JP7030510B2 - Manufacturing method of surface roughened magnesium alloy member - Google Patents

Manufacturing method of surface roughened magnesium alloy member Download PDF

Info

Publication number
JP7030510B2
JP7030510B2 JP2017251426A JP2017251426A JP7030510B2 JP 7030510 B2 JP7030510 B2 JP 7030510B2 JP 2017251426 A JP2017251426 A JP 2017251426A JP 2017251426 A JP2017251426 A JP 2017251426A JP 7030510 B2 JP7030510 B2 JP 7030510B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
aqueous solution
resin
alloy member
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017251426A
Other languages
Japanese (ja)
Other versions
JP2019116666A (en
Inventor
嘉彦 富田
浩士 奥村
瑞枝 栗谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2017251426A priority Critical patent/JP7030510B2/en
Publication of JP2019116666A publication Critical patent/JP2019116666A/en
Application granted granted Critical
Publication of JP7030510B2 publication Critical patent/JP7030510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Description

本発明は、表面粗化マグネシウム合金部材の製造方法に関する。 The present invention relates to a method for manufacturing a surface-roughened magnesium alloy member.

近年、地球環境保全の視点から、実用金属の中で最も軽量でリサイクル性に優れるマグネシウム合金を積極的に活用する動きが活発化している。例えば自動車分野では燃費改善を目的とした車両軽量化指向によって、これまで鋼板やアルミニウム合金を使用していた部材に対してマグネシウム合金を適用する検討が始まっている。また家電分野では、ノートパソコンや携帯電話、ECUボックスの筐体部分において、従来のアルミニウム合金からマグネシウム合金への置き換えの動きが顕在化している。 In recent years, from the viewpoint of global environmental conservation, there has been an active movement to actively utilize magnesium alloys, which are the lightest and most recyclable among practical metals. For example, in the field of automobiles, due to the tendency to reduce the weight of vehicles for the purpose of improving fuel efficiency, studies have begun to apply magnesium alloys to members that used to use steel plates and aluminum alloys. Further, in the field of home appliances, the movement of replacing conventional aluminum alloys with magnesium alloys has become apparent in the housings of notebook computers, mobile phones, and ECU boxes.

このような金属材料置換の動きに伴い、既存のアルミニウム・樹脂接合化技術に加えて、マグネシウム合金と樹脂とを接合して一体化する技術が、自動車分野、家電製品分野、産業機器等の部品製造分野等の幅広い分野から求められるようになってきた。このための接合手段として、特定の表面形状を満たす表面粗化マグネシウム合金の超微細凹凸形状部に接着剤を侵入させ、その接着剤層に樹脂部材をさらに接着させてマグネシウム合金複合体を製造する方法が開示されている(例えば、特許文献1)。 With the movement to replace metal materials, in addition to the existing aluminum-resin bonding technology, the technology to bond and integrate magnesium alloys and resins is now available for parts in the automobile field, home appliance field, industrial equipment, etc. It has come to be demanded from a wide range of fields such as the manufacturing field. As a joining means for this purpose, an adhesive is penetrated into an ultrafine uneven shape portion of a surface-roughened magnesium alloy that satisfies a specific surface shape, and a resin member is further adhered to the adhesive layer to produce a magnesium alloy composite. The method is disclosed (for example, Patent Document 1).

特許文献1に提案されているマグネシウム合金の表面粗化方法は以下のとおりである。すなわち、市販脱脂剤を用いてマグネシウム合金の表面部を脱脂し、次いで、1%~数%濃度のカルボン酸や鉱酸の水溶液、好ましくはクエン酸、マロン酸、酢酸、硝酸などの水溶液で化学エッチングし、次いで、塩基性水溶液でスマット除去処理を行い、次いで、化成処理が行われる。化成処理は、酸化され易いマグネシウム合金部材表面の腐食防止措置として行われる表面処理であり、特許文献1には、弱酸性とした過マンガン酸カリウムの水溶液でマグネシウム合金部材を処理することによって、マグネシウム合金部材の表面に化成被膜としての二酸化マンガン層を被覆する方法が化成処理の好ましい形態として記載されている。 The method for roughening the surface of the magnesium alloy proposed in Patent Document 1 is as follows. That is, the surface portion of the magnesium alloy is degreased using a commercially available degreasing agent, and then chemically treated with an aqueous solution of carboxylic acid or mineral acid having a concentration of 1% to several%, preferably an aqueous solution of citric acid, malonic acid, acetic acid, nitric acid or the like. After etching, a smut removal treatment is performed with a basic aqueous solution, and then a chemical conversion treatment is performed. The chemical conversion treatment is a surface treatment performed as a corrosion prevention measure on the surface of a magnesium alloy member that is easily oxidized. In Patent Document 1, magnesium is treated by treating the magnesium alloy member with a weakly acidic aqueous solution of potassium permanganate. A method of coating the surface of an alloy member with a manganese dioxide layer as a chemical conversion coating is described as a preferable form of chemical conversion treatment.

国際公開第2008/133096号International Publication No. 2008/133096

本願発明者らは、特許文献1に記載された表面粗化方法、このようにして得られた表面粗化マグネシウム合金部材、および当該表面粗化マグネシウム合金部材に熱可塑性樹脂を接合させて得られるマグネシウム合金/樹脂複合構造体の機械特性について鋭意検討を進めた。その結果、特許文献1に記載された粗化方法、具体的には実験例1に記載された粗化方法に準じて表面粗化を行った場合に工業的視点から、以下の課題が存在することが分かった。 The inventors of the present application are obtained by bonding a thermoplastic resin to the surface roughening method described in Patent Document 1, the surface roughened magnesium alloy member thus obtained, and the surface roughened magnesium alloy member. We have been diligently studying the mechanical properties of the magnesium alloy / resin composite structure. As a result, when surface roughening is performed according to the roughening method described in Patent Document 1, specifically, the roughening method described in Experimental Example 1, the following problems exist from an industrial point of view. It turned out.

上記特許文献1に記載された段階的な薬液浸漬処理法の概念そのもの、すなわち少なくとも1つの各種の薬液が入れられた薬液槽と少なくとも1つの純水又は工業用水が入れられた水洗槽とからなる複数の処理槽(処理部)に、処理対象である金属部材を順次に浸漬させることによって、金属部材表面を粗化する方法と装置は公知である。 The concept itself of the stepwise chemical solution dipping treatment method described in Patent Document 1, that is, a chemical solution tank containing at least one various chemical solution and a washing tank containing at least one pure water or industrial water. A method and an apparatus for roughening the surface of a metal member by sequentially immersing the metal member to be treated in a plurality of treatment tanks (treatment units) are known.

ここで、マグネシウム合金部材を薬液槽や水槽に順次浸漬処理して全浸漬処理を完結する工程をワンサイクルとして表面処理を行った場合、特許文献1に記載された粗化方法では、マグネシウム合金部材の処理量が増加、すなわちマグネシウム合金平板をバッチワイズに表面処理する場合はサイクル数が増加するに従って、或いはコイル状のマグネシウム合金部材のロールを連続的に表面処理する場合は連続処理時間の増加とともにマグネシウム合金部材表面が褐色乃至暗褐色に着色し易くなる傾向を示すこと、又このような着色傾向は化学エッチング用の薬液槽および/又は化成処理用の薬液槽の更新作業、すなわち浸漬を繰り返した古い薬液の一部乃至全量を新薬液に置換する作業の頻度を上げた場合であっても改善されないことが分かった。 Here, when the surface treatment is performed with the step of sequentially immersing the magnesium alloy member in a chemical tank or a water tank to complete the total immersion treatment as one cycle, the roughening method described in Patent Document 1 is a magnesium alloy member. As the treatment amount increases, that is, as the number of cycles increases when the surface treatment of the magnesium alloy flat plate is batchwise, or as the continuous treatment time increases when the roll of the coiled magnesium alloy member is continuously surface-treated. The surface of the magnesium alloy member tends to be easily colored brown to dark brown, and such a coloring tendency is caused by repeated renewal work of the chemical tank for chemical etching and / or the chemical tank for chemical treatment, that is, immersion. It was found that even if the frequency of the work of replacing a part or all of the old chemical solution with the new chemical solution was increased, there was no improvement.

表面粗化マグネシウム合金表面が着色した場合、表面粗化マグネシウム合金表面に樹脂部材が接合してマグネシウム合金/樹脂複合構造体とした場合に、樹脂部材が接合されない部分には、表面粗化マグネシウム合金の粗化表面がそのまま露呈されることになるので、当該複合構造体をデザイン性や美観が求められる用途に展開する上では問題が生じる場合がある。着色部分を無くすためにこの部分を薄く削り落として地肌を再生させるなどの付加的な操作は工程全体を煩雑化すると同時に、削り落とす量が増えることはマグネシウム合金材料の有効利用率の低下にもつながるので好ましくない。 When the surface of the surface-roughened magnesium alloy is colored, when the resin member is bonded to the surface of the surface-roughened magnesium alloy to form a magnesium alloy / resin composite structure, the surface-roughened magnesium alloy is formed in the portion where the resin member is not bonded. Since the roughened surface of the above is exposed as it is, there may be a problem in developing the composite structure for applications requiring design and aesthetics. Additional operations such as scraping off this part thinly to regenerate the background in order to eliminate the colored part complicates the entire process, and at the same time, increasing the amount of scraping off also reduces the effective utilization rate of the magnesium alloy material. It is not preferable because it will be connected.

本発明は上記事情に鑑みてなされたものであり、粗化処理するマグネシウム合金部材の処理量を増やした場合であっても、表面粗化マグネシウム合金部材の表面が褐色乃至暗褐色に着色することを抑制することが可能な表面粗化マグネシウム合金部材の製造方法を提供するものである。 The present invention has been made in view of the above circumstances, and the surface of the surface-roughened magnesium alloy member is colored brown to dark brown even when the amount of the magnesium alloy member to be roughened is increased. It is an object of the present invention to provide a method for manufacturing a surface-roughened magnesium alloy member capable of suppressing the above.

本発明者らは上記問題点について鋭意検討を進め、上記着色の原因を追究した。その結果、上記化成処理における過マンガン酸塩水溶液のpHが、マグネシウム合金部材の処理量増加時における表面粗化マグネシウム合金部材表面の着色に大きな影響を与えることを見出し本発明に到達した。 The present inventors have diligently studied the above-mentioned problems and investigated the cause of the above-mentioned coloring. As a result, they have found that the pH of the permanganate aqueous solution in the chemical conversion treatment has a great influence on the coloring of the surface of the surface-roughened magnesium alloy member when the treatment amount of the magnesium alloy member is increased, and reached the present invention.

すなわち、本発明によれば、以下に示す表面粗化マグネシウム合金部材の製造方法が提供される。
[1]
マグネシウム合金部材を酸性水溶液によって化学エッチングする化学エッチング工程と、
化学エッチングされた前記マグネシウム合金部材を化成処理する化成処理工程と、
を含む表面粗化マグネシウム合金部材の製造方法であって、
前記化学エッチング工程における前記酸性水溶液が有機酸を含み、
前記化成処理工程では、化学エッチングされた前記マグネシウム合金部材を、25℃で測定したpH値が3.0以上3.7未満の範囲にある過マンガン酸塩水溶液で処理することを特徴とする表面粗化マグネシウム合金部材の製造方法。
[2
記過マンガン酸塩水溶液が、pH緩衝作用を有する酸性水溶液中に過マンガン酸塩が溶解している水溶液である上記[1]に記載の表面粗化マグネシウム合金部材の製造方法。

上記pH緩衝作用を有する酸性水溶液が、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、およびリン酸塩から選ばれる少なくとも1種類を含有する上記[1]または[2]に記載の表面粗化マグネシウム合金部材の製造方法。
That is, according to the present invention, the following method for manufacturing a surface-roughened magnesium alloy member is provided.
[1]
A chemical etching process that chemically etches magnesium alloy members with an acidic aqueous solution,
A chemical conversion treatment step for chemical conversion of the chemically etched magnesium alloy member, and
A method for manufacturing a surface-roughened magnesium alloy member containing
The acidic aqueous solution in the chemical etching step contains an organic acid and contains
The surface of the chemical conversion treatment step is characterized in that the chemically etched magnesium alloy member is treated with an aqueous permanganate solution having a pH value measured at 25 ° C. in the range of 3.0 or more and less than 3.7. A method for manufacturing a roughened magnesium alloy member.
[2 ]
The method for producing a surface-roughened magnesium alloy member according to the above [1 ], wherein the permanganate aqueous solution is an aqueous solution in which permanganate is dissolved in an acidic aqueous solution having a pH buffering action.
[ 3 ]
The above-mentioned acidic aqueous solution having a pH buffering action contains at least one selected from acetate, phthalate, citrate, succinate, lactate, tartrate, borate, and phosphate. 1] or [2] , the method for manufacturing a surface-roughened magnesium alloy member.

本発明によれば、粗化処理するマグネシウム合金部材の処理量を増やした場合であっても、表面粗化マグネシウム合金部材の表面が褐色乃至暗褐色に着色することを抑制できる。 According to the present invention, even when the treatment amount of the magnesium alloy member to be roughened is increased, it is possible to prevent the surface of the surface roughened magnesium alloy member from being colored brown to dark brown.

本発明に係る実施形態のマグネシウム合金/樹脂複合構造体の構造の一例を模式的に示した外観図である。It is an external view schematically showing an example of the structure of the magnesium alloy / resin composite structure of the embodiment which concerns on this invention. 本発明に係る実施形態のマグネシウム合金/樹脂複合構造体を製造する過程の一例を模式的に示した構成図である。It is a block diagram which shows typically an example of the process of manufacturing the magnesium alloy / resin composite structure of the embodiment which concerns on this invention. 本実施形態に係る表面粗化マグネシウム合金部材の表面上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部の測定箇所を説明するための模式図である。The measurement points of a total of 6 straight lines including any 3 straight lines parallel to each other and any 3 straight lines orthogonal to the 3 straight lines on the surface of the surface-roughened magnesium alloy member according to the present embodiment will be described. It is a schematic diagram for doing.

以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。文中の数字の間にある「~」は特に断りがなければ、以上から以下を表す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar components are designated by a common reference numeral, and the description thereof will be omitted as appropriate. Further, the figure is a schematic view and does not match the actual dimensional ratio. Unless otherwise specified, the "~" between the numbers in the text indicates the following from the above.

<表面粗化マグネシウム合金部材の製造方法>
本実施形態の表面粗化マグネシウム合金部材103の製造方法について説明する。
本実施形態に係る表面粗化マグネシウム合金部材103の製造方法は、マグネシウム合金部材を酸性水溶液によって化学エッチングする化学エッチング工程と、化学エッチングされた上記マグネシウム合金部材を化成処理する化成処理工程と、を含む。
化学エッチング工程の前には、脱脂などを目的とした前処理工程を行ってもよい。また、化学エッチング工程の後には、エッチング面を酸化から守るための化成処理工程が行われる。
また、上記化成処理工程では、化学エッチングされた上記マグネシウム合金部材を、25℃で測定したpH値が3.0以上3.7未満の範囲にある過マンガン酸塩水溶液で処理する。
本実施形態に係る表面粗化マグネシウム合金部材103の製造方法によれば、表面粗化するマグネシウム合金部材の処理量を増やした場合であっても、表面粗化マグネシウム合金部材103の表面が褐色乃至暗褐色に着色することを抑制することが可能である。また、本実施形態に係る表面粗化マグネシウム合金部材103の製造方法によって得られる表面粗化マグネシウム合金部材103を用いることによって、接合強度に優れたマグネシウム合金/樹脂複合構造体106を安定的に得ることができる。
<Manufacturing method of surface roughened magnesium alloy member>
A method for manufacturing the surface-roughened magnesium alloy member 103 of the present embodiment will be described.
The method for manufacturing the surface-roughened magnesium alloy member 103 according to the present embodiment includes a chemical etching step of chemically etching the magnesium alloy member with an acidic aqueous solution and a chemical etching step of chemically etching the chemically etched magnesium alloy member. include.
Before the chemical etching step, a pretreatment step for the purpose of degreasing or the like may be performed. Further, after the chemical etching step, a chemical conversion treatment step for protecting the etched surface from oxidation is performed.
Further, in the chemical conversion treatment step, the chemically etched magnesium alloy member is treated with a permanganate aqueous solution having a pH value in the range of 3.0 or more and less than 3.7 measured at 25 ° C.
According to the method for manufacturing the surface-roughened magnesium alloy member 103 according to the present embodiment, the surface of the surface-roughened magnesium alloy member 103 is brown to brown even when the treatment amount of the surface-roughened magnesium alloy member is increased. It is possible to suppress coloring to dark brown. Further, by using the surface-roughened magnesium alloy member 103 obtained by the method for producing the surface-roughened magnesium alloy member 103 according to the present embodiment, a magnesium alloy / resin composite structure 106 having excellent bonding strength can be stably obtained. be able to.

本実施形態においては、上記の前処理工程、化学エッチング工程および化成処理工程の前後にいくつかの付加的な工程を任意に実施してもよい。このような任意の工程としては、例えば、化学エッチング工程の後に、主にスマット類の除去を目的として行われる無機酸水溶液による洗浄工程、酸性水溶液または塩基性水溶液との処理後に行われる中和工程や水洗工程等を挙げることができる。本実施形態に係る表面粗化マグネシウム合金部材103の製造方法は、後述する実施例で示されるようなバッチ処理方式であってもよいし、コイル状のマグネシウム合金部材からなるロールを連続的に薬液槽に通過させる、いわゆるロールツーロール方式であってもよいし、これらの方式を適宜組みわせたハイブリッド方式であってもよい。
以下、本実施形態の表面粗化方法の(1)前処理工程、(2)化学エッチング工程、および(3)化成処理後処理工程について、この順に詳説する。
In the present embodiment, some additional steps may be optionally performed before and after the above-mentioned pretreatment step, chemical etching step and chemical conversion treatment step. Such optional steps include, for example, a cleaning step with an inorganic acid aqueous solution mainly for the purpose of removing smuts after a chemical etching step, and a neutralization step performed after treatment with an acidic aqueous solution or a basic aqueous solution. And washing process with water. The method for manufacturing the surface-roughened magnesium alloy member 103 according to the present embodiment may be a batch processing method as shown in Examples described later, or a roll made of a coiled magnesium alloy member may be continuously used as a chemical solution. It may be a so-called roll-to-roll method in which the material is passed through a tank, or a hybrid method in which these methods are appropriately combined.
Hereinafter, the (1) pretreatment step, (2) chemical etching step, and (3) chemical conversion post-treatment step of the surface roughening method of the present embodiment will be described in detail in this order.

なお、本実施形態で表面粗化を受ける原材料のマグネシウム合金部材は特に限定されないが、好ましくは合金成分としてのMnの含有量が0.5質量%以下のマグネシウム合金部材である。例えば、Mgと、Al、Zn、Si、Cu、Fe、Mn、Ag、Zr、Sr、Pb、Re、Yやミッシュメタル等の希土類等との合金部材が挙げられる。代表的なマグネシウム合金部材としては、AZ91、AZ31、AM60、AM50、AM20、AS41、AS21、AE42等の市販のマグネシウム合金部材が挙げられる。
マグネシウム合金部材の形状は、樹脂部材105と接合できる形状であれば特に限定されず、例えば、平板状、曲板状、コイル状、棒状、筒状、塊状等とすることができる。また、これらの組み合わせからなる構造体であってもよい。
The magnesium alloy member of the raw material subject to surface roughening in the present embodiment is not particularly limited, but is preferably a magnesium alloy member having a Mn content of 0.5% by mass or less as an alloy component. For example, an alloy member of Mg and rare earth elements such as Al, Zn, Si, Cu, Fe, Mn, Ag, Zr, Sr, Pb, Re, Y and mischmetal can be mentioned. Typical magnesium alloy members include commercially available magnesium alloy members such as AZ91, AZ31, AM60, AM50, AM20, AS41, AS21, and AE42.
The shape of the magnesium alloy member is not particularly limited as long as it can be joined to the resin member 105, and may be, for example, a flat plate shape, a curved plate shape, a coil shape, a rod shape, a tubular shape, a lump shape, or the like. Further, it may be a structure composed of a combination of these.

マグネシウム合金部材は、切断;プレス等による塑性加工;打ち抜き加工;切削、研磨、放電加工等の除肉加工等によって、マグネシウム合金材料を上述した所定の形状に加工されたものが好ましい。 As the magnesium alloy member, it is preferable that the magnesium alloy material is processed into the above-mentioned predetermined shape by cutting; plastic working by pressing or the like; punching processing; thinning processing such as cutting, polishing, electric discharge machining or the like.

(1)前処理工程
上記したマグネシウム合金部材は、一般的には、ダイキャスト法、チクソモールド法と呼ばれる鋳造法により製造され、場合によっては展伸用マグネシウム合金板を用いたプレス成型法や鍛造法により製造される。元来、マグネシウム合金部材は、アルミニウム合金等とは異なり稠密六方格子(HCP)を持つため変形し難く、そのため成形時には多量の機械油や離型剤等が用いられることが多い。その結果、マグネシウム合金部材の表面にはこれら油類が多量に付着、浸透して表面汚染されている可能性が高いので、化学エッチング処理に先立ち、水酸化ナトリウムや水酸化カリウム水溶液等のアルカリ水溶液や市販のマグネシウム合金用脱脂剤等による脱脂処理を行うことが望ましい。脱脂処理は例えば40~70℃で数分間行われる。また脱脂処理前に、マグネシウム合金部材表面上に堆積した酸化膜等を、サンドブラスト加工、研削加工等の機械研磨や化学研磨等により除去する処理をおこなってもよい。
(1) Pretreatment step The magnesium alloy member described above is generally manufactured by a casting method called a die casting method or a thixomolding method, and in some cases, a press molding method or forging using a magnesium alloy plate for wrought. Manufactured by law. Originally, unlike aluminum alloys, magnesium alloy members have a dense hexagonal lattice (HCP) and are not easily deformed. Therefore, a large amount of machine oil, a mold release agent, or the like is often used at the time of molding. As a result, there is a high possibility that a large amount of these oils adhere to and permeate the surface of the magnesium alloy member and contaminate the surface. Therefore, prior to the chemical etching treatment, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide aqueous solution is used. It is desirable to perform degreasing treatment with a commercially available degreasing agent for magnesium alloys. The degreasing treatment is performed at, for example, 40 to 70 ° C. for several minutes. Further, before the degreasing treatment, a treatment for removing the oxide film or the like deposited on the surface of the magnesium alloy member by mechanical polishing such as sandblasting or grinding or chemical polishing may be performed.

(2)化学エッチング工程
本実施形態に係る化学エッチング工程は、マグネシウム合金部材表面上に微細凹凸形状を付与する工程である。化学エッチング工程で使用する化学エッチング剤(形態は水溶液又は懸濁液)は、例えば、有機酸または無機酸を含む酸性水溶液である。マグネシウム合金部材と樹脂部材との接合強度の点からは有機酸を含む酸性水溶液であっても無機酸を含む酸性水溶液であってもよいが、エッチング量を最小限量に抑え、かつ安定的に高い接合強度を発現できる視点からは、エッチング剤としては有機酸を含む酸性水溶液が好ましい。有機酸としては、脂肪族カルボン酸を含むことがより好ましい。脂肪族カルボン酸としては室温下で水溶性を示すものであれば制限なく使用できるが、より好ましい脂肪族カルボン酸としては、ヒドロキシ基を持たない多塩基酸(a1)と、ヒドロキシ基を持つ一塩基酸(a2)とヒドロキシ基を持つ多塩基酸(a3)に三分類される。ヒドロキシ基を持たない多塩基酸(a1)としては、シュウ酸、マロン酸、アジピン酸、マレイン酸を例示できる。ヒドロキシ基を持つ一塩基酸(a2)としては、グリコール酸、乳酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、メバロン酸を例示できる。またヒドロキシ基を持つ多塩基酸(a3)としては、クエン酸、リンゴ酸、酒石酸を例示できる。なお、多塩基酸を用いる場合は二つのカルボキシ基が形式上分子内脱水縮合した、対応する酸無水物を使用してもよい。酸無水物は一般に水に溶かすことによって加水分解を受けて二塩基酸に転換されるからである。これらの脂肪族カルボン酸の中では、粗化効率、すなわち最小限のエッチング量でもって効率的な接合強度を安定的に発現できる点、あるいはエッチング剤の化学安全性の視点から、ヒドロキシ基を持つ多塩基酸(a3)が好ましく、クエン酸、酒石酸が特に好ましく用いられる。またマロン酸も好ましく用いられる化学エッチング剤である。処理時においては、濃度が好ましくは0.1~5質量%、より好ましくは0.5~5質量%濃度の脂肪族カルボン酸水溶液中に、任意に脱脂処理が行われたマグネシウム合金部材を1~20分間、好ましくは2~15分間浸漬して行うことができる。
(2) Chemical Etching Step The chemical etching step according to the present embodiment is a step of imparting a fine uneven shape on the surface of a magnesium alloy member. The chemical etching agent (form is an aqueous solution or suspension) used in the chemical etching step is, for example, an acidic aqueous solution containing an organic acid or an inorganic acid. From the viewpoint of the bonding strength between the magnesium alloy member and the resin member, it may be an acidic aqueous solution containing an organic acid or an acidic aqueous solution containing an inorganic acid, but the etching amount is kept to a minimum and is stably high. From the viewpoint of exhibiting bond strength, an acidic aqueous solution containing an organic acid is preferable as the etching agent. The organic acid more preferably contains an aliphatic carboxylic acid. The aliphatic carboxylic acid can be used without limitation as long as it is water-soluble at room temperature, but more preferable aliphatic carboxylic acids include a polybasic acid (a1) having no hydroxy group and one having a hydroxy group. It is classified into three types: a basic acid (a2) and a polybasic acid (a3) having a hydroxy group. Examples of the polybasic acid (a1) having no hydroxy group include oxalic acid, malonic acid, adipic acid, and maleic acid. Examples of the monobasic acid (a2) having a hydroxy group include glycolic acid, lactic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, and mevalonic acid. Examples of the polybasic acid (a3) having a hydroxy group include citric acid, malic acid, and tartaric acid. When a polybasic acid is used, a corresponding acid anhydride in which two carboxy groups are formally intramolecularly dehydrated and condensed may be used. This is because acid anhydrides are generally hydrolyzed and converted to dibasic acids by being dissolved in water. Among these aliphatic carboxylic acids, it has a hydroxy group from the viewpoint of roughening efficiency, that is, efficient bonding strength can be stably developed with a minimum etching amount, or from the viewpoint of chemical safety of the etching agent. Polybasic acid (a3) is preferable, and citric acid and tartaric acid are particularly preferably used. Malonic acid is also a preferably used chemical etching agent. At the time of treatment, a magnesium alloy member arbitrarily degreased was placed in an aliphatic carboxylic acid aqueous solution having a concentration of preferably 0.1 to 5% by mass, more preferably 0.5 to 5% by mass. It can be immersed for about 20 minutes, preferably 2 to 15 minutes.

図3は、表面粗化マグネシウム合金部材103の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部を説明するための模式図である。
上記化学エッチングによって、表面粗化マグネシウム合金部材103の表面110上の、平行関係にある任意の3直線部、および当該3直線部と直交する任意の3直線部からなる合計6直線部について、JIS B0601(対応国際規格:ISO4287)に準拠して測定される表面粗さが以下の要件(1)および(2)を同時に満たす微細凹凸構造が形成される。なお、上記6直線部は、例えば図3に示すような6直線部B1~B6を選択することができる。ここで各直線間の水平距離と垂直距離D1~D4は、例えば2~5mmである。
(1)評価長さ4mmにおける十点平均粗さ(Rz)の平均値が2.0μm超過20μm以下、好ましくは3.0μm以上15μm以下の範囲にある
(2)評価長さ4mmにける粗さ曲線要素の平均長さ(RSm)の平均値が10μm超過200μm以下、好ましくは10μm以上200μm以下の範囲にある
FIG. 3 is for explaining a total of 6 straight lines including any 3 straight lines in parallel on the surface 110 of the surface roughened magnesium alloy member 103 and any 3 straight lines orthogonal to the 3 straight lines. It is a schematic diagram of.
By the above chemical etching, JIS is applied to a total of 6 straight portions consisting of arbitrary 3 straight portions parallel to each other and arbitrary 3 straight portions orthogonal to the 3 straight portions on the surface 110 of the surface-roughened magnesium alloy member 103. A fine concavo-convex structure is formed in which the surface roughness measured in accordance with B0601 (corresponding international standard: ISO4287) simultaneously satisfies the following requirements (1) and (2). For the 6 straight lines, for example, 6 straight lines B1 to B6 as shown in FIG. 3 can be selected. Here, the horizontal distance and the vertical distances D1 to D4 between the straight lines are, for example, 2 to 5 mm.
(1) The average value of the ten-point average roughness (Rz) at an evaluation length of 4 mm is in the range of more than 2.0 μm and 20 μm or less, preferably 3.0 μm or more and 15 μm or less. The average value of the average length (RSm) of the curve element is in the range of more than 10 μm and 200 μm or less, preferably 10 μm or more and 200 μm or less.

化学エッチング終了後に、必要に応じて弱塩基性水溶液および/または強塩基性水溶液による洗浄を行ってもよい。このような塩基性水溶液としては代表的には炭酸ナトリウム水溶液、炭酸水素ナトリウム水溶液またはこれらの混合体を例示することができ、炭酸ナトリウム1質量%と炭酸水素ナトリウム1質量%が溶解したpHが9.8前後の弱塩基性水溶液が好ましく用いられる。また、強塩基性水溶液としては、例えば15質量%前後の水酸化ナトリウム水溶液が用いられる。なお、これらの弱塩基性水溶液および/または塩基性水溶液による洗浄の前後に水洗操作を加えてもよい。 After the chemical etching is completed, washing with a weakly basic aqueous solution and / or a strongly basic aqueous solution may be performed, if necessary. Typical examples of such a basic aqueous solution include an aqueous solution of sodium carbonate, an aqueous solution of sodium hydrogen carbonate, or a mixture thereof, and the pH at which 1% by mass of sodium carbonate and 1% by mass of sodium hydrogen carbonate are dissolved is 9. A weakly basic aqueous solution of around 8.8 is preferably used. Further, as the strong basic aqueous solution, for example, a sodium hydroxide aqueous solution of about 15% by mass is used. A washing operation may be performed before and after washing with these weakly basic aqueous solutions and / or basic aqueous solutions.

(3)化成処理工程
上記化学エッチングを終えたマグネシウム合金部材は、次いで化成処理され化成被膜が形成される。すなわち、マグネシウムはイオン化傾向の高い部類の金属であるので空気中の湿気と酸素による酸化速度が他の金属に比べて相対的に速い。マグネシウム合金部材は通常、自然酸化膜で被覆されているが耐食性の点から見て十分とは言い難く、通常の環境下でも自然酸化膜を拡散した水分子や酸素で酸化腐食が進行してしまう。このような酸化反応を抑制するために化成被膜を積極的に形成させる化成処理がこれまで行われてきた。
(3) Chemical conversion treatment step The magnesium alloy member that has undergone the above chemical etching is then subjected to chemical conversion treatment to form a chemical conversion film. That is, since magnesium is a metal having a high ionization tendency, the oxidation rate due to moisture and oxygen in the air is relatively faster than that of other metals. Magnesium alloy members are usually coated with a natural oxide film, but it is not sufficient from the viewpoint of corrosion resistance, and oxidative corrosion progresses due to water molecules and oxygen diffused in the natural oxide film even in a normal environment. .. In order to suppress such an oxidation reaction, a chemical conversion treatment for positively forming a chemical conversion film has been performed so far.

公知の化成処理方法としては、弱酸性とした過マンガン酸塩水溶液に浸漬して二酸化マンガンの薄層で全面を覆う処理や、クロム酸や重クロム酸カリ等の水溶液に浸漬して酸化クロムの薄層で全面を覆うクロメート処理(クロメート処理)等を行って腐食防止処置が行われるのが一般的である。本実施形態においては環境汚染の観点から前者の二酸化マンガン薄層を被膜する方法が好んで用いられる。 Known chemical conversion treatment methods include a treatment of immersing in a weakly acidic permanganate aqueous solution to cover the entire surface with a thin layer of manganese dioxide, or immersing in an aqueous solution of chromic acid or potassium dichromate to obtain chromium oxide. Generally, corrosion prevention measures are performed by performing chromate treatment (chromate treatment) or the like to cover the entire surface with a thin layer. In the present embodiment, the former method of coating a thin layer of manganese dioxide is preferably used from the viewpoint of environmental pollution.

本実施形態においては、弱酸性とした過マンガン酸塩水溶液の25℃で測定したpH値は本発明の効果を発揮するうえで極めて重要である。このpH値は3.0以上3.7未満であり、好ましくは3.1以上3.7未満であり、より好ましくは3.2以上3.6以下、さらに好ましくは3.3以上3.6以下である。過マンガン酸塩水溶液のpHが、このような範囲を満たすことによってマグネシウム合金部材の表面粗化のバッチ処理数を重ねた場合すなわち粗化処理するマグネシウム合金部材の処理量を増やした場合であっても、表面粗化マグネシウム合金部材103の表面が褐色乃至暗褐色に着色することを抑制できる。なお、過マンガン酸塩を構成するカチオン種としては、アンモニウムイオン、ナトリウムイオン、カリウムイオン、銀イオンおよび亜鉛イオンを例示できるが、化学物質としての安全性や空気中での取り扱い性からカリウムイオンがこの好ましい。過マンガン酸塩水溶液に占める過マンガン酸塩の濃度は、例えば0.5~5質量%、好ましくは1~3質量%である。
過マンガン酸塩の濃度が上記下限値以上であると、酸化能力がより良好になり、過マンガン酸塩の濃度が上記上限値以下であると、過マンガン酸塩の使用量を抑えながら化成被膜生成速度を適度な速度とすることができる。
In the present embodiment, the pH value of the weakly acidic aqueous solution of permanganate measured at 25 ° C. is extremely important for exerting the effect of the present invention. This pH value is 3.0 or more and less than 3.7, preferably 3.1 or more and less than 3.7, more preferably 3.2 or more and 3.6 or less, and further preferably 3.3 or more and 3.6. It is as follows. When the pH of the permanganate aqueous solution satisfies such a range, the number of batch treatments for surface roughening of the magnesium alloy member is repeated, that is, the treatment amount of the magnesium alloy member to be roughened is increased. Further, it is possible to prevent the surface of the surface-roughened magnesium alloy member 103 from being colored brown to dark brown. Examples of the cation species constituting the permanganate include ammonium ion, sodium ion, potassium ion, silver ion and zinc ion, but potassium ion is used because of its safety as a chemical substance and its handleability in the air. This is preferred. The concentration of permanganate in the permanganate aqueous solution is, for example, 0.5 to 5% by mass, preferably 1 to 3% by mass.
When the concentration of permanganate is above the above lower limit, the oxidizing ability becomes better, and when the concentration of permanganate is below the above upper limit, the chemical conversion film is formed while suppressing the amount of permanganate used. The generation speed can be set to an appropriate speed.

上記のような、特定の酸性領域のpH値を持つ過マンガン酸塩水溶液は、例えば、pH値が3.0以上3.7未満の範囲にあるpH緩衝能を有する酸性水溶液に過マンガン酸塩を溶解することにより容易に調製可能である。
上記pH緩衝能を有する酸性溶液として、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩のうち、少なくとも1種類以上を各0.1~5.0質量%の範囲で含有する酸性溶液を例示できる。具体的には、酢酸ナトリウム(CHCOONa)などの酢酸塩、フタル酸水素カリウム((KOOC))などのフタル酸塩、クエン酸ナトリウム(Na)やクエン酸二水素カリウム(KH)などのクエン酸塩、コハク酸ナトリウム(Na)などのコハク酸塩、乳酸ナトリウム(NaCHCHOHCO)などの乳酸塩、酒石酸ナトリウム(Na)などの酒石酸塩、ホウ酸塩、リン酸塩のうち少なくとも1種類以上を0.1~5.0質量%の濃度範囲で含有する水溶液を使用することができる。
The permanganate aqueous solution having a pH value in a specific acidic region as described above is, for example, a permanganate aqueous solution having a pH buffering capacity in the range of 3.0 or more and less than 3.7. Can be easily prepared by dissolving.
As the acidic solution having the pH buffering ability, at least one of acetate, phthalate, citrate, succinate, lactate, tartrate, borate, and phosphate is 0.1 each. Examples thereof include acidic solutions contained in the range of ~ 5.0% by mass. Specifically, acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na 3 C 6 H 5 O 7 ). And citrates such as potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), sodium lactate (NaCH 3 CHOHCO 2 ), etc. Contains at least one of tartrates such as lactate, sodium tartrate (Na 2 C 4 H 4 O 6 ), borates, and phosphates in a concentration range of 0.1 to 5.0% by mass. An aqueous solution can be used.

化学エッチングされたマグネシウム合金部材を、過マンガン酸塩の弱酸性水溶液で処理する場合、その処理温度は例えば25℃~60℃、好ましくは30℃~55℃、処理時間は5秒~3分、好ましくは10秒~2分程度である。処理温度が上記下限値以上であると、夏場においては冷凍機などの追加冷却設備等を用いる必要がないため好ましい。処理温度が上記上限値以下であると、過マンガン酸塩の短時間当たりの反応熱を抑制できるため好ましい。 When the chemically etched magnesium alloy member is treated with a weakly acidic aqueous solution of permanganate, the treatment temperature is, for example, 25 ° C to 60 ° C, preferably 30 ° C to 55 ° C, and the treatment time is 5 seconds to 3 minutes. It is preferably about 10 seconds to 2 minutes. When the treatment temperature is equal to or higher than the above lower limit, it is preferable in the summer because it is not necessary to use additional cooling equipment such as a refrigerator. When the treatment temperature is not more than the above upper limit value, the reaction heat of the permanganate for a short time can be suppressed, which is preferable.

本実施形態に係る表面粗化マグネシウム合金部材103の製造方法によって得られた表面粗化マグネシウム合金部材103を用いることによって、樹脂部材105との接合、好ましくは射出接合(インサート成形)によってマグネシウム合金/樹脂複合構造体106を得ることができる。上記樹脂部材105は熱可塑性樹脂組成物(P)からなる。熱可塑性樹脂組成物(P)は、樹脂成分として熱可塑性樹脂(A)と、必要に応じて充填材(B)とを含む。さらに、熱可塑性樹脂組成物(P)は必要に応じてその他の配合剤を含むことも任意である。 By using the surface-roughened magnesium alloy member 103 obtained by the method for manufacturing the surface-roughened magnesium alloy member 103 according to the present embodiment, the magnesium alloy / magnesium alloy is bonded to the resin member 105, preferably by injection bonding (insert molding). A resin composite structure 106 can be obtained. The resin member 105 is made of a thermoplastic resin composition (P). The thermoplastic resin composition (P) contains a thermoplastic resin (A) as a resin component and, if necessary, a filler (B). Further, the thermoplastic resin composition (P) may optionally contain other compounding agents, if necessary.

(熱可塑性樹脂(A))
熱可塑性樹脂(A)としては特に限定されないが、例えば、ポリオレフィン系樹脂、ポリメタクリル酸メチル樹脂等のポリメタクリル系樹脂、ポリアクリル酸メチル樹脂等のポリアクリル系樹脂、ポリスチレン樹脂、ポリビニルアルコール-ポリ塩化ビニル共重合体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリメチルペンテン樹脂、無水マレイン酸-スチレン共重合体樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂等の芳香族ポリエーテルケトン、ポリエステル系樹脂、ポリアミド系樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、スチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アイオノマー、アミノポリアクリルアミド樹脂、イソブチレン無水マレイン酸コポリマー、ABS、ACS、AES、AS、ASA、MBS、エチレン-塩化ビニルコポリマー、エチレン-酢酸ビニルコポリマー、エチレン-酢酸ビニル-塩化ビニルグラフトポリマー、エチレン-ビニルアルコールコポリマー、塩素化ポリ塩化ビニル樹脂、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、カルボキシビニルポリマー、ケトン樹脂、非晶性コポリエステル樹脂、ノルボルネン樹脂、フッ素プラスチック、ポリテトラフルオロエチレン樹脂、フッ素化エチレンポリプロピレン樹脂、PFA、ポリクロロフルオロエチレン樹脂、エチレンテトラフルオロエチレンコポリマー、ポリフッ化ビニリデン樹脂、ポリフッ化ビニル樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリサルホン樹脂、ポリパラメチルスチレン樹脂、ポリアリルアミン樹脂、ポリビニルエーテル樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリメチルペンテン樹脂、オリゴエステルアクリレート、キシレン樹脂、マレイン酸樹脂、ポリヒドロキシブチレート樹脂、ポリスルホン樹脂、ポリ乳酸樹脂、ポリグルタミン酸樹脂、ポリカプロラクトン樹脂、ポリエーテルスルホン樹脂、ポリアクリロニトリル樹脂、スチレン-アクリロニトリル共重合体樹脂等が挙げられる。これらの熱可塑性樹脂(A)は一種単独で使用してもよいし、二種以上組み合わせて使用してもよい。
(Thermoplastic resin (A))
The thermoplastic resin (A) is not particularly limited, and for example, a polyolefin resin, a polymethacrylic resin such as polymethylmethacrylate resin, a polyacrylic resin such as methylpolyacrylate resin, a polystyrene resin, and a polyvinyl alcohol-poly. Vinyl chloride copolymer resin, polyvinyl acetal resin, polyvinyl butyral resin, polyvinyl formal resin, polymethylpentene resin, maleic anhydride-styrene copolymer resin, polycarbonate resin, polyphenylene ether resin, polyether ether ketone resin, polyether ketone Aromatic polyether ketones such as resins, polyester resins, polyamide resins, polyamideimide resins, polyimide resins, polyetherimide resins, styrene elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, polyamide elastomers, ionomers , Aminopolyacrylamide resin, isobutylene anhydride copolymer, ABS, ACS, AES, AS, ASA, MBS, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride graft polymer, ethylene-vinyl alcohol Copolymer, chlorinated polyvinyl chloride resin, chlorinated polyethylene resin, chlorinated polypropylene resin, carboxyvinyl polymer, ketone resin, amorphous copolyester resin, norbornen resin, fluoroplastic, polytetrafluoroethylene resin, fluorinated ethylene polypropylene resin , PFA, polychlorofluoroethylene resin, ethylene tetrafluoroethylene copolymer, polyvinylidene fluoride resin, polyvinyl fluoride resin, polyallylate resin, thermoplastic polyimide resin, vinylidene chloride resin, polyvinyl chloride resin, vinyl acetate resin, polysulphon Resin, polyparamethylstyrene resin, polyallylamine resin, polyvinyl ether resin, polyphenylene oxide resin, polyphenylene sulfide (PPS) resin, polymethylpentene resin, oligoester acrylate, xylene resin, maleic acid resin, polyhydroxybutyrate resin, polysulfone Examples thereof include resins, polylactic acid resins, polyglutamic acid resins, polycaprolactone resins, polyether sulfone resins, polyacrylonitrile resins, styrene-acrylonitrile copolymer resins and the like. These thermoplastic resins (A) may be used alone or in combination of two or more.

これらの中でも、熱可塑性樹脂(A)としては、表面粗化マグネシウム合金部材103と樹脂部材105との接合強度向上効果をより効果的に得ることができる観点から、ポリオレフィン系樹脂、ポリエステル系樹脂およびポリアミド系樹脂から選択される一種または二種以上の熱可塑性樹脂が好適に用いられる。 Among these, the thermoplastic resin (A) includes a polyolefin resin, a polyester resin, and a polyester resin from the viewpoint of more effectively obtaining the effect of improving the bonding strength between the surface roughened magnesium alloy member 103 and the resin member 105. One or more thermoplastic resins selected from polyamide resins are preferably used.

(充填材(B))
熱可塑性樹脂組成物(P)は、表面粗化マグネシウム合金部材103と樹脂部材105との線膨張係数差の調整や樹脂部材105の機械的強度を向上させる観点から、充填材(B)をさらに含んでもよい。
充填材(B)としては、例えば、ガラス繊維、炭素繊維、炭素粒子、粘土、タルク、シリカ、ミネラル、セルロース繊維からなる群から一種または二種以上を選ぶことができる。これらのうち、好ましくは、ガラス繊維、炭素繊維、タルク、ミネラルから選択される一種または二種以上である。
(Filler (B))
The thermoplastic resin composition (P) further comprises a filler (B) from the viewpoint of adjusting the difference in linear expansion coefficient between the surface-roughened magnesium alloy member 103 and the resin member 105 and improving the mechanical strength of the resin member 105. It may be included.
As the filler (B), for example, one or more kinds can be selected from the group consisting of glass fiber, carbon fiber, carbon particles, clay, talc, silica, mineral, and cellulose fiber. Of these, one or more selected from glass fiber, carbon fiber, talc, and minerals are preferable.

なお、熱可塑性樹脂組成物(P)が充填材(B)を含む場合、その含有量は、熱可塑性樹脂(A)100質量部に対して、好ましくは1質量部以上80質量部以下であり、より好ましくは5質量部以上70質量部以下であり、特に好ましくは10質量部以上50質量部以下である。 When the thermoplastic resin composition (P) contains the filler (B), the content thereof is preferably 1 part by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin (A). , More preferably 5 parts by mass or more and 70 parts by mass or less, and particularly preferably 10 parts by mass or more and 50 parts by mass or less.

(その他の配合剤)
熱可塑性樹脂組成物(P)には、機械的強度以外の固有の機能を更に付与する目的でその他の配合剤を含んでもよい。このような配合剤としては、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。なお、熱可塑性樹脂組成物(P)がその他配合剤を含む場合、その含有量は、熱可塑性樹脂(A)100質量部に対して、好ましくは0.0001~5質量部であり、より好ましくは0.001~3質量部である。
(Other compounding agents)
The thermoplastic resin composition (P) may contain other compounding agents for the purpose of further imparting a unique function other than mechanical strength. Examples of such a compounding agent include heat stabilizers, antioxidants, pigments, weather resistant agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, antistatic agents and the like. When the thermoplastic resin composition (P) contains other compounding agents, the content thereof is preferably 0.0001 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A), which is more preferable. Is 0.001 to 3 parts by mass.

本実施形態に係るマグネシウム合金/樹脂複合構造体106の製造方法、すなわち熱可塑性樹脂組成物(P)からなる樹脂部材105を表面粗化マグネシウム合金部材103に接合する方法としては、例えば、射出成形、押出成形、加熱プレス成形、圧縮成形、トランスファーモールド成形、注型成形、レーザー溶着成形、反応射出成形(RIM成形)、リム成形(LIM成形)、溶射成形等の樹脂成形方法が挙げられる。
これらの中でも、射出成形法が好ましく、具体的には、表面粗化マグネシウム合金部材103を射出成形金型のキャビティ部にインサートし、熱可塑性樹脂組成物(P)を金型に射出する射出成形法によって樹脂部材105を成形し、マグネシウム合金/樹脂複合構造体106を製造するのが好ましい。以下、具体的に説明する。
As a method for producing the magnesium alloy / resin composite structure 106 according to the present embodiment, that is, a method for joining the resin member 105 made of the thermoplastic resin composition (P) to the surface roughened magnesium alloy member 103, for example, injection molding. , Extrusion molding, heat press molding, compression molding, transfer molding, casting molding, laser welding molding, reaction injection molding (RIM molding), rim molding (LIM molding), spray molding and other resin molding methods.
Among these, the injection molding method is preferable, and specifically, injection molding in which the surface-roughened magnesium alloy member 103 is inserted into the cavity of the injection molding mold and the thermoplastic resin composition (P) is injected into the mold. It is preferable to mold the resin member 105 by the method to produce the magnesium alloy / resin composite structure 106. Hereinafter, a specific description will be given.

図2は、本発明に係る実施形態のマグネシウム合金/樹脂複合構造体106を製造する過程の一例を模式的に示した構成図である。
本実施形態に係るマグネシウム合金/樹脂複合構造体106の製造方法は、例えば、以下の[1]~[3]の工程を含んでいる。
[1]所望の熱可塑性樹脂組成物(P)を調製する工程
[2]凹凸形成領域を含む表面粗化マグネシウム合金部材103を射出成形用の金型102の内部に設置する工程
[3]熱可塑性樹脂組成物(P)を、射出成形機101を通して、表面粗化マグネシウム合金部材103の少なくとも凹凸形成領域と接するように、金型102内に射出成形し、樹脂部材105を形成する工程
FIG. 2 is a block diagram schematically showing an example of a process of manufacturing the magnesium alloy / resin composite structure 106 according to the embodiment of the present invention.
The method for producing the magnesium alloy / resin composite structure 106 according to the present embodiment includes, for example, the following steps [1] to [3].
[1] Step of preparing a desired thermoplastic resin composition (P) [2] Step of installing a surface-roughened magnesium alloy member 103 including a concavo-convex forming region inside a mold 102 for injection molding [3] Heat A step of injection molding the plastic resin composition (P) into the mold 102 through an injection molding machine 101 so as to be in contact with at least an uneven formation region of the surface roughened magnesium alloy member 103 to form the resin member 105.

以下、[2]および[3]の工程による射出成形方法について説明する。
まず、射出成形用の金型102を用意し、その金型を開いてその一部に凹凸形成領域を含む表面粗化マグネシウム合金部材103を設置する。
その後、金型102を閉じ、熱可塑性樹脂組成物(P)の少なくとも一部が表面粗化マグネシウム合金部材103の表面110の凹凸形状形成領域と接するように、金型102内に[1]工程で得られた熱可塑性樹脂組成物(P)を射出して固化する。その後、金型102を開き離型することにより、マグネシウム合金/樹脂複合構造体106を得ることができる。
Hereinafter, the injection molding method according to the steps [2] and [3] will be described.
First, a mold 102 for injection molding is prepared, the mold is opened, and a surface-roughened magnesium alloy member 103 including a concavo-convex forming region is installed in a part of the mold 102.
After that, the mold 102 is closed, and the step [1] is performed in the mold 102 so that at least a part of the thermoplastic resin composition (P) is in contact with the uneven shape forming region of the surface 110 of the surface roughened magnesium alloy member 103. The thermoplastic resin composition (P) obtained in 1 is injected and solidified. After that, the magnesium alloy / resin composite structure 106 can be obtained by opening the mold 102 and releasing the mold.

また、上記[1]~[3]の工程による射出成形にあわせて、射出発泡成形や、金型102を急速に加熱冷却する高速ヒートサイクル成形(RHCM,ヒート&クール成形)を併用してもよい。
射出発泡成形の方法として、化学発泡剤を樹脂に添加する方法や、射出成形機のシリンダー部に直接、窒素ガスや炭酸ガスを注入する方法、あるいは、窒素ガスや炭酸ガスを超臨界状態で射出成形機のシリンダー部に注入するMuCell射出発泡成形法があるが、いずれの方法でも樹脂部材105が発泡体であるマグネシウム合金/樹脂複合構造体106を得ることができる。また、いずれの方法でも、金型102の制御方法として、カウンタープレッシャーを使用したり、成形品の形状によってはコアバックを利用したりすることも可能である。
高速ヒートサイクル成形は、急速加熱冷却装置を金型102に接続することにより、実施することができる。急速加熱冷却装置は、一般的に使用されている方式で構わない。加熱方法として、蒸気式、加圧熱水式、熱水式、熱油式、電気ヒータ式、電磁誘導過熱式のいずれか一方式またはそれらを複数組み合わせた方式を用いることができる。冷却方法としては、冷水式、冷油式のいずれか一方式またはそれらを組み合わせた方式を用いることができる。高速ヒートサイクル成形法の条件としては、例えば、射出成形用の金型102を100℃以上250℃以下の温度に加熱し、熱可塑性樹脂組成物(P)の射出が完了した後、射出成形用の金型102を冷却することが望ましい。金型を加熱する温度は、熱可塑性樹脂組成物(P)を構成する熱可塑性樹脂(A)によって好ましい範囲が異なり、結晶性樹脂で融点が200℃未満の熱可塑性樹脂であれば、100℃以上150℃以下が好ましく、結晶性樹脂で融点が200℃以上の熱可塑性樹脂であれば、140℃以上250℃以下が望ましい。非晶性樹脂については、100℃以上180℃以下が望ましい。
Further, in addition to the injection molding by the above steps [1] to [3], injection foam molding or high-speed heat cycle molding (RHCM, heat & cool molding) for rapidly heating and cooling the mold 102 may be used in combination. good.
As a method of injection foam molding, a method of adding a chemical foaming agent to a resin, a method of directly injecting nitrogen gas or carbon dioxide gas into the cylinder of an injection molding machine, or a method of injecting nitrogen gas or carbon dioxide gas in a supercritical state. There is a MuCell injection foam molding method of injecting into the cylinder portion of a molding machine, and any method can obtain a magnesium alloy / resin composite structure 106 in which the resin member 105 is a foam. Further, in any of the methods, it is possible to use counter pressure or a core back depending on the shape of the molded product as a control method of the mold 102.
High-speed heat cycle molding can be carried out by connecting a rapid heating / cooling device to the mold 102. The rapid heating / cooling device may be a generally used method. As the heating method, any one of steam type, pressurized hot water type, hot water type, hot oil type, electric heater type, electromagnetic induction superheating type, or a method in which a plurality of them are combined can be used. As the cooling method, either one of the cold water type and the cold oil type or a method in which they are combined can be used. As a condition of the high-speed heat cycle molding method, for example, the mold 102 for injection molding is heated to a temperature of 100 ° C. or higher and 250 ° C. or lower, and after the injection of the thermoplastic resin composition (P) is completed, it is used for injection molding. It is desirable to cool the mold 102 of. The preferred range of the temperature for heating the mold differs depending on the thermoplastic resin (A) constituting the thermoplastic resin composition (P), and if the thermoplastic resin is a crystalline resin and has a melting point of less than 200 ° C, it is 100 ° C. It is preferably 150 ° C. or higher, and if it is a crystalline resin and a thermoplastic resin having a melting point of 200 ° C. or higher, 140 ° C. or higher and 250 ° C. or lower is desirable. The amorphous resin is preferably 100 ° C. or higher and 180 ° C. or lower.

本実施形態に係るマグネシウム合金/樹脂複合構造体106は、過酷な条件下でも高い接合強度を示すとともに軽量である利点を生かして様々な産業分野で用いられる。例えば、ノートパソコンのボトムケース、液晶リアケースに代表されるパソコン分野;携帯電話用の薄肉筐体、フレームボディ等の携帯電話分野;デジタル一眼レフカメラ用のカバーやミラーボックス等のカメラ分野;スピーカー振動板等のオーディオ分野;時計の秒針;自動車ヘッドカバー、オイルパン、シリンダーブロック、ステアリングホイール、ステアリングメンバー、ミッションケース、シートバックフレーム、ロードホイール等の自動車分野;二輪車エンジン分野;飛行機用エンジン部品、ヘリコプター用ギアボックス等の航空分野;鉄道車両分野;軽量ペンチ、軽量ハンマー等の工具分野;競技用ヨーヨー等のスポーツ分野を挙げることができる。 The magnesium alloy / resin composite structure 106 according to the present embodiment is used in various industrial fields by taking advantage of its high bonding strength and light weight even under harsh conditions. For example, the personal computer field represented by the bottom case and liquid crystal rear case of a laptop computer; the mobile phone field such as a thin-walled housing for a mobile phone and the frame body; the camera field such as a cover and a mirror box for a digital single-lens reflex camera; a speaker Audio field such as vibration plate; Second hand of clock; Automotive field such as automobile head cover, oil pan, cylinder block, steering wheel, steering member, mission case, seat back frame, road wheel; Motorcycle engine field; Aircraft engine parts, helicopter The field of aviation such as gearboxes; the field of railway vehicles; the field of tools such as lightweight pliers and lightweight hammers; the field of sports such as yoyo for competition can be mentioned.

以上、本実施形態に係るマグネシウム合金/樹脂複合構造体106の用途について述べたが、これらは本実施形態の用途の例示であり、上記以外の様々な用途に用いることもできる。 The uses of the magnesium alloy / resin composite structure 106 according to the present embodiment have been described above, but these are examples of the uses of the present embodiment and can be used for various uses other than the above.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を含む。
以下、実施形態の例を付記する。
1. マグネシウム合金部材を酸性水溶液によって化学エッチングする化学エッチング工程と、
化学エッチングされた前記マグネシウム合金部材を化成処理する化成処理工程と、
を含む表面粗化マグネシウム合金部材の製造方法であって、
前記化成処理工程では、化学エッチングされた前記マグネシウム合金部材を、25℃で測定したpH値が3.0以上3.7未満の範囲にある過マンガン酸塩水溶液で処理することを特徴とする表面粗化マグネシウム合金部材の製造方法。
2. 前記化学エッチング工程における前記酸性水溶液が有機酸を含む1.に記載の表面粗化マグネシウム合金部材の製造方法。
3. 前記過マンガン酸塩水溶液が、pH緩衝作用を有する酸性水溶液中に過マンガン酸塩が溶解している水溶液である1.または2.に記載の表面粗化マグネシウム合金部材の製造方法。
4. 前記pH緩衝作用を有する酸性水溶液が、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、およびリン酸塩から選ばれる少なくとも1種類を含有する1.乃至3.のいずれかに記載の表面粗化マグネシウム合金部材の製造方法。
Although the embodiments of the present invention have been described above, these are examples of the present invention and include various configurations other than the above.
Hereinafter, an example of the embodiment will be added.
1. 1. A chemical etching process that chemically etches magnesium alloy members with an acidic aqueous solution,
A chemical conversion treatment step for chemical conversion of the chemically etched magnesium alloy member, and
A method for manufacturing a surface-roughened magnesium alloy member containing
The surface of the chemical conversion treatment step is characterized in that the chemically etched magnesium alloy member is treated with an aqueous permanganate solution having a pH value measured at 25 ° C. in the range of 3.0 or more and less than 3.7. A method for manufacturing a roughened magnesium alloy member.
2. 2. 1. The acidic aqueous solution in the chemical etching step contains an organic acid. A method for manufacturing a surface-roughened magnesium alloy member according to.
3. 3. The permanganate aqueous solution is an aqueous solution in which permanganate is dissolved in an acidic aqueous solution having a pH buffering action. Or 2. A method for manufacturing a surface-roughened magnesium alloy member according to.
4. 1. The acidic aqueous solution having a pH buffering action contains at least one selected from acetate, phthalate, citrate, succinate, lactate, tartrate, borate, and phosphate. To 3. The method for manufacturing a surface-roughened magnesium alloy member according to any one of the above.

以下、本実施形態を、実施例・比較例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, this embodiment will be described in detail with reference to Examples and Comparative Examples. The present embodiment is not limited to the description of these examples.

[実施例1]
(表面粗化)
マグネシウム合金板AZ31B(厚み:2.0mm)を、長さ45mm、幅18mmに切断し、平板状マグネシウム合金板を合計500枚作製した。次いで、このマグネシウム合金板を1枚ずつ以下の処理を行うことによって、中間処理体Cを調製した。
まず、マグネシウム合金板を、60℃の市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス株式会社製)」の7.5質量%水溶液に5分浸漬した後、水洗した。次いで、40℃で、かつ、クエン酸濃度が1質量%のクエン酸水溶液槽に4分間浸漬させて化学エッチングした後、室温で2分間超音波水洗を行った。その後、スマット除去を目的として、65℃の炭酸ナトリウム/炭酸水素ナトリウム混合水溶液(炭酸ナトリウムの濃度;1質量%、炭酸水素ナトリウムの濃度;1質量%、pH;9.8)に5分間浸漬した。次いで、65℃の15質量%水酸化ナトリウム水溶液に5分間浸漬したのちに水洗を行い、中間処理体Cを得た。ここで、脱脂槽中の脱脂剤水溶液、スマット除去槽中の炭酸ナトリウム/炭酸水素ナトリウム混合水溶液、スマット除去槽中の水酸化ナトリウム水溶液、クエン酸水溶液槽中のクエン酸水溶液および水洗槽中の水は、マグネシウム合金版の10枚分の処理が終わる毎に、新しく薬液調製したものを用いるようにした。
1枚目、10枚目、30枚目、100枚目、200枚目、300枚目、400枚目および最後の500枚目の中間処理体Cをサンプリングし、これらの表面粗さを、東京精密社製の表面粗さ測定装置「サーフコム1400D」で測定した。その結果、いずれの処理板についても十点平均粗さ(Rz)平均値が3μm~7μmの範囲に偏在し、また粗さ曲線要素の平均長さ(RSm)の平均値は70μm~100μmの範囲に偏在していることが確認された。この結果から化学エッチング工程においては、ほぼ等しい酸条件下で微細凹凸構造が形成されていることが推定される。
[Example 1]
(Surface roughening)
The magnesium alloy plate AZ31B (thickness: 2.0 mm) was cut into a length of 45 mm and a width of 18 mm to prepare a total of 500 flat magnesium alloy plates. Next, the intermediate treated body C was prepared by performing the following treatments on the magnesium alloy plates one by one.
First, the magnesium alloy plate was immersed in a 7.5 mass% aqueous solution of a commercially available degreasing agent for magnesium alloy "Cleaner 160 (manufactured by Meltex Inc.)" at 60 ° C. for 5 minutes, and then washed with water. Then, it was immersed in a citric acid aqueous solution tank having a citric acid concentration of 1% by mass at 40 ° C. for 4 minutes for chemical etching, and then ultrasonically washed with water at room temperature for 2 minutes. Then, for the purpose of removing smut, it was immersed in a mixed aqueous solution of sodium carbonate / sodium hydrogencarbonate at 65 ° C. (sodium carbonate concentration; 1% by mass, sodium hydrogencarbonate concentration; 1% by mass, pH; 9.8) for 5 minutes. .. Then, it was immersed in a 15 mass% sodium hydroxide aqueous solution at 65 ° C. for 5 minutes and then washed with water to obtain an intermediate treatment body C. Here, the degreasing agent aqueous solution in the degreasing tank, the sodium carbonate / sodium hydrogen carbonate mixed aqueous solution in the smut removing tank, the sodium hydroxide aqueous solution in the smut removing tank, the citric acid aqueous solution in the citric acid aqueous solution tank, and the water in the washing tank. Every time the treatment for 10 sheets of the magnesium alloy plate was completed, a newly prepared chemical solution was used.
The intermediate processed bodies C of the 1st, 10th, 30th, 100th, 200th, 300th, 400th and final 500th sheets were sampled, and their surface roughness was measured in Tokyo. The measurement was performed with a surface roughness measuring device "Surfcom 1400D" manufactured by Seimitsu Co., Ltd. As a result, the ten-point average roughness (Rz) average value is unevenly distributed in the range of 3 μm to 7 μm for all the treated plates, and the average value of the average length (RSm) of the roughness curve elements is in the range of 70 μm to 100 μm. It was confirmed that it was unevenly distributed in. From this result, it is presumed that in the chemical etching step, a fine uneven structure is formed under substantially the same acid conditions.

次いで、上記化学エッチングとスマット除去操作を終えた、1枚の中間処理体Cを、25℃で測定したpHが3.3の過マンガン酸カリウム水溶液中に、35℃で1分間浸漬後、室温で5分間の超音波水洗を行い、次いで、温風乾燥機中で乾燥することによって表面粗化体A1を得た。ここで、25℃で測定したpH3.3の過マンガン酸カリウム水溶液は、0.5質量%の酢酸ソーダ・3水和物水溶液に酢酸を添加してpHを3.3(25℃測定)に緩衝させた酢酸/酢酸ソーダ水溶液中に、2質量%分の過マンガン酸カリウムを溶解することによって調製した。 Next, one intermediate treatment body C after completing the above chemical etching and smut removal operations was immersed in an aqueous solution of potassium permanganate having a pH of 3.3 measured at 25 ° C. at 35 ° C. for 1 minute, and then at room temperature. The surface-roughened product A1 was obtained by ultrasonically washing with water for 5 minutes and then drying in a warm air dryer. Here, the pH of the potassium permanganate aqueous solution of pH 3.3 measured at 25 ° C. was adjusted to 3.3 (measured at 25 ° C.) by adding acetic acid to a 0.5 mass% sodium acetate trihydrate aqueous solution. It was prepared by dissolving 2% by mass of potassium permanganate in a buffered acetic acid / sodium acetate aqueous solution.

この一連のサイクル操作を、中間処理体Cを新しいものに変更して350回繰り返し、途中の100枚目の表面粗化体A100と200枚目の表面粗化体A200と350枚目の表面粗化体A350を確保した。なお表面粗化体350を調製後の過マンガン酸カリウム水溶液のpHは3.6であった。 This series of cycle operations is repeated 350 times by changing the intermediate treatment body C to a new one, and the 100th surface roughening body A100 and the 200th surface roughening body A200 and the 350th surface roughening body in the middle are repeated. The embodiment A350 was secured. The pH of the potassium permanganate aqueous solution after preparing the surface roughened body 350 was 3.6.

表面粗化体A1、表面粗化体A100、表面粗化体A200および表面粗化体A350について、粗化面から5点を任意に選定し、色調を目視観察した。その結果、すべての粗化体について、5点の色調は鮮やかな黄色であった。 Five points were arbitrarily selected from the roughened surfaces of the surface roughened body A1, the surface roughened body A100, the surface roughened body A200, and the surface roughened body A350, and the color tone was visually observed. As a result, the color tone of 5 points was bright yellow for all the roughened bodies.

(射出成形)
得られた表面粗化体A1、表面粗化体A100、表面粗化体A200および表面粗化体350を、日本製鋼所社製のJ55AD-30Hに装着された小型ダンベル金属インサート金型102内にそれぞれ設置した。次いで、金型102内に樹脂組成物(P)であるポリプラスチックス社製PBT樹脂(ジュラネックス930HL)を、シリンダー温度270℃、金型温度160℃、射出一次圧90MPa、保圧80MPaの条件にて射出成形し、マグネシウム合金/樹脂複合構造体A1、マグネシウム合金/樹脂複合構造体A100、マグネシウム合金/樹脂複合構造体A200およびマグネシウム合金/樹脂複合構造体A350をそれぞれ得た。
(injection molding)
The obtained surface roughened body A1, surface roughened body A100, surface roughened body A200, and surface roughened body 350 were placed in a small dumbbell metal insert mold 102 mounted on J55AD-30H manufactured by Japan Steel Works, Ltd. Each was installed. Next, a PBT resin (Duranex 930HL) manufactured by Polyplastics Co., Ltd., which is a resin composition (P), is placed in a mold 102 under the conditions of a cylinder temperature of 270 ° C., a mold temperature of 160 ° C., an injection primary pressure of 90 MPa, and a holding pressure of 80 MPa. A magnesium alloy / resin composite structure A1, a magnesium alloy / resin composite structure A100, a magnesium alloy / resin composite structure A200, and a magnesium alloy / resin composite structure A350 were obtained by injection molding.

引っ張り試験機「モデル1323(アイコーエンジニヤリング社製)」を使用し、引張試験機に専用の治具を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて接合強度の測定をおこなった。破断荷重(N)をマグネシウム合金/樹脂接合部分の面積で除することにより接合強度を得た。測定は5サンプルについて行い、それらの平均値を接合強度(S)とした。マグネシウム合金/樹脂複合構造体A1、マグネシウム合金/樹脂複合構造体A100、マグネシウム合金/樹脂複合構造体A200およびマグネシウム合金/樹脂複合構造体A350の接合強度SA1、SA100、SA200およびSA350は、それぞれ31MPa、31MPa、31MPaおよび31MPaであった。破壊面はいずれも樹脂母材破壊であった。 Using the tensile tester "Model 1323 (manufactured by Aiko Engineering Co., Ltd.)", attach a special jig to the tensile tester, and at room temperature (23 ° C), the chuck distance is 60 mm and the tensile speed is 10 mm / min. The joint strength was measured. The joint strength was obtained by dividing the breaking load (N) by the area of the magnesium alloy / resin joint portion. The measurement was performed on 5 samples, and the average value thereof was taken as the joint strength ( SA ). The bonding strengths SA1 , SA100 , SA200 and SA350 of the magnesium alloy / resin composite structure A1, the magnesium alloy / resin composite structure A100, the magnesium alloy / resin composite structure A200 and the magnesium alloy / resin composite structure A350 are , 31 MPa, 31 MPa, 31 MPa and 31 MPa, respectively. The fracture surface was the fracture of the resin base material.

[比較例1]
pH3.3の過マンガン酸カリウム水溶液の代わりに、25℃で測定したpHが3.7の過マンガン酸カリウム水溶液を用いた以外は実施例1と同様に、1枚の中間処理体Cを化成処理して、表面粗化体B1を得た。ここで、25℃で測定したpH3.7の過マンガン酸カリウム水溶液は、酢酸ソーダ・3水和物水溶液に酢酸を添加してpHを3.7(25℃測定値)に緩衝させた酢酸/酢酸ソーダ水溶液中に、過マンガン酸カリウムを溶解することによって調製した。ここで、25℃で測定したpH3.7の過マンガン酸カリウム水溶液における、酢酸ソーダ・3水和物の濃度は0.5質量%、酢酸の濃度は1質量%、過マンガン酸カリウムの濃度は2質量%である。なお、pH3.7の過マンガン酸カリウム水溶液は、国際公開第2008/133096号の実験例1に開示された過マンガン酸カリウム水溶液に相当する。
[Comparative Example 1]
A single intermediate treatment body C was formed in the same manner as in Example 1 except that an aqueous solution of potassium permanganate having a pH of 3.7 measured at 25 ° C. was used instead of the aqueous solution of potassium permanganate having a pH of 3.3. The treatment was carried out to obtain a surface roughened body B1. Here, the pH 3.7 aqueous potassium permanganate solution measured at 25 ° C. is acetic acid / acetic acid / trihydrate aqueous solution prepared by adding acetic acid to buffer the pH to 3.7 (measured at 25 ° C.). It was prepared by dissolving potassium permanganate in an aqueous solution of sodium acetate. Here, in the potassium permanganate aqueous solution having a pH of 3.7 measured at 25 ° C., the concentration of sodium acetate / trihydrate was 0.5% by mass, the concentration of acetic acid was 1% by mass, and the concentration of potassium permanganate was. 2% by mass. The potassium permanganate aqueous solution having a pH of 3.7 corresponds to the potassium permanganate aqueous solution disclosed in Experimental Example 1 of International Publication No. 2008/133096.

この一連のサイクル操作を100回繰り返して、途中の40回目の表面粗化体B40と100回目の表面粗化体B100を確保した。なお、表面粗化体B100調製後の過マンガン酸カリウム水溶液のpHは4.2まで上昇していた。 This series of cycle operations was repeated 100 times to secure the 40th surface roughened body B40 and the 100th surface roughened body B100 on the way. The pH of the potassium permanganate aqueous solution after preparing the surface roughened body B100 had risen to 4.2.

表面粗化体B1、表面粗化体B40および表面粗化体B100について、粗化面から5点を任意に選定して表面色調を目視観察した。その結果、表面粗化体B1については5点ともに鮮やかな黄色、表面粗化体B40については5点のうち4点が褐色、残り1点が淡褐色、表面粗化体B100については、5点すべてが暗褐色であった。 For the surface roughened body B1, the surface roughened body B40, and the surface roughened body B100, 5 points were arbitrarily selected from the roughened surfaces and the surface color tone was visually observed. As a result, all 5 points of the surface roughened body B1 were bright yellow, 4 points out of 5 points of the surface roughened body B40 were brown, the remaining 1 point was light brown, and 5 points of the surface roughened body B100. Everything was dark brown.

(射出成形)
得られた表面粗化体B1、表面粗化体B40および表面粗化体B100に、実施例1の射出成形と同様な条件下で、ポリプラスチックス社製PBT樹脂(ジュラネックス930HL)を射出成形して、マグネシウム合金/樹脂複合構造体B1、マグネシウム合金/樹脂複合構造体B40およびマグネシウム合金/樹脂複合構造体B100をそれぞれ得た。
(injection molding)
PBT resin (Duranex 930HL) manufactured by Polyplastics Co., Ltd. is injection-molded on the obtained surface roughened body B1, surface roughened body B40, and surface roughened body B100 under the same conditions as those of the injection molding of Example 1. Then, a magnesium alloy / resin composite structure B1, a magnesium alloy / resin composite structure B40, and a magnesium alloy / resin composite structure B100 were obtained, respectively.

次いで、マグネシウム合金/樹脂複合構造体B1、マグネシウム合金/樹脂複合構造体B40およびマグネシウム合金/樹脂複合構造体B100について実施例1に記載の方法と同様にして接合強度SB1、SB40およびSB100を求めた。その結果、SB1、SB40およびSB100は、それぞれ31MPa、28MPaおよび26MPaであった。 Next, for the magnesium alloy / resin composite structure B1, the magnesium alloy / resin composite structure B40, and the magnesium alloy / resin composite structure B100 , the bonding strengths SB1, SB40 , and SB100 are the same as in the method described in Example 1. Asked. As a result, SB1 , SB40 and SB100 were 31 MPa, 28 MPa and 26 MPa, respectively.

101 射出成形機
102 金型
103 表面粗化マグネシウム合金部材
104 接合部表面(表面処理領域)
105 樹脂部材
106 マグネシウム合金/樹脂複合構造体
107 ゲート/ランナー
110 表面粗化マグネシウム合金部材の表面
101 Injection molding machine 102 Mold 103 Surface roughened magnesium alloy member 104 Joint surface (surface treatment area)
105 Resin member 106 Magnesium alloy / resin composite structure 107 Gate / Runner 110 Surface of surface roughened magnesium alloy member

Claims (3)

マグネシウム合金部材を酸性水溶液によって化学エッチングする化学エッチング工程と、
化学エッチングされた前記マグネシウム合金部材を化成処理する化成処理工程と、
を含む表面粗化マグネシウム合金部材の製造方法であって、
前記化学エッチング工程における前記酸性水溶液が有機酸を含み、
前記化成処理工程では、化学エッチングされた前記マグネシウム合金部材を、25℃で測定したpH値が3.0以上3.7未満の範囲にある過マンガン酸塩水溶液で処理することを特徴とする表面粗化マグネシウム合金部材の製造方法。
A chemical etching process that chemically etches magnesium alloy members with an acidic aqueous solution,
A chemical conversion treatment step for chemical conversion of the chemically etched magnesium alloy member, and
A method for manufacturing a surface-roughened magnesium alloy member containing
The acidic aqueous solution in the chemical etching step contains an organic acid and contains
The surface of the chemical conversion treatment step is characterized in that the chemically etched magnesium alloy member is treated with an aqueous permanganate solution having a pH value measured at 25 ° C. in the range of 3.0 or more and less than 3.7. A method for manufacturing a roughened magnesium alloy member.
前記過マンガン酸塩水溶液が、pH緩衝作用を有する酸性水溶液中に過マンガン酸塩が溶解している水溶液である請求項1に記載の表面粗化マグネシウム合金部材の製造方法。 The method for producing a surface-roughened magnesium alloy member according to claim 1, wherein the permanganate aqueous solution is an aqueous solution in which permanganate is dissolved in an acidic aqueous solution having a pH buffering action. 前記pH緩衝作用を有する酸性水溶液が、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、およびリン酸塩から選ばれる少なくとも1種類を含有する請求項1または2に記載の表面粗化マグネシウム合金部材の製造方法。 Claimed that the acidic aqueous solution having a pH buffering action contains at least one selected from acetate, phthalate, citrate, succinate, lactate, tartrate, borate, and phosphate. The method for producing a surface-roughened magnesium alloy member according to 1 or 2 .
JP2017251426A 2017-12-27 2017-12-27 Manufacturing method of surface roughened magnesium alloy member Active JP7030510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017251426A JP7030510B2 (en) 2017-12-27 2017-12-27 Manufacturing method of surface roughened magnesium alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017251426A JP7030510B2 (en) 2017-12-27 2017-12-27 Manufacturing method of surface roughened magnesium alloy member

Publications (2)

Publication Number Publication Date
JP2019116666A JP2019116666A (en) 2019-07-18
JP7030510B2 true JP7030510B2 (en) 2022-03-07

Family

ID=67304083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017251426A Active JP7030510B2 (en) 2017-12-27 2017-12-27 Manufacturing method of surface roughened magnesium alloy member

Country Status (1)

Country Link
JP (1) JP7030510B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112609175B (en) * 2020-11-30 2023-09-15 黑龙江工程学院 Supercritical CO 2 Preparation method of magnesium alloy chemical conversion film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119863A (en) 1998-10-09 2000-04-25 Katsuyoshi Otsuka Low pollution surface treatment method of magnesium alloy
WO2000040777A1 (en) 1999-01-07 2000-07-13 Otsuka Kagaku Kabushiki Kaisha Surface-treating agent for magnesium-based part and method of surface treatment
JP2000328261A (en) 1999-05-12 2000-11-28 Nippon Parkerizing Co Ltd Surface treatment of magnesium alloy
JP2001123274A (en) 1999-10-25 2001-05-08 Mitsui Mining & Smelting Co Ltd High corrosion resistance surface treated magnesium alloy product and producing method therefor
JP2002012980A (en) 2000-04-27 2002-01-15 Otsuka Chem Co Ltd Method for manufacturing component made from magnesium and/or magnesium alloy
JP2003277944A (en) 2002-03-22 2003-10-02 Honda Motor Co Ltd Chemical conversion treatment composition for magnesium alloy, chemical conversion treatment method, and magnesium alloy product
WO2008069252A1 (en) 2006-12-06 2008-06-12 Taisei Plas Co., Ltd. Process for production of highly corrosion-resistant composite
WO2008133096A1 (en) 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Magnesium alloy compound material, and its manufacturing method
JP2009114504A (en) 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same
JP2010110931A (en) 2008-11-04 2010-05-20 Taisei Plas Co Ltd Metal alloy laminated material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119863A (en) 1998-10-09 2000-04-25 Katsuyoshi Otsuka Low pollution surface treatment method of magnesium alloy
WO2000040777A1 (en) 1999-01-07 2000-07-13 Otsuka Kagaku Kabushiki Kaisha Surface-treating agent for magnesium-based part and method of surface treatment
JP2000328261A (en) 1999-05-12 2000-11-28 Nippon Parkerizing Co Ltd Surface treatment of magnesium alloy
JP2001123274A (en) 1999-10-25 2001-05-08 Mitsui Mining & Smelting Co Ltd High corrosion resistance surface treated magnesium alloy product and producing method therefor
JP2002012980A (en) 2000-04-27 2002-01-15 Otsuka Chem Co Ltd Method for manufacturing component made from magnesium and/or magnesium alloy
JP2003277944A (en) 2002-03-22 2003-10-02 Honda Motor Co Ltd Chemical conversion treatment composition for magnesium alloy, chemical conversion treatment method, and magnesium alloy product
WO2008069252A1 (en) 2006-12-06 2008-06-12 Taisei Plas Co., Ltd. Process for production of highly corrosion-resistant composite
WO2008133096A1 (en) 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Magnesium alloy compound material, and its manufacturing method
JP2009114504A (en) 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same
JP2010110931A (en) 2008-11-04 2010-05-20 Taisei Plas Co Ltd Metal alloy laminated material

Also Published As

Publication number Publication date
JP2019116666A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
EP2103406B1 (en) Process for production of highly corrosion-resistant composite
US9987824B2 (en) Metal-resin composite structure and metal member
EP2817146B1 (en) Method of prepairing aluminum alloy resin composite
JP2009298144A (en) Bonded composite article of a plurality of metallic shaped bodies, and method for production thereof
JPWO2009031632A1 (en) Method for producing metal resin composite
EP2819842A1 (en) Aluminum alloy-resin composite and preparation method thereof
JP2008307842A (en) Tubular composite article and its manufacturing method
WO2015125897A1 (en) Aluminum alloy plate, joined body, and automotive member
JP2010274600A (en) Composite of metal alloy and thermosetting resin, and manufacturing method therefor
JP2016089261A (en) Aluminum alloy material, conjugate, automotive member, and manufacturing method of aluminum alloy material
JP2012157991A (en) Metal-resin composite and production process thereof
JP4452256B2 (en) Metal-resin composite and method for producing the same
JP7030510B2 (en) Manufacturing method of surface roughened magnesium alloy member
JP6869373B2 (en) Preparation method of 7XXX aluminum alloy for adhesive bonding and related products
JP2017203209A (en) Method for producing aluminum alloy material, aluminum alloy material and joined body
JP6937891B2 (en) Magnesium alloy / resin composite structure and its manufacturing method
US7935427B2 (en) Magnesium alloy part and production method thereof
WO2006080183A1 (en) Cast product having aluminum-based film and process for producing the same
JP2018140559A (en) Magnesium alloy-resin composite structure and method for production thereof
JP2016142119A (en) Arm for door checker and door checker
KR20080035851A (en) Chemical coating solutions for magnesium alloys, environmental-affinitive surface treating methods using the same, and magnesium alloy substrates thereby
JP6757628B2 (en) Method for manufacturing metal / fiber reinforced resin composite structure and metal / fiber reinforced resin composite structure
KR20200076510A (en) Surface treatment process for magnesium parts and magnesium parts treated by using the same
US11993851B2 (en) Aqueous solution for surface treatment, method for producing surface-treated alloy, and composite and method for producing the same
JP6705694B2 (en) Aluminum alloy material, aluminum alloy material with adhesive resin layer, bonded body, and method for manufacturing aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150