JP2018034351A - Metal/fiber reinforced composite structure and manufacturing method of metal/fiber reinforced composite structure - Google Patents

Metal/fiber reinforced composite structure and manufacturing method of metal/fiber reinforced composite structure Download PDF

Info

Publication number
JP2018034351A
JP2018034351A JP2016167721A JP2016167721A JP2018034351A JP 2018034351 A JP2018034351 A JP 2018034351A JP 2016167721 A JP2016167721 A JP 2016167721A JP 2016167721 A JP2016167721 A JP 2016167721A JP 2018034351 A JP2018034351 A JP 2018034351A
Authority
JP
Japan
Prior art keywords
fiber reinforced
metal
reinforced resin
composite structure
metal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016167721A
Other languages
Japanese (ja)
Other versions
JP6757628B2 (en
Inventor
浩士 奥村
Hiroshi Okumura
浩士 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61565272&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2018034351(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2016167721A priority Critical patent/JP6757628B2/en
Publication of JP2018034351A publication Critical patent/JP2018034351A/en
Application granted granted Critical
Publication of JP6757628B2 publication Critical patent/JP6757628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal/fiber reinforced resin composite structure excellent in bond strength between a metal member and a fiber reinforced resin member and appearance.SOLUTION: A metal/fiber reinforced resin composite structure 100 is manufactured by binding a metal member 102 and a fiber reinforced resin member 101 which is at least one kind selected from a sheet molding compound (SMC) member and a bulk molding compound (BMC) member. Surface hardness measured for total 6 linear parts consisting of any 3 linear parts in parallel relationship and any 3 linear parts orthogonal to the 3 linear parts on a bond surface 103 of the metal member 102, according to JIS B0601 (Corresponding International Standard:ISO4287) satisfies following requirements (1) and (2) at same time. (1) it contains 1 or more linear part having negative length rate of roughness curve at cut level of 20% and evaluation length of 4 mm (Rmr) of 30% or less. (2) ten point average roughness (Rz) at evaluation length of 4 mm of all linear parts is over 2 μm.SELECTED DRAWING: Figure 1

Description

本発明は、金属/繊維強化樹脂複合構造体および金属/繊維強化樹脂複合構造体の製造方法に関する。   The present invention relates to a metal / fiber reinforced resin composite structure and a method for producing a metal / fiber reinforced resin composite structure.

繊維強化プラスチック(FRP)製品は様々な方法によって製造されている。FRP製品の製造方法の中でも、原料としてガラス繊維補強材や炭素繊維補強材等の繊維補強材に不飽和ポリエステル樹脂組成物を含浸させることにより得られるシート状のシートモールディングコンパウンド(SMC)を使用し、このSMCを加熱加圧成形することによりFRP製品を製造する方法は、大量生産に適し、工業的に広く用いられている。
また、原料として不飽和ポリエステル樹脂組成物と繊維補強材とを混練機等で混合して得られる塊状のバルクモールディングコンパウンド(BMC)を使用し、このBMCを加熱加圧成形することによりFRP製品を製造する方法も大量生産に適し、工業的に広く用いられている。
Fiber reinforced plastic (FRP) products are manufactured by various methods. Among the manufacturing methods of FRP products, sheet-like sheet molding compounds (SMC) obtained by impregnating unsaturated polyester resin compositions into fiber reinforcements such as glass fiber reinforcement and carbon fiber reinforcement are used as raw materials. The method of producing an FRP product by heating and pressing the SMC is suitable for mass production and widely used industrially.
In addition, a bulk bulk molding compound (BMC) obtained by mixing an unsaturated polyester resin composition and a fiber reinforcing material with a kneader or the like as a raw material is used, and an FRP product is formed by heating and pressing the BMC. The manufacturing method is also suitable for mass production and is widely used industrially.

SMC成形品およびBMC成形品の主用途は、住宅用と自動車用とに分類される。このうち、自動車用途、特に自動車外板用SMC成形品およびBMC成形品は主にフード、フェンダー、ドア、ピラー及びスポイラー等の外板の用途に用いられている。自動車外板用SMC成形品の特徴として、鋼板並の美麗な外観が得られること、鋼板品と比べると比強度および比弾性率が高いこと、鋼板の比重の1/4程度と軽量であること、鋼板品では板金しにくい複雑形状を比較的容易に形成できること、製品原価は高価であるが金型代が相対的に安価であること等の理由によって、最近急速に注目を集めつつある。   The main uses of SMC molded articles and BMC molded articles are classified into residential use and automobile use. Among these, automotive applications, particularly SMC molded products for automobile outer plates and BMC molded products are mainly used for outer plates such as hoods, fenders, doors, pillars and spoilers. The characteristics of SMC molded products for automobile outer plates are that they have a beautiful appearance comparable to that of steel plates, that they have high specific strength and specific modulus compared to steel plates, and that they are lightweight, about 1/4 of the specific gravity of steel plates. Recently, attention has been attracted rapidly due to the fact that complex shapes that are difficult to plate with steel sheets can be formed relatively easily, the cost of the product is high, but the cost of the mold is relatively low.

特開2012−111103号公報JP 2012-111103 A

自動車用SMC成形品およびBMC成形品を自動車外板に適用する場合は、該SMC成形品およびBMC成形品を車両本体部に固定するための取り付け部分の剛性および強度は非常に重要な特性であり、コストアップを最小限に抑えながらこれらの特性を維持あるいは向上させることが必要である。   When applying SMC moldings and BMC moldings for automobiles to automobile outer plates, the rigidity and strength of the mounting parts for fixing the SMC moldings and BMC moldings to the vehicle body are very important characteristics. It is necessary to maintain or improve these characteristics while minimizing the cost increase.

取り付け部の剛性と強度を確保する最も一般的な手段としては、SCM成形品およびBMC成形品に穴を設け、この穴にボルトを通して金具をナット締めして車両本体に固定し一体化する方法(かしめ法)が挙げられる。しかし、この方法では成形品の表面にボルトあるいはナットが露出してしまい外観を重視する自動車外板には適用できない場合があった。   The most common means to ensure the rigidity and strength of the mounting part is to provide a hole in the SCM molded product and BMC molded product, and tighten the bracket with a nut through this hole and fasten it to the vehicle body to integrate it ( Caulking method). However, in this method, the bolt or nut is exposed on the surface of the molded product, and there are cases where it cannot be applied to an automobile outer plate that places importance on the appearance.

また、SMC成形品およびBMC成形品の裏面側に接着剤を塗布し、これに取り付け金具を貼り付けて一体化する方法(接着剤法)も知られている。しかし、この接着剤法では接着剤を用いることで工数が増えること、接着処理及び接着剤の収縮に起因する表面凹凸が発生する場合があること、接着剤が完全硬化して所望の強度を発現するために加熱操作が必要か、さもなければ自然硬化の場合は長時間が必要である等の不具合があった(特許文献1参照)。   There is also known a method (adhesive method) in which an adhesive is applied to the back side of an SMC molded product and a BMC molded product, and a mounting bracket is attached to the SMC molded product and the BMC molded product. However, with this adhesive method, man-hours are increased by using an adhesive, surface irregularities may occur due to the adhesive treatment and shrinkage of the adhesive, and the adhesive is completely cured to express the desired strength. In order to do this, there is a problem that a heating operation is necessary, or in the case of natural curing, a long time is required (see Patent Document 1).

以上から、コストアップを伴わない、より経済的な取り付け金具、具体的には、ボルトまたは接着剤を用いることなく取り付け部分の強度と外観に優れた取り付け金具が接合・固定化されたSMC成形品およびBMC成形品が産業界から強く求められていたのである。   From the above, a more economical mounting bracket that does not increase costs, specifically, an SMC molded product in which a mounting bracket with excellent strength and appearance of the mounting portion is joined and fixed without using bolts or adhesives And BMC molded products were strongly demanded by the industry.

本発明は上記事情に鑑みてなされたものであり、金属部材とシートモールディングコンパウンド(SMC)部材およびバルクモールディングコンパウンド(BMC)部材から選択される少なくとも一種である繊維強化樹脂部材とを接着剤を用いることなく直接接合することができ、かつ、金属部材と繊維強化樹脂部材との接合強度および外観に優れた金属/繊維強化樹脂複合構造体を提供するものである。   The present invention has been made in view of the above circumstances, and uses a metal member and a fiber reinforced resin member that is at least one selected from a sheet molding compound (SMC) member and a bulk molding compound (BMC) member. It is possible to provide a metal / fiber reinforced resin composite structure that can be directly bonded without any problems and has excellent bonding strength and appearance between the metal member and the fiber reinforced resin member.

本発明者らは、金属部材とSMC部材およびBMC部材から選択される少なくとも一種である繊維強化樹脂部材とを接着剤を用いることなく直接接合し、金属部材と繊維強化樹脂部材との接合強度および外観に優れた金属/繊維強化樹脂複合構造体を得るための設計指針について鋭意検討した。その結果、金属部材表面の粗さ曲線の負荷長さ率(Rmr)という尺度がこうした設計指針として有効であることを見出し、本発明に到達した。   The present inventors directly join a metal member and a fiber reinforced resin member, which is at least one selected from SMC members and BMC members, without using an adhesive, and bond strength between the metal member and the fiber reinforced resin member and The design guideline for obtaining a metal / fiber reinforced resin composite structure having an excellent appearance was intensively studied. As a result, the present inventors have found that a measure of the load length ratio (Rmr) of the roughness curve on the surface of the metal member is effective as such a design guideline and reached the present invention.

すなわち、本発明によれば、以下に示す金属/繊維強化樹脂複合構造体および金属/繊維強化樹脂複合構造体の製造方法が提供される。   That is, according to the present invention, the following metal / fiber reinforced resin composite structure and a method for producing the metal / fiber reinforced resin composite structure are provided.

[1]
金属部材と、シートモールディングコンパウンド(SMC)部材およびバルクモールディングコンパウンド(BMC)部材から選択される少なくとも一種である繊維強化樹脂部材と、が接合してなる金属/繊維強化樹脂複合構造体であって、
上記金属部材の接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす金属/繊維強化樹脂複合構造体。
(1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
(2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
[2]
上記[1]に記載の金属/繊維強化樹脂複合構造体において、
上記金属部材の接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(3)をさらに満たす金属/繊維強化樹脂複合構造体。
(3)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を1直線部以上含む
[3]
上記[1]または[2]に記載の金属/繊維強化樹脂複合構造体において、
上記金属部材の接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たす金属/繊維強化樹脂複合構造体。
(4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満である
[4]
上記[1]乃至[3]のいずれか一つに記載の金属/繊維強化樹脂複合構造体において、
上記金属部材を構成する金属材料がアルミニウムおよびアルミニウム合金から選択される一種または二種以上の金属を含む金属/繊維強化樹脂複合構造体。
[5]
金属部材と、シートモールディングコンパウンド(SMC)部材およびバルクモールディングコンパウンド(BMC)部材から選択される少なくとも一種である繊維強化樹脂部材と、が接合してなる金属/繊維強化樹脂複合構造体を製造するための製造方法であって、
上記繊維強化樹脂部材との接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす上記金属部材を準備する工程と、
上記金属部材の上記接合部表面と上記繊維強化樹脂部材の少なくとも一部とが接するように上記金属部材と上記繊維強化樹脂部材とを重ねて、加熱下で加圧成形する工程と、
を含む金属/繊維強化樹脂複合構造体の製造方法。
(1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
(2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
[1]
A metal / fiber reinforced resin composite structure formed by joining a metal member and a fiber reinforced resin member that is at least one selected from a sheet molding compound (SMC) member and a bulk molding compound (BMC) member,
JIS B0601 (corresponding international standard: ISO 4287) for a total of 6 straight line parts consisting of arbitrary 3 straight line parts in parallel relation on the surface of the joint part of the metal member and any 3 straight line parts orthogonal to the 3 straight line parts A metal / fiber reinforced resin composite structure in which the surface roughness measured in accordance with the above satisfies the following requirements (1) and (2) simultaneously.
(1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less. (2) Evaluation length of all straight line portions. Ten point average roughness (Rz) at 4 mm exceeds 2 μm [2]
In the metal / fiber reinforced resin composite structure according to the above [1],
JIS B0601 (corresponding international standard: ISO 4287) for a total of 6 straight line parts consisting of arbitrary 3 straight line parts in parallel relation on the surface of the joint part of the metal member and any 3 straight line parts orthogonal to the 3 straight line parts A metal / fiber reinforced resin composite structure in which the surface roughness measured according to the above further satisfies the following requirement (3).
(3) One or more straight line portions having a load length ratio (Rmr) of a roughness curve at a cutting level of 40% and an evaluation length of 4 mm are 60% or less [3]
In the metal / fiber reinforced resin composite structure according to the above [1] or [2],
JIS B0601 (corresponding international standard: ISO 4287) for a total of 6 straight line parts consisting of arbitrary 3 straight line parts in parallel relation on the surface of the joint part of the metal member and any 3 straight line parts orthogonal to the 3 straight line parts A metal / fiber reinforced resin composite structure in which the surface roughness measured in accordance with the above further satisfies the following requirement (4).
(4) The average length (RSm) of the roughness curve elements of all the straight portions is more than 10 μm and less than 300 μm [4]
In the metal / fiber reinforced resin composite structure according to any one of the above [1] to [3],
A metal / fiber reinforced resin composite structure comprising one or more metals selected from aluminum and aluminum alloys as a metal material constituting the metal member.
[5]
In order to produce a metal / fiber reinforced resin composite structure in which a metal member and a fiber reinforced resin member that is at least one selected from a sheet molding compound (SMC) member and a bulk molding compound (BMC) member are joined together A manufacturing method of
JIS B0601 (corresponding international standard) for a total of 6 linear parts consisting of arbitrary 3 linear parts in parallel relation on the surface of the joint part with the fiber reinforced resin member and arbitrary 3 linear parts orthogonal to the 3 linear parts A step of preparing the metal member, wherein the surface roughness measured in accordance with ISO 4287) simultaneously satisfies the following requirements (1) and (2):
Stacking the metal member and the fiber reinforced resin member so that at least a part of the joint surface of the metal member and at least a part of the fiber reinforced resin member are in contact with each other, and press-molding under heating;
For producing a metal / fiber reinforced resin composite structure.
(1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less. (2) Evaluation length of all straight line portions. Ten point average roughness (Rz) at 4 mm exceeds 2 μm

本発明によれば、金属部材とSMC部材およびBMC部材から選択される少なくとも一種である繊維強化樹脂部材とを接着剤を用いることなく直接接合することができ、かつ、金属部材と繊維強化樹脂部材との接合強度および外観に優れた金属/繊維強化樹脂複合構造体を提供することができる。   According to the present invention, a metal member and a fiber reinforced resin member that is at least one selected from an SMC member and a BMC member can be directly joined without using an adhesive, and the metal member and the fiber reinforced resin member can be joined. It is possible to provide a metal / fiber reinforced resin composite structure excellent in bonding strength and appearance.

本発明に係る実施形態の金属/繊維強化樹脂複合構造体の構造の一例を模式的に示した斜視図である。It is the perspective view which showed typically an example of the structure of the metal / fiber reinforced resin composite structure of embodiment which concerns on this invention. 本発明に係る実施形態の金属部材の接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部の測定箇所を説明するための模式図である。Explain the measurement points of a total of 6 linear parts composed of arbitrary 3 linear parts in parallel relation and arbitrary 3 linear parts orthogonal to the 3 linear parts on the joint surface of the metal member of the embodiment according to the present invention. It is a schematic diagram for doing.

以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。文中の数字の間にある「〜」は特に断りがなければ、以上から以下を表す。   Embodiments of the present invention will be described below with reference to the drawings. In all the drawings, similar constituent elements are denoted by common reference numerals, and description thereof is omitted as appropriate. Moreover, the figure is a schematic diagram and does not match the actual dimensional ratio. Unless otherwise specified, “˜” between numbers in the sentence represents the following.

[金属/繊維強化樹脂複合構造体]
まず、本実施形態に係る金属/繊維強化樹脂複合構造体100について説明する。
図1は、本発明に係る実施形態の金属/繊維強化樹脂複合構造体100の構造の一例を模式的に示した斜視図である。ここで、図1は、金属部材102がフック形状の金具である例を示している。
[Metal / fiber reinforced resin composite structure]
First, the metal / fiber reinforced resin composite structure 100 according to the present embodiment will be described.
FIG. 1 is a perspective view schematically showing an example of the structure of a metal / fiber reinforced resin composite structure 100 according to an embodiment of the present invention. Here, FIG. 1 shows an example in which the metal member 102 is a hook-shaped metal fitting.

本実施形態に係る金属/繊維強化樹脂複合構造体100は、金属部材102と、シートモールディングコンパウンド(SMC)部材およびバルクモールディングコンパウンド(BMC)部材から選択される少なくとも一種である繊維強化樹脂部材101と、が接合してなる。そして、金属部材102の接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす。
(1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
(2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
The metal / fiber reinforced resin composite structure 100 according to this embodiment includes a metal member 102, and a fiber reinforced resin member 101 that is at least one selected from a sheet molding compound (SMC) member and a bulk molding compound (BMC) member. Are joined. Then, JIS B0601 (corresponding international standard) is used for a total of six straight line portions including arbitrary three straight line portions in parallel relation on the joint surface 103 of the metal member 102 and arbitrary three straight line portions orthogonal to the three straight line portions. : Surface roughness measured according to ISO 4287) satisfies the following requirements (1) and (2) simultaneously.
(1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less. (2) Evaluation length of all straight line portions. Ten point average roughness (Rz) at 4 mm exceeds 2 μm

本実施形態に係る金属部材102は、繊維強化樹脂部材101との接合部表面103に上記の要件(1)および(2)を同時に満たすような微細凹凸構造が形成されている。このような微細凹凸構造に繊維強化樹脂部材101に含まれる半硬化成分の一部分が侵入し、次いで硬化することにより、金属部材102と繊維強化樹脂部材101が接合することができる。こうすることによって、金属部材102と繊維強化樹脂部材101との間に物理的な抵抗力(アンカー効果)が効果的に発現し、金属部材102と繊維強化樹脂部材101とを接着剤を使用せずに強固に接合することが可能になる。したがって、本実施形態に係る金属/繊維強化樹脂複合構造体100は、接着剤を用いなくとも金属部材102と繊維強化樹脂部材101とが強固に接合されており、さらにボルトや接着剤を用いないため、外観にも優れている。   In the metal member 102 according to the present embodiment, a fine uneven structure is formed on the joint surface 103 with the fiber reinforced resin member 101 so as to satisfy the requirements (1) and (2) at the same time. A part of the semi-cured component contained in the fiber reinforced resin member 101 penetrates into such a fine concavo-convex structure and then hardens, whereby the metal member 102 and the fiber reinforced resin member 101 can be joined. By doing so, physical resistance (anchor effect) is effectively developed between the metal member 102 and the fiber reinforced resin member 101, and the metal member 102 and the fiber reinforced resin member 101 are made to use an adhesive. It becomes possible to join firmly. Therefore, in the metal / fiber reinforced resin composite structure 100 according to this embodiment, the metal member 102 and the fiber reinforced resin member 101 are firmly joined without using an adhesive, and further, no bolt or adhesive is used. Therefore, the appearance is also excellent.

以下、本実施形態に係る金属/繊維強化樹脂複合構造体100を構成する各部材について説明する。   Hereinafter, each member which comprises the metal / fiber reinforced resin composite structure 100 which concerns on this embodiment is demonstrated.

<繊維強化樹脂部材>
以下、本実施形態に係る繊維強化樹脂部材101について説明する。
本実施形態に係る繊維強化樹脂部材101は、SMC部材およびBMC部材から選択される少なくとも一種である。
<Fiber-reinforced resin member>
Hereinafter, the fiber reinforced resin member 101 according to the present embodiment will be described.
The fiber reinforced resin member 101 according to the present embodiment is at least one selected from an SMC member and a BMC member.

SMC部材とは、後述するSMCシートを所定の形状に裁断・加工した部材である。
ここで、SMCシートとは不飽和ポリエステル樹脂を含む不飽和ポリエステル樹脂組成物を繊維補強材に含浸させてなるシート状の半硬化状態の成形材料である。
また、BMC部材とは、後述するBMC成形品を所定の形状に裁断・加工した部材である。ここで、BMC成形品とは、不飽和ポリエステル樹脂組成物と繊維補強材とを混練機等で混合して得られる塊状のバルクモールディングコンパウンド(BMC)を所定の形状に成形して得られる半硬化状態の成形材料である。
ここで、繊維強化樹脂部材101に用いられる上記不飽和ポリエステル樹脂組成物は、必要に応じて無機充填剤、ビニル系単量体、硬化剤、剥離剤、後述するその他の添加剤等の各種添加剤をさらに含んでもよい。
The SMC member is a member obtained by cutting and processing a later-described SMC sheet into a predetermined shape.
Here, the SMC sheet is a sheet-like semi-cured molding material obtained by impregnating a fiber reinforcing material with an unsaturated polyester resin composition containing an unsaturated polyester resin.
The BMC member is a member obtained by cutting and processing a BMC molded product, which will be described later, into a predetermined shape. Here, the BMC molded product is a semi-cured product obtained by molding a bulk bulk molding compound (BMC) obtained by mixing an unsaturated polyester resin composition and a fiber reinforcing material with a kneader or the like into a predetermined shape. The molding material in a state.
Here, the unsaturated polyester resin composition used for the fiber reinforced resin member 101 is added with various additives such as an inorganic filler, a vinyl monomer, a curing agent, a release agent, and other additives described below, as necessary. An agent may further be included.

上記不飽和ポリエステル樹脂は分子構造内に二重結合が含まれているので、熱によって硬化し、樹脂の物性が向上する。上記不飽和ポリエステル樹脂は特に限定されず、SMCやBMCに一般的に用いられるものを用いることができ、例えば、イソ(iso)系樹脂、オルト(ortho)系樹脂、テレ(tere)系樹脂、変性ビスフェノール系樹脂、ビスフェノール系樹脂、及びビニルエステル系樹脂等から選択される一種または二種以上を用いることができる。
上記不飽和ポリエステル樹脂の含有量は、繊維強化樹脂部材101の全体を100質量%としたとき、例えば、5〜30質量%である。
Since the unsaturated polyester resin contains a double bond in the molecular structure, it is cured by heat and the physical properties of the resin are improved. The unsaturated polyester resin is not particularly limited, and those generally used for SMC and BMC can be used. For example, iso (iso) resin, ortho resin, tele resin, One kind or two or more kinds selected from a modified bisphenol resin, a bisphenol resin, a vinyl ester resin, and the like can be used.
The content of the unsaturated polyester resin is, for example, 5 to 30% by mass when the entire fiber reinforced resin member 101 is 100% by mass.

上記無機充填剤は特に限定されず、SMCやBMCに一般的に用いられるものを用いることができ、例えば、炭酸カルシウム、マイカ、タルク、クレー、球状シリカ、及びセラミックビーズ等から選択される一種または二種以上を用いることができる。
上記無機充填剤の含有量は、繊維強化樹脂部材101の全体を100質量%としたとき、例えば、30〜60質量%である。上記無機充填剤の含有量が上記上限値以下であると物性の低下を抑制できる。上記無機充填剤の含有量が上記下限値以上であると製造コストを低減できる観点から好ましい。
The inorganic filler is not particularly limited, and those generally used for SMC and BMC can be used. For example, one kind selected from calcium carbonate, mica, talc, clay, spherical silica, ceramic beads, and the like or Two or more types can be used.
Content of the said inorganic filler is 30-60 mass%, for example, when the whole fiber reinforced resin member 101 is 100 mass%. When the content of the inorganic filler is equal to or less than the upper limit, it is possible to suppress a decrease in physical properties. It is preferable from a viewpoint that manufacturing cost can be reduced as content of the said inorganic filler is more than the said lower limit.

また、上記ビニル系単量体および硬化剤は上記不飽和ポリエステル樹脂組成物の硬化反応に用いられる。
上記ビニル系単量体は特に限定されず、SMCやBMCに一般的に用いられるものを用いることができ、例えば、スチレン、メチルメタアクリレート、ジビニルベンゼン、α−メチルスチレン、ビニルアセテート、アクリレート等から選択される一種または二種以上を用いることができる。
上記ビニル系単量体の含有量は、繊維強化樹脂部材101の全体を100質量%としたとき、例えば、0.1〜10質量%である。
The vinyl monomer and the curing agent are used for the curing reaction of the unsaturated polyester resin composition.
The vinyl monomer is not particularly limited, and those generally used for SMC and BMC can be used. For example, from styrene, methyl methacrylate, divinylbenzene, α-methylstyrene, vinyl acetate, acrylate, etc. One kind or two or more kinds selected can be used.
The content of the vinyl monomer is, for example, 0.1 to 10% by mass when the entire fiber reinforced resin member 101 is 100% by mass.

上記硬化剤は特に限定されず、SMCやBMCに一般的に用いられるものを用いることができ、例えば、ペルオキシエステル、ジアルキル過酸化物、アルキルアリール過酸化物、ジアリール過酸化物、ペルオキシケタル、ケトン過酸化物、及びアゾ化合物等から選択される一種または二種以上を用いることができる。
上記硬化剤の含有量は、繊維強化樹脂部材101の全体を100質量%としたとき、例えば、0.01〜2質量%である。
The curing agent is not particularly limited, and those generally used for SMC and BMC can be used. For example, peroxyester, dialkyl peroxide, alkylaryl peroxide, diaryl peroxide, peroxyketal, ketone One or more selected from peroxides, azo compounds and the like can be used.
Content of the said hardening | curing agent is 0.01-2 mass%, for example, when the fiber reinforced resin member 101 whole is 100 mass%.

上記不飽和ポリエステル樹脂組成物は脱型時の作業性を向上させるために剥離剤を含んでもよい。剥離剤は特に限定されず、SMCやBMCに一般的に用いられるものを用いることができ、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム等が挙げられる。上記剥離剤の含有量は、繊維強化樹脂部材101の全体を100質量%としたとき、例えば、0.1〜5質量%、好ましくは0.5〜2質量%である。   The unsaturated polyester resin composition may contain a release agent in order to improve workability during demolding. The release agent is not particularly limited, and those generally used for SMC and BMC can be used. Examples thereof include zinc stearate and calcium stearate. The content of the release agent is, for example, 0.1 to 5% by mass, preferably 0.5 to 2% by mass, when the entire fiber reinforced resin member 101 is 100% by mass.

上記繊維補強材は特に限定されず、SMCやBMCに一般的に用いられるものを用いることができ、例えば、ガラス繊維補強材、炭素繊維補強材等の無機繊維補強材;ポリエステル繊維補強材、セルロース繊維補強材、ナイロン繊維補強材、アラミド繊維補強材、カーボネート繊維補強材、ポリビニルアルコール系繊維補強材等の有機繊維補強材等を用いることができる。
繊維補強材の長さは、例えば、0.5〜5mm程度である。繊維補強材の長さが上記下限値以上であると、繊維強化樹脂部材101の機械的物性をより良好にすることができる。また、繊維補強材の長さが上記上限値以下であると、繊維強化樹脂部材101に亀裂が発生することをより抑制することができる。
上記繊維補強材の含有量は、繊維強化樹脂部材101の全体を100質量%としたとき、例えば、20〜35質量である。上記繊維補強材の含有量が上記下限値以上であると、繊維強化樹脂部材101の機械的物性をより良好にすることができる。上記繊維補強材の含有量が上記上限値以下であると製造コストの観点から好ましい。
The fiber reinforcing material is not particularly limited, and those generally used for SMC and BMC can be used. For example, inorganic fiber reinforcing material such as glass fiber reinforcing material and carbon fiber reinforcing material; polyester fiber reinforcing material, cellulose An organic fiber reinforcing material such as a fiber reinforcing material, a nylon fiber reinforcing material, an aramid fiber reinforcing material, a carbonate fiber reinforcing material, or a polyvinyl alcohol fiber reinforcing material can be used.
The length of the fiber reinforcement is, for example, about 0.5 to 5 mm. When the length of the fiber reinforcing material is equal to or greater than the lower limit, the mechanical properties of the fiber reinforced resin member 101 can be further improved. Moreover, it can suppress more that a crack generate | occur | produces in the fiber reinforced resin member 101 as the length of a fiber reinforcement is below the said upper limit.
Content of the said fiber reinforcement is 20-35 mass, when the whole fiber reinforced resin member 101 is 100 mass%, for example. When the content of the fiber reinforcing material is equal to or higher than the lower limit, the mechanical properties of the fiber reinforced resin member 101 can be further improved. It is preferable from a viewpoint of manufacturing cost that content of the said fiber reinforcement is below the said upper limit.

上記不飽和ポリエステル樹脂組成物には、さらにその他の添加剤を混合することができる。
その他の添加剤は特に限定されず、SMCやBMCに一般的に用いられるものを用いることができ、例えば、顔料、熱安定剤、UV安定剤、重合反応抑制剤、低収縮剤、ブタジエン系ゴム、増粘剤等が挙げられる。これらの添加剤については、いずれかの使用を省略しても所望の物性が得られるが、機械特性、表面外観、成形性等各種性能の微調整に好んで用いられる。
Other additives can be further mixed into the unsaturated polyester resin composition.
Other additives are not particularly limited, and those generally used for SMC and BMC can be used. For example, pigments, heat stabilizers, UV stabilizers, polymerization reaction inhibitors, low shrinkage agents, butadiene rubbers And thickeners. These additives can be used for fine adjustment of various properties such as mechanical properties, surface appearance, and moldability, although desired physical properties can be obtained even if any of the additives is omitted.

上記不飽和ポリエステル樹脂組成物および上記繊維補強材をSMC工法によりシート状で、かつ、半硬化状態の熱硬化性成形材料とし、これを所定形状に切断加工することによって本実施形態に係るSMCシートを得ることができる。例えば、以下の手順により、本実施形態に係るSMCシートを得ることができる。
まず、ドクターブレード等を用いることによって、ポリエチレンフィルムやポリプロピレンフィルム等のポリオレフィン製の二枚の離型フィルム上にペースト状の上記不飽和ポリエステル樹脂組成物を塗布して、離型フィルム上に不飽和ポリエステル樹脂層が形成された二枚の樹脂シートを作製する。
次いで、得られた二枚の樹脂シートのうち、一方の樹脂シートの不飽和ポリエステル樹脂層上に、その上方から繊維補強材を、例えば回転チョッパ等を通して撒布する。得られた繊維補強材が散布された樹脂シートの繊維補強材が散布されている面に、先に用意した他方の樹脂シートを不飽和ポリエステル樹脂層の面を内側にして積層する。これによって繊維補強材が上下の不飽和ポリエステル樹脂層で挟み込まれる。
これを複数のロール間に通す等して、加圧することによって繊維補強材に不飽和ポリエステル樹脂層を含浸せしめると同時に厚み調整を行う。これにより、離型フィルム/繊維強化樹脂層(=繊維補強材に不飽和ポリエステル樹脂組成物が含浸した層)/離型フィルムである三層構造のシートが作成される。
その後、必要に応じて熟成処理(増粘処理)が施されることによって半硬化されて本実施形態に係るSMCシートを作製できる。なお、上記熟成処理を行う場合、その条件は、SMCの成形性を考慮して適宜に決定され得るものであり、例えば、40〜70℃の温度で数時間〜数日の間加熱処理が施される。
The unsaturated polyester resin composition and the fiber reinforcing material are formed into a sheet-like, semi-cured thermosetting molding material by the SMC method, and the SMC sheet according to the present embodiment is cut into a predetermined shape. Can be obtained. For example, the SMC sheet according to the present embodiment can be obtained by the following procedure.
First, by using a doctor blade or the like, the unsaturated polyester resin composition in paste form is applied onto two release films made of polyolefin such as polyethylene film or polypropylene film, and the unsaturated film is then unsaturated on the release film. Two resin sheets on which a polyester resin layer is formed are produced.
Next, of the obtained two resin sheets, a fiber reinforcing material is spread on the unsaturated polyester resin layer of one resin sheet from above through, for example, a rotating chopper. The other prepared resin sheet is laminated with the surface of the unsaturated polyester resin layer on the inside of the surface of the resin sheet on which the obtained fiber reinforcing material is sprayed. As a result, the fiber reinforcement is sandwiched between the upper and lower unsaturated polyester resin layers.
The fiber reinforcement is impregnated with the unsaturated polyester resin layer by pressurizing, for example, by passing it between a plurality of rolls, and at the same time, the thickness is adjusted. Thereby, the sheet | seat of the three-layer structure which is a release film / fiber reinforced resin layer (= layer which impregnated the unsaturated polyester resin composition in the fiber reinforcement) / release film is created.
Thereafter, the SMC sheet according to the present embodiment can be produced by being semi-cured by being subjected to aging treatment (thickening treatment) as necessary. In the case of performing the aging treatment, the conditions can be appropriately determined in consideration of the moldability of SMC. For example, the heat treatment is performed at a temperature of 40 to 70 ° C. for several hours to several days. Is done.

また、上記不飽和ポリエステル樹脂組成物および上記繊維補強材をBMC工法により塊状で、かつ、半硬化状態の熱硬化性成形材料とし、これを所定形状に成形することによって本実施形態に係るBMC成形品を得ることができる。例えば、以下の手順により、本実施形態に係るBMC成形品を得ることができる。
まず、不飽和ポリエステル樹脂組成物と繊維補強材とを混練機等で混合して不飽和ポリエステル樹脂組成物を繊維補強材に含浸させることにより塊状のBMCを作製する。
その後、所定形状に成形し、必要に応じて熟成処理(増粘処理)が施されることによって半硬化されて本実施形態に係るBMC成形品を作製できる。なお、上記熟成処理を行う場合、その条件は、BMCの成形性を考慮して適宜に決定され得るものであり、例えば、40〜70℃の温度で数時間〜数日の間加熱処理が施される。
Further, the unsaturated polyester resin composition and the fiber reinforcing material are formed into a lump-like and semi-cured thermosetting molding material by the BMC method, and the BMC molding according to the present embodiment is molded into a predetermined shape. Goods can be obtained. For example, the BMC molded product according to the present embodiment can be obtained by the following procedure.
First, the unsaturated polyester resin composition and the fiber reinforcing material are mixed with a kneader or the like, and the fiber reinforcing material is impregnated with the unsaturated polyester resin composition to prepare a block BMC.
Thereafter, it is molded into a predetermined shape and subjected to aging treatment (thickening treatment) as necessary to be semi-cured to produce a BMC molded product according to this embodiment. When the aging treatment is performed, the conditions can be appropriately determined in consideration of the moldability of BMC. For example, the heat treatment is performed at a temperature of 40 to 70 ° C. for several hours to several days. Is done.

<金属部材>
以下、本実施形態に係る金属部材102について説明する。
<Metal member>
Hereinafter, the metal member 102 according to the present embodiment will be described.

本実施形態に係る金属部材102を構成する金属材料は特に限定されないが、例えば、鉄、鉄鋼材、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、チタンおよびチタン合金等を挙げることができる。これらは単独で使用してもよいし、二種以上組み合わせて使用してもよい。
これらの中でも、軽量、安価、および高強度の点から、アルミニウム(アルミニウム単体)およびアルミニウム合金が好ましく、アルミニウム合金がより好ましい。
アルミニウム合金としては、JIS H4000に規定された合金番号1050、1100、2014、2024、3003、5052、7075等が好ましく用いられる。
Although the metal material which comprises the metal member 102 which concerns on this embodiment is not specifically limited, For example, iron, steel materials, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, titanium, titanium alloy, etc. are mentioned, for example. be able to. These may be used alone or in combination of two or more.
Among these, aluminum (aluminum alone) and an aluminum alloy are preferable, and an aluminum alloy is more preferable from the viewpoint of light weight, low cost, and high strength.
As the aluminum alloy, alloy numbers 1050, 1100, 2014, 2024, 3003, 5052, 7075, etc. defined in JIS H4000 are preferably used.

金属部材102の形状は、繊維強化樹脂部材101と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、棒状、筒状、塊状等とすることができる。また、これらの組み合わせからなる構造体であってもよい。
また、繊維強化樹脂部材101と接合する接合部表面103の形状は、特に限定されないが、平面および曲面等が挙げられる。
The shape of the metal member 102 is not particularly limited as long as it can be joined to the fiber reinforced resin member 101. For example, the metal member 102 can have a flat plate shape, a curved plate shape, a rod shape, a cylindrical shape, a lump shape, or the like. Moreover, the structure which consists of these combination may be sufficient.
Moreover, the shape of the joint surface 103 joined to the fiber reinforced resin member 101 is not particularly limited, and examples thereof include a flat surface and a curved surface.

金属/繊維強化樹脂複合構造体100の用途が自動車外板の場合、繊維強化樹脂部材101に接合される金属部材102は、通常、外板の内側、すなわち繊維強化樹脂部材101の裏面側に取り付けられ、金属部材102の形状は、車両本体に強固に取り付けられる金具としての機能を有する限りは特に制限されるものではない。通常は凸字状金具であって、両端の底板部分が繊維強化樹脂部材101に接合する凸型金具が好んで用いられる(図1参照)。   When the use of the metal / fiber reinforced resin composite structure 100 is an automobile outer plate, the metal member 102 joined to the fiber reinforced resin member 101 is usually attached to the inner side of the outer plate, that is, the back surface side of the fiber reinforced resin member 101. The shape of the metal member 102 is not particularly limited as long as it has a function as a metal fitting firmly attached to the vehicle body. Usually, a convex metal fitting, in which the bottom plate portions at both ends are joined to the fiber reinforced resin member 101, is preferably used (see FIG. 1).

金属部材102は上記金属材料を、切断、プレス等による塑性加工、打ち抜き加工、切削、研磨、放電加工等の除肉加工等の公知の方法によって所定の形状に加工された後に、後述する粗化処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。   The metal member 102 is roughened, which will be described later, after the metal material is processed into a predetermined shape by a known method such as plastic processing such as cutting, pressing, punching, cutting, polishing, electric discharge processing, or the like. Those that have been treated are preferred. In short, it is preferable to use a material processed into a necessary shape by various processing methods.

金属部材102と繊維強化樹脂部材101との接合強度を向上させる観点から、金属部材102の接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす。
(1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
(2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
From the viewpoint of improving the bonding strength between the metal member 102 and the fiber reinforced resin member 101, any three straight portions in parallel relation on the joint surface 103 of the metal member 102 and any orthogonal to the three straight portions The surface roughness measured in accordance with JIS B0601 (corresponding international standard: ISO 4287) for the total of 6 linear parts composed of 3 linear parts simultaneously satisfies the following requirements (1) and (2).
(1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less. (2) Evaluation length of all straight line portions. Ten point average roughness (Rz) at 4 mm exceeds 2 μm

図2は、金属部材102の接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部を説明するための模式図である。
上記6直線部は、例えば、図2に示すような6直線部B1〜B6を選択することができる。まず、基準線として、金属部材102の接合部表面103の中心部Aを通る中心線B1を選択する。次いで、中心線B1と平行関係にある直線B2およびB3を選択する。次いで、中心線B1と直交する中心線B4を選択し、中心線B1と直交し、中心線B4と並行関係にある直線B5およびB6を選択する。ここで、各直線間の垂直距離D1〜D4は、例えば、2〜5mmである。
なお、通常、金属部材102は、金属部材102の繊維強化樹脂部材101との接合部表面103のみならず、金属部材102全体に対し、表面粗化処理が施されているため、例えば、金属部材102の繊維強化樹脂部材101との接合部表面103と同一面、または反対面で、接合部表面103以外の箇所から6直線部を選択してもよい。
FIG. 2 is a schematic diagram for explaining a total of six straight portions including arbitrary three straight portions in parallel relation on the joint surface 103 of the metal member 102 and arbitrary three straight portions orthogonal to the three straight portions. FIG.
For example, the six straight portions B1 to B6 as shown in FIG. 2 can be selected as the six straight portions. First, a center line B1 passing through the center portion A of the joint surface 103 of the metal member 102 is selected as the reference line. Next, straight lines B2 and B3 that are parallel to the center line B1 are selected. Next, a center line B4 orthogonal to the center line B1 is selected, and straight lines B5 and B6 orthogonal to the center line B1 and parallel to the center line B4 are selected. Here, the vertical distances D1 to D4 between the straight lines are, for example, 2 to 5 mm.
In general, the metal member 102 is subjected to a surface roughening process on the entire metal member 102 as well as the joint surface 103 of the metal member 102 with the fiber reinforced resin member 101. Six straight portions may be selected from locations other than the joint surface 103 on the same surface as or opposite to the joint surface 103 with the fiber reinforced resin member 102.

上記要件(1)および(2)を同時に満たすと、金属部材102と繊維強化樹脂部材101との接合強度に優れた金属/繊維強化樹脂複合構造体100が得られる理由は必ずしも明らかではないが、金属部材102の繊維強化樹脂部材101との接合部表面103が、金属部材102と繊維強化樹脂部材101との間のアンカー効果を効果的に発現できる構造になっているためと考えられる。   The reason why the metal / fiber reinforced resin composite structure 100 having excellent bonding strength between the metal member 102 and the fiber reinforced resin member 101 can be obtained by satisfying the above requirements (1) and (2) is not necessarily clear. It is considered that the joint surface 103 of the metal member 102 with the fiber reinforced resin member 101 has a structure capable of effectively expressing the anchor effect between the metal member 102 and the fiber reinforced resin member 101.

金属部材102と繊維強化樹脂部材101との接合強度をより一層向上させる観点から、金属部材102の接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1A)〜(1C)のうち1つ以上の要件をさらに満たすことが好ましく、要件(1C)を満たすことがとりわけ好ましい。なお、要件(1C)は上述した要件(3)に同一である。
(1A)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を好ましくは2直線部以上、より好ましくは3直線部以上、最も好ましくは6直線部含む
(1B)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が20%以下である直線部を好ましくは1直線部以上、より好ましくは2直線部以上、さらに好ましくは3直線部以上、最も好ましくは6直線部含む
(1C)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を好ましくは1直線部以上、より好ましくは2直線部以上、さらに好ましくは3直線部以上、最も好ましくは6直線部含む
From the viewpoint of further improving the bonding strength between the metal member 102 and the fiber-reinforced resin member 101, any three straight portions in parallel relation on the joint surface 103 of the metal member 102 and the three straight portions are orthogonal to each other. The surface roughness measured according to JIS B0601 (corresponding international standard: ISO4287) for a total of 6 linear parts composed of arbitrary 3 linear parts is one or more of the following requirements (1A) to (1C) Is more preferable, and it is particularly preferable that the requirement (1C) is satisfied. The requirement (1C) is the same as the requirement (3) described above.
(1A) A straight line portion with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm is preferably 30% or less, preferably 2 straight portions or more, more preferably 3 straight portions or more, most preferably (1B) including 6 straight portions, preferably a straight portion having a load level ratio (Rmr) of 20% or less of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm, preferably 1 straight portion or more, more preferably 2 straight lines. More than 3 parts, more preferably 3 straight parts or more, most preferably 6 straight parts (1C) A straight part where the cutting length is 40% and the load length ratio (Rmr) of the roughness curve at an evaluation length of 4 mm is 60% or less Is preferably 1 straight part or more, more preferably 2 straight parts or more, further preferably 3 straight parts or more, and most preferably 6 straight parts

また、金属部材102と繊維強化樹脂部材101との接合強度をより一層向上させる観点から、金属部材102の接合部表面103上の、JIS B0601(対応国際規格:ISO4287)に準拠して測定される切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)の平均値が好ましくは0.1%以上40%以下であり、より好ましくは0.5%以上30%以下であり、さらに好ましくは1%以上20%以下であり、最も好ましくは2%以上15%以下である。
なお、上記負荷長さ率(Rmr)の平均値は、前述の任意の6直線部の負荷長さ率(Rmr)を平均したものを採用することができる。
Further, from the viewpoint of further improving the bonding strength between the metal member 102 and the fiber reinforced resin member 101, the measurement is performed in accordance with JIS B0601 (corresponding international standard: ISO 4287) on the bonding portion surface 103 of the metal member 102. The average value of the load length ratio (Rmr) of the roughness curve at a cutting level of 20% and an evaluation length of 4 mm is preferably 0.1% or more and 40% or less, more preferably 0.5% or more and 30% or less. More preferably 1% or more and 20% or less, and most preferably 2% or more and 15% or less.
In addition, what averaged the load length rate (Rmr) of the above-mentioned arbitrary 6 linear parts can be employ | adopted for the average value of the said load length rate (Rmr).

本実施形態に係る金属部材102の接合部表面103の負荷長さ率(Rmr)は、金属部材の表面に対する粗化処理の条件を適切に調節することにより制御することが可能である。
本実施形態においては、特にエッチング剤の種類および濃度、粗化処理の温度および時間、エッチング処理のタイミング等が、上記負荷長さ率(Rmr)を制御するための因子として挙げられる。
The load length ratio (Rmr) of the joint surface 103 of the metal member 102 according to the present embodiment can be controlled by appropriately adjusting the conditions of the roughening treatment on the surface of the metal member.
In the present embodiment, in particular, the type and concentration of the etching agent, the temperature and time of the roughening treatment, the timing of the etching treatment, and the like are listed as factors for controlling the load length ratio (Rmr).

金属部材102と繊維強化樹脂部材101との接合強度をより一層向上させる観点から、金属部材102の接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(2A)をさらに満たすことが好ましい。
(2A)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が好ましくは5μm超、より好ましくは10μm以上、さらに好ましくは15μm以上である
From the viewpoint of further improving the bonding strength between the metal member 102 and the fiber-reinforced resin member 101, any three straight portions in parallel relation on the joint surface 103 of the metal member 102 and the three straight portions are orthogonal to each other. It is preferable that the surface roughness measured in accordance with JIS B0601 (corresponding international standard: ISO4287) further satisfies the following requirement (2A) for a total of 6 straight line parts including arbitrary 3 straight line parts.
(2A) The 10-point average roughness (Rz) at an evaluation length of 4 mm of all straight portions is preferably more than 5 μm, more preferably 10 μm or more, and further preferably 15 μm or more.

金属部材102と繊維強化樹脂部材101との接合強度をより一層向上させる観点から、金属部材102の接合部表面103上の、十点平均粗さ(Rz)の平均値が好ましくは2μmを超えて50μm以下、より好ましくは5μmを超えて45μm以下、さらに好ましくは10μm以上40μm以下、特に好ましくは15μm以上30μm以下である。
なお、上記十点平均粗さ(Rz)の平均値は、前述の任意の6直線部の十点平均粗さ(Rz)を平均したものを採用することができる。
From the viewpoint of further improving the bonding strength between the metal member 102 and the fiber reinforced resin member 101, the average value of the ten-point average roughness (Rz) on the bonding portion surface 103 of the metal member 102 preferably exceeds 2 μm. It is 50 μm or less, more preferably more than 5 μm and 45 μm or less, further preferably 10 μm or more and 40 μm or less, and particularly preferably 15 μm or more and 30 μm or less.
In addition, what averaged the 10-point average roughness (Rz) of the above-mentioned arbitrary 6 linear parts can be employ | adopted for the average value of the said 10-point average roughness (Rz).

金属部材102と繊維強化樹脂部材101との接合強度をより一層向上させる観点から、金属部材102の接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たすことが好ましい。
(4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満であり、より好ましくは20μm以上200μm以下である。
From the viewpoint of further improving the bonding strength between the metal member 102 and the fiber-reinforced resin member 101, any three straight portions in parallel relation on the joint surface 103 of the metal member 102 and the three straight portions are orthogonal to each other. It is preferable that the surface roughness measured in accordance with JIS B0601 (corresponding international standard: ISO4287) further satisfies the following requirement (4) for a total of six straight line parts composed of arbitrary three straight line parts.
(4) The average length (RSm) of the roughness curve elements of all the linear portions is more than 10 μm and less than 300 μm, more preferably 20 μm or more and 200 μm or less.

金属部材102と繊維強化樹脂部材101との接合強度をより一層向上させる観点から、金属部材102の接合部表面103上の、粗さ曲線要素の平均長さ(RSm)の平均値が好ましくは10μmを超え300μm未満、より好ましくは20μm以上200μm以下である。
なお、上記粗さ曲線要素の平均長さ(RSm)の平均値は、前述の任意の6直線部の粗さ曲線要素の平均長さ(RSm)を平均したものを採用することができる。
From the viewpoint of further improving the joint strength between the metal member 102 and the fiber reinforced resin member 101, the average value of the average length (RSm) of the roughness curve elements on the joint surface 103 of the metal member 102 is preferably 10 μm. And less than 300 μm, more preferably 20 μm or more and 200 μm or less.
In addition, what averaged the average length (RSm) of the roughness curve element of the above-mentioned arbitrary 6 linear parts can be employ | adopted for the average value of the average length (RSm) of the said roughness curve element.

本実施形態に係る金属部材102の接合部表面103の十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)は、金属部材の表面に対する粗化処理の条件を適切に調節することにより制御することが可能である。
本実施形態においては、特に粗化処理の温度および時間、エッチング量等が、上記十点平均粗さ(Rz)および粗さ曲線要素の平均長さ(RSm)を制御するための因子として挙げられる。
The ten-point average roughness (Rz) and the average length (RSm) of the roughness curve element of the joint surface 103 of the metal member 102 according to the present embodiment appropriately adjust the conditions of the roughening treatment on the surface of the metal member. It is possible to control by doing.
In the present embodiment, the temperature and time of the roughening treatment, the etching amount, and the like are particularly cited as factors for controlling the ten-point average roughness (Rz) and the average length (RSm) of the roughness curve elements. .

次に、負荷長さ率(Rmr)、十点平均粗さ(Rz)、粗さ曲線要素の平均長さ(RSm)等を満たす金属部材102の調製方法について説明する。
このような金属部材102は、例えば、エッチング剤を用いて金属部材の表面を粗化処理することにより形成することができる。
ここで、エッチング剤を用いて金属部材の表面を粗化処理すること自体は従来技術においても行われてきた。しかし、本実施形態では、エッチング剤の種類および濃度、粗化処理の温度および時間、エッチング処理のタイミング、等の因子を高度に制御している。本実施形態に係る金属部材102の接合部表面103を得るためには、これらの因子を高度に制御することが重要となる。
以下、負荷長さ率(Rmr)、十点平均粗さ(Rz)、粗さ曲線要素の平均長さ(RSm)等を満たす金属部材102を得るための金属部材の粗化処理方法の一例を示す。ただし、本実施形態に係る金属部材の粗化処理方法は、以下の例に限定されない。
Next, a method for preparing the metal member 102 that satisfies the load length ratio (Rmr), the ten-point average roughness (Rz), the average length of the roughness curve element (RSm), and the like will be described.
Such a metal member 102 can be formed, for example, by roughening the surface of the metal member using an etching agent.
Here, roughening the surface of the metal member using an etchant itself has been performed in the prior art. However, in this embodiment, factors such as the type and concentration of the etching agent, the temperature and time of the roughening process, the timing of the etching process, and the like are highly controlled. In order to obtain the joint surface 103 of the metal member 102 according to the present embodiment, it is important to highly control these factors.
Hereinafter, an example of a metal member roughening method for obtaining the metal member 102 that satisfies the load length ratio (Rmr), the ten-point average roughness (Rz), the average length of the roughness curve element (RSm), and the like. Show. However, the roughening method of the metal member according to the present embodiment is not limited to the following example.

(1)前処理工程
まず、金属部材は、少なくとも繊維強化樹脂部材101との接合側の表面に酸化膜や水酸化物等からなる厚い被膜がないことが望ましい。このような厚い被膜を除去するため、次のエッチング剤で処理する工程の前に、サンドブラスト加工、ショットブラスト加工、研削加工、バレル加工等の機械研磨や、化学研磨により表面層を研磨してもよい。また、繊維強化樹脂部材101との接合側の表面に機械油等の著しい汚染がある場合は、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ性水溶液による処理や、脱脂を行なうことが好ましい。
(1) Pre-treatment step First, it is desirable that the metal member does not have a thick film made of an oxide film, hydroxide, or the like on at least the surface on the joining side with the fiber reinforced resin member 101. In order to remove such a thick film, the surface layer may be polished by mechanical polishing such as sand blasting, shot blasting, grinding, barrel processing, or chemical polishing before the next etching step. Good. In addition, when there is significant contamination such as machine oil on the surface on the joint side with the fiber reinforced resin member 101, it is preferable to perform treatment with an alkaline aqueous solution such as a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution, or degreasing.

(2)表面粗化処理工程
本実施形態において金属部材の表面粗化処理方法としては、後述する酸系エッチング剤による処理を特定のタイミングで行うことが好ましい。具体的には、該酸系エッチング剤による処理を表面粗化処理工程の最終段階で行うことが好ましい。
(2) Surface roughening treatment process In this embodiment, as a surface roughening treatment method of a metal member, it is preferable to perform the process by the acid type etching agent mentioned later at a specific timing. Specifically, the treatment with the acid-based etching agent is preferably performed at the final stage of the surface roughening treatment step.

上記酸系エッチング剤を用いて粗化処理する方法としては、浸漬、スプレー等による処理方法が挙げられる。処理温度は20〜40℃が好ましく、処理時間は5〜350秒程度が好ましく、金属部材表面をより均一に粗化できる観点から、20〜300秒がより好ましく、50〜300秒が特に好ましい。   Examples of the roughening treatment using the acid-based etching agent include treatment methods such as immersion and spraying. The treatment temperature is preferably 20 to 40 ° C., the treatment time is preferably about 5 to 350 seconds, 20 to 300 seconds are more preferred, and 50 to 300 seconds are particularly preferred from the viewpoint that the surface of the metal member can be more uniformly roughened.

なお、本実施形態では、上記酸系エッチング剤を用いて金属部材を粗化処理する際、金属部材表面の全面を粗化処理してもよく、繊維強化樹脂部材101が接合される面だけを部分的に粗化処理してもよい。   In this embodiment, when the metal member is roughened using the acid-based etchant, the entire surface of the metal member may be roughened, and only the surface to which the fiber reinforced resin member 101 is bonded is used. Partial roughening treatment may be performed.

(3)後処理工程
本実施形態では、上記表面粗化処理工程の後、通常、水洗および乾燥を行うことが好ましい。水洗の方法については特に制限はないが浸漬または流水にて所定時間洗浄することが好ましい。
(3) Post-treatment step In this embodiment, it is usually preferable to perform washing and drying after the surface roughening treatment step. Although there is no restriction | limiting in particular about the method of water washing, It is preferable to wash | clean for predetermined time with immersion or flowing water.

さらに、後処理工程としては、上記酸系エッチング剤を用いた処理により生じたスマット等を除去するため、超音波洗浄を施すことが好ましい。超音波洗浄の条件は、生じたスマット等を除去することができる条件であれば特に限定されないが、用いる溶媒としては水が好ましく、また、処理時間としては、好ましくは1〜20分間である。   Furthermore, as a post-treatment step, it is preferable to perform ultrasonic cleaning in order to remove smut and the like generated by the treatment using the acid-based etching agent. The ultrasonic cleaning conditions are not particularly limited as long as the generated smut and the like can be removed, but the solvent used is preferably water, and the treatment time is preferably 1 to 20 minutes.

(酸系エッチング剤)
本実施形態において、金属部材表面の粗化処理に用いられるエッチング剤としては、後述する特定の酸系エッチング剤が好ましい。特定の酸系エッチング剤で処理することにより、金属部材の表面に、繊維強化樹脂部材101との間の密着性向上に適した微細凹凸構造が形成され、そのアンカー効果により金属部材102と繊維強化樹脂部材101との間の接合強度がより一層向上するものと考えられる。
(Acid etching agent)
In this embodiment, as an etching agent used for the roughening process of the metal member surface, the specific acid type etching agent mentioned later is preferable. By treating with a specific acid-based etching agent, a fine concavo-convex structure suitable for improving adhesion between the fiber reinforced resin member 101 is formed on the surface of the metal member, and the metal member 102 and the fiber reinforced are formed by the anchor effect. It is considered that the bonding strength with the resin member 101 is further improved.

以下、本実施形態で使用できる酸系エッチング剤の成分について説明する。   Hereinafter, the components of the acid-based etching agent that can be used in this embodiment will be described.

上記酸系エッチング剤は、第二鉄イオンおよび第二銅イオンの少なくとも一方と、酸と、を含み、必要に応じて、マンガンイオン、各種添加剤等を含むことができる。   The acid-based etching agent contains at least one of ferric ions and cupric ions and an acid, and may contain manganese ions, various additives, and the like as necessary.

・第二鉄イオン
上記第二鉄イオンは、金属部材を酸化する成分であり、第二鉄イオン源を配合することによって、酸系エッチング剤中に該第二鉄イオンを含有させることができる。上記第二鉄イオン源としては、硝酸第二鉄、硫酸第二鉄、塩化第二鉄等が挙げられる。上記第二鉄イオン源のうちでは、塩化第二鉄が溶解性に優れ、安価であるという点から好ましい。
-Ferric ion The said ferric ion is a component which oxidizes a metal member, and this ferric ion can be contained in an acid type etching agent by mix | blending a ferric ion source. Examples of the ferric ion source include ferric nitrate, ferric sulfate, and ferric chloride. Among the ferric ion sources, ferric chloride is preferable because it has excellent solubility and is inexpensive.

本実施形態において、酸系エッチング剤中の上記第二鉄イオンの含有量は、好ましくは0.01〜20質量%、より好ましくは0.1〜12質量%、さらに好ましくは0.5〜7質量%、さらにより好ましくは1〜6質量%、特に好ましくは1〜5質量%である。上記第二鉄イオンの含有量が上記下限値以上であれば、金属部材の粗化速度(溶解速度)の低下を防ぐことができる。一方、上記第二鉄イオンの含有量が上記上限値以下であれば、粗化速度を適正に維持することができるため、金属部材102と繊維強化樹脂部材101との間の接合強度向上により適した均一な粗化が可能になる。   In this embodiment, content of the said ferric ion in an acid type etching agent becomes like this. Preferably it is 0.01-20 mass%, More preferably, it is 0.1-12 mass%, More preferably, it is 0.5-7 % By mass, still more preferably 1-6% by mass, particularly preferably 1-5% by mass. If content of the said ferric ion is more than the said lower limit, the fall of the roughening rate (dissolution rate) of a metal member can be prevented. On the other hand, if the content of the ferric ion is less than or equal to the above upper limit value, the roughening rate can be maintained appropriately, and thus more suitable for improving the bonding strength between the metal member 102 and the fiber reinforced resin member 101. Uniform roughening becomes possible.

・第二銅イオン
上記第二銅イオンは金属部材を酸化する成分であり、第二銅イオン源を配合することによって、酸系エッチング剤中に該第二銅イオン含有させることができる。上記第二銅イオン源としては、硫酸第二銅、塩化第二銅、硝酸第二銅、水酸化第二銅等が挙げられる。上記第二銅イオン源のうちでは、硫酸第二銅、塩化第二銅が安価であるという点から好ましい。
-Cupric ion The said cupric ion is a component which oxidizes a metal member, and can mix | blend this cupric ion in an acid type etching agent by mix | blending a cupric ion source. Examples of the cupric ion source include cupric sulfate, cupric chloride, cupric nitrate, and cupric hydroxide. Of the cupric ion sources, cupric sulfate and cupric chloride are preferred because they are inexpensive.

本実施形態において、酸系エッチング剤中の上記第二銅イオンの含有量は、0.001〜10質量%であることが好ましく、より好ましくは0.01〜7質量%、さらに好ましくは0.05〜1質量%、さらにより好ましくは0.1〜0.8質量%、さらにより好ましくは0.15〜0.7質量%、特に好ましくは0.15〜0.4質量%である。上記第二銅イオンの含有量が上記下限値以上であれば、金属部材の粗化速度(溶解速度)の低下を防ぐことができる。一方、上記第二銅イオンの含有量が上記上限値以下であれば、粗化速度を適正に維持することができるため、金属部材102と繊維強化樹脂部材101との間の接合強度向上により適した均一な粗化が可能になる。   In this embodiment, it is preferable that content of the said cupric ion in an acid type etching agent is 0.001-10 mass%, More preferably, it is 0.01-7 mass%, More preferably, it is 0.00. It is 05-1 mass%, More preferably, it is 0.1-0.8 mass%, More preferably, it is 0.15-0.7 mass%, Most preferably, it is 0.15-0.4 mass%. If content of the said cupric ion is more than the said lower limit, the fall of the roughening rate (dissolution rate) of a metal member can be prevented. On the other hand, if the content of the cupric ion is less than or equal to the above upper limit value, the roughening rate can be maintained appropriately, and thus more suitable for improving the bonding strength between the metal member 102 and the fiber reinforced resin member 101. Uniform roughening becomes possible.

上記酸系エッチング剤は、第二鉄イオンおよび第二銅イオンの一方のみを含むものであってもよく、両方を含むものであってもよいが、第二鉄イオンおよび第二銅イオンの両方を含むことが好ましい。酸系エッチング剤が第二鉄イオンおよび第二銅イオンの両方を含むことで、金属部材102と繊維強化樹脂部材101との間の接合強度向上により適した良好な粗化形状が容易に得られる。   The acid-based etching agent may contain only one of ferric ion and cupric ion, or may contain both, but both ferric ion and cupric ion It is preferable to contain. By including both the ferric ion and the cupric ion in the acid-based etching agent, a good roughened shape suitable for improving the bonding strength between the metal member 102 and the fiber reinforced resin member 101 can be easily obtained. .

上記酸系エッチング剤が、第二鉄イオンおよび第二銅イオンの両方を含む場合、第二鉄イオンおよび第二銅イオンのそれぞれの含有量が、上記範囲であることが好ましい。また、酸系エッチング剤中の第二鉄イオンと第二銅イオンの含有量の合計は、0.011〜20質量%であることが好ましく、より好ましくは0.1〜15質量%、さらに好ましくは0.5〜10質量%、特に好ましくは1〜5質量%である。   When the acid-based etching agent contains both ferric ions and cupric ions, the contents of ferric ions and cupric ions are preferably in the above ranges. The total content of ferric ions and cupric ions in the acid-based etching agent is preferably 0.011 to 20% by mass, more preferably 0.1 to 15% by mass, and even more preferably. Is 0.5 to 10% by mass, particularly preferably 1 to 5% by mass.

・マンガンイオン
上記酸系エッチング剤には、金属部材表面をむらなく一様に粗化するために、マンガンイオンが含まれていてもよい。マンガンイオンは、マンガンイオン源を配合することによって、酸系エッチング剤中に該マンガンイオンを含有させることができる。上記マンガンイオン源としては、硫酸マンガン、塩化マンガン、酢酸マンガン、フッ化マンガン、硝酸マンガン等が挙げられる。上記マンガンイオン源のうちでは、硫酸マンガン、塩化マンガンが安価である等の点から好ましい。
Manganese ions The acid-based etching agent may contain manganese ions in order to uniformly roughen the surface of the metal member. Manganese ions can be contained in the acid-based etching agent by blending a manganese ion source. Examples of the manganese ion source include manganese sulfate, manganese chloride, manganese acetate, manganese fluoride, and manganese nitrate. Among the above manganese ion sources, manganese sulfate and manganese chloride are preferable from the viewpoint of being inexpensive.

本実施形態において、酸系エッチング剤中の上記マンガンイオンの含有量は、0〜1質量%であることが好ましく、より好ましくは0〜0.5質量%である。   In this embodiment, it is preferable that content of the said manganese ion in an acid type etching agent is 0-1 mass%, More preferably, it is 0-0.5 mass%.

・酸
上記酸は、第二鉄イオンおよび/または第二銅イオンにより酸化された金属を溶解させる成分である。上記酸としては、塩酸、臭化水素酸、硫酸、硝酸、リン酸、過塩素酸、スルファミン酸等の無機酸や、スルホン酸、カルボン酸等の有機酸が挙げられる。上記カルボン酸としては、ギ酸、酢酸、クエン酸、シュウ酸、リンゴ酸等が挙げられる。上記酸系エッチング剤には、これらの酸を一種または二種以上配合することができる。上記無機酸のうちでは、臭気がほとんどなく、安価である点から硫酸が好ましい。また、上記有機酸のうちでは、粗化形状の均一性の観点から、カルボン酸が好ましい。
-Acid The acid is a component that dissolves a metal oxidized by ferric ions and / or cupric ions. Examples of the acid include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, perchloric acid, and sulfamic acid, and organic acids such as sulfonic acid and carboxylic acid. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, oxalic acid, malic acid and the like. One or more of these acids can be added to the acid-based etching agent. Of the inorganic acids, sulfuric acid is preferred because it has almost no odor and is inexpensive. Among the organic acids, carboxylic acid is preferable from the viewpoint of uniformity of the roughened shape.

本実施形態において、酸系エッチング剤中の上記酸の含有量は、0.1〜50質量%であることが好ましく、0.5〜50質量%であることがより好ましく、1〜50質量%であることがさらに好ましく、1〜30質量%であることがさらにより好ましく、1〜25質量%であることがさらにより好ましく、2〜18質量%であることがさらにより好ましい。上記酸の含有量が上記下限値以上であれば、金属部材の粗化速度(溶解速度)の低下を防止できる。一方、上記酸の含有量が上記上限値以下であれば、液温が低下した際の金属部材の金属塩の結晶析出を防止できるため、作業性を向上できる。   In the present embodiment, the acid content in the acid-based etching agent is preferably 0.1 to 50% by mass, more preferably 0.5 to 50% by mass, and 1 to 50% by mass. It is still more preferable, it is still more preferable that it is 1-30 mass%, it is still more preferable that it is 1-25 mass%, and it is still more preferable that it is 2-18 mass%. If content of the said acid is more than the said lower limit, the fall of the roughening rate (dissolution rate) of a metal member can be prevented. On the other hand, if the content of the acid is not more than the above upper limit, workability can be improved because crystal precipitation of the metal salt of the metal member when the liquid temperature is lowered can be prevented.

・他の成分
本実施形態において使用できる酸系エッチング剤には、指紋等の表面汚染物による粗化のむらを防ぐために界面活性剤を添加してもよく、必要に応じて他の添加剤を添加してもよい。他の添加剤としては、深い凹凸を形成するために添加されるハロゲン化物イオン源、例えば、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウム等を例示できる。あるいは、粗化処理速度を上げるために添加されるチオ硫酸イオン、チオ尿素等のチオ化合物や、より均一な粗化形状を得るために添加されるイミダゾール、トリアゾール、テトラゾール等のアゾール類や、粗化反応を制御するために添加されるpH調整剤等も例示できる。これら他の成分を添加する場合、その合計含有量は、酸系エッチング剤中に0.01〜10質量%程度であることが好ましい。
Other components To the acid-based etching agent that can be used in the present embodiment, a surfactant may be added to prevent unevenness due to surface contaminants such as fingerprints, and other additives may be added as necessary. May be. Other additives include halide ion sources added to form deep irregularities, such as sodium chloride, potassium chloride, sodium bromide, potassium bromide and the like. Alternatively, thio compounds such as thiosulfate ions and thiourea added to increase the roughening treatment speed, azoles such as imidazole, triazole and tetrazole added to obtain a more uniform roughened shape, Examples thereof include a pH adjuster added to control the oxidization reaction. When these other components are added, the total content is preferably about 0.01 to 10% by mass in the acid-based etching agent.

本実施形態の酸系エッチング剤は、上記の各成分をイオン交換水等に溶解させることにより容易に調製することができる。   The acid-based etching agent of this embodiment can be easily prepared by dissolving each of the above components in ion-exchanged water or the like.

[金属/繊維強化樹脂複合構造体の製造方法]
次に、本実施形態に係る金属/繊維強化樹脂複合構造体100の製造方法について説明する。ここでは、図1に示すような金属部材102がフック形状の金具である金属/繊維強化樹脂複合構造体100の製造方法を例にとって説明する。
本実施形態に係る金属/繊維強化樹脂複合構造体100の製造方法は、例えば、以下の工程(A)および(B)を含む。
(A)繊維強化樹脂部材101との接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが前述した要件(1)および(2)を同時に満たす金属部材102を準備する工程
(B)金属部材102の接合部表面103と繊維強化樹脂部材101の少なくとも一部とが接するように金属部材102と繊維強化樹脂部材101とを重ねて、加熱下で加圧成形する工程
[Method for producing metal / fiber reinforced resin composite structure]
Next, a method for manufacturing the metal / fiber reinforced resin composite structure 100 according to the present embodiment will be described. Here, a method for manufacturing the metal / fiber reinforced resin composite structure 100 in which the metal member 102 shown in FIG. 1 is a hook-shaped metal fitting will be described as an example.
The manufacturing method of the metal / fiber reinforced resin composite structure 100 according to the present embodiment includes, for example, the following steps (A) and (B).
(A) JIS B0601 for a total of six straight portions including arbitrary three straight portions in parallel relation on the joint surface 103 with the fiber reinforced resin member 101 and arbitrary three straight portions orthogonal to the three straight portions. (B) a step of preparing a metal member 102 whose surface roughness measured in conformity with (corresponding international standard: ISO 4287) satisfies the requirements (1) and (2) described above at the same time. (B) the joint surface 103 of the metal member 102; A process of stacking the metal member 102 and the fiber reinforced resin member 101 so that at least a part of the fiber reinforced resin member 101 is in contact with each other and press-molding under heating

(工程(A))
はじめに、繊維強化樹脂部材101との接合部表面103上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが前述した要件(1)および(2)を同時に満たす金属部材102を準備する。
ここで、金属部材102は、少なくとも繊維強化樹脂部材101が接合される接合部表面103に前述した粗化処理を施すことによって得ることができる。
金属部材および粗化処理の詳細はここでは省略する。
(Process (A))
First, JIS B0601 (for a total of six straight portions including arbitrary three straight portions in parallel relation on the joint surface 103 with the fiber reinforced resin member 101 and arbitrary three straight portions orthogonal to the three straight portions) Corresponding international standard: A metal member 102 whose surface roughness measured in accordance with ISO 4287) simultaneously satisfies the requirements (1) and (2) described above is prepared.
Here, the metal member 102 can be obtained by performing the above-described roughening process on at least the joint surface 103 to which the fiber reinforced resin member 101 is joined.
Details of the metal member and the roughening treatment are omitted here.

(工程(B))
次いで、金属部材102の接合部表面103と繊維強化樹脂部材101の少なくとも一部とが接するように金属部材102と繊維強化樹脂部材101とを重ねて、加熱下で加圧成形する。これにより、金属/繊維強化樹脂複合構造体100が得られる。
加熱下で加圧成形する方法としては、例えば、接合部表面103が繊維強化樹脂部材101と接するように、フック形状の金具の金属部材102を半硬化状態にある繊維強化樹脂部材101上の所望の位置に配置した後、少なくとも接合部表面103を含む面を加熱加圧成形して繊維強化樹脂部材101を硬化させる方法が一般的に採用される。
加熱加圧成形の際には任意に金型を用いることもできる。金型を用いる場合、上下金型の温度は、例えば、130〜170℃、好ましくは140〜160℃であり、圧力は、例えば、100〜2000MPa、好ましくは500〜1500MPaである。加圧時間は、例えば、0.5〜10分、好ましくは1〜5分である。
(Process (B))
Next, the metal member 102 and the fiber reinforced resin member 101 are overlapped so that the joint surface 103 of the metal member 102 and at least a part of the fiber reinforced resin member 101 are in contact with each other, and pressure-molded under heating. Thereby, the metal / fiber reinforced resin composite structure 100 is obtained.
As a method of pressure molding under heating, for example, the metal member 102 of the hook-shaped metal fitting 102 is desired on the fiber reinforced resin member 101 in a semi-cured state so that the joint surface 103 is in contact with the fiber reinforced resin member 101. In general, a method in which the fiber reinforced resin member 101 is cured by heat-pressing at least a surface including the joint surface 103 after being disposed at the position is generally employed.
A mold can be arbitrarily used in the heat and pressure molding. When using a metal mold | die, the temperature of an up-and-down metal mold | die is 130-170 degreeC, for example, Preferably it is 140-160 degreeC, and a pressure is 100-2000 MPa, for example, Preferably it is 500-1500 MPa. The pressurization time is, for example, 0.5 to 10 minutes, preferably 1 to 5 minutes.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described, these are illustrations of this invention and various structures other than the above are also employable.

100 金属/繊維強化樹脂複合構造体
101 繊維強化樹脂部材
102 金属部材
103 接合部表面
DESCRIPTION OF SYMBOLS 100 Metal / fiber reinforced resin composite structure 101 Fiber reinforced resin member 102 Metal member 103 Joint surface

Claims (5)

金属部材と、シートモールディングコンパウンド(SMC)部材およびバルクモールディングコンパウンド(BMC)部材から選択される少なくとも一種である繊維強化樹脂部材と、が接合してなる金属/繊維強化樹脂複合構造体であって、
前記金属部材の接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす金属/繊維強化樹脂複合構造体。
(1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
(2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
A metal / fiber reinforced resin composite structure formed by joining a metal member and a fiber reinforced resin member that is at least one selected from a sheet molding compound (SMC) member and a bulk molding compound (BMC) member,
JIS B0601 (corresponding international standard: ISO 4287) for a total of six straight lines composed of arbitrary three straight lines in parallel relation on the joint surface of the metal member and arbitrary three straight lines orthogonal to the three straight lines A metal / fiber reinforced resin composite structure in which the surface roughness measured in accordance with the above satisfies the following requirements (1) and (2) simultaneously.
(1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less. (2) Evaluation length of all straight line portions. Ten point average roughness (Rz) at 4 mm exceeds 2 μm
請求項1に記載の金属/繊維強化樹脂複合構造体において、
前記金属部材の接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(3)をさらに満たす金属/繊維強化樹脂複合構造体。
(3)切断レベル40%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が60%以下である直線部を1直線部以上含む
The metal / fiber reinforced resin composite structure according to claim 1,
JIS B0601 (corresponding international standard: ISO 4287) for a total of six straight lines composed of arbitrary three straight lines in parallel relation on the joint surface of the metal member and arbitrary three straight lines orthogonal to the three straight lines A metal / fiber reinforced resin composite structure in which the surface roughness measured according to the above further satisfies the following requirement (3).
(3) One or more straight line portions having a load length ratio (Rmr) of a roughness curve at a cutting level of 40% and an evaluation length of 4 mm are 60% or less.
請求項1または2に記載の金属/繊維強化樹脂複合構造体において、
前記金属部材の接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(4)をさらに満たす金属/繊維強化樹脂複合構造体。
(4)すべての直線部の、粗さ曲線要素の平均長さ(RSm)が10μmを超え300μm未満である
The metal / fiber reinforced resin composite structure according to claim 1 or 2,
JIS B0601 (corresponding international standard: ISO 4287) for a total of six straight lines composed of arbitrary three straight lines in parallel relation on the joint surface of the metal member and arbitrary three straight lines orthogonal to the three straight lines A metal / fiber reinforced resin composite structure in which the surface roughness measured in accordance with the above further satisfies the following requirement (4).
(4) The average length (RSm) of the roughness curve elements of all the straight portions exceeds 10 μm and is less than 300 μm
請求項1乃至3のいずれか一項に記載の金属/繊維強化樹脂複合構造体において、
前記金属部材を構成する金属材料がアルミニウムおよびアルミニウム合金から選択される一種または二種以上の金属を含む金属/繊維強化樹脂複合構造体。
In the metal / fiber reinforced resin composite structure according to any one of claims 1 to 3,
A metal / fiber reinforced resin composite structure in which the metal material constituting the metal member includes one or more metals selected from aluminum and aluminum alloys.
金属部材と、シートモールディングコンパウンド(SMC)部材およびバルクモールディングコンパウンド(BMC)部材から選択される少なくとも一種である繊維強化樹脂部材と、が接合してなる金属/繊維強化樹脂複合構造体を製造するための製造方法であって、
前記繊維強化樹脂部材との接合部表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす前記金属部材を準備する工程と、
前記金属部材の前記接合部表面と前記繊維強化樹脂部材の少なくとも一部とが接するように前記金属部材と前記繊維強化樹脂部材とを重ねて、加熱下で加圧成形する工程と、
を含む金属/繊維強化樹脂複合構造体の製造方法。
(1)切断レベル20%、評価長さ4mmにおける粗さ曲線の負荷長さ率(Rmr)が30%以下である直線部を1直線部以上含む
(2)すべての直線部の、評価長さ4mmにおける十点平均粗さ(Rz)が2μmを超える
In order to produce a metal / fiber reinforced resin composite structure in which a metal member and a fiber reinforced resin member that is at least one selected from a sheet molding compound (SMC) member and a bulk molding compound (BMC) member are joined together A manufacturing method of
JIS B0601 (corresponding international standard) for a total of 6 straight line parts comprising arbitrary 3 straight line parts in parallel relation on the surface of the joint part with the fiber reinforced resin member and arbitrary 3 straight line parts orthogonal to the 3 straight line parts Preparing the metal member whose surface roughness measured in accordance with ISO 4287) simultaneously satisfies the following requirements (1) and (2):
Stacking the metal member and the fiber reinforced resin member so that at least a part of the joint surface of the metal member and at least a part of the fiber reinforced resin member are in contact with each other;
For producing a metal / fiber reinforced resin composite structure.
(1) Includes one or more straight line portions with a load length ratio (Rmr) of a roughness curve at a cutting level of 20% and an evaluation length of 4 mm of 30% or less. (2) Evaluation length of all straight line portions. Ten point average roughness (Rz) at 4 mm exceeds 2 μm
JP2016167721A 2016-08-30 2016-08-30 Method for manufacturing metal / fiber reinforced resin composite structure and metal / fiber reinforced resin composite structure Active JP6757628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167721A JP6757628B2 (en) 2016-08-30 2016-08-30 Method for manufacturing metal / fiber reinforced resin composite structure and metal / fiber reinforced resin composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167721A JP6757628B2 (en) 2016-08-30 2016-08-30 Method for manufacturing metal / fiber reinforced resin composite structure and metal / fiber reinforced resin composite structure

Publications (2)

Publication Number Publication Date
JP2018034351A true JP2018034351A (en) 2018-03-08
JP6757628B2 JP6757628B2 (en) 2020-09-23

Family

ID=61565272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167721A Active JP6757628B2 (en) 2016-08-30 2016-08-30 Method for manufacturing metal / fiber reinforced resin composite structure and metal / fiber reinforced resin composite structure

Country Status (1)

Country Link
JP (1) JP6757628B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196878A1 (en) 2019-03-28 2020-10-01 三井化学株式会社 Cooling unit, cooling device, battery structure, and electric vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082348A (en) * 1983-10-12 1985-05-10 株式会社日本触媒 Metal-resin composite board and manufacture thereof
JPH02311686A (en) * 1989-05-25 1990-12-27 Sumitomo Bakelite Co Ltd Panel for door and manufacture thereof
JPH04110278A (en) * 1990-08-30 1992-04-10 Isuzu Motors Ltd Molding of electromagnetic shield type resin outer plate
JPH0623775A (en) * 1992-07-10 1994-02-01 Toyota Motor Corp Compression molding method
JP2010274600A (en) * 2009-05-29 2010-12-09 Taisei Plas Co Ltd Composite of metal alloy and thermosetting resin, and manufacturing method therefor
WO2015008847A1 (en) * 2013-07-18 2015-01-22 三井化学株式会社 Metal/resin composite structure and metal member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082348A (en) * 1983-10-12 1985-05-10 株式会社日本触媒 Metal-resin composite board and manufacture thereof
JPH02311686A (en) * 1989-05-25 1990-12-27 Sumitomo Bakelite Co Ltd Panel for door and manufacture thereof
JPH04110278A (en) * 1990-08-30 1992-04-10 Isuzu Motors Ltd Molding of electromagnetic shield type resin outer plate
JPH0623775A (en) * 1992-07-10 1994-02-01 Toyota Motor Corp Compression molding method
JP2010274600A (en) * 2009-05-29 2010-12-09 Taisei Plas Co Ltd Composite of metal alloy and thermosetting resin, and manufacturing method therefor
WO2015008847A1 (en) * 2013-07-18 2015-01-22 三井化学株式会社 Metal/resin composite structure and metal member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196878A1 (en) 2019-03-28 2020-10-01 三井化学株式会社 Cooling unit, cooling device, battery structure, and electric vehicle

Also Published As

Publication number Publication date
JP6757628B2 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP4965347B2 (en) Tubular composite and manufacturing method thereof
JP6918973B2 (en) Composite laminate and its manufacturing method, and metal resin bonded body and its manufacturing method
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP4903897B2 (en) Zinc-based plated steel sheet and adherend bonded body and method for producing the same
JP5108891B2 (en) Method for producing metal resin composite
JP5139426B2 (en) Steel composite and manufacturing method thereof
JP5094849B2 (en) Stainless steel composite
JP5372469B2 (en) Metal alloy laminate
JP7358792B2 (en) Electronic board housing and its manufacturing method
JP6867844B2 (en) Metal / fiber reinforced plastic composite structure
JP6964809B2 (en) Metal resin joint and its manufacturing method
JP2018034351A (en) Metal/fiber reinforced composite structure and manufacturing method of metal/fiber reinforced composite structure
JP5467446B2 (en) Carbon fiber detachment prevention method from carbon fiber reinforced plastic
JP5651337B2 (en) Artificial marble molded product and manufacturing method of artificial marble molded product
JP6863702B2 (en) Metal / rubber composite structure
JP6750964B2 (en) Method for manufacturing aluminum alloy material
JP7030510B2 (en) Manufacturing method of surface roughened magnesium alloy member
JP2016142119A (en) Arm for door checker and door checker
JP6964808B2 (en) Composite laminate, its manufacturing method, and metal resin joint
JP2005271477A (en) Case, electronic appliance, and composite molding method
JP7131986B2 (en) METAL/RESIN COMPOSITE STRUCTURE AND METHOD FOR MANUFACTURING METAL/RESIN COMPOSITE STRUCTURE
JP6519061B1 (en) Integral molding, method for producing the same, and primer composition
WO2019172389A1 (en) Magnesium alloy/resin composite structure and method for producing same
JP6705694B2 (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, bonded body, and method for manufacturing aluminum alloy material
WO2019069290A1 (en) Processes for fabricating hybrid metal-polymer parts and the products deriving thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6757628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250