三重項励起状態との間のエネルギー差(ΔEST)に着目し、三重項励起子(ET1)を一重項励起子(ES1)へ効率良くアップコンバージョンさせることができる熱活性化遅延蛍光(TADF)材料としての新規ピリミジン誘導体、及びこれを用いた発光材料及び有機EL素子を提供することを課題としている。 In the present invention, focusing on the energy difference between HOMO-LUMO (ΔE HL ) and the energy difference between the singlet excited state and the triplet excited state (ΔE ST ), the triplet exciton (E T1 ) is calculated. It is an object to provide a novel pyrimidine derivative as a thermally activated delayed fluorescence (TADF) material capable of efficiently up-converting to singlet excitons (E S1 ), and a light emitting material and an organic EL device using the same. Yes.

本発明者らは、発光部位であるピリミジン骨格に、特定の電子供与部位を導入した特定のピリミジン誘導体が、熱活性化遅延蛍光(TADF)材料として有効であることを見出し、本発明を完成させた。
すなわち、本発明は以下の事項からなる。
The present inventors have found that a specific pyrimidine derivative in which a specific electron donating site is introduced into a pyrimidine skeleton, which is a light emitting site, is effective as a thermally activated delayed fluorescence (TADF) material, and completed the present invention. It was.
That is, this invention consists of the following matters.

本発明のピリミジン誘導体は、下記一般式(1)で表され、かつ、励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)の間のエネルギー差(ΔEST)が0.25eV以下であることを特徴とする。

Figure 2018035129
(一般式(1)中、R1は、水素原子、電子供与性基として、アルキル基、アルコキシ基、チオアルコキシ基若しくはアミノ基、又は、電子求引性基として、アリール基、シアノ基、カルボニル基若しくはスルホニル基を表し、R8は、メチル基、アリール基、アルコキシ基、アシル基又はシアノ基を表し、nは1〜3の整数を表し、置換基Dは、それぞれ独立に、水素原子又は電子供与性基を表し、nが2又は3の場合、該置換基Dを有するフェニル基は、互いに対称構造又は非対称構造を有する。) The pyrimidine derivative of the present invention is represented by the following general formula (1), and an energy difference (ΔE ST ) between excited singlet energy (E S1 ) and triplet excited energy (E T1 ) is 0.25 eV or less. It is characterized by being.
Figure 2018035129
(In the general formula (1), R 1 is a hydrogen atom, an electron donating group, an alkyl group, an alkoxy group, a thioalkoxy group or an amino group, or an electron withdrawing group, an aryl group, a cyano group, or a carbonyl group. R 8 represents a methyl group, an aryl group, an alkoxy group, an acyl group or a cyano group, n represents an integer of 1 to 3, and each substituent D independently represents a hydrogen atom or Represents an electron-donating group, and when n is 2 or 3, the phenyl groups having the substituent D have a symmetric structure or an asymmetric structure.

本発明のピリミジン誘導体は、下記一般式(1)で表され、かつ、励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)の間のエネルギー差(ΔEST)が0.25eV以下であることを特徴とする。

Figure 2018035129
(一般式(1)中、R1は、水素原子、電子供与性基として、アルキル基、アルコキシ基、チオアルコキシ基若しくはアミノ基、又は、電子求引性基として、アリール基、シアノ基、カルボニル基若しくはスルホニル基を表し、R8は、メチル基、アリール基、アルコキシ基、アシル基又はシアノ基を表し、nは2を表し、置換基Dを有するフェニル基は、互いに対称構造又は非対称構造を有する。) The pyrimidine derivative of the present invention is represented by the following general formula (1), and an energy difference (ΔE ST ) between excited singlet energy (E S1 ) and triplet excited energy (E T1 ) is 0.25 eV or less. It is characterized by being.
Figure 2018035129
(In the general formula (1), R 1 is a hydrogen atom, an electron donating group, an alkyl group, an alkoxy group, a thioalkoxy group or an amino group, or an electron withdrawing group, an aryl group, a cyano group, or a carbonyl group. R 8 represents a methyl group, an aryl group, an alkoxy group, an acyl group or a cyano group, n represents 2, and the phenyl group having the substituent D has a symmetric structure or an asymmetric structure. Have)

本発明のピリミジン誘導体は、下記一般式(2)で表され、かつ、励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)間のエネルギー差(ΔEST)が0.25eV以下であることを特徴とする。

Figure 2018035129
(一般式(2)中、R1は、水素原子、電子供与性基として、アルキル基、アルコキシ基、チオアルコキシ基若しくはアミノ基、又は、電子求引性基として、アリール基、シアノ基、カルボニル基若しくはスルホニル基を表し、R8は、メチル基、アリール基、アルコキシ基、アシル基又はシアノ基を表し、置換基Dは、それぞれ独立に下記構造式で表される置換基のいずれかを表す。)
Figure 2018035129
(一般式(3)中、R2〜R7はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、Xは、メチレン基、−CRab−、−O−、−S−、又は−S(=O)2−を表し、Ra及びRbは、それぞれ独立にアルキル基又はアリール基であり、また互いに連結して環を形成してもよい。)。 The pyrimidine derivative of the present invention is represented by the following general formula (2), and an energy difference (ΔE ST ) between excited singlet energy (E S1 ) and triplet excited energy (E T1 ) is 0.25 eV or less. It is characterized by being.
Figure 2018035129
(In the general formula (2), R 1 represents a hydrogen atom, an electron donating group as an alkyl group, an alkoxy group, a thioalkoxy group or an amino group, or an electron withdrawing group as an aryl group, a cyano group, or a carbonyl group. Represents a group or a sulfonyl group, R 8 represents a methyl group, an aryl group, an alkoxy group, an acyl group, or a cyano group, and each substituent D independently represents any of the substituents represented by the following structural formulae. .)
Figure 2018035129
(In General Formula (3), R 2 to R 7 each independently represents a hydrogen atom, an alkyl group or an aryl group, and X represents a methylene group, —CR a R b —, —O—, —S—, Or -S (= O) 2- , wherein R a and R b are each independently an alkyl group or an aryl group, and may be linked to each other to form a ring).

上記ピリミジン誘導体は、下記構造式で表されることが好ましい。

Figure 2018035129
The pyrimidine derivative is preferably represented by the following structural formula.
Figure 2018035129

本発明の発光材料は、上記ピリミジン誘導体よりなる。
本発明の有機EL素子は、上記ピリミジン誘導体を用いたものである。
The light emitting material of the present invention comprises the above pyrimidine derivative.
The organic EL device of the present invention uses the above pyrimidine derivative.

本発明のピリミジン誘導体によれば、発光部位であるピリミジン骨格に、特定の電子供与部位を導入することにより、一重項と三重項とのエネルギー差(ΔEST)が小さくなり、三重項励起子から一重項励起子への逆項間交差を介した効率的なアップコンバージョンが実現される。具体的には、一般式(1)又は(2)で表されるピリミジン誘導体において、発光部位であるピリミジン骨格に、置換基Dとしてカルバゾール部位、アクリジン部位、又はジメチルアクリジン誘導体等の電子供与性部位を導入することにより、アップコンバージョン発光を観測することができる。よって、上記ピリミジン誘導体は、熱活性化遅延蛍光(TADF)材料として好適である。 According to the pyrimidine derivative of the present invention, the energy difference (ΔE ST ) between the singlet and the triplet is reduced by introducing a specific electron donating site into the pyrimidine skeleton that is the light-emitting site, and the triplet exciton Efficient up-conversion is realized through reverse intersystem crossing to singlet excitons. Specifically, in the pyrimidine derivative represented by the general formula (1) or (2), an electron donating moiety such as a carbazole moiety, an acridine moiety, or a dimethylacridine derivative as a substituent D on the pyrimidine skeleton that is a light emitting moiety. Upconversion emission can be observed by introducing. Therefore, the pyrimidine derivative is suitable as a thermally activated delayed fluorescence (TADF) material.

さらに、上記ピリミジン誘導体において、ピリミジン骨格、並びに、置換基Dであるカルバゾール部位、ジメチルアクリジン部位、及びジメチルアクリジン誘導体部位は、それぞれ高い三重項エネルギー(ET1)を有する。よって、上記ピリミジン誘導体は、青色TADFを期待することができる。 Furthermore, in the pyrimidine derivative, the pyrimidine skeleton and the carbazole moiety, the dimethylacridine moiety, and the dimethylacridine derivative moiety, which are the substituent D, each have high triplet energy (E T1 ). Therefore, the pyrimidine derivative can be expected to be blue TADF.

上記ピリミジン誘導体は、量子化学計算の結果、HOMO(最高被占軌道)−LUMO(最低空軌道)間のエネルギー差(ΔEH-L)が3.3eV以上と大きく、青色の発光色が期待される。 As a result of quantum chemical calculation, the pyrimidine derivative has a large energy difference (ΔE HL ) between HOMO (highest occupied orbital) and LUMO (lowest empty orbital) of 3.3 eV or more, and a blue emission color is expected.

上記ピリミジン誘導体は、量子化学計算の結果から、励起一重項エネルギー(ES1)−三重項エネルギー(ET1)間のエネルギー差(ΔEST)が0.25eV以下、具体的には0.2eV以下と小さく、高い発光量子効率を有する。 From the results of quantum chemical calculations, the pyrimidine derivative has an energy difference (ΔE ST ) between excited singlet energy (E S1 ) and triplet energy (E T1 ) of 0.25 eV or less, specifically 0.2 eV or less. It has a small and high emission quantum efficiency.

上記ピリミジン誘導体は、比較的に簡便な方法で、良好な収率で合成することができる。また、IrやPtなどの貴金属を含まないため、発光材料の低コスト化が実現できる。   The pyrimidine derivative can be synthesized in a good yield by a relatively simple method. In addition, since no precious metal such as Ir or Pt is included, the cost of the light emitting material can be reduced.

本発明の有機ELデバイスは、上記ピリミジン誘導体を用いることで、外部量子効率20%を実現する。このような外部量子効率は、従来の蛍光材料と比べて2倍以上である。   The organic EL device of the present invention achieves an external quantum efficiency of 20% by using the pyrimidine derivative. Such external quantum efficiency is more than twice that of conventional fluorescent materials.

図1はAc−PPMの1H−NMRスペクトルを表す図である。FIG. 1 is a diagram showing a 1 H-NMR spectrum of Ac-PPM. 図2はBAc−MPMの1H−NMRスペクトルを表す図である。FIG. 2 is a diagram showing a 1 H-NMR spectrum of BAc-MPM. 図3はBCz−MPMの1H−NMRスペクトルを表す図である。FIG. 3 is a diagram showing a 1 H-NMR spectrum of BCz-MPM. 図4(a)はAc−PPMの単膜、及び10-5Mトルエン溶液のUV−vis及びPLスペクトルを表し、図4(b)はAc−PPMの単膜、及び10wt%DPEPOドープ共蒸着膜のUV−vis及びPLスペクトルを表す図である。4A shows the UV-vis and PL spectra of a single film of Ac-PPM and a 10 −5 M toluene solution, and FIG. 4B shows a single film of Ac-PPM and 10 wt% DPEPO-doped co-evaporation. It is a figure showing UV-vis and PL spectrum of a film | membrane. 図5はAc−PPMの10wt%DPEPOドープ共蒸着膜における300K及び5Kでの過渡PLスペクトルを表す図である。FIG. 5 is a diagram showing transient PL spectra at 300K and 5K in a 10 wt% DPEPO-doped co-deposited film of Ac-PPM. 図6(a)はAc−PPMの10wt%DPEPOドープ共蒸着膜の5KにおけるPLスペクトルを表し、図6(b)はAc−PPMの10wt%DPEPOドープ共蒸着膜の室温(RT)におけるPLスペクトルを表す図である。6A shows the PL spectrum at 5K of the 10 wt% DPEPO-doped co-deposited film of Ac-PPM, and FIG. 6B shows the PL spectrum at room temperature (RT) of the 10 wt% DPEPO-doped co-deposited film of Ac-PPM. FIG. 図7はAc−PPM単膜のPYS測定結果を表す図である。FIG. 7 is a diagram showing the PYS measurement results of the Ac-PPM single film. 図8はBCz−MPMの単膜、及び10wt%DPEPOドープ共蒸着膜のUV−vis及びPLスペクトルを表す図である。「――●――」線はPLスペクトルを表し、「――○――」線はUV−visスペクトルを表す。FIG. 8 is a diagram showing UV-vis and PL spectra of a BCz-MPM single film and a 10 wt% DPEPO-doped co-deposited film. The “―― ● ――” line represents the PL spectrum, and the “―― ○ ――” line represents the UV-vis spectrum. 図9はBCz−MPM10wt%DPEPOドープ共蒸着膜の過渡PLスペクトルを表す図である。FIG. 9 is a diagram showing a transient PL spectrum of a BCz-MPM 10 wt% DPEPO-doped co-deposited film. 図10(a)はBCz−MePyM_2−1の10wt%DPEPOドープ共蒸着膜の5KにおけるPLスペクトルを表し、図10(b)はBCz−MePyM_2−1の10wt%DPEPOドープ共蒸着膜の室温(RT)におけるPLスペクトルを表す図である。FIG. 10A shows a PL spectrum at 5K of a 10 wt% DPEPO-doped co-deposited film of BCz-MePyM — 2-1, and FIG. 10B shows a room temperature (RT) of the 10 wt% DPEPO-doped co-deposited film of BCz-MePyM — 2-1. It is a figure showing PL spectrum in). 図11はBCz−MPM単膜のPYS測定結果を表す図である。FIG. 11 is a diagram showing a PYS measurement result of a BCz-MPM single film. 図12は、AC−SPMの1H−NMRスペクトルを表す図である。FIG. 12 is a diagram showing a 1 H-NMR spectrum of AC-SPM. 図13は、PXZ−PPMの1H−NMRスペクトルを表す図である。FIG. 13 is a diagram showing a 1 H-NMR spectrum of PXZ-PPM. 図14は、Ac−MMPMの1H−NMRスペクトルを表す図である。FIG. 14 is a diagram showing a 1 H-NMR spectrum of Ac-MMPM. 図15は、Ac−46DPPMの1H−NMRスペクトルを表す図である。FIG. 15 is a diagram showing a 1 H-NMR spectrum of Ac-46DPPM. 図16は、Ac−26DPPMの1H−NMRスペクトルを表す図である。FIG. 16 is a diagram showing a 1 H-NMR spectrum of Ac-26DPPM. 図17(a)は、Ac−SPMの10wt%DPEPOドープ共蒸着膜のUV−visスペクトル及びPLスペクトルを表し、図17(b)は、Ac−SPMの10wt%DPEPOドープ共蒸着膜の室温(RT)及び5Kでの2時間分解過渡PLスペクトルを表し、図17(c)は、Ac−SPMの10wt%DPEPOドープ共蒸着膜における300K及び5KでのPLスペクトルを表す図である。FIG. 17A shows the UV-vis spectrum and PL spectrum of a 10 wt% DPEPO-doped co-deposited film of Ac-SPM, and FIG. 17B shows the room temperature (10 wt% DPEPO-doped co-deposited film of Ac-SPM). (RT) and 2K represent a transient PL spectrum at 5K, and FIG. 17 (c) shows a PL spectrum at 300K and 5K in a 10 wt% DPEPO-doped co-deposited film of Ac-SPM. 図18(a)は、Ac−NPMの10wt%DPEPOドープ共蒸着膜のUV−visスペクトル及びPLスペクトルを表し、図18(b)は、Ac−NPMの10wt%DPEPOドープ共蒸着膜の室温(RT)及び5Kでの5時間分解過渡PLスペクトルを表し、図18(c)は、Ac−NPMの10wt%DPEPOドープ共蒸着膜における300K及び5KでのPLスペクトルを表す図である。18A shows a UV-vis spectrum and a PL spectrum of a 10 wt% DPEPO-doped co-deposited film of Ac-NPM, and FIG. 18B shows a room temperature (10 wt% DPEPO-doped co-deposited film of Ac-NPM). (RT) and 5K represent 5 hour-resolved transient PL spectra, and FIG. 18 (c) is a diagram illustrating PL spectra at 300K and 5K in a 10 wt% DPEPO-doped co-deposited film of Ac-NPM. 図19(a)は、PXZ−PPMの10wt%DPEPOドープ共蒸着膜のUV−visスペクトル及びPLスペクトルを表し、図19(b)は、PXZ−PPMの10wt%DPEPOドープ共蒸着膜の室温(RT)及び5Kでの8時間分解過渡PLスペクトルを表し、図19(c)は、PXZ−PPMの10wt%DPEPOドープ共蒸着膜における300K及び5KでのPLスペクトルを表す図である。FIG. 19A shows a UV-vis spectrum and a PL spectrum of a 10 wt% DPEPO-doped co-deposited film of PXZ-PPM, and FIG. 19B shows a room temperature (10 wt% DPEPO-doped co-deposited film of PXZ-PPM). RT) and an 8 hour-resolved transient PL spectrum at 5K, and FIG. 19C shows a PL spectrum at 300K and 5K in a 10 wt% DPEPO-doped co-deposited film of PXZ-PPM. 図20(a)は、AC−MMPMの10wt%DPEPOドープ共蒸着膜のUV−visスペクトル及びPLスペクトルを表し、図20(b)は、AC−MMPMの10wt%DPEPOドープ共蒸着膜の室温(RT)及び5Kでの11時間分解過渡PLスペクトルを表し、図20(c)は、AC−MMPMの10wt%DPEPOドープ共蒸着膜におけるPLスペクトルを表す図である。20A shows the UV-vis spectrum and PL spectrum of the AC-MMPM 10 wt% DPEPO-doped co-deposited film, and FIG. 20B shows the room temperature of the AC-MMPM 10 wt% DPEPO-doped co-deposited film. RT) and an 11-hour resolved transient PL spectrum at 5K, and FIG. 20C is a diagram showing a PL spectrum in a 10 wt% DPEPO-doped co-deposited film of AC-MMPM. 図21は、AC−1MHPMの1H−NMRスペクトルを表す図である。FIG. 21 is a diagram showing a 1 H-NMR spectrum of AC-1MHPM. 図22は、AC−2MHPMの1H−NMRスペクトルを表す図である。FIG. 22 is a diagram showing a 1 H-NMR spectrum of AC-2MHPM. 図23は、AC−3MHPMの1H−NMRスペクトルを表す図である。FIG. 23 is a diagram showing a 1 H-NMR spectrum of AC-3MHPM. 図24(a)は、AC−1MHPM、AC−2MHPM、及びAC−3MHPMのトルエン溶液(10-5M)のUV−visスペクトルを表し、図24(b)は、AC−1MHPM、AC−2MHPM、及びAC−3MHPMのトルエン溶液(10-5M)ののPLスペクトルを表し、図24(c)は、AC−1MHPM、AC−2MHPM、及びAC−3MHPMの20wt%DPEPOドープ共蒸着膜のPLスペクトルを表す図である。FIG. 24 (a) represents a UV-vis spectrum of a toluene solution (10 −5 M) of AC-1MHPM, AC-2MHPM, and AC-3MHPM, and FIG. 24 (b) shows AC-1MHPM, AC-2MHPM. , and it represents a PL spectrum of the toluene solution of AC-3MHPM (10 -5 M) , FIG. 24 (c) is, AC-1MHPM, AC-2MHPM , and PL of 20wt% DPEPO doped co-deposited film of AC-3MHPM It is a figure showing a spectrum. 図25は、AC−1MHPM、AC−2MHPM、及びAC−3MHPMの20wt%DPEPOドープ共蒸着膜における300K及び5Kでの過渡PLスペクトルを表す図である。FIG. 25 is a diagram showing transient PL spectra at 300 K and 5 K in 20 wt% DPEPO-doped co-deposited films of AC-1 MHPM, AC-2 MHPM, and AC-3 MHPM. 図26(a)は、AC−1MHPMの20wt%DPEPOドープ共蒸着膜における蛍光及び低温リン光(5K)スペクトルを表し、図26(b)は、AC−2MHPMの20wt%DPEPOドープ共蒸着膜における蛍光及び低温リン光(5K)スペクトルを表し、図26(c)は、AC−3MHPMの20wt%DPEPOドープ共蒸着膜における蛍光及び低温リン光(5K)スペクトルを表す図である。FIG. 26 (a) shows the fluorescence and low temperature phosphorescence (5K) spectrum in the AC-1MHPM 20 wt% DPEPO-doped co-deposited film, and FIG. 26 (b) shows the AC-2MHPM in the 20 wt% DPEPO-doped co-deposited film. Fluorescence and low temperature phosphorescence (5K) spectra are shown, and FIG. 26C is a diagram showing fluorescence and low temperature phosphorescence (5K) spectra in a 20 wt% DPEPO-doped co-deposited film of AC-3MHPM. 図27は、発光層をAc−PPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 27 is a diagram showing an EL spectrum of an organic EL element in which the light emitting layer is Ac-PPM: DPEPO (10 wt% DPEPO co-deposited film). 図28(a)は、発光層をAc−PPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表し、図28(b)は、発光層をAc−PPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係を表し、図28(c)は、発光層をAc−PPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の外部量子効率−輝度特性の関係を表す図である。FIG. 28A shows the relationship between current density-voltage-luminance characteristics of an organic EL element in which the light-emitting layer is Ac-PPM: DPEPO (10 wt% DPEPO co-deposited film), and FIG. 28 represents the relationship between the power efficiency and the luminance characteristics of the organic EL element in which Ac-PPM: DPEPO (10 wt% DPEPO co-deposited film) is used, and FIG. It is a figure showing the relationship of the external quantum efficiency-luminance characteristic of the organic EL element made into the vapor deposition film. 図29は、有機EL素子において、発光層をAc−PPM:DPEPO(10wt%DPEPO共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 29 is an energy diagram of the hole transport layer, the light emitting layer, and the electron transport layer when the light emitting layer is Ac-PPM: DPEPO (10 wt% DPEPO co-deposited film) in the organic EL device. 図30は、発光層をBCz−MPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 30 is a diagram illustrating an EL spectrum of an organic EL element in which the light emitting layer is BCz-MPM: DPEPO (10 wt% DPEPO co-deposited film). 図31(a)は、発光層をBCz−MPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表し、図31(b)は、発光層をBCz−MPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係を表し、図31(c)は、発光層をBCz−MPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の外部量子効率−輝度特性の関係を表す図である。FIG. 31A shows the relationship between current density-voltage-luminance characteristics of an organic EL element in which the light emitting layer is BCz-MPM: DPEPO (10 wt% DPEPO co-deposited film), and FIG. FIG. 31C shows the relationship between the power efficiency and the luminance characteristics of an organic EL element in which BCz-MPM: DPEPO (10 wt% DPEPO co-deposited film) is used, and FIG. It is a figure showing the relationship of the external quantum efficiency-luminance characteristic of the organic EL element made into the vapor deposition film. 図32は、有機EL素子において、発光層をBCz−MPM:DPEPO(10wt%DPEPO共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 32 is an energy diagram of a hole transport layer, a light emitting layer, and an electron transport layer when the light emitting layer is BCz-MPM: DPEPO (10 wt% DPEPO co-deposited film) in the organic EL device. 図33は、発光層をAc−PPM:PO9(10wt%PO9共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 33 is a diagram showing an EL spectrum of an organic EL element in which the light emitting layer is Ac-PPM: PO9 (10 wt% PO9 co-deposited film). 図34(a)は発光層をAc−PPM:PO9(10wt%PO9共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表し、図34(b)は発光層をAc−PPM:PO9(10wt%PO9共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係を表し、図34(c)は発光層をAc−PPM:PO9(10wt%PO9共蒸着膜)とした有機EL素子の外部量子効率−輝度特性の関係を表す図である。なお、比較のため、図34(a)〜(c)中、図28(a)〜(c)が重ねて示されている。FIG. 34 (a) shows the relationship between the current density-voltage-luminance characteristics of an organic EL element in which the light emitting layer is Ac-PPM: PO9 (10 wt% PO9 co-deposited film), and FIG. -PPM: PO9 (10 wt% PO9 co-deposited film) represents the relationship between the power efficiency and luminance characteristics of the organic EL element, and FIG. 34 (c) shows the light emitting layer as Ac-PPM: PO9 (10 wt% PO9 co-deposited film). It is a figure showing the relationship between the external quantum efficiency-luminance characteristic of the organic EL element made into. For comparison, FIGS. 28 (a) to 28 (c) are shown in an overlapping manner in FIGS. 34 (a) to 34 (c). 図35は、発光層をAc−PPM:PO9(10wt%PO9共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 35 is an energy diagram of a hole transport layer, a light-emitting layer, and an electron transport layer when the light-emitting layer is Ac-PPM: PO9 (10 wt% PO9 co-deposited film). 図36は、発光層をAc−HPM、Ac−MPM、Ac−PPM,Ac−SPM、又はAc−NPM(それぞれ10wt%DPEPO共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 36 shows a hole transport layer, a light emitting layer, and an electron transport when the light emitting layer is Ac-HPM, Ac-MPM, Ac-PPM, Ac-SPM, or Ac-NPM (each 10 wt% DPEPO co-deposited film). It is an energy diagram of a layer. 図37は、発光層をAc−SPM、Ac−HPM、Ac−PPM、Ac−MPM、又はAc−NPM(それぞれ10wt%DPEPO共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 37 is a diagram showing an EL spectrum of an organic EL element in which the light emitting layer is Ac-SPM, Ac-HPM, Ac-PPM, Ac-MPM, or Ac-NPM (each 10 wt% DPEPO co-deposited film). 図38(a)は、発光層をAc−SPM、Ac−HPM、Ac−PPM、Ac−MPM、又はAc−NPM(それぞれ10wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表し、図38(b)は、発光層をAc−SPM、Ac−HPM、Ac−PPM、Ac−MPM、又はAc−NPM(それぞれ10wt%DPEPO共蒸着膜)としたとした有機EL素子の外部量子効率−輝度特性の関係を表し、図38(c)は、発光層をAc−SPM、Ac−HPM、Ac−PPM、Ac−MPM、又はAc−NPM(それぞれ10wt%DPEPO共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係を表す図である。FIG. 38A shows current density-voltage- of an organic EL element in which the light emitting layer is Ac-SPM, Ac-HPM, Ac-PPM, Ac-MPM, or Ac-NPM (each 10 wt% DPEPO co-deposited film). FIG. 38B shows a relationship of luminance characteristics, and the light emitting layer is Ac-SPM, Ac-HPM, Ac-PPM, Ac-MPM, or Ac-NPM (each 10 wt% DPEPO co-deposited film). FIG. 38C shows the relationship between the external quantum efficiency and luminance characteristics of the organic EL element. FIG. 38C shows that the light emitting layer is Ac-SPM, Ac-HPM, Ac-PPM, Ac-MPM, or Ac-NPM (each 10 wt% DPEPO). It is a figure showing the relationship of the power efficiency-luminance characteristic of the organic EL element made into the co-deposition film | membrane. 図39は、発光層をAc−HPM:mCP(10wt%mCP共蒸着膜)及びAc−HPM:DPEPO(10wt%DPEPO共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 39 shows the hole transport layer, light-emitting layer, and electron transport layer when the light-emitting layer is Ac-HPM: mCP (10 wt% mCP co-deposited film) and Ac-HPM: DPEPO (10 wt% DPEPO co-deposited film). It is an energy diagram. 図40は、発光層をAc−HPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 40 is a diagram illustrating an EL spectrum of an organic EL element in which the light emitting layer is Ac-HPM: DPEPO (10 wt% DPEPO co-deposited film). 図41(a)は、発光層をAc−MPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表し、図41(b)は、発光層をAc−MPM:DPEPO(10wt%DPEPO共蒸着膜)としたとした有機EL素子の電力効率−輝度特性の関係を表し、図41(c)は、発光層をAc−MPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の外部量子効率−輝度特性の関係を表す図である。FIG. 41A shows the relationship between current density-voltage-luminance characteristics of an organic EL element in which the light-emitting layer is Ac-MPM: DPEPO (10 wt% DPEPO co-deposited film), and FIG. FIG. 41C shows the relationship between the power efficiency and the luminance characteristics of the organic EL element in which Ac-MPM: DPEPO (10 wt% DPEPO co-deposited film) is used, and FIG. 41C shows the light emitting layer as Ac-MPM: DPEPO (10 wt%). It is a figure showing the relationship of the external quantum efficiency-luminance characteristic of the organic EL element made into DPEPO co-deposition film | membrane. 図42は、発光層をPXZ−PPM:CBP(10wt%CBP共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 42 is an energy diagram of the hole transport layer, the light emitting layer, and the electron transport layer when the light emitting layer is PXZ-PPM: CBP (10 wt% CBP co-evaporated film). 図43は、発光層をPXZ−PPM:CBPとし、PXZ−PPMの濃度を5wt%、10wt%、15wt%、20wt%、又は50wt%とした有機EL素子のELスペクトルを表す図である。FIG. 43 is a diagram illustrating an EL spectrum of an organic EL element in which the light emitting layer is PXZ-PPM: CBP and the concentration of PXZ-PPM is 5 wt%, 10 wt%, 15 wt%, 20 wt%, or 50 wt%. 図44(a)は、発光層をPXZ−PPM:CBPとし、PXZ−PPMの濃度を5wt%、10wt%、15wt%、20wt%、又は50wt%とした有機EL素子の輝度特性−電圧の関係を表し、図44(b)は、発光層をPXZ−PPM:CBPとし、PXZ−PPMの濃度を5wt%、10wt%、15wt%、20wt%、又は50wt%とした有機EL素子の外部量子効率−輝度特性の関係を表し、図44(c)は、発光層をPXZ−PPM:CBPとし、PXZ−PPMの濃度を5wt%、10wt%、15wt%、20wt%、又は50wt%としたとした有機EL素子の電力効率−輝度特性の関係を表す図である。FIG. 44A shows the relationship between the luminance characteristics and voltage of an organic EL element in which the light emitting layer is PXZ-PPM: CBP and the concentration of PXZ-PPM is 5 wt%, 10 wt%, 15 wt%, 20 wt%, or 50 wt%. FIG. 44B shows the external quantum efficiency of the organic EL element in which the light emitting layer is PXZ-PPM: CBP and the concentration of PXZ-PPM is 5 wt%, 10 wt%, 15 wt%, 20 wt%, or 50 wt%. FIG. 44 (c) shows the relationship between luminance characteristics, and the light emitting layer is PXZ-PPM: CBP, and the concentration of PXZ-PPM is 5 wt%, 10 wt%, 15 wt%, 20 wt%, or 50 wt%. It is a figure showing the relationship of the power efficiency-luminance characteristic of an organic EL element. 図45は、発光層をAc−MMPM:mCP(10wt%mCP共蒸着膜)及びAc−MMPM:DPEPO(10wt%DPEPO共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 45 shows the hole transport layer, the light-emitting layer, and the electron transport layer when the light-emitting layer is Ac-MMPM: mCP (10 wt% mCP co-deposited film) and Ac-MMPM: DPEPO (10 wt% DPEPO co-deposited film). It is an energy diagram. 図46は、発光層をAc−MMPM:mCP(10wt%mCP共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 46 is a diagram showing an EL spectrum of an organic EL element in which the light emitting layer is Ac-MMPM: mCP (10 wt% mCP co-deposited film). 図47(a)は、発光層をAc−MMPM:mCP(10wt%mCP共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表し、図47(b)は、発光層をAc−MMPM:mCP(10wt%mCP共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係を表し、図47(c)は、発光層をAc−MMPM:mCP(10wt%mCP共蒸着膜)とした有機EL素子の外部量子効率−輝度特性の関係を表す図である。FIG. 47A shows the relationship between the current density-voltage-luminance characteristics of an organic EL element in which the light emitting layer is Ac-MMPM: mCP (10 wt% mCP co-deposited film), and FIG. 47 represents the relationship between the power efficiency and the luminance characteristics of the organic EL device in which Ac-MMPM: mCP (10 wt% mCP co-deposited film) is used. FIG. It is a figure showing the relationship of the external quantum efficiency-luminance characteristic of the organic EL element made into the vapor deposition film. 図48は、発光層の一方をAc−46DPPM、Ac−26DPPM、又はCzAc−26DPPM(それぞれ10wt%mCP共蒸着膜)とし、他方をAc−46DPPM、Ac−26DPPM、又はCzAc−26DPPM(それぞれ10wt%DPEPO共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。In FIG. 48, one of the light emitting layers is Ac-46DPPM, Ac-26DPPM, or CzAc-26DPPM (each 10 wt% mCP co-deposited film), and the other is Ac-46DPPM, Ac-26DPPM, or CzAc-26DPPM (each 10 wt%). It is an energy diagram of a positive hole transport layer, a light emitting layer, and an electron carrying layer when it is set as a DPEPO co-deposition film | membrane. 図49は、発光層をAc−46DPPM:mCP(10wt%mCP共蒸着膜)及びAc−46DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 49 is a diagram showing an EL spectrum of an organic EL element in which the light emitting layer is Ac-46DPPM: mCP (10 wt% mCP co-deposited film) and Ac-46DPPM: DPEPO (10 wt% DPEPO co-deposited film). 図50(a)は、発光層をAc−46DPPM:mCP(10wt%mCP共蒸着膜)及びAc−46DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係;発光層をAc−26DPPM:mCP(10wt%mCP共蒸着膜)及びAc−26DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係;及び発光層をCzAc−26DPPM:mCP(10wt%mCP共蒸着膜)及びCzAc−26DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表す。図50(b)は、発光層をAc−46DPPM:mCP(10wt%mCP共蒸着膜)及びAc−46DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係;発光層をAc−26DPPM:mCP(10wt%mCP共蒸着膜)及びAc−26DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係;及び発光層をCzAc−26DPPM:mCP(10wt%mCP共蒸着膜)及びCzAc−26DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係を表す。図50(c)は、発光層をAc−46DPPM:mCP(10wt%mCP共蒸着膜)及びAc−46DPPM:DPEPO(10wt%DPEPO共蒸着膜)としたとした有機EL素子の外部量子効率−輝度特性の関係;発光層をAc−26DPPM:mCP(10wt%mCP共蒸着膜)及びAc−26DPPM:DPEPO(10wt%DPEPO共蒸着膜)とした有機EL素子の外部量子効率−輝度特性の関係;及び発光層をCzAc−26DPPM:mCP(10wt%mCP共蒸着膜)及びCzAc−26DPPM:DPEPO(10wt%DPEPO共蒸着膜)としたとした有機EL素子の外部量子効率−輝度特性の関係を表す。FIG. 50A shows current density-voltage-luminance characteristics of an organic EL element in which the light emitting layer is Ac-46DPPM: mCP (10 wt% mCP co-deposited film) and Ac-46DPPM: DPEPO (10 wt% DPEPO co-deposited film). A relationship of current density-voltage-luminance characteristics of an organic EL device in which the light emitting layer is Ac-26DPPM: mCP (10 wt% mCP co-deposited film) and Ac-26DPPM: DPEPO (10 wt% DPEPO co-deposited film); The relationship of the current density-voltage-luminance characteristic of the organic EL element which made the light emitting layer CzAc-26DPPM: mCP (10 wt% mCP co-deposited film) and CzAc-26DPPM: DPEPO (10 wt% DPEPO co-deposited film) is represented. FIG. 50B shows the relationship between the power efficiency and the luminance characteristics of the organic EL element in which the light emitting layer is Ac-46DPPM: mCP (10 wt% mCP co-deposited film) and Ac-46DPPM: DPEPO (10 wt% DPEPO co-deposited film). The relationship between the power efficiency and the luminance characteristics of the organic EL element in which the light emitting layer is Ac-26DPPM: mCP (10 wt% mCP co-deposited film) and Ac-26DPPM: DPEPO (10 wt% DPEPO co-deposited film); and the light emitting layer is CzAc It represents the relationship between the power efficiency and the luminance characteristics of organic EL elements of −26 DPPM: mCP (10 wt% mCP co-deposited film) and CzAc-26DPPM: DPEPO (10 wt% DPEPO co-deposited film). FIG. 50C shows the external quantum efficiency-luminance of the organic EL device in which the light emitting layer is Ac-46DPPM: mCP (10 wt% mCP co-deposited film) and Ac-46DPPM: DPEPO (10 wt% DPEPO co-deposited film). Relationship of characteristics; Relationship between external quantum efficiency and luminance characteristics of organic EL elements in which the light emitting layer is Ac-26DPPM: mCP (10 wt% mCP co-deposited film) and Ac-26DPPM: DPEPO (10 wt% DPEPO co-deposited film); The relationship of the external quantum efficiency of the organic EL element which made the light emitting layer CzAc-26DPPM: mCP (10 wt% mCP co-deposited film) and CzAc-26DPPM: DPEPO (10 wt% DPEPO co-deposited film) is represented. 図51は、発光層をAC−1MHPM、AC−2MHPM、又はAC−3MHPM(それぞれ20wt%DPEPO共蒸着膜)としたときの正孔輸送層、発光層及び電子輸送層のエネルギーダイアグラムである。FIG. 51 is an energy diagram of the hole transport layer, the light-emitting layer, and the electron-transport layer when the light-emitting layer is AC-1MHPM, AC-2MHPM, or AC-3MHPM (each 20 wt% DPEPO co-deposited film). 図52は、発光層をAC−1MHPM、AC−2MHPM、又はAC−3MHPM(それぞれ20wt%DPEPO共蒸着膜)とした有機EL素子のELスペクトルを表す図である。FIG. 52 is a diagram illustrating an EL spectrum of an organic EL element in which the light-emitting layer is AC-1MHPM, AC-2MHPM, or AC-3MHPM (each 20 wt% DPEPO co-deposited film). 図53(a)は、発光層をAC−1MHPM、AC−2MHPM、又はAC−3MHPM(それぞれ20wt%DPEPO共蒸着膜)とした有機EL素子の電流密度−電圧−輝度特性の関係を表し、図53(b)は、発光層をAC−1MHPM、AC−2MHPM、又はAC−3MHPM(それぞれ20wt%DPEPO共蒸着膜)とした有機EL素子の外部量子効率−輝度特性の関係を表し、図53(c)は、発光層をAC−1MHPM、AC−2MHPM、又はAC−3MHPM(それぞれ20wt%DPEPO共蒸着膜)とした有機EL素子の電力効率−輝度特性の関係を表す。FIG. 53A shows the relationship between the current density-voltage-luminance characteristics of an organic EL element in which the light emitting layer is AC-1 MHPM, AC-2 MHPM, or AC-3 MHPM (each 20 wt% DPEPO co-deposited film). 53 (b) shows the relationship between the external quantum efficiency and the luminance characteristics of an organic EL element in which the light emitting layer is AC-1MHPM, AC-2MHPM, or AC-3MHPM (each 20 wt% DPEPO co-deposited film). c) represents the relationship between the power efficiency and the luminance characteristics of the organic EL element in which the light emitting layer is AC-1 MHPM, AC-2 MHPM, or AC-3 MHPM (each 20 wt% DPEPO co-deposited film). 図54は有機EL素子の典型的な構成を示す図である。FIG. 54 is a diagram showing a typical configuration of an organic EL element.

以下、本発明について詳細に説明する。
[ピリミジン誘導体]
本発明のピリミジン誘導体は、下記一般式(1)で表され、かつ、その励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)の間のエネルギー差(ΔEST)が0.25eV以下である。

Figure 2018035129
Hereinafter, the present invention will be described in detail.
[Pyrimidine derivatives]
The pyrimidine derivative of the present invention is represented by the following general formula (1), and the energy difference (ΔE ST ) between the excited singlet energy (E S1 ) and the triplet excited energy (E T1 ) is 0.25 eV. It is as follows.
Figure 2018035129

上記一般式(1)中、R1は、水素原子、アリール基、アルキル基、アルコキシ基、チオアルコキシ基、アミノ基、シアノ基、カルボニル基、又はスルホニル基を表す。具体的には、アリール基にはフェニル基、ビフェニル基、ターフェニル基、ピリジル基、ターピリジル基及びナフチル基が挙げられ、アルキル基には、メチル基、エチル基、1−プロピル基及び2−プロピル基が挙げられ、アルコキシ基には、メトキシ基及びエトキシ基が挙げられ、チオアルコキシ基には、チオメチル基及びチオエチル基が挙げられ、アミノ基にはジメチルアミノ基、ジエチルアミノ基、及び環状のピペリジル基が挙げられ、カルボニル基には、アセチル基及びベンゾフェノン基が挙げられ、スルホニル基には、メチルスルホニル基及びフェニルスルホニル基が挙げられる。
8は、メチル基、アリール基、アルコキシ基、アシル基又はシアノ基を表す。具体的には、アリール基及びアルコキシ基には、R1におけるものと同じ基が挙げられ、アシル基にはアセチル基等が挙げられる。
In the general formula (1), R 1 represents a hydrogen atom, an aryl group, an alkyl group, an alkoxy group, a thioalkoxy group, an amino group, a cyano group, a carbonyl group, or a sulfonyl group. Specifically, the aryl group includes a phenyl group, a biphenyl group, a terphenyl group, a pyridyl group, a terpyridyl group, and a naphthyl group, and the alkyl group includes a methyl group, an ethyl group, a 1-propyl group, and a 2-propyl group. The alkoxy group includes a methoxy group and an ethoxy group, the thioalkoxy group includes a thiomethyl group and a thioethyl group, and the amino group includes a dimethylamino group, a diethylamino group, and a cyclic piperidyl group. The carbonyl group includes an acetyl group and a benzophenone group, and the sulfonyl group includes a methylsulfonyl group and a phenylsulfonyl group.
R 8 represents a methyl group, an aryl group, an alkoxy group, an acyl group or a cyano group. Specifically, the aryl group and the alkoxy group include the same groups as those in R 1 , and the acyl group includes an acetyl group.

置換基Dは、水素原子又は電子供与性基を表す。電子供与性基としては、例えば、アクリジニル基、9,10−ジヒドロ−9,9−ジメチルアクリジニル基、フェナザシリニル基、及びトリアリールアミン基等が挙げられる。   The substituent D represents a hydrogen atom or an electron donating group. Examples of the electron donating group include an acridinyl group, a 9,10-dihydro-9,9-dimethylacridinyl group, a phenazacillinyl group, and a triarylamine group.

nは1〜3の整数である。一般式(1)中に、置換基Dを有するフェニル基を1〜3個有することにより、一般式(1)で表されるピリミジン誘導体において、発光部位であるピリミジン骨格に適度に電子を供給することができ、一重項と三重項とのエネルギー差(ΔEST)を小さくすることができる。 n is an integer of 1 to 3. By having 1 to 3 phenyl groups having the substituent D in the general formula (1), in the pyrimidine derivative represented by the general formula (1), electrons are appropriately supplied to the pyrimidine skeleton that is a light emitting site. The energy difference (ΔE ST ) between the singlet and the triplet can be reduced.

nは2又は3の場合、置換基Dを有するフェニル基は、互いに、対称構造又は非対称構造を有する。なお、これらの基は、本発明の効果を損なわない範囲で、例えば、アルコキシ基、チオアルコキシ基、及びアルキル基等の置換基を有していてもよい。   When n is 2 or 3, the phenyl groups having the substituent D have a symmetric structure or an asymmetric structure with respect to each other. In addition, these groups may have substituents, such as an alkoxy group, a thioalkoxy group, and an alkyl group, in the range which does not impair the effect of this invention.

上記一般式(1)で表されるピリミジン誘導体は、より具体的には、下記一般式(2)で表される。

Figure 2018035129
上記一般式(2)中、R1及びR8は、一般式(1)におけるR1について上記したとおりである。
置換基Dはそれぞれ独立に、下記一般式(3)で表される置換基のいずれかを表す。すなわち、置換基Dは、アクリジン骨格、カルバゾール骨格、又はこれらの誘導体骨格(例えば、ジメチルアクリジン誘導体、フェナザシリン誘導体、スピロアクリジンフルオレン誘導体、又はスピロアクリジンキサンテン誘導体等)を含む置換基である。
Figure 2018035129
More specifically, the pyrimidine derivative represented by the general formula (1) is represented by the following general formula (2).
Figure 2018035129
In the general formula (2), R 1 and R 8 are as described above for R 1 in the general formula (1).
The substituents D each independently represent any of the substituents represented by the following general formula (3). That is, the substituent D is a substituent including an acridine skeleton, a carbazole skeleton, or a derivative skeleton thereof (for example, a dimethylacridine derivative, a phenazacillin derivative, a spiroacridine fluorene derivative, or a spiroacridine xanthene derivative).
Figure 2018035129

上記一般式(3)中、R2〜R7はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、Xは、メチレン基、−CRab−、−O−(エーテル結合)、−S−(スルフィド結合)又は−S(=O)2−(スルホニル基)を表し、Ra及びRbは互いに連結して環を形成していてもよい。 In the general formula (3), R 2 to R 7 each independently represents a hydrogen atom, an alkyl group or an aryl group, and X represents a methylene group, —CR a R b —, —O— (ether bond), —S— (sulfide bond) or —S (═O) 2 — (sulfonyl group) is represented, and R a and R b may be linked to each other to form a ring.

2〜R7において、具体的には、アリール基には、フェニル基、ビフェニル基、ターフェニル基、ピリジル基、ターピリジル基、及びナフチル基、アルキル基には、メチル基、エチル基、1−プロピル基及び2−プロピル基が挙げられ、アルコキシ基には、メトキシ基及びエトキシ基、チオアルコキシ基には、チオメチル基及びチオエチル基が挙げられ、アミノ基には、ジメチルアミノ基、ジエチルアミノ基、及び環状のピペリジル基が挙げられ、カルボニル基には、アセチル基及びベンゾフェノン基が挙げられ、スルホニル基には、メチルスルホニル基及びフェニルスルホニル基が挙げられる。これらのうち、アリール基には、フェニル基及びナフチル基が好ましく、アルキル基には、メチル基、エチル基、1−プロピル基及び2−プロピル基が好ましく、アルコキシ基には、メトキシ基及びエトキシ基が好ましく、チオアルコキシ基には、チオメトキシ基及びチオエトキシ基が好ましく、アミノ基には、ジメチルアミノ基及びピペリジル基が好ましく、カルボニル基には、ケトン基及びベンゾフェノン基が好ましく、スルホニル基には、メチルスルホニル基及びフェニルスルホニル基が好ましい。 In R 2 to R 7 , specifically, an aryl group includes a phenyl group, a biphenyl group, a terphenyl group, a pyridyl group, a terpyridyl group, and a naphthyl group, and an alkyl group includes a methyl group, an ethyl group, 1- Propyl group and 2-propyl group are included, alkoxy group is methoxy group and ethoxy group, thioalkoxy group is thiomethyl group and thioethyl group, amino group is dimethylamino group, diethylamino group, and Examples include cyclic piperidyl groups, carbonyl groups include acetyl groups and benzophenone groups, and sulfonyl groups include methylsulfonyl groups and phenylsulfonyl groups. Of these, the aryl group is preferably a phenyl group and a naphthyl group, the alkyl group is preferably a methyl group, an ethyl group, a 1-propyl group and a 2-propyl group, and the alkoxy group is a methoxy group and an ethoxy group. The thioalkoxy group is preferably a thiomethoxy group and a thioethoxy group, the amino group is preferably a dimethylamino group and a piperidyl group, the carbonyl group is preferably a ketone group and a benzophenone group, and the sulfonyl group is a methyl group. A sulfonyl group and a phenylsulfonyl group are preferred.

Xにおいて、−CRab−の具体例には、ジメチルメチレン基、ジフェニルメチレン基、ジトリルメチレン基及びジピリジルメチレン基等が挙げられる。また、Ra及びRbは、互いに連結して、例えば、シクロペンテン、シクロヘキサン及びシクロヘプタン等の5〜7員環を形成してもよく、またこれらの環は、本発明の効果を損なわない範囲で、例えば、アルコキシ基、チオアルコキシ基、カルボニル基及びエステル基等の置換基を有していてもよい。 Specific examples of —CR a R b — in X include a dimethylmethylene group, a diphenylmethylene group, a ditolylmethylene group, and a dipyridylmethylene group. R a and R b may be linked to each other to form, for example, a 5- to 7-membered ring such as cyclopentene, cyclohexane, and cycloheptane, and these rings do not impair the effects of the present invention. For example, it may have a substituent such as an alkoxy group, a thioalkoxy group, a carbonyl group, and an ester group.

前記一般式(2)中の置換基Dは、いずれも高い三重項エネルギーを有するという観点から、ジメチルアクリジン誘導体(Ra、Rbがメチル基)、又はカルバゾール骨格を含む置換基であることが好ましい。 The substituent D in the general formula (2) is a dimethylacridine derivative (R a and R b are methyl groups) or a substituent containing a carbazole skeleton from the viewpoint that both have high triplet energy. preferable.

上記一般式(1)又は(2)で表されるピリミジン誘導体は、下記構造式で表されることがより好ましい。

Figure 2018035129
The pyrimidine derivative represented by the general formula (1) or (2) is more preferably represented by the following structural formula.
Figure 2018035129

上記一般式(1)又は(2)で表されるピリミジン誘導体は、下記構造式で表されることが特に好ましい。

Figure 2018035129
The pyrimidine derivative represented by the general formula (1) or (2) is particularly preferably represented by the following structural formula.
Figure 2018035129

一般式(1)又は(2)で表されるピリミジン誘導体は、種々の公知の方法により製造することができる。例えば、Ac−PPMは、鈴木・宮浦カップリング反応を用いて製造することができる。

Figure 2018035129
The pyrimidine derivative represented by the general formula (1) or (2) can be produced by various known methods. For example, Ac-PPM can be produced using a Suzuki-Miyaura coupling reaction.
Figure 2018035129

すなわち、四口フラスコにDMAC−Bpinと4,6−ジクロロ−2−フェニルピリミジンとを入れて、Pd(0)触媒及び配位子の存在下、炭酸カリウムなどの塩基とともに加熱還流することにより、67%の収率で合成することができる。   That is, by putting DMAC-Bpin and 4,6-dichloro-2-phenylpyrimidine in a four-necked flask and heating and refluxing with a base such as potassium carbonate in the presence of a Pd (0) catalyst and a ligand, It can be synthesized with a yield of 67%.

ただし、一般式(1)又は(2)で表されるピリミジン誘導体は、上記方法に限られることなく、公知の種々の方法を組み合わせて製造することができる。   However, the pyrimidine derivative represented by the general formula (1) or (2) is not limited to the above method and can be produced by combining various known methods.

上記のようにして得られる本発明の一般式(1)で表されるピリミジン誘導体は、励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)との間のエネルギー差(ΔEST)が0.25eV以下であり、高い発光量子効率を有する。このような励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)との間のエネルギー差(ΔEST)は、例えば、低温(5K)及び常温(300K)においてPLスペクトルを測定し、低温(5K)において観測されるリン光スペクトルの立ち上がりと、常温(300K)において観測される蛍光発光スペクトルの立ち上がりから、それぞれ励起一重項エネルギー(ES1)及び三重項励起エネルギー(ET1)を見積もり、三重項励起エネルギー(ET1)から励起一重項エネルギー(ES1)を引いて求めることができる。また、上記ピリミジン誘導体では、発光部位であるピリミジン骨格に、置換基Dを有するフェニル基、具体的には、置換基Dとしてカルバゾール部位、アクリジン部位、及びジメチルアクリジン誘導体等を有する電子供与性部位を導入することにより、三重項励起子から一重項励起子への逆項間交差が生じ、アップコンバージョン発光を観測することができる。よって、上記ピリミジン誘導体は、熱活性化遅延蛍光(TADF)材料として好適である。
さらに、上記ピリミジン誘導体において、ピリミジン骨格、並びに、置換基Dであるカルバゾール部位、ジメチルアクリジン部位、及びジメチルアクリジン誘導体部位は、それぞれ高い三重項エネルギー(ET1)を有し、HOMOとLUMOとのエネルギー差(ΔEH-L)ギャップが大きくなる傾向が見られる。このため、上記ピリミジン誘導体には、短波長領域の発光色である青色の発光が期待できる。
The pyrimidine derivative represented by the general formula (1) of the present invention obtained as described above has an energy difference (ΔE ST ) between the excited singlet energy (E S1 ) and the triplet excited energy (E T1 ). Is 0.25 eV or less and has high emission quantum efficiency. The energy difference (ΔE ST ) between such excited singlet energy (E S1 ) and triplet excitation energy (E T1 ) is measured, for example, at a low temperature (5 K) and a normal temperature (300 K), The excitation singlet energy (E S1 ) and triplet excitation energy (E T1 ) are estimated from the rise of the phosphorescence spectrum observed at low temperature (5K) and the rise of the fluorescence emission spectrum observed at room temperature (300K), respectively. The excitation singlet energy (E S1 ) is subtracted from the triplet excitation energy (E T1 ). In the pyrimidine derivative, a pyrimidine skeleton that is a light emitting site has a phenyl group having a substituent D, specifically, an electron donating site having a carbazole site, an acridine site, a dimethylacridine derivative, or the like as the substituent D. By introducing it, a reverse intersystem crossing from a triplet exciton to a singlet exciton occurs, and upconversion emission can be observed. Therefore, the pyrimidine derivative is suitable as a thermally activated delayed fluorescence (TADF) material.
Further, in the pyrimidine derivative, the pyrimidine skeleton and the carbazole moiety, the dimethylacridine moiety, and the dimethylacridine derivative moiety, which are the substituent D, each have a high triplet energy (E T1 ), and the energy of HOMO and LUMO. The difference (ΔE HL ) gap tends to increase. For this reason, the pyrimidine derivative can be expected to emit blue light, which is an emission color in a short wavelength region.

[発光材料・有機EL素子]
本発明の発光材料は、上記ピリミジン誘導体よりなる。
本発明の有機EL素子は、上記ピリミジン誘導体を用いたものである。
ここで、図45に上記有機EL素子の典型的な層構造を示す。
上記有機EL素子は、典型的には、基板1上に陽極2として、例えば、ITO等を成膜し、その上に正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層及び陰極がこの順に積層されてなる。
[Light emitting material / organic EL element]
The light emitting material of the present invention comprises the above pyrimidine derivative.
The organic EL device of the present invention uses the above pyrimidine derivative.
Here, FIG. 45 shows a typical layer structure of the organic EL element.
The organic EL element typically has, for example, an ITO film formed on the substrate 1 as the anode 2, and a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer formed thereon. A layer and a cathode are laminated in this order.

基板1には、透明かつ平滑であって、少なくとも70%以上の全光線透過率を有するものが用いられ、具体的には、フレキシブルな透明基板である、数μm厚のガラス基板や特殊な透明プラスチック等が用いられる。   The substrate 1 is transparent and smooth and has a total light transmittance of at least 70%. Specifically, the substrate 1 is a flexible transparent substrate such as a glass substrate having a thickness of several μm or a special transparent substrate. Plastic or the like is used.

基板上に形成される、陽極2、正孔注入層3、正孔輸送層4、発光層5、電子輸送層6、電子注入層7、陰極8といった薄膜は、真空蒸着法又は塗布法で積層される。真空蒸着法を用いる場合、通常10-3Pa以下に減圧した雰囲気で、蒸着物を加熱して行う。各層の膜厚は、層の種類や使用する材料によって異なるが、通常、陽極2及び陰極8は100nm程度、発光層5を含む他の層は50nm未満である。なお、電子注入層7等は、例えば1nm以下の厚みで形成されることもある。 Thin films such as the anode 2, the hole injection layer 3, the hole transport layer 4, the light emitting layer 5, the electron transport layer 6, the electron injection layer 7 and the cathode 8 formed on the substrate are laminated by a vacuum deposition method or a coating method. Is done. When using a vacuum vapor deposition method, the deposited material is usually heated in an atmosphere reduced to 10 −3 Pa or lower. The thickness of each layer varies depending on the type of layer and the material used, but usually the anode 2 and the cathode 8 are about 100 nm, and the other layers including the light emitting layer 5 are less than 50 nm. The electron injection layer 7 or the like may be formed with a thickness of 1 nm or less, for example.

陽極2には、仕事関数が大きく、また全光線透過率は通常80%以上であるものが用いられる。具体的には、陽極2から発光した光を透過させるため、ITOやZnO等の透明導電性セラミックス、PEDOT/PSSやポリアニリン等の透明導電性高分子、その他の透明導電性材料が用いられる。陽極2の膜厚は、通常10〜200nmである。   The anode 2 has a large work function and a total light transmittance of usually 80% or more. Specifically, in order to transmit light emitted from the anode 2, transparent conductive ceramics such as ITO and ZnO, transparent conductive polymers such as PEDOT / PSS and polyaniline, and other transparent conductive materials are used. The film thickness of the anode 2 is usually 10 to 200 nm.

発光層5には、有機EL素子で用いられる他の発光層と同様に、本発明の発光材料であるピリミジン誘導体と共にホスト化合物を併用することが好ましい。ホスト化合物としては、蛍光及びTADFに基づく発光特性を損なわないものであれば、特に制限されないが、例えば、DPEPO、PO9、4,4’−ビス(N−カルバゾリル)−1,1’−ビフェニル(CBP)、2,8−ビス(ジフェニルホスホリル)ジベンゾチオフェン(PPT)、アダマンタン・アントラセン(Ad−Ant)、ルブレン、及び2,2’−ビ(9,10−ジフェニルアントラセン)(TPBA)等が挙げられる。発光層5を構成する成分中、本発明の発光材料(ピリミジン誘導体)及びホスト化合物の含有率は、通常1〜50wt%、好ましくは5〜10wt%である。   In the light emitting layer 5, like the other light emitting layers used in the organic EL device, it is preferable to use a host compound together with the pyrimidine derivative which is the light emitting material of the present invention. The host compound is not particularly limited as long as it does not impair the emission characteristics based on fluorescence and TADF. For example, DPEPO, PO9, 4,4′-bis (N-carbazolyl) -1,1′-biphenyl ( CBP), 2,8-bis (diphenylphosphoryl) dibenzothiophene (PPT), adamantane anthracene (Ad-Ant), rubrene, and 2,2′-bi (9,10-diphenylanthracene) (TPBA). It is done. In the components constituting the light emitting layer 5, the content of the light emitting material (pyrimidine derivative) and the host compound of the present invention is usually 1 to 50 wt%, preferably 5 to 10 wt%.

陽極2から正孔を効率良く発光層に輸送するために陽極2と発光層5の間に正孔輸送層4が設けられる。正孔輸送層4を形成する正孔輸送材料には、例えば、TAPC、N,N’−ジフェニル−N,N’−ジ(m−トリル)ベンジジン(TPD)、N,N’−ジ(1−ナフチル)−N,N’−ジフェニルベンジジン(α−NPD)、4,4’,4’’トリ−9−カルバゾリルトリフェニルアミン(TCTA)及び4,4’,4’’トリス[フェニル(m−トリル)アミノ]トリフェニルアミン等が挙げられる。   In order to efficiently transport holes from the anode 2 to the light emitting layer, a hole transport layer 4 is provided between the anode 2 and the light emitting layer 5. Examples of the hole transport material forming the hole transport layer 4 include TAPC, N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (TPD), N, N′-di (1 -Naphthyl) -N, N′-diphenylbenzidine (α-NPD), 4,4 ′, 4 ″ tri-9-carbazolyltriphenylamine (TCTA) and 4,4 ′, 4 ″ tris [phenyl ( m-tolyl) amino] triphenylamine and the like.

陰極から電子を効率良く発光層に輸送するために陰極8と発光層5の間に電子輸送層6が設けられる。電子輸送層6を形成する電子輸送材料には、例えば、B3PymPm、2−(4−ビフェニリル)−5−(p−t−ブチルフェニル)−1,3,4−オキサジアゾール(tBu−PBD)、1,3−ビス[5−(4−t−ブチルフェニル)−2−[1,3,4]オキサジアゾリル]ベンゼン(OXD−7)、3−(ビフェニル−4−イル)−5−(4−t−ブチルフェニル)−4−フェニル−4H−1,2,4−トリアゾール(TAZ)、バソクプロイン(BCP)、1,3,5−トリス(1−フェニル−1H−ベンズイミダゾール−2−イル)ベンゼン(TPBi)等が挙げられる。
上記各層の他に、正孔注入層3及び電子注入層7、さらに、正孔阻止層、電子阻止層及び励起子阻止層等の層が必要に応じて形成される。
An electron transport layer 6 is provided between the cathode 8 and the light emitting layer 5 in order to efficiently transport electrons from the cathode to the light emitting layer. Examples of the electron transport material forming the electron transport layer 6 include B3PymPm, 2- (4-biphenylyl) -5- (pt-butylphenyl) -1,3,4-oxadiazole (tBu-PBD). 1,3-bis [5- (4-t-butylphenyl) -2- [1,3,4] oxadiazolyl] benzene (OXD-7), 3- (biphenyl-4-yl) -5- (4 -T-butylphenyl) -4-phenyl-4H-1,2,4-triazole (TAZ), bathocuproine (BCP), 1,3,5-tris (1-phenyl-1H-benzimidazol-2-yl) Examples include benzene (TPBi).
In addition to the above layers, a hole injection layer 3 and an electron injection layer 7, and a layer such as a hole blocking layer, an electron blocking layer, and an exciton blocking layer are formed as necessary.

以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.

[一般式(1)で表されるピリミジン誘導体の合成]
合成物の同定に使用した機器及び測定条件は以下のとおりである。
(1)1H核磁気共鳴(NMR)装置
日本電子(株)製(400MHz)JNM−EX270FT−NMR型
(2)質量分析(MS)装置
日本電子(株)製JMS−K9[卓上GCQMS]及びWaters(株)製Zspray(SQ検出器2))
(3)昇華精製装置
(i)温度傾斜電気炉、形式:NPF80−500型、会社名:コスモ・テック(株)
(ii)サーマル定流量装置、形式:MC−1A、会社名:コフロック(株)
(iii)ロータリーポンプ、形式:GLD−136C、会社名:アルバック機工(株)
(4)元素分析装置
Perkin Elmer 2400II CHNS/O アナライザー
測定モード:CHNモード
[Synthesis of Pyrimidine Derivatives Represented by General Formula (1)]
The equipment and measurement conditions used for the identification of the composites are as follows.
(1) 1 H nuclear magnetic resonance (NMR) apparatus JEOL Ltd. (400 MHz) JNM-EX270FT-NMR type (2) mass spectrometry (MS) apparatus JEOL Ltd. JMS-K9 [desktop GCQMS] and Waters Co., Ltd. Zspray (SQ detector 2))
(3) Sublimation purification equipment (i) Temperature gradient electric furnace, model: NPF80-500 type, company name: Cosmo Tech Co., Ltd.
(Ii) Thermal constant flow rate device, model: MC-1A, company name: Coflock Co., Ltd.
(Iii) Rotary pump, model: GLD-136C, company name: ULVAC Kiko Co., Ltd.
(4) Elemental analyzer Perkin Elmer 2400II CHNS / O analyzer Measurement mode: CHN mode

[実施例1]Ac−PPMの合成
温度計、窒素導入管及び還流管を付けた50mlの四口フラスコに、DMAC−Bpin(1.42g、3.45mmol)、4,6−ジクロロ−2−フェニルピリミジン(0.39g、1.73mmol)、1.35Mリン酸三カリウム(K3PO4)溶液(6.4ml、8.63mmol)、及び脱水ジオキサン(30ml)を入れ、1時間の窒素バブリングを行った。その後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(Pb2(dba)3)(160mg、0.17mmol)及び2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(Sphos)(70mg、0.17mmol)を入れ、還流下で反応を行った。反応溶液は赤褐色透明溶液から黄色透明溶液に変化した。2時間後、反応を終了した。反応粗生成物をテトラヒドロフラン(THF)に溶解させ、吸引濾過した後、エバポレーションしてTHFを除去し、クロロホルム200mlに再び溶解させた。食塩水200mlで3回、分液洗浄を行った。精製はシリカゲルカラムクロマトグラフィーにより行った。インジェクション溶媒及び展開溶媒にはそれぞれクロロホルムを使用した。精製後、薄層クロマトグラフィー(thin layer chromatography;TLC)により、目的とする生成物のスポットのみが観察されることを確認した。エバポレーションしてクロロホルムを除去した後、メタノールで洗浄し、吸引濾過を行うことにより、黄色白色固体を得た。収量は0.82gであり、収率は67%であった。真空乾燥後、1H−NMR及びMSを測定した。
[Example 1] Synthesis of Ac-PPM To a 50 ml four-necked flask equipped with a thermometer, a nitrogen inlet tube and a reflux tube, DMAC-Bpin (1.42 g, 3.45 mmol), 4,6-dichloro-2- Phenylpyrimidine (0.39 g, 1.73 mmol), 1.35 M tripotassium phosphate (K 3 PO 4 ) solution (6.4 ml, 8.63 mmol), and dehydrated dioxane (30 ml) were added and nitrogen bubbling for 1 hour. Went. Tris (dibenzylideneacetone) dipalladium (0) (Pb 2 (dba) 3 ) (160 mg, 0.17 mmol) and 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (Sphos) (70 mg, 0 .17 mmol) was added and the reaction was carried out under reflux. The reaction solution changed from a reddish brown clear solution to a yellow clear solution. After 2 hours, the reaction was complete. The reaction crude product was dissolved in tetrahydrofuran (THF), filtered with suction, evaporated to remove THF, and redissolved in 200 ml of chloroform. Separation washing was performed 3 times with 200 ml of saline. Purification was performed by silica gel column chromatography. Chloroform was used for each of the injection solvent and the developing solvent. After purification, it was confirmed by thin layer chromatography (TLC) that only the target product spot was observed. After evaporation to remove chloroform, washing with methanol and suction filtration gave a yellow white solid. The yield was 0.82 g, and the yield was 67%. After vacuum drying, 1 H-NMR and MS were measured.

Ac−PPMの1H−NMR及びMSの結果を以下に示す。
1H-NMR(CDCl3,δ in ppm):8.80(dd,2H),8.60(d,4H,J=8.8Hz),8.20(s,1H),7.59−7.56(m,7H),7.49(dd,4H,J=9.6Hz),7.02−6.94(m,8H),6.38(dd,4H,J=9.6Hz)
EIMS:m/z=724[M
The results of 1 H-NMR and MS of Ac-PPM are shown below.
1 H-NMR (CDCl 3, δ in ppm): 8.80 (dd, 2H), 8.60 (d, 4H, J = 8.8 Hz), 8.20 (s, 1H), 7.59-7 .56 (m, 7H), 7.49 (dd, 4H, J = 9.6 Hz), 7.02-6.94 (m, 8H), 6.38 (dd, 4H, J = 9.6 Hz)
EIMS: m / z = 724 [M + ]

Figure 2018035129
Figure 2018035129

得られた生成物0.72gを、窒素ガス70ml/min、高温部370℃、低温部185℃の条件下に昇華精製を行い、黄色の針状結晶を得た。収量は0.39gであり、収率54%であった。   0.72 g of the obtained product was purified by sublimation under conditions of nitrogen gas 70 ml / min, high temperature part 370 ° C., low temperature part 185 ° C. to obtain yellow acicular crystals. The yield was 0.39 g, and the yield was 54%.

精製後の目的物の元素分析を行った。
Anal.Calcd for C52424;C,86.39%;H,5.86%;N,7.75%.Found:C,86.19%;H,5.81%;N,7.78%
理論値と測定値との誤差がすべての元素において0.3%以内であり、目的物を充分に精製できたことが確認された。
Elemental analysis of the target product after purification was performed.
Anal. Calcd for C 52 H 42 N 4 ; C, 86.39%; H, 5.86%; N, 7.75%. Found: C, 86.19%; H, 5.81%; N, 7.78%
The error between the theoretical value and the measured value was within 0.3% for all elements, and it was confirmed that the target product could be sufficiently purified.

[実施例2]BAc−MPMの合成
温度計、窒素導入管及び還流管を付けた25mLの四口フラスコに、4,6−ビス(3,5−ジクロロフェニル)−2−メチルピリミジン(BDCPMPM)0.77g(2.0mmol)、ジメチルアセトアミド(DMAC)1.67g(8.0mmol)、ナトリウムt−ブトキシド(NatBuO)1.73g(18mmol)、及びキシレン25mLを入れ、45分間窒素バブリングをした。その後、酢酸パラジウム(II)(Pd(OAc)2)90mg(0.40mmol)及びトリ−t−ブチルホスフィン((tBu)3P)0.28ml(1.2mmol)を加え、140℃に加熱し、1時間還流した。TLCにて原料の消失及び目的物の生成を確認し、反応を終了させた(茶色透明溶液)。室温に戻した後、吸引ろ過を行い、水50mLで2回、食塩水50mLで1回分液洗浄を行い、無水硫酸ナトリウムを用いて脱水した後、濃縮した。シリカゲルクロマトグラフィー(シリカゲル;600cc、展開溶媒;ヘキサン:ジクロロメタン=1:1)にて精製し、目的物のフラクションを回収し、濃縮した。収量は1.66gであり、収率は76.9%であった。
[Example 2] Synthesis of BAc-MPM In a 25 mL four-necked flask equipped with a thermometer, a nitrogen inlet tube and a reflux tube, 4,6-bis (3,5-dichlorophenyl) -2-methylpyrimidine (BDCPMPM) 0 .77 g (2.0 mmol), 1.67 g (8.0 mmol) of dimethylacetamide (DMAC), 1.73 g (18 mmol) of sodium t-butoxide (NatBuO), and 25 mL of xylene were added, and nitrogen bubbling was performed for 45 minutes. Thereafter, 90 mg (0.40 mmol) of palladium (II) acetate (Pd (OAc) 2 ) and 0.28 ml (1.2 mmol) of tri-t-butylphosphine ((tBu) 3 P) were added and heated to 140 ° C. Reflux for 1 hour. The disappearance of the raw materials and the production of the target product were confirmed by TLC, and the reaction was terminated (brown transparent solution). After returning to room temperature, suction filtration was performed, followed by separation and washing twice with 50 mL of water and once with 50 mL of brine, dehydrated using anhydrous sodium sulfate, and then concentrated. The product was purified by silica gel chromatography (silica gel; 600 cc, developing solvent; hexane: dichloromethane = 1: 1), and the fraction of interest was collected and concentrated. The yield was 1.66 g, and the yield was 76.9%.

BAc−MPMの1H−NMR及びMSの結果を以下に示す。
1H−NMR(CDCl3,δ in ppm):8.33(s,4H,J=1.0),7.95(s,1H),7.46(m,10H),6.95(m,16H),6.44(d,8H,J=4.4),2.80(s,3H),1.671(s,24H)
EIMS:1075[M
The results of 1 H-NMR and MS of BAc-MPM are shown below.
1 H-NMR (CDCl 3 , δ in ppm): 8.33 (s, 4H, J = 1.0), 7.95 (s, 1H), 7.46 (m, 10H), 6.95 ( m, 16H), 6.44 (d, 8H, J = 4.4), 2.80 (s, 3H), 1.671 (s, 24H)
EIMS: 1075 [M + ]

Figure 2018035129
Figure 2018035129

[実施例3]BCz−MPMの合成
温度計、窒素導入管及び還流管を付けた25mLの四口フラスコに、4,6−ビス(3,5−ジクロロフェニル)−2−メチルピリミジン(BDCPMPM)0.84g(2.2mmol)、カルバゾール(Cz)1.47g(8.8mmol)、炭酸カリウム(K2CO3)2.74g(19.8mmol)、及びキシレン25mLを加え、40分間窒素バブリングした。その後、酢酸パラジウム(II)(Pd(OAc)2)99mg(0.44mmol)及びトリ−t−ブチルホスフィン((tBu)3P)310μL(1.32mmol)を入れ、140℃に加熱し、26時間還流した。TLCにて目的物の精製を確認し、反応を終了させた。室温に戻した後(濃茶色溶液)、吸引ろ過を行い、水100mLで2回、食塩水100mLで1回分液洗浄し、無水硫酸ナトリウムを用いて脱水した後、濃縮した。TLC上には原料であるCzも確認されたのでシリカゲルクロマトグラフィー(シリカゲル;400cc、展開溶媒;ヘキサン:ジクロロメタン=1:1)にて精製し、目的物のみのフラクションを回収し、濃縮し、橙白色粉末を得た。
Example 3 Synthesis of BCz-MPM 4,6-bis (3,5-dichlorophenyl) -2-methylpyrimidine (BDCPMPM) 0 was added to a 25 mL four-necked flask equipped with a thermometer, a nitrogen inlet tube and a reflux tube. .84 g (2.2 mmol), carbazole (Cz) 1.47 g (8.8 mmol), potassium carbonate (K 2 CO 3 ) 2.74 g (19.8 mmol), and xylene 25 mL were added, and nitrogen was bubbled for 40 minutes. Thereafter, 99 mg (0.44 mmol) of palladium (II) acetate (Pd (OAc) 2 ) and 310 μL (1.32 mmol) of tri-t-butylphosphine ((tBu) 3 P) were added and heated to 140 ° C. Reflux for hours. The purification of the target product was confirmed by TLC, and the reaction was terminated. After returning to room temperature (dark brown solution), suction filtration was performed, followed by separation and washing twice with 100 mL of water and once with 100 mL of brine, dehydrated using anhydrous sodium sulfate, and then concentrated. Since Cz as a raw material was also confirmed on TLC, it was purified by silica gel chromatography (silica gel; 400 cc, developing solvent; hexane: dichloromethane = 1: 1), and a fraction containing only the target product was collected, concentrated, and orange. A white powder was obtained.

BCz−MPMの1H−NMR及びMSの結果を以下に示す。
1H−NMR(DMSO−d6,δ in ppm):8.84(s,5H),8.26(d,8H,J=4.0),8.04(s,2H),7.60(d,8H,J=4.2),7.47(t,8H,J=7.6),7.30(t,8H,J=5.8),2.74(s,3H)
EIMS:m/z=907[M
The results of 1 H-NMR and MS of BCz-MPM are shown below.
1 H-NMR (DMSO-d 6 , δ in ppm): 8.84 (s, 5H), 8.26 (d, 8H, J = 4.0), 8.04 (s, 2H), 7. 60 (d, 8H, J = 4.2), 7.47 (t, 8H, J = 7.6), 7.30 (t, 8H, J = 5.8), 2.74 (s, 3H )
EIMS: m / z = 907 [M + ]

Figure 2018035129
Figure 2018035129

得られた生成物0.65gを、窒素ガス70ml/min、高温部380℃、低温部190℃の条件下に昇華精製を行い、黄色の針状結晶を得た。収量は0.136gであり、収率26%であった。   0.65 g of the obtained product was purified by sublimation under conditions of nitrogen gas 70 ml / min, high temperature part 380 ° C., low temperature part 190 ° C. to obtain yellow needle crystals. The yield was 0.136 g, and the yield was 26%.

[実施例4]Ac−MPMの合成
一般式(1)で表されるピリミジン誘導体として、Ac−MPMを実施例1と同様の方法で合成した。

Figure 2018035129
[Example 4] Synthesis of Ac-MPM Ac-MPM was synthesized in the same manner as in Example 1 as a pyrimidine derivative represented by the general formula (1).
Figure 2018035129

[実施例5]Ac−HPMの合成
一般式(1)で表されるピリミジン誘導体として、Ac−HPMを実施例1と同様の方法で合成した。

Figure 2018035129
[Example 5] Synthesis of Ac-HPM As a pyrimidine derivative represented by the general formula (1), Ac-HPM was synthesized in the same manner as in Example 1.
Figure 2018035129

[実施例6]Ac−SPMの合成

Figure 2018035129
[Example 6] Synthesis of Ac-SPM
Figure 2018035129

(i)SMPMPhClの合成
還流管及び温度計を付けた500mlの四口フラスコに、SMPMCl(4.86g、25mmol)、4−クロロフェニルボロン酸(8.6g、55mmol)、1M Na2CO3水溶液(13.3ml、125mmol)、アセトニトリル350ml、及び水125mlを入れ、1時間の窒素バブリングを行った。その後、PdCl2(PPh32(700mg、1.25mmol)を入れ、還流下で反応を行った。反応溶液は黄色透明溶液であった。1時間後、オレンジ色固体が析出しており、TLCにより原料であるSMPMClが消失したのを確認し、反応を終了した。吸引濾過を行い、メタノールで洗浄後、ろ物をクロロホルム200mlに溶解させた。水100ml×3回、塩水150ml×1回で洗浄し、エバポレーションを行った。また、触媒を除くために、シリカゲルカラムクロマトグラフィーを行った。直径7cmのカラムを用い、シリカゲルを400cc(高さ7cm)使用した。インジェクション溶媒、展開溶媒はそれぞれクロロホルムを使用した。精製後、白色固体が7.3g得られ、収率は84%であった。1H−NMR及びMSより、SMPMPhCl(分子量347)の生成を確認した。
(I) Synthesis of SMPMPhCl In a 500 ml four-necked flask equipped with a reflux tube and a thermometer, SMPMCl (4.86 g, 25 mmol), 4-chlorophenylboronic acid (8.6 g, 55 mmol), 1M Na 2 CO 3 aqueous solution ( 13.3 ml, 125 mmol), 350 ml of acetonitrile, and 125 ml of water were added, and nitrogen bubbling was performed for 1 hour. Thereafter, PdCl 2 (PPh 3 ) 2 (700 mg, 1.25 mmol) was added, and the reaction was performed under reflux. The reaction solution was a yellow transparent solution. After 1 hour, an orange solid had precipitated, and it was confirmed by TLC that the raw material SMPMCl had disappeared, and the reaction was completed. Suction filtration was performed, and after washing with methanol, the filtrate was dissolved in 200 ml of chloroform. Washing was performed with water (100 ml × 3 times) and brine (150 ml × 1 time), followed by evaporation. In order to remove the catalyst, silica gel column chromatography was performed. Using a column with a diameter of 7 cm, 400 cc of silica gel (height 7 cm) was used. Chloroform was used for each of the injection solvent and the developing solvent. After purification, 7.3 g of a white solid was obtained, and the yield was 84%. The formation of SMPMPhCl (molecular weight 347) was confirmed by 1 H-NMR and MS.

(ii)Ac−SPMの合成
還流管及び温度計を付けた25mlの四口フラスコにSMPMPhCl(1.04g、3mmol)、アクリジン(1.32g、6.3mmol)、及びtBuONa(1.44g、15mmol)を入れた後、15分間の窒素フローを行った。その後、脱水キシレン50mlを入れ、窒素バブリングを1時間行った。Pd(OAc)2(34mg、0.15mmol)、P(tBu)3(0.11ml、0.45mmol)を入れた後、還流条件下(140℃)で反応を行った。還流開始後、反応溶液はおうど色透明溶液から茶褐色に変化した。約30分後、緑色の固体が析出し、2時間後、抹茶色に変化した。TLCにより原料の消失を確認した。トルエン洗浄にて吸引濾過し、クロロホルムにてろ物を溶かし、目的物を回収した。水150ml×2回、塩水150ml×1回にて分液洗浄を行い、エバポレーションにて濃縮した。減圧乾燥後、黄色固体が0.75g(収率36%)得られた。1H−NMR及びMSより、Ac−SPM(分子量693)の生成を確認した。
Ac−SPMの1H−NMRの結果を図12に示し、元素分析結果を以下に示す。
(Ii) Synthesis of Ac-SPM In a 25 ml four-necked flask equipped with a reflux tube and a thermometer, SMPMPhCl (1.04 g, 3 mmol), acridine (1.32 g, 6.3 mmol), and tBuONa (1.44 g, 15 mmol) ) Was added and a nitrogen flow for 15 minutes was performed. Thereafter, 50 ml of dehydrated xylene was added and nitrogen bubbling was performed for 1 hour. Pd (OAc) 2 (34 mg, 0.15 mmol) and P (tBu) 3 (0.11 ml, 0.45 mmol) were added, and then the reaction was performed under reflux conditions (140 ° C.). After the start of reflux, the reaction solution changed from an orange transparent solution to brown. After about 30 minutes, a green solid was deposited, and after 2 hours, it turned to brown. The disappearance of the raw material was confirmed by TLC. Suction filtration was performed with toluene washing, and the filtrate was dissolved in chloroform to recover the target product. Liquid separation washing was performed with 150 ml of water twice and 150 ml of brine once, and the mixture was concentrated by evaporation. After drying under reduced pressure, 0.75 g (yield 36%) of a yellow solid was obtained. Generation of Ac-SPM (molecular weight 693) was confirmed by 1 H-NMR and MS.
The results of 1 H-NMR of Ac-SPM are shown in FIG. 12, and the results of elemental analysis are shown below.

Figure 2018035129
表1に示すとおり、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。
Figure 2018035129
As shown in Table 1, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).

[実施例7]Ac−NPMの合成

Figure 2018035129
[Example 7] Synthesis of Ac-NPM
Figure 2018035129

(i)SOPMPhClの合成
還流管及び温度計を付けた100mlの四口フラスコに塩化メチレン50ml入れた後、氷水にて反応容器を0℃まで冷却し、m−クロロ過安息香酸(mCPBA)(5.84g、22mmol)を追加した。その後、塩化メチレン(CH2Cl2)50mlに溶解させたSPMPhCl(3.47g、10mmol)を、滴下ロートにてゆっくり滴下し、室温にて撹拌した。1時間後、TLCにより原料であるSPMPhClが消失したのを確認し、反応を終了した。炭酸水素ナトリウム(NaHCO3)水溶液36mlを加えて中和し、分液ロートにて、水100ml×3回、塩水150ml×1回で洗浄し、エバポレーションにて濃縮した。エタノールにて分散洗浄後、減圧乾燥を行い、白色固体を3.3g(収率87%)得た。1H−NMR及びMSより、SOPMPhCl(分子量379)の生成を確認した。
(I) Synthesis of SOPMPhCl After placing 50 ml of methylene chloride in a 100 ml four-necked flask equipped with a reflux tube and a thermometer, the reaction vessel was cooled to 0 ° C. with ice water, and m-chloroperbenzoic acid (mCPBA) (5 .84 g, 22 mmol) was added. Thereafter, SPMPhCl (3.47 g, 10 mmol) dissolved in 50 ml of methylene chloride (CH 2 Cl 2 ) was slowly dropped with a dropping funnel and stirred at room temperature. After 1 hour, it was confirmed by TLC that the raw material SPMPhCl had disappeared, and the reaction was completed. The mixture was neutralized by adding 36 ml of an aqueous sodium hydrogen carbonate (NaHCO 3 ) solution, washed with a separatory funnel with water 100 ml × 3 times and brine 150 ml × 1 time, and concentrated by evaporation. After being dispersed and washed with ethanol, drying under reduced pressure was performed to obtain 3.3 g (yield 87%) of a white solid. Generation of SOPMPhCl (molecular weight 379) was confirmed by 1 H-NMR and MS.

(ii)NPMPhClの合成
還流管及び温度計を付けた100mlの四口フラスコにSOPMPhCl(0.76g、2mmol)と1,4−ジオキサンを100ml入れた。その後、ピペリジン(1.0ml、10mmol)を入れ、50℃にて撹拌した。5時間後、TLCにより原料であるSOPMPhClが消失していたので反応を終了した。水100mlを加えクエンチした。分液ロートにて、酢酸エチルで抽出し、水100ml×3回、塩水150ml×1回で洗浄し、エバポレーションを行った。エタノールにて分散洗浄後、減圧乾燥を行い、黄色固体が0.61g得られ、収率は79%であった。1H−NMR及びMSより、NPMPhCl(分子量384)の生成を確認した。
(Ii) Synthesis of NPMPhCl 100 ml of SOPMPhCl (0.76 g, 2 mmol) and 1,4-dioxane were placed in a 100 ml four-necked flask equipped with a reflux tube and a thermometer. Then, piperidine (1.0 ml, 10 mmol) was added and stirred at 50 ° C. After 5 hours, the raw material SOPMPhCl had disappeared by TLC, so the reaction was terminated. Quenched by adding 100 ml of water. The mixture was extracted with ethyl acetate in a separatory funnel, washed with water (100 ml × 3 times) and brine (150 ml × 1 time), and evaporated. After being dispersed and washed with ethanol, drying under reduced pressure was performed to obtain 0.61 g of a yellow solid, and the yield was 79%. From 1 H-NMR and MS, production of NPMPhCl (molecular weight 384) was confirmed.

(iii)Ac−NPMの合成
還流管及び温度計を付けた25mlの四口フラスコにNPMPhCl(1.04g、3mmol)、アクリジン(1.32g、6.3mmol)及びtBuONa(1.44g、15mmol)を入れた後、15分間の窒素フローを行った。その後、脱水キシレン(50ml)を入れ、窒素バブリングを1時間行った。Pd(OAc)2(34mg、0.15mmol)及びP(tBu)3(0.11ml、0.45mmol)を入れた後、還流条件下、140℃で反応を行った。2時間後、溶液は抹茶色に変化し、TLCにより原料の消失を確認した。吸引濾過後、目的物がろ紙に引っかかっていた。クロロホルムにてろ物を溶かし、目的物を回収した。水150ml×2回、塩水150ml×1回にて分液洗浄を行い、エバポレーションにて濃縮した。トルエン溶液にて抜きカラムを行った。その後、エバポレーションにより濃縮した後、メタノール及びヘキサンにて分散洗浄後、減圧乾燥を行い、黄色固体が1.77g得られ、収率は81%であった。1H−NMR及びMSよりAc−NPM(分子量730)を目的物と同定した。
Ac−NPMの元素分析結果を以下に示す。
(Iii) Synthesis of Ac-NPM In a 25 ml four-necked flask equipped with a reflux tube and a thermometer, NPMPhCl (1.04 g, 3 mmol), acridine (1.32 g, 6.3 mmol) and tBuONa (1.44 g, 15 mmol) Then, a nitrogen flow for 15 minutes was performed. Thereafter, dehydrated xylene (50 ml) was added and nitrogen bubbling was performed for 1 hour. After adding Pd (OAc) 2 (34 mg, 0.15 mmol) and P (tBu) 3 (0.11 ml, 0.45 mmol), the reaction was carried out at 140 ° C. under reflux conditions. After 2 hours, the solution turned brownish, and disappearance of the raw material was confirmed by TLC. After suction filtration, the object was caught on the filter paper. The filtrate was dissolved in chloroform and the target product was recovered. Liquid separation washing was performed with 150 ml of water twice and 150 ml of brine once, and the mixture was concentrated by evaporation. A column was extracted with a toluene solution. Then, after concentrating by evaporation, it was dispersed and washed with methanol and hexane and dried under reduced pressure to obtain 1.77 g of a yellow solid with a yield of 81%. Ac-NPM (molecular weight: 730) was identified as the target product from 1 H-NMR and MS.
The results of elemental analysis of Ac-NPM are shown below.

Figure 2018035129
表2に示すとおり、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。
Figure 2018035129
As shown in Table 2, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).

[実施例8]PXZ−PPMの合成

Figure 2018035129
[Example 8] Synthesis of PXZ-PPM
Figure 2018035129

(i)PPMPhClの合成
還流管及び温度計を付けた500mlの四口フラスコにPPMCl(5.63g、25mmol)、4−クロロフェニルボロン酸(8.6g、55mmol)、1M炭酸ナトリウム(Na2CO3)水溶液(13.3ml、125mmol)、アセトニトリル350ml、及び水125mlを入れ、1時間の窒素バブリングを行った。その後、PdCl2(PPh32(700mg、1.25mmol)を入れ、還流下に反応を行った。反応溶液は黄色透明溶液であった。2時間後、TLCにより原料であるSMPMClが消失したのを確認し、反応を終了した。吸引濾過を行い、メタノールで洗浄後、ろ物をクロロホルム200mlに溶解させた。水100ml×3回、塩水150ml×1回で洗浄し、エバポレーションにて濃縮した。また、直径8cmのカラム管を用いて、シリカゲルカラムクロマトグラフィー(シリカゲル;400cc(高さ7cmまで充填))により、触媒を除去した。インジェクション溶媒及び展開溶媒には、クロロホルムを使用した。精製後、白色固体を8.3g(収率88%)得た。1H−NMR及びMSにより、生成物を同定した。
(I) Synthesis of PPMPhCl In a 500 ml four-necked flask equipped with a reflux tube and a thermometer, PPMCl (5.63 g, 25 mmol), 4-chlorophenylboronic acid (8.6 g, 55 mmol), 1M sodium carbonate (Na 2 CO 3) ) Aqueous solution (13.3 ml, 125 mmol), 350 ml of acetonitrile, and 125 ml of water were added, and nitrogen bubbling was performed for 1 hour. Thereafter, PdCl 2 (PPh 3 ) 2 (700 mg, 1.25 mmol) was added, and the reaction was performed under reflux. The reaction solution was a yellow transparent solution. After 2 hours, it was confirmed by TLC that the raw material SMPMCl had disappeared, and the reaction was completed. Suction filtration was performed, and after washing with methanol, the filtrate was dissolved in 200 ml of chloroform. The extract was washed with water (100 ml × 3 times) and brine (150 ml × 1 time) and concentrated by evaporation. Further, the catalyst was removed by silica gel column chromatography (silica gel; 400 cc (packed to a height of 7 cm)) using a column tube having a diameter of 8 cm. Chloroform was used as the injection solvent and the developing solvent. After purification, 8.3 g (yield 88%) of white solid was obtained. The product was identified by 1 H-NMR and MS.

(ii)PXZ−PPMの合成
還流管及び温度計を付けた25mlの四口フラスコに、PPPMPhCl(1.77g、4.6mmol)、フェノキサジン(1.72g、9.4mmol)、及びt−ブトキシナトリウム(tBuONa)(2.4g、25mmol)を入れ、15分間の窒素フローを行った。その後、脱水キシレン80mlを入れ、さらに窒素バブリングを1時間行った。ここに、Pd(OAc)2(56mg、0.25mmol)及びP(tBu)3(0.18ml、0.75 mmol)を入れた後、還流条件下、140℃で反応を行った。9時間反応後、TLCにより原料の消失を確認した。トルエン洗浄にて吸引濾過し、ろ物をクロロホルムにて溶かし、目的物を回収した。水150ml×2回、塩水150ml×1回にて分液洗浄を行い、エバポレーションにて濃縮した。次いで、直径8cmのカラム管を用いて、シリカゲルカラムクロマトグラフィー(シリカゲル;400cc(高さ7cmまで充填))により、触媒を除去した。インジェクション溶媒及び展開溶媒には、クロロホルムを使用した。エバポレーション後、黄色固体を1.5g得た。1H−NMR及びMSにて生成物を同定した。
(Ii) Synthesis of PXZ-PPM In a 25 ml four-necked flask equipped with a reflux tube and a thermometer, PPPMPhCl (1.77 g, 4.6 mmol), phenoxazine (1.72 g, 9.4 mmol), and t-butoxy were added. Sodium (tBuONa) (2.4 g, 25 mmol) was added and a nitrogen flow for 15 minutes was performed. Thereafter, 80 ml of dehydrated xylene was added, and nitrogen bubbling was further performed for 1 hour. Pd (OAc) 2 (56 mg, 0.25 mmol) and P (tBu) 3 (0.18 ml, 0.75 mmol) were added thereto, and then reacted at 140 ° C. under reflux conditions. After the reaction for 9 hours, disappearance of the raw material was confirmed by TLC. Suction filtration was performed with toluene washing, and the filtrate was dissolved in chloroform to recover the target product. Liquid separation washing was performed with 150 ml of water twice and 150 ml of brine once, and the mixture was concentrated by evaporation. Subsequently, the catalyst was removed by silica gel column chromatography (silica gel; 400 cc (packed to a height of 7 cm)) using a column tube having a diameter of 8 cm. Chloroform was used as the injection solvent and the developing solvent. After evaporation, 1.5 g of a yellow solid was obtained. The product was identified by 1 H-NMR and MS.

PXZ−PPMの1H−NMRの結果を図13に示し、元素分析結果を以下に示す。

Figure 2018035129
表3に示すとおり、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。 The result of 1 H-NMR of PXZ-PPM is shown in FIG. 13, and the result of elemental analysis is shown below.
Figure 2018035129
As shown in Table 3, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).

[実施例9]Ac−MMPMの合成

Figure 2018035129
[Example 9] Synthesis of Ac-MMPM
Figure 2018035129

(i)MMPM−Clの合成
還流管及び温度計を付けた300mlの四口フラスコに、MPM−Cl(1.63g、10mmol)、4−クロロ−2−メチルフェニルボロン酸(3.49g、20.5mmol)、アセトニトリル160ml、及び1MNa2CO3水溶液50mlを入れ、1時間の窒素バブリングを行った。その後、PdCl2(PPh32(700mg、1.25mmol)を入れ、還流下に反応を行った。反応溶液は黄色透明溶液であった。2時間後、TLCにより原料の消失を確認した。しばらくすると、オレンジ色固体が析出したため、吸引濾過を行い、メタノールで洗浄後、ろ物をクロロホルムに溶解させた。水150ml×3回、塩水150ml×1回で洗浄し、エバポレーションにて濃縮した。また、ガラスフィルター17G−4を用いて、シリカゲルカラムクロマトグラフィー(シリカゲル;150cc)により触媒を除去した。インジェクション溶媒はトルエン、展開溶媒はヘキサン:酢酸エチル=1:1を使用した。エバポレーション後、白色固体が3.0g得られ、収率は84%であった。1H−NMR及びMSより、MMPM−Cl(分子量343)の生成を確認した。
(I) Synthesis of MMPM-Cl In a 300 ml four-necked flask equipped with a reflux tube and a thermometer, MPM-Cl (1.63 g, 10 mmol), 4-chloro-2-methylphenylboronic acid (3.49 g, 20 0.5 mmol), 160 ml of acetonitrile, and 50 ml of 1M Na 2 CO 3 aqueous solution were added, and nitrogen bubbling was performed for 1 hour. Thereafter, PdCl 2 (PPh 3 ) 2 (700 mg, 1.25 mmol) was added, and the reaction was performed under reflux. The reaction solution was a yellow transparent solution. After 2 hours, disappearance of the raw material was confirmed by TLC. After a while, an orange solid precipitated, and thus suction filtration was performed. After washing with methanol, the filtrate was dissolved in chloroform. The extract was washed with water (150 ml × 3 times) and brine (150 ml × 1 time), and concentrated by evaporation. Further, the catalyst was removed by silica gel column chromatography (silica gel; 150 cc) using a glass filter 17G-4. The injection solvent was toluene, and the developing solvent was hexane: ethyl acetate = 1: 1. After evaporation, 3.0 g of a white solid was obtained, and the yield was 84%. From 1 H-NMR and MS, production of MMPM-Cl (molecular weight 343) was confirmed.

(ii)Ac−MMPMの合成
還流管及び温度計を付けた25mlの四口フラスコに、MMPM−Cl(1.03g、3 mmol)、アクリジン(1.32g、6.3mmol)、及びtBuONa(1.44g、15mmol)を入れた後、15分間の窒素フローを行った。その後、脱水キシレン(50ml)を入れ、窒素バブリングを1時間行った。Pd(OAc)2(34mg、0.15mmol)及びP(tBu)3(0.11ml、0.45mmol)を入れた後、還流条件下(140℃)で反応を行った。16時間後、TLCにより原料の消失を確認した。トルエン洗浄にて吸引濾過した後、トルエン200mlを加え、水150ml×2回、塩水150ml×2回にて分液洗浄を行い、エバポレーションにて濃縮した。次いで、直径8cmのカラムを用いて、シリカゲルカラムクロマトグラフィー(シリカゲル;500cc(高さ10cmまで充填))を行った。インジェクション溶媒にはトルエン、展開溶媒にはヘキサン:酢酸エチル=1:1を使用した。エバポレーション後、白ピンク色固体を1.35g(収率65%)得た。1H−NMR及びMSより、Ac−MMPM(分子量689)の生成を確認した。
(Ii) Synthesis of Ac-MMPM In a 25 ml four-necked flask equipped with a reflux tube and a thermometer, MMPM-Cl (1.03 g, 3 mmol), acridine (1.32 g, 6.3 mmol), and tBuONa (1 .44 g, 15 mmol) was added followed by a 15 minute nitrogen flow. Thereafter, dehydrated xylene (50 ml) was added and nitrogen bubbling was performed for 1 hour. Pd (OAc) 2 (34 mg, 0.15 mmol) and P (tBu) 3 (0.11 ml, 0.45 mmol) were added, and the reaction was carried out under reflux conditions (140 ° C.). After 16 hours, disappearance of the raw material was confirmed by TLC. After suction filtration with toluene washing, 200 ml of toluene was added, followed by liquid separation washing with water 150 ml × 2 times and brine 150 ml × 2 times, and concentrated by evaporation. Subsequently, silica gel column chromatography (silica gel; 500 cc (packed up to a height of 10 cm)) was performed using a column having a diameter of 8 cm. Toluene was used as the injection solvent, and hexane: ethyl acetate = 1: 1 was used as the developing solvent. After evaporation, 1.35 g (65% yield) of a white pink solid was obtained. The production of Ac-MMPM (molecular weight 689) was confirmed by 1 H-NMR and MS.

Ac−MMPMの1H−NMRの結果を図14に示し、元素分析結果を以下に示す。

Figure 2018035129
表4に示すとおり、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。 The results of 1 H-NMR of Ac-MMPM are shown in FIG. 14, and the results of elemental analysis are shown below.
Figure 2018035129
As shown in Table 4, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).

[実施例10]Ac−46DPPMの合成

Figure 2018035129
[Example 10] Synthesis of Ac-46DPPM
Figure 2018035129

(i)C46DPPMの合成
100mL四口フラスコに、2−クロロ−4,6−ジフェニルピリミジン(CDPPM)2.13g(8.0mmol)、4−クロロフェニルボロン酸(CPB)1.25g(8.0mmol)、炭酸ナトリウム2.54g(24mmol)を水24mLに溶解させた1M炭酸ナトリウム水溶液、及びアセトニトリル70mL加え、35分間窒素バブリングを行った。その後、ビス(トリフェニルホスフィン)パラジウムジクロライド(PdCl2(PPh32)281mg(0.40mmol)加え、80℃で1時間加熱還流した。TLCにて目的物の生成及び原料の消失を確認して、反応を終了し、室温に戻した。吸引ろ過により、黒色固体をろ別し、シリカゲルクロマトグラフィー(シリカゲル;500cc、展開溶媒;ヘキサン:酢酸エチル=10:1(vol/vol))にて精製し、白色結晶状粉末を2.45g(収率90.1%)得た。1H−NMR及びMSより、C46DPPM(分子量343)の生成を確認した。
(I) Synthesis of C46DPPM In a 100 mL four-necked flask, 2.13 g (8.0 mmol) of 2-chloro-4,6-diphenylpyrimidine (CDPPM), 1.25 g (8.0 mmol) of 4-chlorophenylboronic acid (CPB) Then, 1M sodium carbonate aqueous solution in which 2.54 g (24 mmol) of sodium carbonate was dissolved in 24 mL of water and 70 mL of acetonitrile were added, and nitrogen bubbling was performed for 35 minutes. Thereafter, 281 mg (0.40 mmol) of bis (triphenylphosphine) palladium dichloride (PdCl 2 (PPh 3 ) 2 ) was added, and the mixture was heated to reflux at 80 ° C. for 1 hour. After confirming the formation of the target product and disappearance of the raw materials by TLC, the reaction was terminated and the temperature was returned to room temperature. The black solid was separated by suction filtration and purified by silica gel chromatography (silica gel; 500 cc, developing solvent; hexane: ethyl acetate = 10: 1 (vol / vol)), and 2.45 g of white crystalline powder ( Yield 90.1%). Generation of C46DPPM (molecular weight 343) was confirmed by 1 H-NMR and MS.

(ii)Ac−46DPPMの合成
25mL四口フラスコに、2−(4−クロロフェニル)−4,6−ジフェニルピリミジン(C46DPPM)1.37g(4.0mmol)、ジメチルアクリジン(DMAC)0.84g(4.0mmol)、無水炭酸ナトリウム1.66g(12mmol)、及び脱水キシレン25mLを加え、60分間窒素バブリングを行った。その後、酢酸パラジウム45mg(0.20mmol)及びトリ−t−ブチルホスホニウムテトラフルオロボラート([(t−Bu)3PH]BF4)174mg(0.60mmol)を入れ、140℃に加熱し、18時間加熱還流した。TLCにて原料の消失及び目的物の生成を確認し、反応を終了し、室温に戻した。吸引ろ過にて触媒を除去し、ろ液を水、飽和食塩水にて洗浄し、硫酸マグネシウムで脱水、ろ紙に通して濃縮した。トルエンにて再結晶を行い、薄黄色結晶状固体を1.67g(収率は81.5%)得た。1H−NMR及びMSより、Ac−46DPPM(分子量513)の生成を確認した。
(Ii) Synthesis of Ac-46DPPM In a 25 mL four-necked flask, 1.37 g (4.0 mmol) of 2- (4-chlorophenyl) -4,6-diphenylpyrimidine (C46DPPM), 0.84 g of dimethylacridine (DMAC) (4 0.0 mmol), 1.66 g (12 mmol) of anhydrous sodium carbonate, and 25 mL of dehydrated xylene were added, and nitrogen bubbling was performed for 60 minutes. Thereafter, 45 mg (0.20 mmol) of palladium acetate and 174 mg (0.60 mmol) of tri-t-butylphosphonium tetrafluoroborate ([(t-Bu) 3 PH] BF 4 ) were added and heated to 140 ° C., 18 Heated to reflux for hours. The disappearance of the raw materials and the production of the target product were confirmed by TLC, and the reaction was terminated and returned to room temperature. The catalyst was removed by suction filtration, and the filtrate was washed with water and saturated brine, dehydrated with magnesium sulfate, and concentrated through a filter paper. Recrystallization from toluene gave 1.67 g (yield: 81.5%) of a pale yellow crystalline solid. Generation of Ac-46DPPM (molecular weight 513) was confirmed by 1 H-NMR and MS.

Ac−46DPPMの1H−NMRの結果を図15に示し、元素分析結果を以下に示す。

Figure 2018035129
表5に示すとおり、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。 The results of 1 H-NMR of Ac-46DPPM are shown in FIG. 15, and the results of elemental analysis are shown below.
Figure 2018035129
As shown in Table 5, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).

[実施例11]Ac−26DPPMの合成

Figure 2018035129
温度計、窒素導入管及び還流管を付けた25mL四口フラスコに、4−(4−ブロモフェニル)−2,6−ジフェニルピリミジン(B26DPPM)1.55g(4.0mmol)、ジメチルアクリジン(DMAC)0.84g(4.0mmool)、炭酸カリウム(K2CO3)1.66g(12mmol)、及びキシレン25mL加え、40分間窒素バブリングした。次いで、Pd(OAc)2 45mg(0.20mmol)及び[(tBu)PH]BF4 174mg(0.60mmol)加え、16時間加熱還流した。TLCにて原料の消費及び目的物の生成を確認し、反応を終了し、室温に戻した(濃茶色透明溶液)。室温に戻した後、吸引ろ過を行い、ろ液を分液(水100mL×2、食塩水100mL)し、Na2SO4脱水、濃縮した。その後、触媒を除去するため、シリカゲルクロマトグラフィー(シリカゲル;400cc、展開溶媒;ヘキサン:ジクロロメタン=2:1(vol/vol))にて精製、目的物のみのフラクションを回収、濃縮した。その後、メタノールにて分散洗浄を行い、純度の高い薄黄色固体を1.98g得、収率は96.6%となった。1H−NMR及びMSより、Ac−26DPPM(分子量513)の生成を確認した。 [Example 11] Synthesis of Ac-26DPPM
Figure 2018035129
In a 25 mL four-necked flask equipped with a thermometer, a nitrogen inlet tube and a reflux tube, 1.55 g (4.0 mmol) of 4- (4-bromophenyl) -2,6-diphenylpyrimidine (B26DPPM), dimethylacridine (DMAC) 0.84 g (4.0 mmol), 1.66 g (12 mmol) of potassium carbonate (K 2 CO 3 ), and 25 mL of xylene were added, and nitrogen was bubbled for 40 minutes. Then added Pd (OAc) 2 45mg (0.20mmol ) and [(t Bu) 3 PH] BF 4 174mg (0.60mmol), was heated at reflux for 16 hours. The consumption of the raw materials and the production of the target product were confirmed by TLC, and the reaction was terminated and the temperature was returned to room temperature (dark brown transparent solution). After returning to room temperature, suction filtration was performed, and the filtrate was separated (water 100 mL × 2, brine 100 mL), dried over Na 2 SO 4 and concentrated. Thereafter, in order to remove the catalyst, purification was performed by silica gel chromatography (silica gel; 400 cc, developing solvent; hexane: dichloromethane = 2: 1 (vol / vol)), and a fraction containing only the target product was collected and concentrated. Thereafter, dispersion washing was performed with methanol to obtain 1.98 g of a light yellow solid with high purity, and the yield was 96.6%. Formation of Ac-26DPPM (molecular weight 513) was confirmed by 1 H-NMR and MS.

Ac−26DPPMの元素分析結果を以下に示す。

Figure 2018035129
表6に示すとおり、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。 The elemental analysis results of Ac-26DPPM are shown below.
Figure 2018035129
As shown in Table 6, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).

[実施例12]CzAc−26DPPMの合成

Figure 2018035129
[Example 12] Synthesis of CzAc-26DPPM
Figure 2018035129

(i)Ac−Clの合成
窒素導入管、温度計及び還流管を付けた100mL四口フラスコに、DMAC 2.87g(15mmol)、1−ブロモ−4−クロロベンゼン3.14g(15mmol)、K2CO3 4.15g(30mmol)、及びキシレン100mL加え、60分間窒素バブリングした。次いで、Pd(OAc)2 168mg(0.75mmol)及び[(tBu)3PH]BF4 653mg(2.25mmol)入れ、32時間加熱還流した。TLCにて目的物の生成を確認し、反応を終了した(濃茶色溶液)。室温に戻した後、吸引ろ過にて反応液をろ物及びろ液に分け、ろ液を分液(水100mL×2、食塩水100mL)し、Na2SO4脱水、濃縮した。その後、シリカゲルクロマトグラフィーにて触媒等を除去し、濃縮し、メタノール分散洗浄を行い、減圧乾燥後、薄黄色固体を2.88g(収率60%)得た。1H−NMR及びMSより、Ac−Cl(分子量320)の生成を確認した。
(I) Synthesis of Ac-Cl To a 100 mL four-necked flask equipped with a nitrogen introduction tube, a thermometer and a reflux tube, 2.87 g (15 mmol) of DMAC, 3.14 g (15 mmol) of 1-bromo-4-chlorobenzene, K 2 4.15 g (30 mmol) of CO 3 and 100 mL of xylene were added, and nitrogen bubbling was performed for 60 minutes. Then placed Pd (OAc) 2 168mg (0.75mmol ) and [(t Bu) 3 PH] BF 4 653mg (2.25mmol), was heated under reflux for 32 hours. The formation of the target product was confirmed by TLC, and the reaction was completed (dark brown solution). After returning to room temperature, the reaction solution was separated into a filtrate and a filtrate by suction filtration, and the filtrate was separated (water 100 mL × 2, brine 100 mL), Na 2 SO 4 dehydrated and concentrated. Thereafter, the catalyst and the like were removed by silica gel chromatography, concentrated, subjected to methanol dispersion washing, and dried under reduced pressure to obtain 2.88 g (yield 60%) of a pale yellow solid. Formation of Ac-Cl (molecular weight 320) was confirmed by 1 H-NMR and MS.

(ii)DBAc−Clの合成
100mL滴下漏斗、窒素導入管及び温度計を付けた100mL三口フラスコにAc−Cl 2.88g(9.0mmol)及び塩化メチレン(CH2Cl2)25mL入れ、しばらく窒素フローした。次いで、塩化メチレン75mLにN−ブロモスクシンイミド(NBS)3.20g(18mmol)を溶解させた溶液を100mL滴下漏斗に入れた。0℃のウォーターバスで三口フラスコを冷却しながら、N−ブロモスクシンイミド溶液を1時間25分かけて滴下した。滴下後の反応液は黄金色透明溶液になっていた。TLCにて確認したところ、原料は消費されており、目的物は生成してはいたが、一置換体によるものだと考えられるスポットがあった。そこで、一置換体を消費するために、さらにNBS1.0gを塩化メチレン30mLに溶解させた溶液を滴下漏斗にて加えたところ、一置換体のスポットが少し薄くなった。ここで、一度反応を停止させ、分液を行った。その後、濃縮した粘体を再度反応に使用した。100mL四口フラスコに粘体と塩化メチレン35mL入れ、100mL滴下漏斗にNBS2.0gを塩化メチレン65mLに溶解させた溶液を入れた。その後、0℃のウォーターバスで冷却しながら、NBSの塩化メチレン溶液を50分かけて滴下した。TLCにて一置換体の消滅及び目的物の生成を確認し、反応を終了した(黄金色透明溶液)。次いで、分液(水200mL×5)し、Na2SO4脱水後、濃縮した。その後、シリカゲルクロマトグラフィー(シリカゲル;600cc、展開溶媒;ヘキサン:トルエン=10:1)にて精製、濃縮後、ヘキサン:トルエン=1:1の混合溶媒にて再結晶を行った。湧いた結晶状固体を1.76g得た。また、ろ液を濃縮し、メタノール分散洗浄を行い、結晶状固体を1.75g得た。合わせて3.51g得、収率は81.6%となった。1H−NMR及びMSより、DBAc−Cl(分子量478)の生成を確認した。
(Ii) Synthesis of DBAc-Cl In a 100 mL three-necked flask equipped with a 100 mL dropping funnel, a nitrogen introduction tube and a thermometer, 2.88 g (9.0 mmol) of Ac-Cl and 25 mL of methylene chloride (CH 2 Cl 2 ) were added, and nitrogen was used for a while. Flowed. Next, a solution obtained by dissolving 3.20 g (18 mmol) of N-bromosuccinimide (NBS) in 75 mL of methylene chloride was placed in a 100 mL dropping funnel. The N-bromosuccinimide solution was added dropwise over 1 hour and 25 minutes while cooling the three-necked flask in a 0 ° C. water bath. The reaction solution after the dropping was a golden transparent solution. As confirmed by TLC, the raw material was consumed and the target product was produced, but there were spots that were thought to be due to the mono-substituted product. Therefore, in order to consume the mono-substituted product, when a solution in which 1.0 g of NBS was dissolved in 30 mL of methylene chloride was added using a dropping funnel, the spot of the mono-substituted product was slightly thinned. Here, the reaction was once stopped and liquid separation was performed. Thereafter, the concentrated mucus was used again for the reaction. A 100 mL four-necked flask was charged with 35 mL of mucilage and methylene chloride, and a 100 mL dropping funnel was charged with a solution of 2.0 g of NBS dissolved in 65 mL of methylene chloride. Thereafter, a methylene chloride solution of NBS was added dropwise over 50 minutes while cooling with a 0 ° C. water bath. After confirming the disappearance of the mono-substituted product and the formation of the target product by TLC, the reaction was completed (golden transparent solution). Next, the solution was separated (water 200 mL × 5), dried over Na 2 SO 4 and concentrated. Then, after purification and concentration by silica gel chromatography (silica gel; 600 cc, developing solvent; hexane: toluene = 10: 1), recrystallization was performed with a mixed solvent of hexane: toluene = 1: 1. 1.76 g of a springy crystalline solid was obtained. Further, the filtrate was concentrated and washed with methanol to obtain 1.75 g of a crystalline solid. A total of 3.51 g was obtained, and the yield was 81.6%. Formation of DBAc-Cl (molecular weight 478) was confirmed by 1 H-NMR and MS.

(iii)CzAc−Clの合成
窒素導入管、温度計及び還流管を付けた100mL四口フラスコに、DBAc−Cl 3.34g(7.0mmol)、カルバゾール(Cz)2.34g(14mmol)、K2CO3 3.84g(28mmol)、及びキシレン100mL加え、60分間窒素バブリングした。バブリング後、Pd(OAc)2 79mg(0.35mmol)及び[(tBu)3PH]BF4 305mg(1.05mmol)入れ、110℃に加熱し、89時間還流した。TLCにてカルバゾールの消失は確認されなかったが、目的物の生成を確認し、反応を終了した(濃赤茶色溶液)。室温に戻した後、吸引ろ過を行い、ろ液を分液し(水100mL×2、食塩水100mL)、Na2SO4脱水、濃縮した。その後、シリカゲルクロマトグラフィー(シリカゲル;800cc、展開溶媒;ヘキサン:酢酸エチル=20:1)にて精製、濃縮後、メタノールで分散洗浄を行い、目的物以外のスポットを除去した。減圧乾燥後の薄黄色固体を3.52g(収率74.4%)得た。1H−NMR及びMSより、CzAc−Cl(分子量650)の生成を確認した。
(Iii) Synthesis of CzAc-Cl In a 100 mL four-necked flask equipped with a nitrogen introduction tube, a thermometer and a reflux tube, 3.34 g (7.0 mmol) of DBAc-Cl, 2.34 g (14 mmol) of carbazole (Cz), K 2 CO 3 3.84 g (28 mmol) and xylene 100 mL were added and nitrogen bubbling was performed for 60 minutes. After bubbling, placed Pd (OAc) 2 79mg (0.35mmol ) and [(t Bu) 3 PH] BF 4 305mg (1.05mmol), was heated to 110 ° C., refluxed for 89 hours. Although the disappearance of carbazole was not confirmed by TLC, the formation of the target product was confirmed and the reaction was completed (dark red brown solution). After returning to room temperature, suction filtration was performed, and the filtrate was separated (water 100 mL × 2, brine 100 mL), Na 2 SO 4 dehydrated and concentrated. Thereafter, the product was purified and concentrated by silica gel chromatography (silica gel; 800 cc, developing solvent; hexane: ethyl acetate = 20: 1), and then dispersed and washed with methanol to remove spots other than the target product. 3.52 g (yield 74.4%) of a pale yellow solid after drying under reduced pressure was obtained. Formation of CzAc-Cl (molecular weight: 650) was confirmed by 1 H-NMR and MS.

(iv)CzAc−Bpinの合成
窒素導入管、温度計及び還流管を付けた50mL四口フラスコに、CzAc−Cl 3.90g(6.0mmol)、ビス(ピナコラト)ジボロン(Bpin)1.83g(7.2mmol)及び酢酸カリウム(KOAc)1.77g(18mmol)入れ、窒素フローをした。その後、ジオキサン50mL加え、90分間窒素バブリングした。バブリング後、Pd(OAc)2 67mg(0.30mmol)及びS−phos 123mg(0.30mmol)入れ、1時間加熱還流した。TLCにて目的物の生成を確認し、反応を終了した(濃赤茶色透明溶液)。室温に戻した後、吸引ろ過を行い、ろ液を分液し(水100mL×2、食塩水100mL)、Na2SO4脱水、濃縮した。ガラスフィルター(17G4、シリカゲル:150cc)にて原料の残渣を除去し、ろ液を濃縮、その後、メタノールで分散洗浄を行い、ろ物を減圧乾燥させた。減圧乾燥後の薄黄色固体を3.47g得、収率は78.0%となった。1H−NMR及びMSより、CzAc−Bpin(分子量742)の生成を確認した。
(Iv) Synthesis of CzAc-Bpin To a 50 mL four-necked flask equipped with a nitrogen introduction tube, a thermometer and a reflux tube, 3.90 g (6.0 mmol) of CzAc-Cl, 1.83 g of bis (pinacolato) diboron (Bpin) ( 7.2 mmol) and 1.77 g (18 mmol) of potassium acetate (KOAc) were added, followed by nitrogen flow. Thereafter, 50 mL of dioxane was added, and nitrogen bubbling was performed for 90 minutes. After bubbling, 67 mg (0.30 mmol) of Pd (OAc) 2 and 123 mg (0.30 mmol) of S-phos were added and heated to reflux for 1 hour. The formation of the target product was confirmed by TLC, and the reaction was completed (dark red brown transparent solution). After returning to room temperature, suction filtration was performed, and the filtrate was separated (water 100 mL × 2, brine 100 mL), Na 2 SO 4 dehydrated and concentrated. The residue of the raw material was removed with a glass filter (17G4, silica gel: 150 cc), the filtrate was concentrated, then dispersed and washed with methanol, and the filtrate was dried under reduced pressure. 3.47 g of a pale yellow solid after drying under reduced pressure was obtained, and the yield was 78.0%. Formation of CzAc-Bpin (molecular weight 742) was confirmed by 1 H-NMR and MS.

(v)CzAc−26DPPMの合成
温度計、窒素導入管及び還流管を付けた25mL四口フラスコに、CzAc−Bpin 0.53g(2.0mmol)、4−クロロ−2,6−ジフェニル-ピリミジン(C26PM) 1.48g(2.0mmol)、K3PO4 1.27g(6.0mmol)を水4.4mLに溶解させた1.35M水溶液、及びジオキサン20mL加え、40分間窒素バブリングした。次いで、Pd2(dba)3 183mg(0.20mmol)及びS−phos82 mg(0.20mmol)加え、2時間加熱還流した。TLCにて原料の消費及び目的物の生成を確認したので、反応を終了させ室温に戻した(赤黒色透明溶液)。室温に戻した後、吸引ろ過を行い、ろ液を分液(水100mL×2、食塩水100mL)し、Na2SO4脱水、濃縮した。その後、触媒を除去するため、シリカゲルクロマトグラフィー(シリカゲル;400cc、展開溶媒;ヘキサン:ジクロロメタン=2:1(vol/vol))にて精製、目的物のみのフラクションを回収、濃縮した。濃縮後、メタノールにて分散洗浄を行った。その後、再沈殿、再結晶を行い、最終的に黄色固体を0.765g(収率45.3%)得た。1H−NMR及びMSより、CzAc−26DPPM(分子量846)の生成を確認した。
(V) Synthesis of CzAc-26DPPM To a 25 mL four-necked flask equipped with a thermometer, a nitrogen introduction tube and a reflux tube, 0.53 g (2.0 mmol) of CzAc-Bpin, 4-chloro-2,6-diphenyl-pyrimidine ( C26PM) 1.48 g (2.0 mmol), 1.27 g (6.0 mmol) of K 3 PO 4 dissolved in 4.4 mL of water and 20 mL of dioxane were added, and nitrogen was bubbled for 40 minutes. Next, 183 mg (0.20 mmol) of Pd 2 (dba) 3 and 82 mg (0.20 mmol) of S-phos were added and heated to reflux for 2 hours. Since the consumption of the raw materials and the production of the target product were confirmed by TLC, the reaction was terminated and the temperature was returned to room temperature (a red-black transparent solution). After returning to room temperature, suction filtration was performed, and the filtrate was separated (water 100 mL × 2, brine 100 mL), dried over Na 2 SO 4 and concentrated. Thereafter, in order to remove the catalyst, purification was performed by silica gel chromatography (silica gel; 400 cc, developing solvent; hexane: dichloromethane = 2: 1 (vol / vol)), and a fraction containing only the target product was collected and concentrated. After concentration, dispersion washing was performed with methanol. Thereafter, reprecipitation and recrystallization were performed to finally obtain 0.765 g (yield 45.3%) of a yellow solid. Formation of CzAc-26DPPM (molecular weight 846) was confirmed by 1 H-NMR and MS.

CzAc−26DPPMの元素分析結果を以下に示す。

Figure 2018035129
表7に示すように、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。
[実施例13]Ac−1MHPMの合成
Figure 2018035129
(i)1MHPM−Clの合成
還流管及び温度計を付けた200mlの四口フラスコに4,6−ジクロロ−5−メチルピリミジン(1.47g、9mmol)、4−クロロフェニルボロン酸(2.81g、18mmol)、アセトニトリル(150ml)、1M炭酸ナトリウム(K2CO3)水溶液(45ml)を入れ、1時間の窒素バブリングを行った。その後、PdCl2(PPh32(320mg、0.45mmol)を入れ、還流下で反応を行った。4時間後、TLCにより原料の消失が確認された。吸引濾過を行い、水で洗浄後、ろ物をクロロホルムに溶解させ、水150ml×3回、塩水150ml×3回で洗浄し、エバポレーションを行った。また、触媒を抜くために、ガラスフィルター17G−4を使用し抜きカラムを行った。シリカゲルを150cc使用し、インジェクション溶媒はトルエン、展開溶媒はヘキサン:酢酸エチル=10:3(vol/vol)を使用した。エバポレーション後、白色固体が1.27g得られ、収率は32%であった。1H−NMR及びMSより、1MHPM−Cl(分子量315)の生成を確認した。
(ii)Ac−1MHPMの合成
還流管及び温度計を付けた50mlの四口フラスコに1MHPM−Cl(0.88g、2.8mmol)、9,10−ジヒドロ−9,9−ジメチルアクリジン(1.23g、5.9mmol)、tBuONa(1.34g、14mmol)を入れた後、15分間の窒素フローを行った。その後、脱水キシレン(50ml)を入れ、窒素バブリングを1時間行った。Pd(OAc)2(32mg、0.14mmol)、P(tBu)3(0.1ml、0.42mmol)を入れた後、還流条件下(140℃)で反応を行った。6時間反応後、TLCにより原料の消失が確認された。トルエン洗浄にて吸引濾過した後、トルエン150mlを加え、水150ml×3回、塩水150ml×3回にて分液洗浄を行い、エバポレーションにて濃縮した。次いで、シリカゲルカラムクロマトグラフィーを行った。直径8cmのカラムを用い、シリカゲルを500cc(高さ10cm)使用した。インジェクション溶媒はジクロロメタン、展開溶媒はヘキサン:酢酸エチル=10:2(vol/vol)を使用した。エバポレーション後、白色固体が1.44g得られ、収率は78%であった。1H−NMR(図21)及びMSより、Ac−MHPM(分子量661)の生成を確認した。
Ac−1MHPMの元素分析結果を以下に示す。
Figure 2018035129
表8に示すように、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。
[実施例14]Ac−2MHPMの合成
Figure 2018035129
(i)2MHPM−Clの合成
還流管及び温度計を付けた300mlの四口フラスコに4,6−ジクロロピリミジン(1.33g、9mmol)、4−クロロ―2−メチルフェニルボロン酸(3.06g、18mmol)、アセトニトリル(150ml)、1M炭酸ナトリウム(Na2CO3)水溶液(50ml)を入れ、1時間の窒素バブリングを行った。その後、PdCl2(PPh32(320mg、0.45mmol)を入れ、還流下で反応を行った。反応溶液は黄色透明溶液であった。2時間後、TLCにより原料の消失が確認された。しばらくすると、オレンジ色固体が析出したため、吸引濾過を行い、メタノールで洗浄後、ろ物をクロロホルムに溶解させた。水150ml×3回、塩水150ml×1回で洗浄し、エバポレーションを行った。また、触媒を抜くために、シリカゲルカラムクロマトグラフィーを行った。ガラスフィルター17G−4を使用し、シリカゲルを150cc使用した。インジェクション溶媒はトルエン、展開溶媒はヘキサン:酢酸エチル=1:1(vol/vol)を使用した。エバポレーション後、白色固体が1.27g得られ、収率は43%であった。1H−NMR及びMSより、2MHPM−Cl(分子量329)の生成を確認した。
(ii)Ac−2MHPMの合成
還流管及び温度計を付けた25mlの四口フラスコに2MHPM−Cl(0.99g、3mmol)、9,10−ジヒドロ−9,9−ジメチルアクリジン(1.32g、6.3mmol)、tBuONa(1.44g、15mmol)を入れた後、15分間の窒素フローを行った。その後、脱水キシレン(50ml)を入れ、窒素バブリングを1時間行った。Pd(OAc)2(34mg、0.15mmol)、P(tBu)3(0.11ml、0.45mmol)を入れた後、還流条件下(140℃)で反応を行った。11時間反応後、TLCにより原料の消失が確認された。トルエン洗浄にて吸引濾過した後、トルエン150mlを加え、水150ml×3回、塩水150ml×3回にて分液洗浄を行い、エバポレーションにて濃縮した。次いで、シリカゲルカラムクロマトグラフィーを行った。直径8cmのカラムを用い、シリカゲルを500cc(高さ10cm)使用した。インジェクション溶媒はジクロロメタン、展開溶媒はヘキサン:酢酸エチル=10:1(vol/vol)を使用した。エバポレーション後、黄白色固体が1.01g得られ、収率は50%であった。1H−NMR(図22)及びMSより、Ac−2MHPM(分子量675)の生成を確認した。
Ac−2MHPMの元素分析結果を以下に示す。
Figure 2018035129
表9に示すように、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。
[実施例15]Ac−3MHPMの合成
Figure 2018035129
(i)3MHPM−Clの合成
還流管及び温度計を付けた300mlの四口フラスコに4,6−ジクロロ−5−メチルピリミジン(0.98g、6.0mmol)、4−クロロ−2−メチルフェニルボロン酸(2.24g、13.2mmol)、アセトニトリル(100ml)、1M炭酸ナトリウム(Na2CO3)(30ml)を入れ、1時間の窒素バブリングを行った。その後、PdCl2(PPh32210mg、0.3mmol)を入れ、還流下で反応を行った。反応溶液は黄色透明溶液であった。3時間後、TLCにより原料の消失が確認された。しばらくすると、オレンジ色固体が析出したため、吸引濾過を行い、メタノールで洗浄後、ろ物をクロロホルムに溶解させた。水150ml×3回、塩水150ml×1回で洗浄し、エバポレーションを行なった。また、触媒を抜くために、シリカゲルカラムクロマトグラフィーを行なった。ガラスフィルター17G−4を使用し、シリカゲルを150cc使用した。インジェクション溶媒はトルエン、展開溶媒はヘキサン:酢酸エチル=10:3(vol/vol)を使用した。エバポレーション後、白色固体が1.0g得られ、収率は49%であった。1H−NMR及びMSより、3MHPM−Cl(分子量343)の生成を確認した。
(ii)Ac−3MHPMの合成
還流管及び温度計を付けた25mlの四口フラスコに3MHPM−Cl(1.03g、3mmol)、9,10−ジヒドロ−9,9−ジメチルアクリジン(1.32g、6.3mmol)、tBuONa(1.44g、15mmol)を入れた後、15分間の窒素フローを行った。その後、脱水キシレン(50ml)を入れ、窒素バブリングを1時間行った。Pd(OAc)2(34mg、0.15mmol)、P(tBu)3(0.11ml、0.45mmol)を入れた後、還流条件下(140℃)で反応を行った。4時間反応後、TLCにより原料の消失が確認された。トルエン洗浄にて吸引濾過した後、トルエン150mlを加え、水150ml×3回、塩水150ml×3回にて分液洗浄を行い、エバポレーションにて濃縮した。次いで、シリカゲルカラムクロマトグラフィーを行った。直径8cmのカラムを用い、シリカゲルを500cc(高さ10cm)使用した。インジェクション溶媒はジクロロメタン、展開溶媒はヘキサン:酢酸エチル=10:1(vol/vol)を使用した。エバポレーション後、黄白色固体が1.28g得られ、収率は62%であった。1H−NMR(図23)及びMSより、Ac−3MHPM(分子量689)の生成を確認した。
Ac−3MHPMの元素分析結果を以下に示す。
Figure 2018035129
表10に示すように、実測値は許容誤差範囲(±0.3%以内)に収まっていることが確認された。 The elemental analysis results of CzAc-26DPPM are shown below.
Figure 2018035129
As shown in Table 7, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).
[Example 13] Synthesis of Ac-1MHPM
Figure 2018035129
(I) Synthesis of 1MHPM-Cl In a 200 ml four-necked flask equipped with a reflux tube and a thermometer, 4,6-dichloro-5-methylpyrimidine (1.47 g, 9 mmol), 4-chlorophenylboronic acid (2.81 g, 18 mmol), acetonitrile (150 ml), and 1M sodium carbonate (K 2 CO 3 ) aqueous solution (45 ml) were added, and nitrogen bubbling was performed for 1 hour. Thereafter, PdCl 2 (PPh 3 ) 2 (320 mg, 0.45 mmol) was added, and the reaction was performed under reflux. After 4 hours, the disappearance of the raw material was confirmed by TLC. After suction filtration and washing with water, the filtrate was dissolved in chloroform, washed with water 150 ml × 3 times and brine 150 ml × 3 times, and evaporated. In order to remove the catalyst, a glass filter 17G-4 was used and a column was removed. 150 cc of silica gel was used, toluene was used as the injection solvent, and hexane: ethyl acetate = 10: 3 (vol / vol) was used as the developing solvent. After evaporation, 1.27 g of a white solid was obtained, and the yield was 32%. From 1 H-NMR and MS, production of 1 MHPM-Cl (molecular weight 315) was confirmed.
(Ii) Synthesis of Ac-1MHPM In a 50 ml four-necked flask equipped with a reflux tube and a thermometer, 1 MHPM-Cl (0.88 g, 2.8 mmol), 9,10-dihydro-9,9-dimethylacridine (1. 23 g, 5.9 mmol) and tBuONa (1.34 g, 14 mmol) were added, followed by a nitrogen flow for 15 minutes. Thereafter, dehydrated xylene (50 ml) was added and nitrogen bubbling was performed for 1 hour. After adding Pd (OAc) 2 (32 mg, 0.14 mmol) and P (tBu) 3 (0.1 ml, 0.42 mmol), the reaction was carried out under reflux conditions (140 ° C.). After the reaction for 6 hours, disappearance of the raw material was confirmed by TLC. After suction filtration with toluene washing, 150 ml of toluene was added, followed by liquid separation washing with water 150 ml × 3 times and brine 150 ml × 3 times, and concentrated by evaporation. Subsequently, silica gel column chromatography was performed. A column of 8 cm in diameter was used, and 500 cc of silica gel (height 10 cm) was used. The injection solvent was dichloromethane, and the developing solvent was hexane: ethyl acetate = 10: 2 (vol / vol). After evaporation, 1.44 g of a white solid was obtained, and the yield was 78%. Formation of Ac-MHPM (molecular weight 661) was confirmed by 1 H-NMR (FIG. 21) and MS.
The elemental analysis results of Ac-1MHPM are shown below.
Figure 2018035129
As shown in Table 8, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).
[Example 14] Synthesis of Ac-2MHPM
Figure 2018035129
(I) Synthesis of 2MHPM-Cl In a 300 ml four-necked flask equipped with a reflux tube and a thermometer, 4,6-dichloropyrimidine (1.33 g, 9 mmol), 4-chloro-2-methylphenylboronic acid (3.06 g) 18 mmol), acetonitrile (150 ml), and 1M aqueous sodium carbonate (Na 2 CO 3 ) solution (50 ml) were added, and nitrogen bubbling was performed for 1 hour. Thereafter, PdCl 2 (PPh 3 ) 2 (320 mg, 0.45 mmol) was added, and the reaction was performed under reflux. The reaction solution was a yellow transparent solution. After 2 hours, the disappearance of the raw material was confirmed by TLC. After a while, an orange solid precipitated, and thus suction filtration was performed. After washing with methanol, the filtrate was dissolved in chloroform. Washing was performed with water (150 ml × 3 times) and brine (150 ml × 1 time), followed by evaporation. In order to remove the catalyst, silica gel column chromatography was performed. A glass filter 17G-4 was used and 150 cc of silica gel was used. The injection solvent was toluene, and the developing solvent was hexane: ethyl acetate = 1: 1 (vol / vol). After evaporation, 1.27 g of a white solid was obtained, and the yield was 43%. From 1 H-NMR and MS, it was confirmed that 2MHPM-Cl (molecular weight: 329) was produced.
(Ii) Synthesis of Ac-2MHPM In a 25 ml four-necked flask equipped with a reflux tube and a thermometer, 2MHPM-Cl (0.99 g, 3 mmol), 9,10-dihydro-9,9-dimethylacridine (1.32 g, 6.3 mmol) and tBuONa (1.44 g, 15 mmol) were added followed by 15 minutes of nitrogen flow. Thereafter, dehydrated xylene (50 ml) was added and nitrogen bubbling was performed for 1 hour. Pd (OAc) 2 (34 mg, 0.15 mmol) and P (tBu) 3 (0.11 ml, 0.45 mmol) were added, and then the reaction was performed under reflux conditions (140 ° C.). After the reaction for 11 hours, disappearance of the raw material was confirmed by TLC. After suction filtration with toluene washing, 150 ml of toluene was added, followed by liquid separation washing with water 150 ml × 3 times and brine 150 ml × 3 times, and concentrated by evaporation. Subsequently, silica gel column chromatography was performed. A column of 8 cm in diameter was used, and 500 cc of silica gel (height 10 cm) was used. The injection solvent was dichloromethane, and the developing solvent was hexane: ethyl acetate = 10: 1 (vol / vol). After the evaporation, 1.01 g of a yellowish white solid was obtained, and the yield was 50%. A result of 1 H-NMR (Fig. 22) and MS, to confirm the production of Ac-2MHPM (molecular weight 675).
The elemental analysis results of Ac-2MHPM are shown below.
Figure 2018035129
As shown in Table 9, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).
Example 15 Synthesis of Ac-3MHPM
Figure 2018035129
(I) Synthesis of 3MHPM-Cl In a 300 ml four-necked flask equipped with a reflux tube and a thermometer, 4,6-dichloro-5-methylpyrimidine (0.98 g, 6.0 mmol), 4-chloro-2-methylphenyl Boronic acid (2.24 g, 13.2 mmol), acetonitrile (100 ml), 1M sodium carbonate (Na 2 CO 3 ) (30 ml) were added, and nitrogen bubbling was performed for 1 hour. Then, PdCl 2 (PPh 3) 2 210mg, 0.3mmol) were charged, and the reaction was carried out under reflux. The reaction solution was a yellow transparent solution. After 3 hours, disappearance of the raw material was confirmed by TLC. After a while, an orange solid precipitated, and thus suction filtration was performed. After washing with methanol, the filtrate was dissolved in chloroform. Washing was performed with water (150 ml × 3 times) and brine (150 ml × 1 time), followed by evaporation. In order to remove the catalyst, silica gel column chromatography was performed. A glass filter 17G-4 was used and 150 cc of silica gel was used. The injection solvent was toluene, and the developing solvent was hexane: ethyl acetate = 10: 3 (vol / vol). After evaporation, 1.0 g of a white solid was obtained and the yield was 49%. From 1 H-NMR and MS, production of 3MHPM-Cl (molecular weight 343) was confirmed.
(Ii) Synthesis of Ac-3MHPM In a 25 ml four-necked flask equipped with a reflux tube and a thermometer, 3MHPM-Cl (1.03 g, 3 mmol), 9,10-dihydro-9,9-dimethylacridine (1.32 g, 6.3 mmol) and tBuONa (1.44 g, 15 mmol) were added followed by 15 minutes of nitrogen flow. Thereafter, dehydrated xylene (50 ml) was added and nitrogen bubbling was performed for 1 hour. Pd (OAc) 2 (34 mg, 0.15 mmol) and P (tBu) 3 (0.11 ml, 0.45 mmol) were added, and then the reaction was performed under reflux conditions (140 ° C.). After the reaction for 4 hours, disappearance of the raw material was confirmed by TLC. After suction filtration with toluene washing, 150 ml of toluene was added, followed by liquid separation washing with water 150 ml × 3 times and brine 150 ml × 3 times, and concentrated by evaporation. Subsequently, silica gel column chromatography was performed. A column of 8 cm in diameter was used, and 500 cc of silica gel (height 10 cm) was used. The injection solvent was dichloromethane, and the developing solvent was hexane: ethyl acetate = 10: 1 (vol / vol). After evaporation, 1.28 g of a yellowish white solid was obtained, and the yield was 62%. Formation of Ac-3MHPM (molecular weight 689) was confirmed by 1 H-NMR (FIG. 23) and MS.
The elemental analysis results of Ac-3MHPM are shown below.
Figure 2018035129
As shown in Table 10, it was confirmed that the measured values were within the allowable error range (within ± 0.3%).

[光学特性評価]
光学特性評価に用いた機器及び測定条件は以下のとおりである。
(1)紫外・可視(UV−vis)分光光度計
(株)島津製作所製 UV−3150
測定条件;スキャンスピード 中速、測定範囲 200〜800nm サンプリングピッチ 0.5nm、スリット幅 0.5nm
(2)フォトルミネッセンス(PL)測定装置
(株)堀場製作所製Fluoro MAX−2
常温及び低温において、PLスペクトル、及び、ストリークカメラ(浜松ホトニクス(株)製C4334)を用いた時間分解PLスペクトル(過渡PLスペクトル)を測定した。
(3)光電子収量分光(PYS)装置
住友重機械工業(株)製イオン化ポテンシャル測定装置
イオン化ポテンシャル測定装置を用いて、真空中でイオン化ポテンシャル(Ip)の測定を行った。
なお、電子親和力(Ea)は、UV−vis吸収スペクトルの吸収端よりエネルギーギャップ(Eg)を見積もることによって算出した。
[Optical characteristics evaluation]
The equipment and measurement conditions used for the optical property evaluation are as follows.
(1) Ultraviolet / visible (UV-vis) spectrophotometer UV-3150 manufactured by Shimadzu Corporation
Measurement conditions: medium scan speed, measurement range 200 to 800 nm, sampling pitch 0.5 nm, slit width 0.5 nm
(2) Photoluminescence (PL) measuring device Fluoro MAX-2 manufactured by HORIBA, Ltd.
At normal temperature and low temperature, PL spectrum and time-resolved PL spectrum (transient PL spectrum) using a streak camera (C4334 manufactured by Hamamatsu Photonics Co., Ltd.) were measured.
(3) Photoelectron Yield Spectroscopy (PYS) Device Ionization Potential Measurement Device manufactured by Sumitomo Heavy Industries, Ltd. Ionization potential (Ip) was measured in vacuum using an ionization potential measurement device.
The electron affinity (Ea) was calculated by estimating the energy gap (Eg) from the absorption edge of the UV-vis absorption spectrum.

(光学特性評価・1)
実施例1で得られたAc−PPMを用いて、Ac−PPMの単膜、10-5Mトルエン溶液、及びドープ膜(10wt%DPEPO共蒸着膜)を調製し、UV−vis吸収スペクトル、PLスペクトル及びPYSの測定を行った。なお、DPEPOは、ビス(2−(ジフェニルホスフィノ)フェニル)エーテルオキシドである。
結果を図4〜7及び表1に示す。

Figure 2018035129
(Optical property evaluation-1)
Using Ac-PPM obtained in Example 1, a single film of Ac-PPM, a 10 −5 M toluene solution, and a dope film (10 wt% DPEPO co-deposited film) were prepared, and UV-vis absorption spectrum, PL Spectrum and PYS measurements were taken. Note that DPEPO is bis (2- (diphenylphosphino) phenyl) ether oxide.
The results are shown in FIGS.
Figure 2018035129

図4(b)より、単膜とドープ膜とのPLスペクトルはほぼ重なった。この理由として、アクリジンのジメチル基により凝集が抑制されたためであると考えられる。
図5の時間分解PLスペクトル(過渡PLスペクトル)では、常温(300K)での遅延成分は、低温(5K)での遅延成分よりも強度が増加していた。この結果より、Ac−PPMはTADF特性を示すことがわかった。
図6のPLスペクトルでは、低温(5K)においてリン光スペクトルが観測でき(図6(a))、常温(300K)において蛍光発光スペクトルが観測できた(図6(b))。常温(300K)での蛍光発光スペクトルの立ち上がり、低温(5K)でのリン光スペクトルの立ち上がりから、励起一重項エネルギー(ES1)及び三重項エネルギー(ET1)はそれぞれEs=2.86eV及びET=2.67eVと見積もることができた。これらの結果から、励起一重項エネルギー(ES1)及び三重項エネルギー(ET1)の差(ΔEST)は0.19eVと、相当に小さい値を示した。
また、Ac−PPMでは、DPEPOの代わりにPO9でドープした場合であっても、DPEPOでドープした場合と同様に、過渡PLスペクトルよりTADF特性に基づく遅延成分を確認することができた。
以上の結果から、ピリミジン骨格及びジメチルアクリジン誘導体部位はそれぞれ高い三重項エネルギー(ET1)を有し、青色TADFとなり得ることが示唆される。
From FIG. 4B, the PL spectra of the single film and the doped film almost overlapped. This is considered to be because aggregation was suppressed by the dimethyl group of acridine.
In the time-resolved PL spectrum (transient PL spectrum) in FIG. 5, the intensity of the delay component at normal temperature (300K) is higher than that of the delay component at low temperature (5K). From this result, it was found that Ac-PPM exhibits TADF characteristics.
In the PL spectrum of FIG. 6, a phosphorescence spectrum could be observed at a low temperature (5K) (FIG. 6 (a)), and a fluorescence emission spectrum could be observed at room temperature (300K) (FIG. 6 (b)). From the rise of the fluorescence emission spectrum at normal temperature (300 K) and the rise of the phosphorescence spectrum at low temperature (5 K), the excited singlet energy (E S1 ) and the triplet energy (E T1 ) are E s = 2.86 eV and E T = 2.67 eV could be estimated. From these results, the difference (ΔE ST ) between the excited singlet energy (E S1 ) and the triplet energy (E T1 ) was 0.19 eV, which was a considerably small value.
Moreover, in Ac-PPM, even when doped with PO9 instead of DPEPO, a delay component based on TADF characteristics could be confirmed from the transient PL spectrum as in the case of doping with DPEPO.
From the above results, it is suggested that the pyrimidine skeleton and the dimethylacridine derivative site each have a high triplet energy (E T1 ) and can be blue TADF.

(光学特性評価・2)
実施例3で得られたBCz−MPMを用いて、BCz−MPMの単膜、及びドープ膜(10wt%DPEPO共蒸着膜)を調製し、UV−vis吸収スペクトル、PLスペクトル及びPYSの測定を行った。
結果を表2及び図8〜11に示す。

Figure 2018035129
(Optical property evaluation ・ 2)
A BCz-MPM single film and a doped film (10 wt% DPEPO co-deposited film) were prepared using the BCz-MPM obtained in Example 3, and UV-vis absorption spectrum, PL spectrum, and PYS were measured. It was.
The results are shown in Table 2 and Figs.
Figure 2018035129

図8より、ドープ膜は、単膜と比べてλmaxが20nm程度、長波長側にシフトしていた。この理由として、凝集による濃度消光が考えられる。
図9の時間分解PLスペクトル(過渡PLスペクトル)より、常温300Kでの遅延成分は低温5Kでのものより強度が明らかに増加していた。この結果から、BCz−MPMがTADF特性を示すことがわかった。
図10(a)より、低温5Kにおいてリン光スペクトルが観測できた。図10(b)に示される常温(300K)での蛍光発光スペクトルの立ち上がり、図10(a)に示される低温5Kでのリン光スペクトルの立ち上がりから、励起一重項エネルギー(ES1)及び三重項エネルギー(ET1)はそれぞれES=2.84eV、ET=3.16eVと見積もった。これらの結果より、励起一重項エネルギー(ES1)及び三重項エネルギー(ET1)のエネルギー差(ΔEST)は0.32eVと、比較的小さな値を示した。
From FIG. 8, the doped film was shifted to the long wavelength side by λ max of about 20 nm as compared with the single film. The reason for this is thought to be concentration quenching due to aggregation.
From the time-resolved PL spectrum (transient PL spectrum) in FIG. 9, the intensity of the delayed component at room temperature of 300 K was clearly increased from that at low temperature of 5 K. From this result, it was found that BCz-MPM exhibits TADF characteristics.
From FIG. 10A, a phosphorescence spectrum could be observed at a low temperature of 5K. From the rise of the fluorescence emission spectrum at normal temperature (300K) shown in FIG. 10B and the rise of the phosphorescence spectrum at low temperature 5K shown in FIG. 10A, the excited singlet energy (E S1 ) and triplet The energy (E T1 ) was estimated as E S = 2.84 eV and E T = 3.16 eV, respectively. From these results, the energy difference (ΔE ST ) between the excited singlet energy (E S1 ) and the triplet energy (E T1 ) was as low as 0.32 eV.

(光学特性評価・3)
実施例1、3、4及び5のピリミジン誘導体のHOMO及びLUMOについて、密度汎関数理論(DFT;density functional theory)による分子軌道計算を行い、HOMO、LUMO、HOMO−LUMO間のエネルギー差(ΔEH-L)、一重項エネルギー(ESl)、三重項エネルギー(ET1)、及び最低一重項エネルギー(ES1)及び三重項エネルギー(ET1)のエネルギー差(ΔES-T)を見積もった。
表13に結果を示す。
(Optical property evaluation-3)
For the HOMO and LUMO of the pyrimidine derivatives of Examples 1, 3, 4, and 5, molecular orbital calculation was performed by density functional theory (DFT), and the energy difference (ΔE HL) between HOMO, LUMO, and HOMO-LUMO. ), Singlet energy (E Sl ), triplet energy (E T1 ), and energy difference (ΔE ST ) of the lowest singlet energy (E S1 ) and triplet energy (E T1 ).
Table 13 shows the results.

Figure 2018035129
Figure 2018035129

実施例1、3、4及び5のいずれのピリミジン誘導体も、ΔESTが0.01〜0.12eVと小さく、TADFが期待される。また、HOMO−LUMO間のエネルギー差(ΔEH-L)が3.31eV以上と大きく、青色の発光色が期待される。 Any of a pyrimidine derivative of Examples 1, 3, 4 and 5 also, Delta] E ST is as small as 0.01~0.12eV, TADF is expected. Moreover, the energy difference (ΔE HL ) between HOMO and LUMO is as large as 3.31 eV or more, and a blue emission color is expected.

(光学特性評価・4)
実施例6〜9で得られたAc−SPM、Ac−NPM、PXZ−PPM及びAc−MMPMを用いて、単膜、及びドープ膜(10wt%DPEPO共蒸着膜)を調製し、UV−vis吸収スペクトル、PYS、並びに、常温及び低温において、PLスペクトル、及び、ストリークカメラを用いた時間分解PLスペクトル(過渡PLスペクトル)の測定を行った。
結果を図17〜20に示す。
また、表14に、実施例1及び4〜9で得られたピリミジン誘導体について、発光波長(λem)、PL発光量子収率(PLQE)、励起一重項エネルギー(S1)、励起三重項エネルギー(T1)、S1とT1とのエネルギー差(ΔEST)及び発光寿命(τd)を示す。
(Optical characteristics evaluation-4)
Using Ac-SPM, Ac-NPM, PXZ-PPM and Ac-MMPM obtained in Examples 6 to 9, single films and doped films (10 wt% DPEPO co-deposited films) were prepared, and UV-vis absorption was performed. A spectrum, PYS, and a PL spectrum and a time-resolved PL spectrum (transient PL spectrum) using a streak camera were measured at room temperature and low temperature.
The results are shown in FIGS.
Table 14 shows the emission wavelength (λ em ), PL emission quantum yield (PLQE), excited singlet energy (S 1 ), excited triplet energy for the pyrimidine derivatives obtained in Examples 1 and 4-9. (T 1 ), energy difference (ΔE ST ) and light emission lifetime (τ d ) between S 1 and T 1 are shown.

Figure 2018035129
表14より、低温リン光スペクトルにより、すべての材料においてT1が2.65〜2.70eVと同等のエネルギーと見積もられた。
(光学特性評価・5)
実施例13〜15で得られたAc−1MHPM、Ac−2MHPM、及びAc−3MHPMを用いてトルエン溶液(10-5M)を調製し、UV−vis吸収スペクトル及びPLスペクトルを測定し、ドープ膜(20wt%DPEPO共蒸着膜)を作製し、PLスペクトルを測定した。
結果を図24(a)〜(c)に示す。
Ac−1MHPM、Ac−2MHPM、及びAc−3MHPMのトルエン溶液(10-5M)のUV−visスペクトルより(図24(a))、これら全ての材料でTADFを示唆するICT(分子内電荷移動)による吸収が見られた。また、図24(b)より、20wt% Ac−1MHPM:DPEPO共蒸着膜はλem=481nmと青色発光を示し、PLQEは75%と高い値を示した。一方、20wt% Ac−3MHPM:DPEPO共蒸着膜はλem=454nmと純青色発光を達成し、PLQEは47%を示した。
次に、実施例13〜15で得られたAc−1MHPM、Ac−2MHPM、及びAc−3MHPMを用いて、単膜、及びドープ膜(20wt%DPEPO共蒸着膜)を調製し、ストリークカメラを用いた時間分解PLスペクトル(過渡PLスペクトル)の測定を行った。
結果を図25に示す。
図25より、すべての材料において遅延蛍光の発光強度が300Kにおいて5Kよりも強くなっておりTADF特性を示唆している。また、図26(a)及び(b)より、Ac−1MHPM及びAc−2MHPMのT1はそれぞれ約2.8eV、図26(c)より、Ac−3MHPMのT1は2.95eVと見積もられた。ΔESTはどれも約0.2Vと、比較的小さく、発光寿命も比較的小さく(td=45〜50ms)、高効率なTADFを示唆する。
光学特性結果を表15に示す。
Figure 2018035129
Figure 2018035129
From Table 14, T 1 was estimated to be equivalent to 2.65 to 2.70 eV in all materials from the low temperature phosphorescence spectrum.
(Optical characteristics evaluation ・ 5)
A toluene solution (10 −5 M) was prepared using Ac-1 MHPM, Ac-2 MHPM, and Ac-3 MHPM obtained in Examples 13 to 15, UV-vis absorption spectrum and PL spectrum were measured, and a dope film (20 wt% DPEPO co-deposited film) was prepared and the PL spectrum was measured.
The results are shown in FIGS.
From the UV-vis spectrum of toluene solutions (10 -5 M) of Ac-1 MHPM, Ac-2 MHPM, and Ac-3 MHPM (FIG. 24 (a)), ICT (intramolecular charge transfer) suggesting TADF in all these materials ) Was observed. Further, from FIG. 24B, the 20 wt% Ac-1 MHPM: DPEPO co-deposited film showed blue emission with λ em = 481 nm, and PLQE showed a high value of 75%. On the other hand, the 20 wt% Ac-3MHPM: DPEPO co-deposited film achieved pure blue emission with λ em = 454 nm, and PLQE showed 47%.
Next, using Ac-1 MHPM, Ac-2 MHPM, and Ac-3 MHPM obtained in Examples 13 to 15, a single film and a doped film (20 wt% DPEPO co-deposited film) were prepared, and a streak camera was used. The time-resolved PL spectrum (transient PL spectrum) was measured.
The results are shown in FIG.
FIG. 25 shows that the emission intensity of delayed fluorescence is stronger than 5K at 300K in all materials, suggesting TADF characteristics. In addition, from FIGS. 26 (a) and (b), T- 1 of Ac-1MHPM and Ac-2MHPM is estimated to be about 2.8 eV, respectively, and from FIG. 26 (c), T 1 of Ac-3MHPM is estimated to be 2.95 eV. It was. ΔE ST is about 0.2V, which is relatively small, and the light emission lifetime is relatively small (t d = 45 to 50 ms), suggesting highly efficient TADF.
Table 15 shows the optical characteristic results.
Figure 2018035129

[有機EL素子の作製及び評価]
有機EL素子の評価に用いた機器は以下のとおりである。
EL(エレクトロルミネッセンス)スペクトル
装置;(株)浜松ホトニクス製 PHOTONIC MULTI−CHANNEL ANALYZER PMA−1
[Production and Evaluation of Organic EL Element]
The equipment used for the evaluation of the organic EL element is as follows.
EL (electroluminescence) spectrum apparatus; HOTONIC MULTI-CHANNEL ANALYZER PMA-1 manufactured by Hamamatsu Photonics Co., Ltd.

[実施例16]
実施例1で得られたAc−PPMを用いて、素子構造[ITO陽極/TAPC(30nm厚)/10wt%Ac−PPM:DPEPO(10nm厚)/B3PyPB(50nm厚)/LiF(0.5nm厚)/Al陰極(100nm厚)]となるように、有機EL素子を作製した。なお、TAPC(4,4’−シクロヘキシリデンビス[N,N−ビス(4−メチルフェニル)ベンゼンアミン])は正孔輸送層を、B3PyPB(3,3’’,5,5’’−テトラ(ピリジン−3−イル)−1,1’,3’,1’’−ターフェニル)は電子輸送層を、LiFは電子注入層を形成する材料であり、「10wt%Ac−PPM:DPEPO」(10wt%DPEPO共蒸着膜)は、発光層を形成する材料である。
[Example 16]
Using the Ac-PPM obtained in Example 1, the device structure [ITO anode / TAPC (30 nm thickness) / 10 wt% Ac-PPM: DPEPO (10 nm thickness) / B3PyPB (50 nm thickness) / LiF (0.5 nm thickness) ) / Al cathode (100 nm thickness)], an organic EL device was produced. Note that TAPC (4,4′-cyclohexylidenebis [N, N-bis (4-methylphenyl) benzeneamine]) represents a hole transport layer as B3PyPB (3,3 ″, 5,5 ″ −). Tetra (pyridin-3-yl) -1,1 ′, 3 ′, 1 ″ -terphenyl) is a material for forming an electron transport layer, and LiF is a material for forming an electron injection layer. “10 wt% Ac-PPM: DPEPO “(10 wt% DPEPO co-deposited film)” is a material for forming a light emitting layer.

Figure 2018035129
Figure 2018035129

図27に示すELスペクトルより、Ac−PPM由来の発光が観測された。ピーク波長は496nmであり、ドープ膜での発光は、Ac−PPM単膜と比べて若干の長波長シフトを示した。
図28(a)は電流密度−電圧−輝度特性の関係を示し、図28(b)は電力効率−輝度特性の関係を示し、図28(c)は外部量子効率−輝度特性の関係を示す。これらの結果から、1cd/m2時の駆動電力(D.V.)は2.92V、電力効率(P.E.)は49.6lm/W、外部量子効率(E.Q.E.)は17.9%であり、100cd/m2時の駆動電力(D.V.)は3.93V、電力効率(P.E.)は33.1lm/W、外部量子効率(E.Q.E.)は16.1%であり、1000cd/m2時の駆動電力(D.V.)は4.99V、電力効率(P.E.)は17.8lm/W、外部量子効率(E.Q.E.)は11.0%であった。また、100cd/m2時のCIEは0.21、0.45となり、緑色領域の発光を示した。
From the EL spectrum shown in FIG. 27, light emission derived from Ac-PPM was observed. The peak wavelength was 496 nm, and light emission from the doped film showed a slight long wavelength shift compared to the Ac-PPM single film.
FIG. 28A shows the relationship between current density-voltage-luminance characteristics, FIG. 28B shows the relationship between power efficiency-luminance characteristics, and FIG. 28C shows the relationship between external quantum efficiency-luminance characteristics. . From these results, the driving power (D.V.) at 1 cd / m 2 is 2.92 V, the power efficiency (PE) is 49.6 lm / W, and the external quantum efficiency (EQE) Is 17.9%, the driving power (D.V.) at 100 cd / m 2 is 3.93 V, the power efficiency (PE) is 33.1 lm / W, and the external quantum efficiency (E.Q. E.) is 16.1%, the driving power (D.V.) at 1000 cd / m 2 is 4.99 V, the power efficiency (PE) is 17.8 lm / W, and the external quantum efficiency (E .Q.E.) Was 11.0%. The CIE at 100 cd / m 2 was 0.21 and 0.45, indicating light emission in the green region.

[実施例17]
実施例16において、発光層を形成するドープ膜として、「10wt%Ac−PPM:DPEPO」の代わりに、実施例3で得られたBCz−MPMの10wt%DPEPOドープ膜(「10wt%BCz−MPM:DPEPO」)を使用したこと以外は、実施例16と同様にして、有機EL素子を作製した。
すなわち、素子構造は、[ITO陽極/TAPC(30nm厚)/10wt%BCz−MPM:DPEPO(10nm厚)/B3PyPB(50nm厚)/LiF(0.5nm厚)/Al陰極(100nm厚)]である。
図30に示すELスペクトルよりBCz−MPM由来の発光が観測された。
図31(a)は電流密度−電圧−輝度特性の関係を示し、図31(b)は電力効率−輝度特性の関係を示し、図31(c)は外部量子効率−輝度特性の関係を示す。
これらの結果から、ピーク波長は450nmであり、100cdm-2時のCIEは0.18及び0.19となり、純青色発光を示した。最大外部量子効率はEQEmax=8.5%で、蛍光有機EL素子の理論限界である7.5%を超える効率であり、TADF由来による発光を強く示唆する結果であった。
[Example 17]
In Example 16, instead of “10 wt% Ac-PPM: DPEPO”, a 10 wt% DPEPO doped film of BCz-MPM obtained in Example 3 (“10 wt% BCz-MPM”) was used instead of “10 wt% Ac-PPM: DPEPO”. : DPEPO ") was used to produce an organic EL device in the same manner as in Example 16.
That is, the element structure is [ITO anode / TAPC (30 nm thickness) / 10 wt% BCz-MPM: DPEPO (10 nm thickness) / B3PyPB (50 nm thickness) / LiF (0.5 nm thickness) / Al cathode (100 nm thickness)]. is there.
From the EL spectrum shown in FIG. 30, luminescence derived from BCz-MPM was observed.
31A shows the relationship between current density-voltage-luminance characteristics, FIG. 31B shows the relationship between power efficiency-luminance characteristics, and FIG. 31C shows the relationship between external quantum efficiency-luminance characteristics. .
From these results, the peak wavelength was 450 nm, and the CIE at 100 cdm −2 was 0.18 and 0.19, indicating pure blue light emission. The maximum external quantum efficiency is EQE max = 8.5%, which exceeds the theoretical limit of 7.5% of the fluorescent organic EL device, and strongly suggests light emission derived from TADF.

[実施例18]
実施例16において、発光層を形成するホスト材料として、DPEPOの代わりにPO9を使用したこと以外は、実施例16と同様にして、有機EL素子を作製した。

Figure 2018035129
[Example 18]
In Example 16, an organic EL device was produced in the same manner as in Example 16 except that PO9 was used instead of DPEPO as the host material for forming the light emitting layer.
Figure 2018035129

すなわち、素子構造は、[ITO陽極/TAPC(30nm厚)/10wt%Ac−PPM:PO9(10nm厚)/B3PyPB(50nm厚)/LiF(0.5nm厚)/Al陰極(100nm厚)]である。
図33より、発光層を形成するホスト材料にPO9を用いた素子と、実施例16の素子とでは、ELスペクトルがほぼ重なることがわかった。
図34(a)は電流密度−電圧−輝度特性の関係を示し、図34(b)は電力効率−輝度特性の関係を示し、図34(c)は外部量子効率−輝度特性の関係を示す。なお、図34(a)〜(c)中には、実施例16の素子におけるこれらの特性も重ねて示している。
これらの結果から、ホスト材料にPO9を用いた素子は、DPEPOを用いた場合に比べて、低輝度時に若干高効率化することがわかった。また、ホスト材料にPO9を用いた素子では、1cd/m2時の駆動電力(D.V.)は2.91V、輝度(P.E.)は51.7m/W、外部量子効率(E.Q.E.)は19.2%であり、100cd/m2時の駆動電力(D.V.)は3.91V、輝度(P.E.)は32.0lm/W、外部量子効率(E.Q.E.)は16.0%であり、1000cd/m2時の駆動電力(D.V.)は5.00V、輝度(P.E.)は17.0lm/W、外部量子効率(E.Q.E.)は10.9%であった。また、100cd/m2時のCIEは0.21、0.43となり、緑色領域の発光を示した。
特に、Ac−PPMにPO9を用いた素子において、最大外部量子効率(E.Q.E.)が19.2%と、20%に迫る高効率を達成した。また、低輝度領域で電力効率が50lm/Wと、駆動電圧が低いこともわかる。
表16に実施例16〜18の結果を示す。
That is, the element structure is [ITO anode / TAPC (30 nm thickness) / 10 wt% Ac-PPM: PO9 (10 nm thickness) / B3PyPB (50 nm thickness) / LiF (0.5 nm thickness) / Al cathode (100 nm thickness)]. is there.
From FIG. 33, it was found that EL spectra almost overlap in the element using PO9 as the host material for forming the light emitting layer and the element of Example 16.
34A shows the relationship between current density-voltage-luminance characteristics, FIG. 34B shows the relationship between power efficiency-luminance characteristics, and FIG. 34C shows the relationship between external quantum efficiency-luminance characteristics. . In FIGS. 34A to 34C, these characteristics of the element of Example 16 are also shown.
From these results, it was found that the element using PO9 as the host material is slightly more efficient at low luminance than when DPEPO is used. In the case of an element using PO9 as a host material, the driving power (D.V.) at 1 cd / m 2 is 2.91 V, the luminance (PE) is 51.7 m / W, and the external quantum efficiency (E .Q.E.) Is 19.2%, drive power (D.V.) at 100 cd / m 2 is 3.91 V, luminance (PE) is 32.0 lm / W, external quantum efficiency (EQE) is 16.0%, driving power (DV) at 1000 cd / m 2 is 5.00 V, luminance (PE) is 17.0 lm / W, external The quantum efficiency (EQE) was 10.9%. The CIE at 100 cd / m 2 was 0.21 and 0.43, indicating light emission in the green region.
In particular, in an element using PO9 for Ac-PPM, the maximum external quantum efficiency (EQE) was 19.2%, which was as high as 20%. It can also be seen that the driving voltage is low at 50 lm / W in the low luminance region.
Table 16 shows the results of Examples 16-18.

Figure 2018035129
Figure 2018035129

実施例16及び18において、ホスト材料(ドーパント)としてDPEPO及びPO9いずれを用いた場合であっても、過渡PLスペクトルよりTADF由来の遅延成分を確認することができた。
ホスト材料がDPEPOの場合(実施例16)、100cdm-2時のCIEは0.21及び0.45となり、緑色領域の発光を示し、ホスト材料がPO9の場合(実施例18)、100cdm-2時のCIEは0.21及び0.43となり、緑色領域の発光を示した。実施例8の素子では、最大外部量子効率が19.2%と、20%に迫る高効率を達成した。駆動電圧も低く、低輝度領域で50lm/Wの高電力効率を達成した。
In Examples 16 and 18, even when either DPEPO or PO9 was used as the host material (dopant), a delayed component derived from TADF could be confirmed from the transient PL spectrum.
When the host material is DPEPO (Example 16), the CIE at 100 cdm −2 is 0.21 and 0.45, indicating light emission in the green region, and when the host material is PO9 (Example 18), 100 cdm −2 The CIE at the time was 0.21 and 0.43, indicating light emission in the green region. In the device of Example 8, the maximum external quantum efficiency was 19.2%, which was as high as 20%. The drive voltage was also low, and a high power efficiency of 50 lm / W was achieved in the low luminance region.

[実施例19]
実施例1及び4〜7で得られたAc−PPM、Ac−MPM、Ac−HPM、Ac−SPM及びAc−NPMを用いて、素子構造[ITO陽極/TAPC(30nm厚)/10wt%Ac−RPM:DPEPO(20nm厚)/B3PyPB(50nm厚)/LiF(0.5nm厚)/Al陰極(100nm厚)]となるように、有機EL素子を作製した。なお、Ac−RPMは、Ac−PPM,Ac−MPM、Ac−HPM、Ac−SPM及びAc−NPMのいずれかを表す。
図36にエネルギーダイアグラムを示す。
結果を図37(a)〜(c)及び表17に示す。
図37に示すELスペクトルより、すべてのデバイスでAc−RPM由来の発光が観測された。また、図38(b)に示すように、すべての素子において、最大外部量子効率(E.Q.E)10%以上の高効率を達成した。特に、表17に示すように、Ac−SPM及びAc−NPMを用いたデバイスでは、それぞれ100cdm-1時に緑色発光CIE(0.24、0.49)、青色発光CIE(0.17、0.29)を示した。
[Example 19]
Using the Ac-PPM, Ac-MPM, Ac-HPM, Ac-SPM, and Ac-NPM obtained in Examples 1 and 4 to 7, the device structure [ITO anode / TAPC (30 nm thickness) / 10 wt% Ac- RPM: DPEPO (20 nm thickness) / B3PyPB (50 nm thickness) / LiF (0.5 nm thickness) / Al cathode (100 nm thickness)] was prepared. Note that Ac-RPM represents any of Ac-PPM, Ac-MPM, Ac-HPM, Ac-SPM, and Ac-NPM.
FIG. 36 shows an energy diagram.
The results are shown in FIGS. 37 (a) to 37 (c) and Table 17.
From the EL spectrum shown in FIG. 37, light emission derived from Ac-RPM was observed in all devices. Moreover, as shown in FIG.38 (b), high efficiency of 10% or more of maximum external quantum efficiency (EQE) was achieved in all the elements. In particular, as shown in Table 17, the Ac-SPM and devices using Ac-NPM, respectively 100Cdm -1 at green emission CIE (0.24,0.49), blue light emission CIE (0.17,0. 29).

Figure 2018035129
Figure 2018035129

[実施例20]
実施例4で得られたAc−MPMを用いて、素子構造[ITO陽極/TAPC(30nm厚)/10wt%Ac−MPM:mCP(10nm厚)/10wt%Ac−MPM:DPEPO(10nm厚)/B3PyPB(50nm厚)/LiF(0.5nm厚)/Al陰極(100nm厚)]となるように、有機EL素子を作製した。すなわち、PLQY80%を達成したAc−MPMを用いてダブル発光層デバイスを作製した。
エネルギーダイアグラムを図39に示す。
[Example 20]
Using the Ac-MPM obtained in Example 4, the device structure [ITO anode / TAPC (30 nm thickness) / 10 wt% Ac-MPM: mCP (10 nm thickness) / 10 wt% Ac-MPM: DPEPO (10 nm thickness) / B3PyPB (50 nm thickness) / LiF (0.5 nm thickness) / Al cathode (100 nm thickness)] was produced. That is, a double light emitting layer device was manufactured using Ac-MPM that achieved 80% PLQY.
An energy diagram is shown in FIG.

Figure 2018035129
図40に示すELスペクトルより、Ac−MPMに由来する発光が観測された。
図41(a)は、電流密度−電圧−輝度特性の関係を示し、図41(b)は電力効率−輝度特性の関係を示し、図41(c)は外部量子効率−輝度特性の関係を示す。
結果を表18に示す。
Figure 2018035129
From the EL spectrum shown in FIG. 40, light emission derived from Ac-MPM was observed.
41A shows the relationship between current density-voltage-luminance characteristics, FIG. 41B shows the relationship between power efficiency-luminance characteristics, and FIG. 41C shows the relationship between external quantum efficiency-luminance characteristics. Show.
The results are shown in Table 18.

Figure 2018035129
ホスト材料にmCP及びDPEPOを使用したデバイスは、最大外部量子効率(E.Q.E.)24.5%(図41(C))、駆動電圧(D.V.)2.8V(図41(a))、最大電力効率(E.Q.E.)61.6%(図41(B))、かつ、表18に示すように、水色発光(CIE(0.19、0.37))を達成した。
Figure 2018035129
A device using mCP and DPEPO as a host material has a maximum external quantum efficiency (EQE) of 24.5% (FIG. 41C), a driving voltage (DV) of 2.8 V (FIG. 41). (A)), maximum power efficiency (EQE) 61.6% (FIG. 41 (B)), and as shown in Table 18, light blue emission (CIE (0.19, 0.37)) ) Was achieved.

[実施例21]
実施例8で得られたPXZ−PPMを用いて、PXZ−PPMのドープ濃度を5〜50wt%としたデバイスをそれぞれ作製した。
デバイスD:[ITO/KLHIP:PPBi(20nm)/TAPC(25nm)/TCTA(5nm)/5wt%PXZ−PPM:CBP(10nm)/B4PyPPM(50nm)/LiF(0.5nm)/Al(100nm)]
デバイスE:[ITO/KLHIP:PPBi(20nm)/TAPC(25nm)/TCTA(5nm)/10wt%PXZ−PPM:CBP(10nm)/B4PyPPM(50nm)/LiF(0.5nm)/Al(100nm)]
デバイスF:[ITO/KLHIP:PPBi(20nm)/TAPC(25nm)/TCTA(5nm)/15wt%PXZ−PPM:CBP(10nm)/B4PyPPM(50nm)/LiF(0.5nm)/Al(100nm)]
デバイスG:[ITO/KLHIP:PPBi(20nm)/TAPC(25nm)/TCTA(5nm)/20wt%PXZ−PPM:CBP(10nm)/B4PyPPM(50nm)/LiF(0.5nm)/Al(100nm)]
デバイスH:[ITO/KLHIP:PPBi(20nm)/TAPC(25nm)/TCTA(5nm)/50wt%PXZ−PPM:CBP(10nm)/B4PyPPM(50nm)/LiF(0.5nm)/Al(100nm)]
デバイスD〜Hのエネルギーダイアグラムを図42に示す。
デバイスD〜HのELスペクトルの結果を図43に示す。図44(a)は、電圧−輝度特性の関係を示し、図44(b)は外部量子効率−輝度特性の関係を示し、図44(c)は電力効率−輝度特性の関係を示す。
[Example 21]
Using the PXZ-PPM obtained in Example 8, devices having a PXZ-PPM doping concentration of 5 to 50 wt% were prepared.
Device D: [ITO / KLHIP: PPBi (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 5 wt% PXZ-PPM : CBP (10 nm) / B4PyPPM (50 nm) / LiF (0.5 nm) / Al (100 nm) ]
Device E: [ITO / KLHIP: PPBi (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 10 wt% PXZ-PPM : CBP (10 nm) / B4PyPPM (50 nm) / LiF (0.5 nm) / Al (100 nm) ]
Device F: [ITO / KLHIP: PPBi (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 15 wt% PXZ-PPM : CBP (10 nm) / B4PyPPM (50 nm) / LiF (0.5 nm) / Al (100 nm) ]
Device G: [ITO / KLHIP: PPBi (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 20 wt% PXZ-PPM : CBP (10 nm) / B4PyPPM (50 nm) / LiF (0.5 nm) / Al (100 nm) ]
Device H: [ITO / KLHIP: PPBi (20 nm) / TAPC (25 nm) / TCTA (5 nm) / 50 wt% PXZ-PPM : CBP (10 nm) / B4PyPPM (50 nm) / LiF (0.5 nm) / Al (100 nm) ]
An energy diagram of devices D to H is shown in FIG.
The results of EL spectra of devices D to H are shown in FIG. 44A shows the relationship between voltage and luminance characteristics, FIG. 44B shows the relationship between external quantum efficiency and luminance characteristics, and FIG. 44C shows the relationship between power efficiency and luminance characteristics.

Figure 2018035129
結果を表19に示す。
Figure 2018035129
The results are shown in Table 19.

Figure 2018035129
図43に示すELスペクトルより、発光材料由来のピークが観測された(λEL=524〜540nm)。図44(b)、(c)及び表19に示すように、ドープ濃度が20wt%のデバイスにおいて、最大外部量子効率が25.1%、最大電力効率が111 lm/WとこれまでのTADF素子のなかで世界最高効率を示した。また、100cd/m2時においても外部量子効率が25.1%、電力効率が103 lm/Wと高い値を維持した。
Figure 2018035129
From the EL spectrum shown in FIG. 43, a peak derived from the light emitting material was observed (λ EL = 524 to 540 nm). As shown in FIGS. 44 (b) and 44 (c) and Table 19, in a device having a doping concentration of 20 wt%, the maximum external quantum efficiency is 25.1% and the maximum power efficiency is 111 lm / W, so far the TADF element. Among them, it showed the highest efficiency in the world. Even at 100 cd / m 2 , the external quantum efficiency was 25.1% and the power efficiency was maintained at a high value of 103 lm / W.

[実施例22]
実施例9で得られたAc−MMPMを用いて、素子構造[ITO陽極/TAPC(30nm厚)/10wt%Ac−MMPM:mCP(10nm厚)/10wt%Ac−MMPM:DPEPO(10nm厚)/B3PyPB(50nm厚)/LiF(0.5nm厚)/Al陰極(100nm厚)]となるように、有機EL素子を作製した。
エネルギーダイアグラムを図45に示す。
図46に示すELスペクトルより、Ac−MMPMに由来する発光が観測された。
図47(a)は、電流密度−電圧−輝度特性の関係を示し、図47(b)は電力効率−輝度特性の関係を示し、図47(c)は外部量子効率−輝度特性の関係を示す。
結果を表20に示す。
[Example 22]
Using the Ac-MMPM obtained in Example 9, the device structure [ITO anode / TAPC (30 nm thickness) / 10 wt% Ac-MMPM: mCP (10 nm thickness) / 10 wt% Ac-MMPM: DPEPO (10 nm thickness) / B3PyPB (50 nm thickness) / LiF (0.5 nm thickness) / Al cathode (100 nm thickness)] was produced.
An energy diagram is shown in FIG.
From the EL spectrum shown in FIG. 46, light emission derived from Ac-MMPM was observed.
47A shows the relationship between current density-voltage-luminance characteristics, FIG. 47B shows the relationship between power efficiency-luminance characteristics, and FIG. 47C shows the relationship between external quantum efficiency-luminance characteristics. Show.
The results are shown in Table 20.

Figure 2018035129
表20に示すように、CIE(0.16、0.20)と純青色発光を示した。また、図47(c)に示すように、最大外部量子効率が13.5%、100cdm-2時においても8.2%と、従来の蛍光発光材料の理論限界(7.5%)を凌駕している。
Figure 2018035129
As shown in Table 20, CIE (0.16, 0.20) and pure blue light emission were exhibited. Further, as shown in FIG. 47 (c), the maximum external quantum efficiency is 13.5%, and it is 8.2% even at 100 cdm −2 , exceeding the theoretical limit (7.5%) of the conventional fluorescent light emitting material. doing.

[実施例23]
実施例10〜12で得られたAc−46DPPM、Ac−26DPPM及びCzAc−26DPPMを用いて、それぞれデバイスを作製した。素子構造を以下に示す。
[ITO/TAPC(20nm)/Ac−46DPPM or Ac−26DPPM or CzAc−26DPPM:mCP(10nm)/Ac−46DPPM or Ac−26DPPM or CzAc−26DPPM:DPEPO(10nm)/B3PyPB(50nm)/LiF(0.5nm)/Al(100nm)]
発光層にAc−46DPPM、Ac−26DPPM及びCzAc−26DPPMを用いてデバイスを構成する材料のエネルギーダイアグラムを図48に示す。
図49に、それぞれのデバイスについて、ELスペクトルを測定した結果を示す。
図50(a)は、電流密度−電圧−輝度特性の関係を示し、図50(b)は電力効率−輝度特性の関係を示し、図50(c)は外部量子効率−輝度特性の関係を示す。
結果を表21に示す。
[Example 23]
Devices were prepared using Ac-46DPPM, Ac-26DPPM and CzAc-26DPPM obtained in Examples 10-12. The element structure is shown below.
[ITO / TAPC (20 nm) / Ac-46DPPM or Ac-26DPPM or CzAc-26DPPM: mCP (10 nm) / Ac-46DPPM or Ac-26DPPM or CzAc-26DPPM: DPEPO (10 nm) / B3PyPB (50 nm) / LiF (0 .5 nm) / Al (100 nm)]
FIG. 48 shows an energy diagram of materials constituting the device using Ac-46DPPM, Ac-26DPPM, and CzAc-26DPPM for the light emitting layer.
FIG. 49 shows the results of measuring the EL spectrum for each device.
50A shows the relationship between current density-voltage-luminance characteristics, FIG. 50B shows the relationship between power efficiency-luminance characteristics, and FIG. 50C shows the relationship between external quantum efficiency-luminance characteristics. Show.
The results are shown in Table 21.

Figure 2018035129
表21に示すように、Ac−46DPPMを用いた場合、最も青色発光(0.16、0.21)を示し、CzAc−26DPPMにかけて水色発光(0.21、0.38)に長波長シフトすることがわかった。また、同時に、Ac−46DPPMを用いた場合、外部量子効率が100cd/m2時、14.9%、1000cd/m2時、9.28%と、蛍光発光材料の理論限界外部量子効率7.5%を凌駕したデバイス特性を示した。
Figure 2018035129
As shown in Table 21, when Ac-46DPPM is used, blue light emission (0.16, 0.21) is shown, and CzAc-26DPPM is shifted to light blue light emission (0.21, 0.38) by a long wavelength. I understood it. At the same time, Ac-46DPPM case of using, at the external quantum efficiency of 100cd / m 2, 14.9%, at 1000cd / m 2, 9.28% and, fluorescent material of the theoretical limit external quantum efficiency 7. The device characteristics surpassed 5%.

[実施例24]
実施例13〜15で得られたAc−1MHPM、Ac−2MHPM、及びAc−3MHPMを用いて、それぞれデバイスを作製した。なお、ホスト材料にはDPEPO、ホール側励起子ブロック層にmCP、ホストDPEPO、電子側励起子ブロック層にDPEPOを使用した。
素子構造を以下に示す。
デバイス1:[ITO/KLHIP:PPBi(20nm)/TAPC(20nm)/mCP(10nm)/20wt% Ac−1MHPM:DPEPO(20nm)/DPEPO(10nm)/B3PyPB(30nm)/LiF(0.5nm)/Al(100nm)]
デバイス2:[ITO/KLHIP:PPBi(20nm)/TAPC(20nm)/mCP(10nm)/20wt% Ac−2MHPM:DPEPO(20nm)/DPEPO(10nm)/B3PyPB(30nm)/LiF(0.5nm)/Al(100nm)]
デバイス3:[ITO/KLHIP:PPBi(20nm)/TAPC(20nm)/mCP(10nm)/20wt% Ac−3MHPM:DPEPO(20nm)/DPEPO(10nm)/B3PyPB(30nm)/LiF(0.5nm)/Al(100nm)]
[Example 24]
Devices were prepared using Ac-1 MHPM, Ac-2 MHPM, and Ac-3 MHPM obtained in Examples 13 to 15, respectively. The host material used was DPEPO, the hole-side exciton block layer was mCP, the host DPEPO, and the electron-side exciton block layer was DPEPO.
The element structure is shown below.
Device 1: [ITO / KLHIP: PPBi (20 nm) / TAPC (20 nm) / mCP (10 nm) / 20 wt% Ac-1MHPM : DPEPO (20 nm) / DPEPO (10 nm) / B3PyPB (30 nm) / LiF (0.5 nm) / Al (100 nm)]
Device 2: [ITO / KLHIP: PPBi (20 nm) / TAPC (20 nm) / mCP (10 nm) / 20 wt% Ac-2MHPM : DPEPO (20 nm) / DPEPO (10 nm) / B3PyPB (30 nm) / LiF (0.5 nm) / Al (100 nm)]
Device 3: [ITO / KLHIP: PPBi (20 nm) / TAPC (20 nm) / mCP (10 nm) / 20 wt% Ac-3MHPM : DPEPO (20 nm) / DPEPO (10 nm) / B3PyPB (30 nm) / LiF (0.5 nm) / Al (100 nm)]

発光層にAc−1MHPM、Ac−2MHPM、及びAc−3MHPMを用いてデバイス1〜3を構成する材料のエネルギーダイアグラムを図51に示す。
図52に、デバイス1〜3について、ELスペクトルを測定した結果を示す。
図53(a)は、電流密度−電圧−輝度特性の関係を示し、図53(b)は外部量子効率−輝度特性の関係を示し、図53(c)は電力効率−輝度特性の関係を示す。
結果を表22に示す。
FIG. 51 shows an energy diagram of materials constituting the devices 1 to 3 using Ac-1 MHPM, Ac-2 MHPM, and Ac-3 MHPM for the light emitting layer.
In FIG. 52, the result of having measured EL spectrum about the devices 1-3 is shown.
53A shows the relationship between current density-voltage-luminance characteristics, FIG. 53B shows the relationship between external quantum efficiency-luminance characteristics, and FIG. 53C shows the relationship between power efficiency-luminance characteristics. Show.
The results are shown in Table 22.

Figure 2018035129
ELスペクトルより、どちらも発光材料由来のピークが観測された。図52より、発光波長は、Ac−1MHPMでは、λEL=477nm(CIE(0.17,0.28))、Ac−2MHPMでは、λEL=477nm(CIE(0.17,0.27))と青色発光を示し、Ac−3MHPMでは、λEL=450nm(CIE(0.16,0.15))と純青色発光を示した。Ac−1MHPMでは、最大外部量子効率(E.Q.Emax)が24.0%、100cdm-2時においても高い外部量子効率が19.0%という非常に高い効率を達成した。一方、Ac−3MHPMは最大外部量子効率が17.8%、100 cdm-2時においても高い外部量子効率が10.4%という純青色TADF素子においては高い効率を達成した(図53(b))。
Figure 2018035129
From the EL spectrum, peaks derived from the light emitting material were observed in both cases. From FIG. 52, the emission wavelength is λ EL = 477 nm (CIE (0.17, 0.28)) for Ac-1 MHPM, and λ EL = 477 nm (CIE (0.17, 0.27) for Ac-2 MHPM. ) And blue light emission, and Ac-3MHPM showed pure blue light emission at λ EL = 450 nm (CIE (0.16, 0.15)). In Ac-1 MHPM, the maximum external quantum efficiency (EQE max ) was 24.0%, and a high external quantum efficiency of 19.0% was achieved even at 100 cdm −2 . On the other hand, Ac-3MHPM achieved high efficiency in a pure blue TADF device having a maximum external quantum efficiency of 17.8% and a high external quantum efficiency of 10.4% even at 100 cdm −2 (FIG. 53B). ).

1 基板
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 電子注入層
8 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Electron transport layer 7 Electron injection layer 8 Cathode

Claims (6)

下記一般式(1)で表され、かつ、
励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)の間のエネルギー差(ΔEST)が0.25eV以下であることを特徴とするピリミジン誘導体。
Figure 2018035129
(一般式(1)中、
1は、水素原子、電子供与性基として、アルキル基、アルコキシ基、チオアルコキシ基若しくはアミノ基、又は、電子求引性基として、アリール基、シアノ基、カルボニル基若しくはスルホニル基を表し、
8は、メチル基、アリール基、アルコキシ基、アシル基又はシアノ基を表し、
nは1〜3の整数を表し、
置換基Dは、それぞれ独立に、水素原子又は電子供与性基を表し、
nが2又は3の場合、該置換基Dを有するフェニル基は、互いに、対称構造又は非対称構造を有する。)
It is represented by the following general formula (1), and
A pyrimidine derivative characterized in that an energy difference (ΔE ST ) between excited singlet energy (E S1 ) and triplet excited energy (E T1 ) is 0.25 eV or less.
Figure 2018035129
(In general formula (1),
R 1 represents a hydrogen atom, an electron donating group, an alkyl group, an alkoxy group, a thioalkoxy group or an amino group, or an electron withdrawing group, an aryl group, a cyano group, a carbonyl group or a sulfonyl group,
R 8 represents a methyl group, an aryl group, an alkoxy group, an acyl group or a cyano group,
n represents an integer of 1 to 3,
Each of the substituents D independently represents a hydrogen atom or an electron-donating group,
When n is 2 or 3, the phenyl groups having the substituent D have a symmetric structure or an asymmetric structure with respect to each other. )
下記一般式(1)で表され、かつ、
励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)の間のエネルギー差(ΔEST)が0.25eV以下であることを特徴とするピリミジン誘導体。
Figure 2018035129
(一般式(1)中、
1は、水素原子、電子供与性基として、アルキル基、アルコキシ基、チオアルコキシ基若しくはアミノ基、又は、電子求引性基として、アリール基、シアノ基、カルボニル基若しくはスルホニル基を表し、
8は、メチル基、アリール基、アルコキシ基、アシル基又はシアノ基を表し、
nは2を表し、
置換基Dは、それぞれ独立に、水素原子又は電子供与性基を表し、かつ、
該置換基Dを有するフェニル基は、互いに、対称構造又は非対称構造を有する。)
It is represented by the following general formula (1), and
A pyrimidine derivative characterized in that an energy difference (ΔE ST ) between excited singlet energy (E S1 ) and triplet excited energy (E T1 ) is 0.25 eV or less.
Figure 2018035129
(In general formula (1),
R 1 represents a hydrogen atom, an electron donating group, an alkyl group, an alkoxy group, a thioalkoxy group or an amino group, or an electron withdrawing group, an aryl group, a cyano group, a carbonyl group or a sulfonyl group,
R 8 represents a methyl group, an aryl group, an alkoxy group, an acyl group or a cyano group,
n represents 2,
Each of the substituents D independently represents a hydrogen atom or an electron-donating group, and
The phenyl groups having the substituent D have a symmetric structure or an asymmetric structure. )
下記一般式(2)で表され、
励起一重項エネルギー(ES1)と三重項励起エネルギー(ET1)間のエネルギー差(ΔEST)が0.25eV以下であることを特徴とするピリミジン誘導体。
Figure 2018035129
(一般式(2)中、
1は、水素原子、電子供与性基として、アルキル基、アルコキシ基、チオアルコキシ基若しくはアミノ基、又は、電子求引性基として、アリール基、シアノ基、カルボニル基若しくはスルホニル基を表し、
8は、メチル基、アリール基、アルコキシ基、アシル基又はシアノ基を表し、
Dは、それぞれ独立に下記構造式で表される置換基のいずれかを表す。)
Figure 2018035129
(一般式(3)中、R2〜R7はそれぞれ独立に、水素原子、アルキル基又はアリール基を表し、Xは、メチレン基、−CRab−、−O−、−S−、又は−S(=O)2−を表し、Ra及びRbは、それぞれ独立にアルキル基又はアリール基であり、また互いに連結して環を形成してもよい。)。
It is represented by the following general formula (2),
A pyrimidine derivative characterized in that an energy difference (ΔE ST ) between excited singlet energy (E S1 ) and triplet excited energy (E T1 ) is 0.25 eV or less.
Figure 2018035129
(In general formula (2),
R 1 represents a hydrogen atom, an electron donating group, an alkyl group, an alkoxy group, a thioalkoxy group or an amino group, or an electron withdrawing group, an aryl group, a cyano group, a carbonyl group or a sulfonyl group,
R 8 represents a methyl group, an aryl group, an alkoxy group, an acyl group or a cyano group,
D represents each independently the substituent represented by the following structural formula. )
Figure 2018035129
(In General Formula (3), R 2 to R 7 each independently represents a hydrogen atom, an alkyl group or an aryl group, and X represents a methylene group, —CR a R b —, —O—, —S—, Or -S (= O) 2- , wherein R a and R b are each independently an alkyl group or an aryl group, and may be linked to each other to form a ring).
下記構造式で表される、請求項1〜3のいずれか一項に記載のピリミジン誘導体。
Figure 2018035129
The pyrimidine derivative according to any one of claims 1 to 3, which is represented by the following structural formula.
Figure 2018035129
請求項1〜4のいずれか一項に記載のピリミジン誘導体よりなる発光材料。   The luminescent material which consists of a pyrimidine derivative as described in any one of Claims 1-4. 請求項1〜4のいずれか一項に記載のピリミジン誘導体を用いた有機EL素子。   The organic EL element using the pyrimidine derivative as described in any one of Claims 1-4.
JP2016208548A 2015-10-27 2016-10-25 Pyrimidine derivative, light emitting material made of it, and organic EL device using it Active JP6813876B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015211253 2015-10-27
JP2015211253 2015-10-27
JP2016166971 2016-08-29
JP2016166971 2016-08-29

Publications (2)

Publication Number Publication Date
JP2018035129A true JP2018035129A (en) 2018-03-08
JP6813876B2 JP6813876B2 (en) 2021-01-13

Family

ID=61565367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016208548A Active JP6813876B2 (en) 2015-10-27 2016-10-25 Pyrimidine derivative, light emitting material made of it, and organic EL device using it

Country Status (1)

Country Link
JP (1) JP6813876B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182402A1 (en) * 2018-03-22 2019-09-26 주식회사 엘지화학 Compound and organic light emitting device comprising same
CN110862817A (en) * 2019-09-30 2020-03-06 常州强力昱镭光电材料有限公司 Thermally activated delayed fluorescence material, thermally activated delayed fluorescence composition and organic electroluminescent device
WO2020050217A1 (en) * 2018-09-07 2020-03-12 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
KR20220045816A (en) * 2020-10-06 2022-04-13 솔루스첨단소재 주식회사 Organic compound and organic electroluminescent device comprising the same
US11746117B2 (en) 2018-11-27 2023-09-05 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178895A (en) * 2002-11-26 2004-06-24 Konica Minolta Holdings Inc Organic electroluminescent element and display device
JP2004311404A (en) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc Organic electroluminescent element, illumination device and display device
WO2004095889A1 (en) * 2003-04-23 2004-11-04 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
WO2015121241A1 (en) * 2014-02-14 2015-08-20 Yersin, Hartmut Organic tadf molecules having steric hindrance at the donor and at the acceptor for optoelectronic devices
WO2015175678A1 (en) * 2014-05-14 2015-11-19 President And Fellows Of Harvard College Organic light-emitting diode materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178895A (en) * 2002-11-26 2004-06-24 Konica Minolta Holdings Inc Organic electroluminescent element and display device
JP2004311404A (en) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc Organic electroluminescent element, illumination device and display device
WO2004095889A1 (en) * 2003-04-23 2004-11-04 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
WO2015121241A1 (en) * 2014-02-14 2015-08-20 Yersin, Hartmut Organic tadf molecules having steric hindrance at the donor and at the acceptor for optoelectronic devices
WO2015175678A1 (en) * 2014-05-14 2015-11-19 President And Fellows Of Harvard College Organic light-emitting diode materials
JP2017518281A (en) * 2014-05-14 2017-07-06 プレジデント アンド フェローズ オブ ハーバード カレッジ Organic light emitting diode material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019182402A1 (en) * 2018-03-22 2019-09-26 주식회사 엘지화학 Compound and organic light emitting device comprising same
CN111263753A (en) * 2018-03-22 2020-06-09 株式会社Lg化学 Compound and organic light emitting device including the same
US11737358B2 (en) 2018-03-22 2023-08-22 Lg Chem, Ltd. Compound and organic light emitting device comprising same
CN111263753B (en) * 2018-03-22 2024-02-23 株式会社Lg化学 Compound and organic light emitting device comprising the same
WO2020050217A1 (en) * 2018-09-07 2020-03-12 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US11903308B2 (en) 2018-09-07 2024-02-13 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US11746117B2 (en) 2018-11-27 2023-09-05 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising same
CN110862817A (en) * 2019-09-30 2020-03-06 常州强力昱镭光电材料有限公司 Thermally activated delayed fluorescence material, thermally activated delayed fluorescence composition and organic electroluminescent device
KR20220045816A (en) * 2020-10-06 2022-04-13 솔루스첨단소재 주식회사 Organic compound and organic electroluminescent device comprising the same
KR102643973B1 (en) * 2020-10-06 2024-03-07 솔루스첨단소재 주식회사 Organic compound and organic electroluminescent device comprising the same

Also Published As

Publication number Publication date
JP6813876B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP7486238B2 (en) Compound, light-emitting material and light-emitting device
JP5594750B2 (en) COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE
JP6318155B2 (en) COMPOUND, LIGHT EMITTING MATERIAL AND ORGANIC LIGHT EMITTING DEVICE
JP6600298B2 (en) Luminescent materials, organic light emitting devices and compounds
KR101769764B1 (en) Novel organic semiconductor compound and organic light emitting device using the same
WO2015080183A1 (en) Light-emitting material, organic light-emitting element, and compound
CN112602206A (en) Organic electroluminescent element
WO2020039930A1 (en) Organic light emitting element, composition and membrane
WO2018159662A1 (en) Compound, light emitting material and organic light emitting element
WO2013154064A1 (en) Organic light emitting element, and light emitting material and compound used in same
WO2013161437A1 (en) Light-emitting material and organic light-emitting element
JP6813876B2 (en) Pyrimidine derivative, light emitting material made of it, and organic EL device using it
JP2014009224A (en) Light-emitting material, compound, and organic light-emitting element
KR20170065317A (en) Organic compounds and organic electro luminescence device comprising the same
JP2014009352A (en) Light-emitting material, compound, and organic light-emitting element
KR20160127864A (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
JP2018524797A (en) Composition for organic optoelectronic device, organic optoelectronic device, and display device
JP2016155797A (en) Organic material and organic electroluminescent element using the same
JP6975959B2 (en) Arylamine derivatives, hole transport materials using them, and organic EL devices
KR20150009259A (en) Organic electro luminescence device
JP2015528445A (en) Novel compound and organic electroluminescence device containing the same
JP2018035135A (en) Novel isonicotinonitrile derivative, and organic el element prepared therewith
KR102307342B1 (en) Organic light-emitting compound and organic electroluminescent device using the same
JP6716138B2 (en) Terpyridine derivative, light emitting material comprising the same, and organic EL device using the same
JP2019137652A (en) Heteroaromatic ring derivative having metal coordination function and organic el element comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200610

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201211

R150 Certificate of patent or registration of utility model

Ref document number: 6813876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150