JP2018027565A - Substrate processing method and substrate processing device - Google Patents

Substrate processing method and substrate processing device Download PDF

Info

Publication number
JP2018027565A
JP2018027565A JP2016215253A JP2016215253A JP2018027565A JP 2018027565 A JP2018027565 A JP 2018027565A JP 2016215253 A JP2016215253 A JP 2016215253A JP 2016215253 A JP2016215253 A JP 2016215253A JP 2018027565 A JP2018027565 A JP 2018027565A
Authority
JP
Japan
Prior art keywords
substrate
processing
laser
crystal substrate
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016215253A
Other languages
Japanese (ja)
Other versions
JP6851041B2 (en
Inventor
順一 池野
Junichi Ikeno
順一 池野
山田 洋平
Yohei Yamada
洋平 山田
鈴木 秀樹
Hideki Suzuki
秀樹 鈴木
利香 松尾
Rika Matsuo
利香 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd, Saitama University NUC filed Critical Shin Etsu Polymer Co Ltd
Publication of JP2018027565A publication Critical patent/JP2018027565A/en
Application granted granted Critical
Publication of JP6851041B2 publication Critical patent/JP6851041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate processing method and a substrate processing device which allow a crystal substrate to be processed to be processed into a substrate containing a processing layer for obtaining a hollowed crystal substrate without crack.SOLUTION: The substrate processing method performs a first step for arranging laser light condensing means 12 on a surface 20u to be irradiated of a crystal substrate 20a to be processed, in a non-contact manner; and performs a second step for changing a light-condensing position Bf of laser light B in a circumferential direction and in a thickness direction of a part 20b to be hollowed of the crystal substrate 20a to be processed while condensing the laser light B and forming a processing layer 20b with deteriorated rupture strength to make a substrate 20C containing a processing layer. In the second step, output of laser light entering the laser light condensing means 12 is controlled so that a processing trace 22c generated in the light condensing position Bf of the laser light B extends along a crystal orientation of the crystal substrate 20a to be processed and does not extend along a different crystal orientation of the crystal substrate 20a to be processed, inside the crystal substrate 20a to be processed and in the vicinity of at least one surface of the crystal substrate to be processed.SELECTED DRAWING: Figure 2

Description

本発明は、加工対象結晶基板の表面からレーザ光を照射して、加工対象結晶基板内部にレーザ光を集光することで加工層を形成する基板加工方法および基板加工装置に関する。   The present invention relates to a substrate processing method and a substrate processing apparatus for forming a processing layer by irradiating laser light from the surface of a processing target crystal substrate and condensing the laser light inside the processing target crystal substrate.

従来、単結晶のシリコン(Si)ウエハに代表される半導体ウエハを製造する場合には、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウエハ形にスライスして半導体ウエハを製造するようにしている(例えば特許文献1参照)。   Conventionally, when manufacturing a semiconductor wafer typified by a single crystal silicon (Si) wafer, a cylindrical ingot solidified from a silicon melt melted in a quartz crucible is cut into blocks of an appropriate length. Then, the peripheral edge is ground to a target diameter, and then the block-shaped ingot is sliced into a wafer shape with a wire saw to manufacture a semiconductor wafer (see, for example, Patent Document 1).

このようにして製造された半導体ウエハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。   The semiconductor wafer thus manufactured is subjected to various processes such as formation of a circuit pattern in the previous process in order and used for the subsequent process, and the back surface is back-ground processed in the subsequent process to achieve thinning. Accordingly, the thickness is adjusted to about 750 μm to 100 μm or less, for example, about 75 μm or 50 μm.

従来における半導体ウエハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0.1mm以下の薄い半導体ウエハを製造することが非常に困難であり、製品率も向上しない。   A conventional semiconductor wafer is manufactured as described above, and an ingot is cut by a wire saw, and a cutting allowance larger than the thickness of the wire saw is required for cutting, so a thin semiconductor wafer having a thickness of 0.1 mm or less It is very difficult to manufacture and the product rate is not improved.

特開2005−297156号公報JP 2005-297156 A

ところで、単結晶基板の寸法が使用予定の寸法よりも大きい場合、この単結晶基板を良好な形状で小さい寸法にして再利用することができれば効率的である。また、このことは、単結晶基板に限らず、他の種類の基板であっても該当することが多々ある。   By the way, when the size of the single crystal substrate is larger than the size to be used, it is efficient if the single crystal substrate can be reused with a good shape and a small size. In addition, this is not limited to a single crystal substrate but often applies to other types of substrates.

一方、レーザ光をウエハ内部に集光してウエハ内部に改質領域を形成してウエハをダイシングする加工方法が提案されている。一般的に、この加工方法では内部集光したレーザ光による熱吸収により改質層がレーザ光照射側に延びることを利用している。この方法はダイシングする際の加工時間短縮には効果的であるが、改質層の亀裂の進展により断面形状の悪化や、加工対象結晶基板の予期しない結晶方位に沿って亀裂が進展してしまうことが懸念される。そのためウエハをくり抜くときに、その断面形状の悪化や、加工精度の低下及びウエハ表面の欠けなどの不具合が生じることが懸念される。   On the other hand, a processing method for dicing the wafer by condensing the laser beam inside the wafer to form a modified region inside the wafer has been proposed. In general, this processing method utilizes the fact that the modified layer extends to the laser beam irradiation side due to heat absorption by the internally focused laser beam. This method is effective for shortening the processing time when dicing, but the crack progresses along the unexpected crystal orientation of the crystal substrate to be processed due to deterioration of the cross-sectional shape due to the progress of cracks in the modified layer. There is concern. Therefore, when the wafer is cut out, there is a concern that problems such as deterioration of the cross-sectional shape, a reduction in processing accuracy, and chipping of the wafer surface may occur.

本発明は、上記課題に鑑み、加工対象結晶基板を、欠けのないくり抜き結晶基板を得るための加工層含有基板に加工する基板加工方法および基板加工装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a substrate processing method and a substrate processing apparatus for processing a crystal substrate to be processed into a processed layer-containing substrate for obtaining a cut-out crystal substrate without chipping.

上記課題を解決するための本発明の一態様によれば、レーザ光を集光するレーザ集光手段を、加工対象結晶基板の被照射面上に非接触に配置する第1工程と、レーザ集光手段により加工対象結晶基板内部にレーザ光を集光しつつ、レーザ光の集光位置を加工対象結晶基板のくり抜き対象部の周囲方向および厚み方向に変化させ、破断強度が低下した加工層をくり抜き対象部の外周側に形成することで加工層含有基板とする第2工程と、を備える。第2工程では、加工対象結晶基板内部および少なくとも一方の加工対象結晶基板面近傍で、レーザ光の集光位置において生じる加工痕が、加工対象結晶基板の結晶方位に沿って伸張しかつ加工対象結晶基板の異なる結晶方位に沿って伸長しないようにレーザ集光手段に入射するレーザ光の出力を制御する基板加工方法が提供される。   According to one aspect of the present invention for solving the above-described problem, the first step of disposing laser condensing means for condensing laser light in a non-contact manner on the irradiated surface of the crystal substrate to be processed, and the laser concentration While condensing the laser light inside the crystal substrate to be processed by optical means, the laser light condensing position is changed in the circumferential direction and the thickness direction of the portion to be cut out of the crystal substrate to be processed, and the processed layer having a reduced breaking strength is formed. And a second step of forming the processed layer-containing substrate by forming on the outer peripheral side of the hollowed out portion. In the second step, a processing mark generated at a laser beam condensing position in the processing target crystal substrate and in the vicinity of at least one processing target crystal substrate surface extends along the crystal orientation of the processing target crystal substrate and is processed. There is provided a substrate processing method for controlling the output of laser light incident on a laser condensing means so as not to extend along different crystal orientations of the substrate.

また、本発明の別の一態様によれば、載置された加工対象結晶基板を保持して回転する回転ステージと、回転ステージ上に保持された前記加工対象結晶基板に向けてレーザ光を集光するレーザ集光手段と、回転ステージと前記レーザ集光手段との距離を変える照射軸方向距離変更手段と、レーザ集光手段に入射するレーザ光の出力を前記距離に応じて変化させるレーザ出力制御手段と、を備える。レーザ出力制御手段は、加工対象結晶基板内部および少なくとも一方の加工対象結晶基板面近傍で、レーザ光集光位置において生じる加工痕が加工対象結晶基板の結晶方位に沿って伸張しかつ加工対象結晶基板の異なる結晶方位に沿って伸長しないように制御する基板加工装置が提供される。   According to another aspect of the present invention, a rotating stage that holds and rotates a placed processing target crystal substrate, and a laser beam is collected toward the processing target crystal substrate that is held on the rotating stage. Laser condensing means for irradiating, irradiation axis direction distance changing means for changing the distance between the rotating stage and the laser condensing means, and laser output for changing the output of the laser light incident on the laser condensing means according to the distance Control means. The laser output control means is configured such that a processing mark generated at a laser beam condensing position extends along a crystal orientation of the processing target crystal substrate in the processing target crystal substrate and in the vicinity of at least one processing target crystal substrate surface. There is provided a substrate processing apparatus for controlling so as not to extend along different crystal orientations.

本発明によれば、加工対象結晶基板を、欠けのないくり抜き結晶基板を得るための加工層含有基板に加工する基板加工方法および基板加工装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the board | substrate processing method and board | substrate processing apparatus which process a process target crystal board | substrate into the process layer containing board | substrate for obtaining the hollow crystal board without a chip | tip can be provided.

第1一実施形態に係る基板加工装置を説明する模式的な側面図である。It is a typical side view explaining the substrate processing apparatus concerning a 1st embodiment. (a)から(c)は、それぞれ、第1実施形態に係る基板加工方法により加工層含有基板を製造するプロセスを説明する模式的な側面図である。(A) to (c) is a schematic side view for explaining a process for manufacturing a processed layer-containing substrate by the substrate processing method according to the first embodiment. (a)および(b)は、それぞれ、第1実施形態に係る基板加工方法により加工層が形成されていくことを示す模式的な側面断面図である。(A) And (b) is typical sectional side view which shows that the process layer is formed by the board | substrate processing method which concerns on 1st Embodiment, respectively. 第1実施形態で、加工層含有基板からくり抜き対象部をくり抜くことを説明する模式的な斜視図である。In a 1st embodiment, it is a typical perspective view explaining cutting out a hollow object part from a processing layer content substrate. 第1実施形態に係る基板加工装置で、収差補正の調整機能を説明するための模式的な側面図である。FIG. 5 is a schematic side view for explaining an aberration correction adjustment function in the substrate processing apparatus according to the first embodiment. 第1実施形態に係る基板加工方法で形成された加工層に加工痕が配列されていることを説明する模式的な説明図である。It is typical explanatory drawing explaining that the processing trace is arranged in the processing layer formed with the substrate processing method concerning a 1st embodiment. 実験例1の実施例1で、割断面を電子顕微鏡で撮像した撮像図である。In Example 1 of Experimental example 1, it is the imaging figure which imaged the fractured surface with the electron microscope. 実験例1で、レーザ光の集光点を徐々に被照射面側に移動させることで集光点の基板深さ方向位置を上げていくことを説明する模式図である。It is a schematic diagram explaining raising the substrate depth direction position of a condensing point by moving the condensing point of a laser beam to the to-be-irradiated surface side gradually in Experimental example 1. FIG. 実験例1で、被照射面を電子顕微鏡で撮像した撮像図である。It is the imaging example which imaged the to-be-irradiated surface with the electron microscope in Experimental example 1. FIG. 図9の部分拡大図である。FIG. 10 is a partially enlarged view of FIG. 9. 実験例2の実施例2で、割断面を電子顕微鏡で撮像した撮像図である。In Example 2 of Experimental example 2, it is the image pick-up figure which imaged the fractured surface with the electron microscope. 実験例2の実施例2で、割断面を電子顕微鏡で撮像した撮像図である。In Example 2 of Experimental example 2, it is the image pick-up figure which imaged the fractured surface with the electron microscope. 実験例2の実施例2で、割断面を電子顕微鏡で撮像した撮像図である。In Example 2 of Experimental example 2, it is the image pick-up figure which imaged the fractured surface with the electron microscope. 第2実施形態に係る基板加工方法、および、実験例3により製造した加工層含有基板を示す模式的な側面断面図である。It is a typical side surface sectional view showing the substrate processing method concerning a 2nd embodiment, and the processing layer containing board manufactured by example 3 of an experiment.

以下、添付図面を参照して、本発明の実施の形態について説明する。以下の説明では、すでに説明したものと同一または類似の構成要素には同一または類似の符号を付し、その詳細な説明を適宜省略している。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための例示であって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものではない。この発明の実施の形態は、要旨を逸脱しない範囲内で種々変更して実施できる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In the following description, the same or similar components as those already described are denoted by the same or similar reference numerals, and detailed description thereof is omitted as appropriate. The following embodiments are exemplifications for embodying the technical idea of the present invention, and the embodiments of the present invention are described below in terms of the material, shape, structure, arrangement, etc. of the components. It is not something specific. The embodiments of the present invention can be implemented with various modifications without departing from the scope of the invention.

[第1実施形態]
まず、第1実施形態を説明する。図1は、本実施形態に係る基板加工装置を説明する模式的な側面図である。図2で(a)から(c)は、それぞれ、本実施形態に係る基板加工方法により加工層含有基板を製造するプロセスを説明する模式的な側面図である。図3で(a)および(b)は、それぞれ、本実施形態に係る基板加工方法により加工層が形成されていくことを示す模式的な側面断面図である。図4は、本実施形態で、加工層含有基板から単結晶基板をくり抜くことを説明する模式的な斜視図である。図5は、本実施形態に係る基板加工装置で、収差補正の調整機能を説明するための模式的な側面図である。図6は、本実施形態に係る基板加工方法で形成された加工層に加工痕が配列されていることを説明する模式的な説明図である。
[First Embodiment]
First, the first embodiment will be described. FIG. 1 is a schematic side view illustrating a substrate processing apparatus according to the present embodiment. 2A to 2C are schematic side views illustrating a process for manufacturing a processed layer-containing substrate by the substrate processing method according to this embodiment. 3A and 3B are schematic side cross-sectional views showing that a processed layer is formed by the substrate processing method according to the present embodiment, respectively. FIG. 4 is a schematic perspective view for explaining the hollowing out of the single crystal substrate from the processed layer-containing substrate in the present embodiment. FIG. 5 is a schematic side view for explaining the aberration correction adjustment function in the substrate processing apparatus according to the present embodiment. FIG. 6 is a schematic explanatory diagram for explaining that the processing marks are arranged in the processing layer formed by the substrate processing method according to the present embodiment.

(基板加工装置)
図1、図2に示すように、本実施形態に係る基板加工装置10は、載置された加工対象結晶基板20aを保持して回転する回転ステージ11と、回転ステージ11のステージ面Su上に保持された加工対象結晶基板20aに向けてレーザ光Bを集光するレーザ集光手段12(例えば集光器)と、回転ステージ11とレーザ集光手段12との距離Lを変える照射軸方向距離変更手段(図示せず)と、この距離Lに応じてレーザ集光手段12に入射するレーザ光Bの出力を変化させるレーザ出力制御手段14とを備える。更に基板加工装置10は、回転ステージ11の回転中心軸Csとレーザ集光手段12によるレーザ光Bの加工対象結晶基板20aへの照射中心軸Cbとの距離rを変える半径方向距離変更手段(図示せず)を備える。
(Substrate processing equipment)
As shown in FIGS. 1 and 2, the substrate processing apparatus 10 according to this embodiment includes a rotary stage 11 that holds and rotates a processing target crystal substrate 20 a, and a stage surface Su of the rotary stage 11. Irradiation axis direction distance that changes the distance L between the laser condensing unit 12 (for example, a condensing device) that condenses the laser beam B toward the held crystal substrate 20a to be processed and the rotary stage 11 and the laser condensing unit 12. A changing means (not shown) and a laser output control means 14 for changing the output of the laser beam B incident on the laser condensing means 12 according to the distance L are provided. Further, the substrate processing apparatus 10 has a radial distance changing means (a figure for changing the distance r between the rotation center axis Cs of the rotary stage 11 and the irradiation center axis Cb of the laser beam B to the processing target crystal substrate 20a by the laser focusing means 12). Not shown).

照射軸方向距離変更手段としては、レーザ集光手段12を回転ステージ11に対して遠近方向に移動させる機構であってもよいし、回転ステージ11をレーザ集光手段12に対して遠近方向に移動させる機構(例えば、XステージあるいはXYステージ)であってもよい。   The irradiation axis direction distance changing means may be a mechanism for moving the laser condensing means 12 in the perspective direction relative to the rotary stage 11, or moving the rotary stage 11 in the perspective direction relative to the laser condensing means 12. A mechanism (for example, an X stage or an XY stage) may be used.

半径方向距離変更手段としては、レーザ集光手段12をステージ面Suに平行な一方向(例えば図1、図2のX方向)に移動させる移動機構であってもよいし、回転ステージ11をステージ面Suに平行な一方向(例えば図1、図2のX方向)に移動させる移動機構であってもよい。   The radial distance changing means may be a moving mechanism that moves the laser condensing means 12 in one direction parallel to the stage surface Su (for example, the X direction in FIGS. 1 and 2). It may be a moving mechanism that moves in one direction parallel to the surface Su (for example, the X direction in FIGS. 1 and 2).

レーザ出力制御手段14は、距離Lに応じてレーザ発振装置Jの出力を制御する制御信号を送信している。このレーザ出力制御手段14は、少なくとも一方の加工対象結晶基板面近傍(表面近傍(上面近傍)または裏面近傍(下面近傍))で、レーザ光の集光位置において生じる加工痕22cが、加工対象結晶基板20aの結晶方位に沿って伸張しかつ加工対象結晶基板20aの異なる結晶方位に沿って伸長しないようにレーザ集光手段12に入射するレーザ光Bの出力を制御する。   The laser output control means 14 transmits a control signal for controlling the output of the laser oscillation device J according to the distance L. This laser output control means 14 is such that a processing mark 22c generated near the surface of the processing target crystal substrate (near the surface (near the top surface) or near the back surface (near the bottom surface)) at the laser beam condensing position is The output of the laser beam B incident on the laser condensing means 12 is controlled so that it extends along the crystal orientation of the substrate 20a and does not extend along different crystal orientations of the processing target crystal substrate 20a.

ここで、加工対象結晶基板の結晶方位と異なる結晶方位に沿って加工痕が伸張するとは、例えば結晶方位[100]の単結晶シリコンウエハを基板材料とした場合、結晶方位[100]に沿って加工痕を基板厚さ方向に形成する必要があるが、単結晶シリコンではより結合力の弱い[111]および[110]方位に劈開が起こりやすく、加工痕がこれらの結晶方位に沿って進展することをいう。このことによって、くり抜き断面が不均一になったり、欠けや割れなどが生じたりする。   Here, the processing trace extends along a crystal orientation different from the crystal orientation of the crystal substrate to be processed. For example, when a single crystal silicon wafer having a crystal orientation [100] is used as a substrate material, the processing trace extends along the crystal orientation [100]. Although it is necessary to form processing traces in the substrate thickness direction, in single crystal silicon, cleavage is likely to occur in the [111] and [110] orientations, which have a weaker bonding force, and the processing traces develop along these crystal orientations. That means. As a result, the cut-out cross-section becomes non-uniform, or chipping or cracking occurs.

また、本実施形態では、レーザ出力制御手段14は、レーザ光Bの集光位置Bfが加工対象結晶基板面に近いほどレーザ発振装置Jの出力を増大させることでレーザ集光手段12に入射するレーザ光Bの出力が増大するように制御する。本実施形態の基板加工装置10は、このような出力増大の制御を行う加工対象結晶基板面近傍をレーザ光Bの被照射面20u(表面)近傍としており、被照射面20uとは反対側の面、すなわち回転ステージ側の面(裏面20v)近傍ではレーザ出力制御手段14はこのような制御はしない。なお、裏面20v近傍であっても、切り替えスイッチなどによりレーザ出力制御手段14でこのような制御が可能にされた装置構成にされていてもよい。   In the present embodiment, the laser output control means 14 is incident on the laser condensing means 12 by increasing the output of the laser oscillation device J as the condensing position Bf of the laser light B is closer to the processing target crystal substrate surface. Control is performed so that the output of the laser beam B increases. In the substrate processing apparatus 10 of this embodiment, the vicinity of the processing target crystal substrate surface that controls the increase in output is set as the vicinity of the irradiated surface 20u (front surface) of the laser beam B, which is opposite to the irradiated surface 20u. The laser output control means 14 does not perform such control in the vicinity of the surface, that is, the surface on the rotary stage side (back surface 20v). Even in the vicinity of the back surface 20v, the apparatus configuration may be such that such control is possible by the laser output control means 14 using a changeover switch or the like.

レーザ集光手段12は、本実施形態では、図5、図6に示すように、集光レンズ15を備えており、加工対象結晶基板20aの屈折率に起因する収差を補正する機能、すなわち収差補正環としての機能を有している。具体的には、集光レンズ15は、空気中で集光した際に、集光レンズ15の外周部Eに到達したレーザ光が集光レンズ15の中央部Mに到達したレーザ光よりも集光レンズ側で集光するように補正する構成になっている。つまり、集光した際、集光レンズ15の外周部Eに到達したレーザ光の集光点EPが、集光レンズ15の中央部Mに到達したレーザ光の集光点MPに比べ、集光レンズ15に近い位置となるように補正する構成になっている。   In this embodiment, the laser condensing unit 12 includes a condensing lens 15 as shown in FIGS. 5 and 6, and a function of correcting aberration caused by the refractive index of the crystal substrate 20a to be processed, that is, aberration. It functions as a correction ring. Specifically, the condensing lens 15 collects laser light that has reached the outer peripheral portion E of the condensing lens 15 more than the laser light that has reached the central portion M of the condensing lens 15 when condensing in the air. The correction is made so that light is condensed on the optical lens side. That is, when the light is condensed, the condensing point EP of the laser light reaching the outer peripheral portion E of the condensing lens 15 is more concentrated than the condensing point MP of the laser light reaching the central portion M of the condensing lens 15. The correction is made so that the position is close to the lens 15.

集光レンズ15は、空気中で集光する第1レンズ16と、この第1レンズ16と加工対象結晶基板20aとの間に配置される第2レンズ18と、で構成される。本実施形態では、第1レンズ16および第2レンズ18は、何れもレーザ光を円錐状に集光できるレンズとされている。そして、第1レンズ16と第2レンズ18との間隔調整により、集光点EPと集光点MPとの長さが調整できるようになっており、集光レンズ15は補正環付きレンズとしての機能を有している。   The condensing lens 15 includes a first lens 16 that condenses in the air, and a second lens 18 that is disposed between the first lens 16 and the processing target crystal substrate 20a. In the present embodiment, both the first lens 16 and the second lens 18 are lenses that can condense laser light in a conical shape. The length of the condensing point EP and the condensing point MP can be adjusted by adjusting the distance between the first lens 16 and the second lens 18, and the condensing lens 15 is a lens with a correction ring. It has a function.

第1レンズ16としては、球面または非球面の単レンズのほか、各種の収差補正や作動距離を確保するために組レンズを用いることが可能であり、NAが0.3〜0.85であることが好ましい。第2レンズ18としては、第1レンズ16よりも小さなNAのレンズで、例えば曲率半径が3〜5mm程度の凸ガラスレンズが、簡便に使用する観点で好ましい。   As the first lens 16, in addition to a spherical or aspherical single lens, a combination lens can be used in order to secure various aberration corrections and working distances, and the NA is 0.3 to 0.85. It is preferable. As the second lens 18, a lens having an NA smaller than that of the first lens 16, for example, a convex glass lens having a curvature radius of about 3 to 5 mm is preferable from the viewpoint of easy use.

なお、第2レンズ18に代えて、レーザ光Bの収差増強材(例えば収差増強ガラス板)を配置することも可能である。   Instead of the second lens 18, an aberration enhancing material (for example, an aberration enhancing glass plate) of the laser beam B can be arranged.

(基板加工方法)
以下、加工対象結晶基板20aが単結晶基板である例を挙げ、基板加工装置10を用いて本実施形態に係る基板加工方法を行うことを効果も含めて説明する。
(Substrate processing method)
Hereinafter, an example in which the processing target crystal substrate 20a is a single crystal substrate will be described, and the substrate processing method according to the present embodiment using the substrate processing apparatus 10 will be described including effects.

本実施形態では、レーザ集光手段12を、加工対象単結晶基板20amの被照射面20u上に非接触に配置する第1工程を行う。そして、レーザ集光手段12により加工対象単結晶基板20amの内部にレーザ光Bを集光しつつ、レーザ光Bの集光位置Bfを加工対象単結晶基板20amのくり抜き対象部20bの厚み方向(図1、図2のZ方向)に変化させ、破断強度が低下した加工層22をくり抜き対象部20bの外周側に形成することで加工層含有基板20cとする第2工程を行う。この第2工程では、加工対象単結晶基板内部および少なくとも一方の加工対象単結晶基板面近傍で、レーザ光Bの集光位置において生じる加工痕22cが、加工対象単結晶基板20amの結晶方位に沿って伸張しかつ加工対象単結晶基板20amの異なる結晶方位に沿って伸長しないようにレーザ集光手段12に入射するレーザ光Bの出力を制御する。   In this embodiment, the 1st process of arrange | positioning the laser condensing means 12 non-contactingly on the to-be-irradiated surface 20u of the process target single crystal substrate 20am is performed. Then, while condensing the laser beam B inside the processing target single crystal substrate 20am by the laser focusing means 12, the condensing position Bf of the laser beam B is changed in the thickness direction of the cut target portion 20b of the processing target single crystal substrate 20am ( The second step of forming the processed layer-containing substrate 20c is performed by forming the processed layer 22 having a reduced breaking strength on the outer peripheral side of the cutout target portion 20b. In the second step, the processing trace 22c generated at the condensing position of the laser beam B in the processing target single crystal substrate and in the vicinity of at least one processing target single crystal substrate surface is along the crystal orientation of the processing target single crystal substrate 20am. The output of the laser beam B incident on the laser condensing means 12 is controlled so as to extend and extend along different crystal orientations of the processing target single crystal substrate 20am.

以下、第2工程で加工層22を形成する手順を詳細に説明する。レーザ光Bを加工対象単結晶基板20amに照射する際、被照射面20uとは反対側の面(裏面20v)側から照射を開始できるように、回転ステージ11上に配置した加工対象単結晶基板20amにおける集光位置BfのZ軸方向位置を決定する。   Hereinafter, the procedure for forming the processed layer 22 in the second step will be described in detail. When irradiating the processing target single crystal substrate 20am with the laser beam B, the processing target single crystal substrate arranged on the rotary stage 11 so that irradiation can be started from the surface (back surface 20v) opposite to the irradiated surface 20u. The Z-axis direction position of the condensing position Bf at 20 am is determined.

そして、まず回転ステージ11を少なくとも一回転させつつ、同心円に沿ってレーザ光Bを照射する。その後、基板加工装置10のZ軸方向に集光位置Bfを移動してレーザ光Bを同様にて同心円に沿って照射する。このときZ軸方向への集光位置Bfの移動が、加工対象単結晶基板20amの厚さ方向と同方向になっているので、加工層22を、被照射面20uに直交する短円筒状に形成することができる。   First, the laser beam B is irradiated along the concentric circle while rotating the rotary stage 11 at least once. Thereafter, the condensing position Bf is moved in the Z-axis direction of the substrate processing apparatus 10 and the laser beam B is similarly irradiated along the concentric circles. At this time, since the movement of the condensing position Bf in the Z-axis direction is the same as the thickness direction of the single crystal substrate 20am to be processed, the processing layer 22 is formed in a short cylindrical shape orthogonal to the irradiated surface 20u. Can be formed.

この一連の動作を加工対象単結晶基板20amの被照射面20uの近傍にまで行うことにより、加工層22を完成させることができる。集光位置Bfのこの移動を行うには、レーザ集光手段12あるいは回転ステージ11の少なくとも一方を移動すればよい。   By performing this series of operations up to the vicinity of the irradiated surface 20u of the single crystal substrate 20am to be processed, the processed layer 22 can be completed. In order to perform this movement of the condensing position Bf, it is only necessary to move at least one of the laser condensing means 12 or the rotary stage 11.

加工対象単結晶基板20amの裏面20v(底面)側への最初の集光位置Bfは、レーザ光Bの照射により形成される加工層22が加工対象単結晶基板20amの裏面20vに亀裂やアブレーションなどによる無用なダメージ(特にくり抜き対象部20bへのダメージ)を与えない所定範囲内に設定する。   The first condensing position Bf on the back surface 20v (bottom surface) side of the processing target single crystal substrate 20am is such that the processing layer 22 formed by irradiation with the laser beam B is cracked or ablated on the back surface 20v of the processing target single crystal substrate 20am. Is set within a predetermined range that does not cause unnecessary damage (particularly damage to the cutout target portion 20b).

加工層22には、レーザ光Bの集光によって形成された加工痕22cが、一定の間隔で規則的に配列されている。この加工痕22cを形成する間隔に関しては、基板平面方向(被照射面20uや裏面20vに平行な方向)ではレーザ光Bの発振繰り返し周波数と回転ステージ11の回転速度すなわち周速との関係で決定され、基板高さ(深さ)方向では集光位置BfのZ軸方向の移動量により決定される。加工層22は上記のように所定間隔にレーザ光Bを照射して、加工痕22cが断続的に形成された領域として得られる。この時レーザ光Bは、例えばパルス幅が1μs以下のパルスレーザ光からなり、300nm以上の波長が選択され、例えば加工対象単結晶基板20amがシリコンウエハの場合は、1000nm以上の波長のYAGレーザ等が好適に使用される。   In the processing layer 22, processing marks 22c formed by condensing the laser beam B are regularly arranged at regular intervals. The interval at which the processing marks 22c are formed is determined by the relationship between the oscillation repetition frequency of the laser beam B and the rotation speed of the rotary stage 11, that is, the peripheral speed, in the substrate plane direction (direction parallel to the irradiated surface 20u and the back surface 20v). In the substrate height (depth) direction, it is determined by the amount of movement of the condensing position Bf in the Z-axis direction. The processed layer 22 is obtained as a region where the processing marks 22c are intermittently formed by irradiating the laser beam B at a predetermined interval as described above. At this time, the laser beam B is composed of, for example, a pulse laser beam having a pulse width of 1 μs or less, and a wavelength of 300 nm or more is selected. For example, when the processing target single crystal substrate 20am is a silicon wafer, a YAG laser having a wavelength of 1000 nm or more Are preferably used.

そして、レーザ光Bの集光位置Bfにおいて加工対象結晶基板20aの基板厚み方向長さKが10μm以下となるようにレーザ出力を制御する。具体的には集光位置Bfが被照射面20uに近いほどレーザ出力を増大させる。さらに被照射面20u近傍ではレーザ照射を中止し加工対象単結晶基板の被照射面側にアブレーションや欠けなどを生じさせない。   Then, the laser output is controlled so that the length K in the substrate thickness direction of the processing target crystal substrate 20a is 10 μm or less at the condensing position Bf of the laser beam B. Specifically, the laser output is increased as the condensing position Bf is closer to the irradiated surface 20u. Further, laser irradiation is stopped in the vicinity of the irradiated surface 20u, and no ablation or chipping occurs on the irradiated surface side of the single crystal substrate to be processed.

ここで、本実施形態では、加工対象単結晶基板内の集光位置Bfにおいて加工痕22cの基板厚み方向長さKが10μm以下、好ましくは3μm〜7μmに形成するようにレーザ出力を調整する。そして集光位置Bfを段階的に加工対象単結晶基板20amの表面側に移動しつつ長さKが10μm以下(好ましくは3μm〜7μm)の加工痕22cを形成していく。その際、加工対象結晶基板20aの結晶方位(例えば[100]方位)に沿って加工痕22cが伸張し、かつ加工対象結晶基板20aの異なる結晶方位(例えば[111]方位や[110]方位)に沿って加工痕22cが伸張しないように加工痕22cを形成する。この結果、良好な品質のくり抜き結晶基板を、加工対象結晶基板20aの結晶方位への加工痕22cの伸張によって短時間で効率良く得ることができる。そのため、あらかじめ確認しておいた出力に基づき、集光位置Bfに対してレーザ光の出力を制御することによって各集光位置Bfで長さKが10μm以下(好ましくは3μm〜7μm)の加工痕22cを所定位置に形成していく。なお、加工痕長さが3μmを下回った場合(例えば2μmである場合)では、形成した加工痕が深さ方向に連結し難いため、良好なくり抜きを行い難い。   Here, in this embodiment, the laser output is adjusted so that the length K in the substrate thickness direction of the processing mark 22c is 10 μm or less, preferably 3 μm to 7 μm at the condensing position Bf in the processing target single crystal substrate. Then, a processing mark 22c having a length K of 10 μm or less (preferably 3 μm to 7 μm) is formed while moving the condensing position Bf stepwise toward the surface side of the processing target single crystal substrate 20am. At that time, the processing mark 22c extends along the crystal orientation (for example, [100] orientation) of the processing target crystal substrate 20a, and a different crystal orientation (for example, [111] orientation or [110] orientation) of the processing target crystal substrate 20a. The processing mark 22c is formed so that the processing mark 22c does not extend along the line. As a result, it is possible to efficiently obtain a cut-out crystal substrate having a good quality in a short time by extending the processing trace 22c in the crystal orientation of the processing target crystal substrate 20a. Therefore, a processing mark having a length K of 10 μm or less (preferably 3 μm to 7 μm) at each condensing position Bf by controlling the output of the laser beam to the condensing position Bf based on the output confirmed in advance. 22c is formed at a predetermined position. When the processing mark length is less than 3 μm (for example, 2 μm), the formed processing marks are difficult to connect in the depth direction, so that it is difficult to perform good drilling.

なお、裏面20v近傍において裏面20vに近いほどレーザ光の出力を低下させてもよく、これにより、この効果はより顕著なものとなる。   Note that the output of the laser beam may be decreased near the back surface 20v in the vicinity of the back surface 20v, and this effect becomes more remarkable.

そして本実施形態では、被照射面20u近傍では、レーザ光Bの集光位置Bfが被照射面20uに近いほどレーザ光Bの出力を増大させており、被照射面20u近傍の加工層部分では、他の加工層部分に比べ、加工痕22cが小さく、しかも、加工痕22cの周囲に生じる歪が小さい。従って、使用者がくり抜き対象部20bをくり抜いた際、被照射面20u近傍で加工痕22cから無用なクラックが発生してくり抜き単結晶基板20dに損傷が生じることを大幅に抑えることができる。   In the present embodiment, in the vicinity of the irradiated surface 20u, the output of the laser beam B is increased as the condensing position Bf of the laser beam B is closer to the irradiated surface 20u. In the processed layer portion near the irradiated surface 20u, Compared to other processed layer portions, the processing mark 22c is small, and the distortion generated around the processing mark 22c is small. Therefore, when the user cuts out the hollow portion 20b, it is possible to greatly suppress the occurrence of unnecessary cracks from the processing marks 22c in the vicinity of the irradiated surface 20u and damage to the hollow single crystal substrate 20d.

従って、本実施形態により、加工対象単結晶基板20amから欠け(チッピング)のないくり抜き単結晶基板20dを短時間で容易に得やすい基板加工装置10および基板加工方法を実現させることができる。なお、得られたくり抜き単結晶基板20dの外周面には、必要に応じて研磨等の加工を行う。   Therefore, according to the present embodiment, it is possible to realize the substrate processing apparatus 10 and the substrate processing method that can easily obtain the cut single crystal substrate 20d without chipping (chipping) from the processing target single crystal substrate 20am in a short time. Note that the outer peripheral surface of the obtained single crystal substrate 20d is subjected to processing such as polishing as necessary.

ここで、被照射面20u近傍とは、このようなレーザ光照射によって、加工層22形成後の人手によるくり抜き作業を無用なチッピングを生じさせずに行うことができる被照射面付近の部位のことであり、具体的には被照射面(基板表面)から内部に100μmまでの範囲であり、好適には基板表面から50μmまでの範囲である。この範囲においてレーザ出力調整手段によりレーザ光Bの出力を調整することで、アブレーションを発生させずに加工痕を形成することが必要である。   Here, the vicinity of the irradiated surface 20u refers to a portion in the vicinity of the irradiated surface that can be manually cut out after forming the processed layer 22 without causing unnecessary chipping by the laser light irradiation. Specifically, it is in the range from the irradiated surface (substrate surface) to 100 μm inside, preferably in the range from the substrate surface to 50 μm. By adjusting the output of the laser beam B by the laser output adjusting means within this range, it is necessary to form a processing mark without causing ablation.

単結晶基板の寸法が使用予定の寸法よりも大きい場合、このようにして、この単結晶基板を加工対象単結晶基板20amとし、加工対象単結晶基板20amよりも小さい寸法のくり抜き単結晶基板20dを得ることで加工対象単結晶基板20amを再利用することができ、資源の有効活用が図られる。   In the case where the size of the single crystal substrate is larger than the size to be used, this single crystal substrate is used as the processing target single crystal substrate 20am, and the hollow single crystal substrate 20d having a size smaller than the processing target single crystal substrate 20am is obtained. By obtaining the single crystal substrate 20am to be processed, the resources can be effectively used.

また、本実施形態では、レーザ集光手段12と加工対象単結晶基板20amの裏面20vとが離れる方向の移動では、基板厚み方向と同方向に移動させている。従って、加工層22が短円筒状に形成されているので、得られたくり抜き単結晶基板20dの外周は円筒外周状となっており、使い勝手が良い。ここで本実施形態では、加工層含有基板20cの被照射面20u近傍では、加工痕22cの周囲に生じる歪や損傷が小さく、その上、加工対象単結晶基板20amの裏面20v側への最初の集光位置Bfは、裏面20vに亀裂やアブレーションなどによる無用なダメージを与えないように裏面20vから所定範囲内の基板厚さ位置に設定されている。従って、加工層22の形状をチッピングが発生し難い形状(例えば、裏面側に広がるテーパ状)にせずに単に短円筒状としても、加工痕22cから無用なクラックが発生することが大幅に抑えられている。   In the present embodiment, when the laser condensing means 12 and the back surface 20v of the processing target single crystal substrate 20am are separated, the movement is performed in the same direction as the substrate thickness direction. Therefore, since the processed layer 22 is formed in a short cylindrical shape, the outer periphery of the obtained hollow single crystal substrate 20d is a cylindrical outer peripheral shape, which is easy to use. Here, in this embodiment, in the vicinity of the irradiated surface 20u of the processed layer-containing substrate 20c, distortion and damage generated around the processed mark 22c are small, and in addition, the first step toward the back surface 20v side of the processing target single crystal substrate 20am is performed. The condensing position Bf is set at a substrate thickness position within a predetermined range from the back surface 20v so as not to cause unnecessary damage to the back surface 20v due to cracks, ablation, or the like. Therefore, even if the shape of the processed layer 22 is not simply a shape in which chipping is likely to occur (for example, a tapered shape spreading on the back surface side), but simply a short cylindrical shape, generation of useless cracks from the processed marks 22c is greatly suppressed. ing.

また、本実施形態では、第2工程で、レーザ集光手段12に設けられた第1レンズ16と第2レンズ18との間隔を一定に、すなわち、収差補正の調整機能によるレーザ光Bの調整状態を一定にしている。従って、集光位置BfがZ軸方向に移動することに応じたパラメータの変更をレーザ光Bの出力のみにしており、レーザ出力制御手段14で制御することによってこれらの効果を得ることが可能である。第1レンズ16と第2レンズ18とのこの間隔は、くり抜き時における無用なクラックの発生し難さ、加工層22の形成のし易さ、などを考慮して適切な値に設定する。   In the present embodiment, in the second step, the distance between the first lens 16 and the second lens 18 provided in the laser condensing means 12 is made constant, that is, the adjustment of the laser beam B by the aberration correction adjustment function. The state is kept constant. Therefore, only the output of the laser beam B is changed in parameters according to the movement of the condensing position Bf in the Z-axis direction, and these effects can be obtained by controlling with the laser output control means 14. is there. The distance between the first lens 16 and the second lens 18 is set to an appropriate value in consideration of the difficulty of generating unnecessary cracks in the hollowing and the ease of forming the processed layer 22.

なお、レーザ光Bの出力を変化させつつ、第1レンズ16と第2レンズ18との間隔調整、すなわち、収差補正環としての機能によるレーザ光Bの調整を変化させてもよい。これにより、加工痕22cの寸法や加工痕22c周囲の歪を更に精度良く制御することができる。   Note that the adjustment of the distance between the first lens 16 and the second lens 18, that is, the adjustment of the laser beam B by the function as an aberration correction ring may be changed while changing the output of the laser beam B. Thereby, the dimension of the machining mark 22c and the distortion around the machining mark 22c can be controlled with higher accuracy.

また、基板加工装置10は、回転ステージ11の回転中心軸Csとレーザ集光手段12によるレーザ光Bの加工対象単結晶基板20amへの照射中心軸Cbとの距離rを変える半径方向距離変更手段を備えている。従って、くり抜き対象部20bの半径に合わせて加工層22の形成位置を変更することが容易にできる。   Further, the substrate processing apparatus 10 is a radial distance changing means for changing the distance r between the rotation center axis Cs of the rotary stage 11 and the irradiation center axis Cb of the laser beam B to the processing target single crystal substrate 20am by the laser focusing means 12. It has. Therefore, it is possible to easily change the formation position of the processed layer 22 in accordance with the radius of the cut target 20b.

また、図4では、加工層22には加工痕22cが一列に配置されているように描いているが、実際には、加工層22には複数列にわたって加工痕22cが散りばめられるようにレーザ光Bを照射してもよい。これにより、くり抜き対象部20bを加工層含有基板20cからくり抜く際の作業が更に容易になる。   In FIG. 4, the processing layer 22 is drawn so that the processing marks 22 c are arranged in a line, but actually, the processing layer 22 has a laser beam so that the processing marks 22 c are scattered over a plurality of rows. B may be irradiated. Thereby, the operation | work at the time of cutting out the hollow part 20b from the process layer containing board | substrate 20c becomes still easier.

また、第2工程では、レーザ光Bの出力を増大させる際、被照射面20uから集光位置Bfまでの基板厚みの低減量に対するレーザ出力の増大量の割合を、リニア(一次関数的、すなわち一定)としてもよい。これにより、レーザ出力制御手段14による出力制御が簡単である。   Further, in the second step, when increasing the output of the laser beam B, the ratio of the increase amount of the laser output to the decrease amount of the substrate thickness from the irradiated surface 20u to the condensing position Bf is linear (linear function, that is, Constant). Thereby, the output control by the laser output control means 14 is simple.

また、第2工程では、レーザ光Bの出力を増大させる際、被照射面20uから集光位置Bfまでの基板厚みの低減量に対するレーザ出力の増大量の割合を、被照射面20uに近くなるほど抑えてもよい(例えば、二次関数的あるいは三次関数的などのように増大割合を抑えることで、被照射面20uに近くなるほど抑えてもよい)。これにより、リニアに増大させる場合に比べ、くり抜き対象部20bをくり抜く際に無用なクラックが発生してくり抜き対象部20bに損傷が生じることを更に効果的に抑えることができる。   In the second step, when increasing the output of the laser beam B, the ratio of the increase amount of the laser output to the decrease amount of the substrate thickness from the irradiated surface 20u to the condensing position Bf becomes closer to the irradiated surface 20u. It may be suppressed (for example, it may be suppressed closer to the irradiated surface 20u by suppressing the increase rate in a quadratic or cubic function manner). Thereby, compared with the case where it increases linearly, it can suppress more effectively that a useless crack generate | occur | produces when punching out the hollow part 20b, and damage arises in the hollow part 20b.

また、第2工程では、図6に示すように、レーザ光Bの集光によって加工層22に形成される加工痕22cの基板厚み方向長さKを10μm以下としている。これにより、加工対象単結晶基板20amの上下方向(結晶方位[100])に加工痕22cが良好に伸張しやすい。すなわち、加工痕22cが上下方向(結晶方位[100])以外の方向に伸張せずに形成されることで厚み方向に連続的に結晶方位に沿った他加工痕が連結される状態を得られ、くり抜きでの割れや欠けなどが発生することを効果的に抑制できる。   In the second step, as shown in FIG. 6, the length K in the substrate thickness direction of the processing mark 22c formed on the processing layer 22 by condensing the laser beam B is set to 10 μm or less. As a result, the processing mark 22c tends to easily extend well in the vertical direction (crystal orientation [100]) of the processing target single crystal substrate 20am. That is, by forming the processing trace 22c without extending in a direction other than the vertical direction (crystal orientation [100]), it is possible to obtain a state in which other processing traces are continuously connected along the crystal orientation in the thickness direction. , It is possible to effectively suppress the occurrence of cracks and chippings in the cutout.

また、本実施形態に係る基板加工方法の説明では、加工対象単結晶基板20amが単結晶基板である例で説明したが、単結晶基板以外であっても、本実施形態に係る基板加工方法が適用可能である。   Further, in the description of the substrate processing method according to the present embodiment, the example in which the processing target single crystal substrate 20am is a single crystal substrate has been described, but the substrate processing method according to the present embodiment is not limited to a single crystal substrate. Applicable.

また、本実施形態では、基板加工方法として、本実施形態の基板加工装置10を用いて加工層含有基板20cにする例で説明したが、基板加工装置10を用いずに他の装置を用いて加工層含有基板20cを製造することも勿論可能である。   In the present embodiment, as an example of the substrate processing method, the substrate processing apparatus 10 according to the present embodiment is used to form the processed layer-containing substrate 20c. However, the substrate processing apparatus 10 is not used, and another apparatus is used. Of course, it is also possible to manufacture the processed layer-containing substrate 20c.

<実験例1>
本発明者は、上記実施形態で説明した基板加工装置10を用い、上記実施形態に係る基板加工方法の一例(以下、実施例1という)として、回転ステージ11上のステージ面Suに、加工対象単結晶基板20amとして円盤状の単結晶シリコンウエハを保持させることで固定した。その際、回転ステージ11の回転中心軸Csと、単結晶シリコンウエハの中心軸とを一致させた。
<Experimental example 1>
The inventor uses the substrate processing apparatus 10 described in the above embodiment, and forms an object to be processed on the stage surface Su on the rotary stage 11 as an example of the substrate processing method according to the above embodiment (hereinafter referred to as Example 1). The single crystal substrate 20am was fixed by holding a disk-shaped single crystal silicon wafer. At that time, the rotation center axis Cs of the rotary stage 11 and the center axis of the single crystal silicon wafer were matched.

その際、結晶方位が[100]で、厚さ625μmのφ150mmの単結晶シリコンウエハを加工対象単結晶基板20amとし、φ50mmのくり抜き単結晶基板が得られるように設定しレーザ光を照射した。   At that time, a single crystal silicon wafer having a crystal orientation of [100] and having a thickness of 625 μm and having a diameter of 150 mm was set as a processing target single crystal substrate 20am, and a φ50 mm hollow single crystal substrate was obtained and irradiated with laser light.

レーザ発振器による照射条件は以下である。
対物レンズ :補正環機能付き100倍、NAは0.85
(オリンパス社製のLCPLN100XRを使用)
波長(nm) :1064
パルス幅(ns) :190
補正環調整量 :1.0
(補正環目盛値)
繰り返し周波数(kHz):500
照射間隔(μm) :2.0
Irradiation conditions by the laser oscillator are as follows.
Objective lens: 100x with correction ring function, NA is 0.85
(Uses Olympus LCPLN100XR)
Wavelength (nm): 1064
Pulse width (ns): 190
Correction ring adjustment amount: 1.0
(Correction ring scale value)
Repetition frequency (kHz): 500
Irradiation interval (μm): 2.0

加工条件としては以下のように行った。なお、以下の記載で、加工痕深さ位置とは基板深さ方向位置のことであり、レーザ出力とはレーザのパルスエネルギーのことである。
加工痕深さ位置(μm) レーザ出力(μJ)
725〜625 2.3
625〜580 2.6
580〜500 3.4
500〜420 4.2
420〜360 5.0
360〜260 5.7
260〜50 9.3
50〜0 6.5
The processing conditions were as follows. In the following description, the processing mark depth position is the position in the substrate depth direction, and the laser output is the pulse energy of the laser.
Processing mark depth position (μm) Laser output (μJ)
725-625 2.3
625-580 2.6
580-500 3.4
500-420 4.2
420-360 5.0
360-260 5.7
260-50 9.3
50-0 6.5

このようなレーザ照射を行って短円筒状の加工層22を形成することで加工層含有基板20cとした。このようなレーザ照射を行って短円筒状の加工層22を形成することで加工層含有基板20cとした。そして、くり抜きによって形成された破断面を顕微鏡(共焦点レーザ顕微鏡)で観察したところ、図7に示すように、均一な断面状態を示し、結晶方位[100]とは異なる結晶方位に加工痕は伸張していなかった。   The processed layer containing substrate 20c was formed by forming the short cylindrical processed layer 22 by performing such laser irradiation. The processed layer containing substrate 20c was formed by forming the short cylindrical processed layer 22 by performing such laser irradiation. Then, when the fractured surface formed by hollowing was observed with a microscope (confocal laser microscope), as shown in FIG. 7, a uniform cross-sectional state was shown, and the processing trace was in a crystal orientation different from the crystal orientation [100]. It was not stretched.

ここで、レーザ光の集光点を徐々に被照射面側に移動させることで集光点の基板深さ方向位置を上げていく際(図8参照)、補正環調整量(補正環目盛値)を変化させない場合には、球面収差と光強度の減衰により、すなわち、集光点における単位面積あたりのレーザエネルギーの減衰により、加工痕が形成されなくなり易い。そこで、本実験例におけるこのレーザ照射では、基板の最深部(裏面側)に7μmの長さの加工痕22cを形成できるようにDF量とレーザ出力とを調整し最小限の出力で加工を開始した。   Here, when the position of the condensing point in the substrate depth direction is increased by gradually moving the condensing point of the laser beam to the irradiated surface side (see FIG. 8), the correction ring adjustment amount (correction ring scale value) ) Is not changed, processing marks are not easily formed due to attenuation of spherical aberration and light intensity, that is, attenuation of laser energy per unit area at the focal point. Therefore, in this laser irradiation in this experimental example, the processing is started with the minimum output by adjusting the DF amount and the laser output so that a processing mark 22c having a length of 7 μm can be formed in the deepest part (back side) of the substrate. did.

そして、基板深さ方向位置に対してレーザ光の集光点を上げる際、加工痕形成が可能となるレーザ出力の閾値に応じてレーザ出力を上げた。この作業を繰り返していくことで、結晶方位[100]と異なる結晶方位([110]や[110])に加工痕を伸張させずに加工層を形成することができた。   And when raising the condensing point of a laser beam with respect to the position of a board | substrate depth direction, the laser output was raised according to the threshold value of the laser output in which processing trace formation is possible. By repeating this work, it was possible to form a processed layer without extending the processing trace in a crystal orientation ([110] or [110]) different from the crystal orientation [100].

また、基板表面近くでは光強度の減衰が小さくなる影響により加工痕が長くなり基板表面のアブレーションや割れが生じ易くなるので、本実験例では、レーザ光の集光点が基板表面近く(すなわち被照射面近く)に位置するときにはレーザ出力を低下させた。この結果、図9、図10に示すように、被照射面20uでは、加工痕22cによってアブレーションや割れが生じることが抑止されていた。   Also, near the substrate surface, the processing trace becomes longer due to the effect of decreasing the light intensity attenuation, and the substrate surface is likely to be ablated or cracked. When located near the irradiation surface, the laser output was reduced. As a result, as shown in FIGS. 9 and 10, the irradiated surface 20u was prevented from being ablated or cracked by the processing marks 22c.

<実験例2>
本発明者は、上記実施形態で説明した基板加工装置10を用い、上記実施形態に係る基板加工方法の一例(以下、実施例2という)として、実験例1と同様に、回転ステージ11上のステージ面Suに、加工対象単結晶基板20amとして円盤状の単結晶シリコンウエハを保持させることで固定した。その際、回転ステージ11の回転中心軸Csと、単結晶シリコンウエハの中心軸とを一致させた。
<Experimental example 2>
The inventor uses the substrate processing apparatus 10 described in the above embodiment, and as an example of the substrate processing method according to the above embodiment (hereinafter, referred to as Example 2), on the rotary stage 11 as in Experimental Example 1. The stage-shaped Su was fixed by holding a disk-shaped single crystal silicon wafer as the processing target single crystal substrate 20am. At that time, the rotation center axis Cs of the rotary stage 11 and the center axis of the single crystal silicon wafer were matched.

その際、結晶方位が[110]で、厚さ625μmのφ150mmの単結晶シリコンウエハを加工対象単結晶基板20amとし、φ50mmのくり抜き単結晶基板が得られるように設定しレーザ光を照射した。   At that time, a single crystal silicon wafer having a crystal orientation of [110] and having a thickness of 625 μm and having a diameter of 150 mm was set as a single crystal substrate to be processed 20am, and a single crystal substrate having a diameter of 50 mm was obtained and irradiated with laser light.

レーザ発振器による照射条件は以下であり、実験例1と同じである。
対物レンズ :補正環機能付き100倍、NAは0.85
(オリンパス社製のLCPLN100XIRを使用)
波長(nm) :1064
パルス幅(ns) :190
補正環調整量 :1.0
繰り返し周波数(kHz :500
照射間隔(μm) :2.0
The irradiation conditions by the laser oscillator are as follows and are the same as those in Experimental Example 1.
Objective lens: 100x with correction ring function, NA is 0.85
(Uses Olympus LCPLN100XIR)
Wavelength (nm): 1064
Pulse width (ns): 190
Correction ring adjustment amount: 1.0
Repetition frequency (kHz: 500
Irradiation interval (μm): 2.0

加工条件としては以下のように行った。なお、実験例1と同様、以下の記載では、加工痕深さ位置とは基板深さ方向位置のことであり、レーザ出力とはレーザのパルスエネルギーのことである。   The processing conditions were as follows. As in Experimental Example 1, in the following description, the processing mark depth position is the position in the substrate depth direction, and the laser output is the pulse energy of the laser.

加工痕深さ位置(μm) レーザ出力(μJ)
725〜625 2.3
625〜580 2.6
580〜500 2.6
500〜420 3.0
420〜360 6.5
360〜260 7.5
260〜50 9.3
50〜0 6.5
このようなレーザ照射を行って短円筒状の加工層22を形成することで加工層含有基板20cとした。
Processing mark depth position (μm) Laser output (μJ)
725-625 2.3
625-580 2.6
580-500 2.6
500-420 3.0
420-360 6.5
360-260 7.5
260-50 9.3
50-0 6.5
The processed layer containing substrate 20c was formed by forming the short cylindrical processed layer 22 by performing such laser irradiation.

実験例1に比べ、本実験例では、加工痕深さ位置が580μm〜500μmおよび500〜420μmのときにはレーザ出力を下げることで加工痕22cの長さを短くし、加工痕深さ位置が420〜360μmおよび360〜260μmのときにはレーザ出力を上げることで加工痕22cの長さを長くした。   Compared with Experimental Example 1, in this experimental example, when the processing mark depth position is 580 μm to 500 μm and 500 to 420 μm, the length of the processing mark 22 c is shortened by lowering the laser output, and the processing mark depth position is 420 to When the thickness was 360 μm and 360 to 260 μm, the length of the machining mark 22c was increased by increasing the laser output.

本実験例では、加工痕長さ2μmを下回った場合ではくり抜きがスムーズではなかった。くり抜きによって形成された破断面を顕微鏡で観察したところ、無理に割断された状態であった(図11参照)。   In this experimental example, when the processing mark length was less than 2 μm, the punching was not smooth. When the fractured surface formed by hollowing was observed with a microscope, it was in a state where it was forcibly cleaved (see FIG. 11).

加工痕長さ4μm〜7μmでは、くり抜きがスムーズであり、くり抜きによって形成された割断面を顕微鏡で観察したところ、厚み方向の加工痕が連なり割断面が滑らかな状態であった(図12参照)。この時の表面粗さRz=0.667μmであった。   When the machining mark length was 4 μm to 7 μm, the hollowing was smooth, and the fractured surface formed by the hollowing was observed with a microscope, and as a result, the machining marks in the thickness direction were connected and the fractured surface was smooth (see FIG. 12). . The surface roughness at this time was Rz = 0.667 μm.

加工痕長さが10μmより長い場合や、加工痕に外部の加工痕(隣接する加工痕)の一部が重なっていると、割断面で劈開が生じており(図13参照)、これは結晶方位[100]と異なる結晶方位[111]に加工痕が伸張してしまったためであると判断される。   When the processing trace length is longer than 10 μm, or when a part of the external processing trace (adjacent processing trace) overlaps the processing trace, cleavage occurs in the cut section (see FIG. 13). It is determined that this is because the processing marks have been extended in a crystal orientation [111] different from the orientation [100].

[第2実施形態]
次に、第2実施形態を説明する。図14は、本実施形態に係る基板加工方法により製造した加工層含有基板を示す模式的な側面断面図である(基板厚み方向におけるレーザ光の照射エネルギーは実験例3での値を示す)。本実施形態では、第1実施形態と同様、加工対象結晶基板20aが単結晶基板である例を挙げて説明する。
[Second Embodiment]
Next, a second embodiment will be described. FIG. 14 is a schematic side cross-sectional view showing a processed layer-containing substrate manufactured by the substrate processing method according to the present embodiment (the irradiation energy of laser light in the substrate thickness direction shows the value in Experimental Example 3). In the present embodiment, as in the first embodiment, an example in which the processing target crystal substrate 20a is a single crystal substrate will be described.

本実施形態では、第1実施形態に比べ、第2工程で加工対象単結晶基板20amに加工層22を形成する際、加工層22のうち加工対象単結晶基板20amの裏面(底面)側を構成する加工層裏面方部22vでは、裏面20vから離れるにつれて、回転ステージ11の回転中心軸Csとレーザ集光手段12の照射中心軸Cbとの距離rを徐々に広げ、加工層裏面方部22vよりも被照射面20u側(表面側)ではこの距離を一定にしている(図14参照)。そして、このように徐々に広げることで、加工層裏面方部22vの外周側を、加工対象単結晶基板20amの裏面20vから離れるにつれて径が徐々に大きくなるR面状(断面円弧状)に形成している。この結果、加工層裏面方部22vは半径Nの面取り形状(すなわち、くり抜き対象部20bのうち加工層裏面方部22vの内周側に位置する部位もR面状)にされており、くり抜き作業でくり抜き対象部20bが加工層裏面方部22vから容易に破断され得る構造にされている。   In the present embodiment, compared to the first embodiment, when the processing layer 22 is formed on the processing target single crystal substrate 20am in the second step, the back surface (bottom surface) side of the processing target single crystal substrate 20am is configured in the processing layer 22. In the processed layer back surface portion 22v, the distance r between the rotation center axis Cs of the rotary stage 11 and the irradiation center axis Cb of the laser condensing means 12 is gradually increased as the distance from the back surface 20v increases. Also, the distance is constant on the irradiated surface 20u side (front side) (see FIG. 14). Then, by gradually expanding in this way, the outer peripheral side of the processed layer rear surface side portion 22v is formed in an R-plane shape (circular arc shape) whose diameter gradually increases as the distance from the back surface 20v of the processing target single crystal substrate 20am increases. doing. As a result, the processed layer back surface portion 22v has a chamfered shape having a radius N (that is, the portion located on the inner peripheral side of the processed layer back surface portion 22v in the cut-out target portion 20b is also an R surface shape). The punched portion 20b has a structure that can be easily broken from the rear surface side portion 22v of the processed layer.

本実施形態で用いる基板加工装置としては、例えば、第1実施形態で説明した基板加工装置10を用い、半径方向距離変更手段(図示せず)により距離rを徐々に広げる。この場合、回転ステージ11をこのように移動させる制御プログラムが基板加工装置の制御手段(CPUなど)に入力されていると、正確性や加工容易性を確保する上で好ましい。   As the substrate processing apparatus used in the present embodiment, for example, the substrate processing apparatus 10 described in the first embodiment is used, and the distance r is gradually increased by a radial direction distance changing unit (not shown). In this case, it is preferable that a control program for moving the rotary stage 11 in this way is input to the control means (CPU or the like) of the substrate processing apparatus in order to ensure accuracy and ease of processing.

本実施形態では、加工層含有基板20cからくり抜き対象部20bをくり抜くことで、基板裏面側が半径NのR面状にされたくり抜き単結晶基板20dが容易に得られる。従って、くり抜き単結晶基板20dの面取り作業を、不要にすること或いは大幅に軽減させることができ、くり抜き単結晶基板20d(ウエハ)のハンドリングが容易になる。   In the present embodiment, a hollow single crystal substrate 20d in which the rear surface of the substrate is formed into an R-plane shape having a radius N can be easily obtained by hollowing out the hollow portion 20b from the processed layer-containing substrate 20c. Therefore, the chamfering operation of the hollow single crystal substrate 20d can be eliminated or greatly reduced, and the hollow single crystal substrate 20d (wafer) can be easily handled.

また、第2工程でレーザ光を照射する際、加工痕を1つ1つ繋げていくことでこのような加工層22が形成されるので、加工層22を形成する際にかかる時間を第1実施形態とさほど変わらない程度の時間に抑えることができる。   Further, when the laser beam is irradiated in the second step, such a processed layer 22 is formed by connecting the processing traces one by one. Therefore, the time required for forming the processed layer 22 is reduced to the first time. It can be suppressed to a time that is not so different from the embodiment.

なお、加工層裏面方部22vでは、くり抜き対象部20bを良好にくり抜く観点で、裏面20vに近い位置ほどくり抜き対象部20b(ウエハ)の半径方向へ加工痕22cを繋げることが重要になっており、被照射面側(表面側)に近づくに従い、次第に基板厚み方向へ加工痕22cを繋げることが重要になっている。従って、裏面20vに近い位置ほど加工痕22cのラインピッチを狭くし、被照射面側(表面側)に近づくに従い次第にラインピッチを広げるなどの工夫をすることにより、くり抜き対象部20bを更に良好にくり抜くことが可能になる。   In the processed layer rear surface portion 22v, it is important to connect the processing marks 22c in the radial direction of the cut target portion 20b (wafer) closer to the back surface 20v from the viewpoint of favorably cutting the cut target portion 20b. As it approaches the irradiated surface side (front surface side), it is important to connect the processing marks 22c gradually in the substrate thickness direction. Therefore, by making a measure such as narrowing the line pitch of the machining mark 22c closer to the back surface 20v and gradually increasing the line pitch as it approaches the irradiated surface side (front surface side), the cut-out target portion 20b is further improved. It can be cut out.

また、本実施形態では、加工層裏面方部22vの外周側をR面状に形成した例で説明したが、R面状に限らず湾曲凸面状としても、加工層含有基板20cからくり抜き対象部20bを容易にくり抜くことが可能である。   Further, in the present embodiment, the example in which the outer peripheral side of the processed layer back surface side portion 22v is formed in an R-surface shape has been described, but not only the R-surface shape but also a curved convex surface shape may be cut out from the processed layer-containing substrate 20c. 20b can be easily cut out.

また、加工層裏面方部22vではこのような形状にせずに、加工層22のうち加工対象単結晶基板20amの被照射面側(表面側)を構成する加工層表面方部を加工層裏面方部22vのような形状にすることで、基板表面側が半径NのR面状にされたくり抜き単結晶基板20dを得ることができる。   Further, the processed layer back surface portion 22v does not have such a shape, and the processed layer surface side portion constituting the irradiated surface side (front surface side) of the processing target single crystal substrate 20am in the processed layer 22 is formed on the processed layer back surface side. By making the shape like the portion 22v, it is possible to obtain a hollow single crystal substrate 20d in which the substrate surface has an R-plane shape with a radius N.

また、本実施形態に係る基板加工方法の説明では、加工対象単結晶基板20amが単結晶基板である例で説明したが、単結晶基板以外であっても、本実施形態に係る基板加工方法が適用可能である。   Further, in the description of the substrate processing method according to the present embodiment, the example in which the processing target single crystal substrate 20am is a single crystal substrate has been described, but the substrate processing method according to the present embodiment is not limited to a single crystal substrate. Applicable.

<実験例3>
本発明者は、基板加工装置10を用い、第2実施形態に係る基板加工方法の一実施例により、以下の条件で加工対象単結晶基板に加工を行った。
<Experimental example 3>
The present inventor processed a single crystal substrate to be processed under the following conditions using an example of the substrate processing method according to the second embodiment, using the substrate processing apparatus 10.

まず、回転ステージ11上のステージ面Suに、加工対象単結晶基板20amとして円盤状の単結晶シリコンウエハを保持させることで固定した。その際、回転ステージ11の回転中心軸Csと、単結晶シリコンウエハの中心軸とを一致させた。   First, a disk-shaped single crystal silicon wafer was fixed to the stage surface Su on the rotary stage 11 as a processing target single crystal substrate 20am. At that time, the rotation center axis Cs of the rotary stage 11 and the center axis of the single crystal silicon wafer were matched.

レーザ発振器による照射条件は以下である。
繰り返し周波数(kHz):500
補正環調整量 :1.0
(補正環目盛値)
加工痕ピッチ(μm) :2.0
ラインピッチ(μm) :3.0
Irradiation conditions by the laser oscillator are as follows.
Repetition frequency (kHz): 500
Correction ring adjustment amount: 1.0
(Correction ring scale value)
Processing mark pitch (μm): 2.0
Line pitch (μm): 3.0

加工条件としては以下のように行った。なお、以下の記載で、加工痕深さ位置とは基板深さ方向位置のことであり、レーザ出力とはレーザのパルスエネルギーのことである。
加工痕深さ位置(μm) レーザ出力(μJ)
725〜660 2.3
660〜580 2.6
580〜500 3.4
500〜420 4.2
420〜360 5.0
360〜260 5.7
260〜50 9.3
50〜5 6.5
The processing conditions were as follows. In the following description, the processing mark depth position is the position in the substrate depth direction, and the laser output is the pulse energy of the laser.
Processing mark depth position (μm) Laser output (μJ)
725-660 2.3
660-580 2.6
580-500 3.4
500-420 4.2
420-360 5.0
360-260 5.7
260-50 9.3
50-5 6.5

このようなレーザ照射を行って加工層22を形成することで加工層含有基板20cとした。本実験例では、くり抜き単結晶基板20dの径が12.7mm、加工層裏面方部22vは半径Nが0.3mmとなるように加工層22を形成した。   The processed layer containing substrate 20c was formed by forming the processed layer 22 by performing such laser irradiation. In this experimental example, the processed layer 22 was formed so that the cut-out single crystal substrate 20d had a diameter of 12.7 mm and the processed layer rear surface portion 22v had a radius N of 0.3 mm.

その後、加工層含有基板20cからくり抜き単結晶基板20dをくり抜いてウエハとした。そして、ウエハ(くり抜き単結晶基板20d)の面取り部20de(加工層裏面方部22vの内側を形成しているウエハ部位)の形状を実測するとともに電子顕微鏡で観察した。   Thereafter, the single crystal substrate 20d was cut out from the processed layer-containing substrate 20c to obtain a wafer. Then, the shape of the chamfered portion 20de (wafer portion forming the inner side of the processed layer rear surface side portion 22v) of the wafer (the hollow single crystal substrate 20d) was measured and observed with an electron microscope.

観察の結果、面取り部20deの形状は、ほぼ目標どおりの形状になっていたことが確認された。なお、面取り部20deには20μm程度の凹凸が形成されていた。   As a result of the observation, it was confirmed that the shape of the chamfered portion 20de was almost the target shape. The chamfered portion 20de had irregularities of about 20 μm.

本発明により、加工対象結晶基板からそれよりも小さい寸法の基板を得ることを可能にすることから、薄く切り出された基板は、例えば単結晶基板であって、Si基板(シリコン基板)であれば太陽電池に応用可能であり、また、GaN系半導体デバイスなどのサファイア基板などであれば、発光ダイオード、レーザダイオードなどに応用可能であり、SiCなどであればSiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。   According to the present invention, it is possible to obtain a substrate having a smaller dimension from the crystal substrate to be processed. Therefore, the thinly cut substrate is, for example, a single crystal substrate and is a Si substrate (silicon substrate). It can be applied to solar cells, and sapphire substrates such as GaN-based semiconductor devices can be applied to light-emitting diodes, laser diodes, etc., and SiC can be applied to SiC-based power devices. It can be applied in a wide range of fields such as transparent electronics field, lighting field and hybrid / electric vehicle field.

10 基板加工装置
11 回転ステージ
12 レーザ集光手段
14 レーザ出力制御手段
15 集光レンズ
16 第1レンズ
18 第2レンズ
20a 加工対象結晶基板
20am 加工対象単結晶基板
20b くり抜き対象部
20c 加工層含有基板
20d くり抜き単結晶基板
20u 被照射面
20v 裏面(基板裏面)
22 加工層
22c 加工痕
B レーザ光
Bf 集光位置
Cb 照射中心軸
Cs 回転中心軸
E 外周部
EP 集光点
K 基板厚み方向長さ
L 距離
M 中央部
MP 集光点
Su ステージ面
r 距離
DESCRIPTION OF SYMBOLS 10 Substrate processing apparatus 11 Rotating stage 12 Laser condensing means 14 Laser output control means 15 Condensing lens 16 First lens 18 Second lens 20a Processing target crystal substrate 20am Processing target single crystal substrate 20b Drilling target portion 20c Processing layer containing substrate 20d Cut-out single crystal substrate 20u Irradiated surface 20v Back side (substrate back side)
22 Processing layer 22c Processing mark B Laser beam Bf Condensing position Cb Irradiation center axis Cs Rotation center axis E Outer peripheral part EP Condensing point K Substrate thickness direction length L Distance M Central part MP Condensing point Su Stage surface r Distance

Claims (16)

レーザ光を集光するレーザ集光手段を、加工対象結晶基板の被照射面上に非接触に配置する第1工程と、
前記レーザ集光手段により前記加工対象結晶基板内部にレーザ光を集光しつつ、レーザ光の集光位置を前記加工対象結晶基板のくり抜き対象部の周囲方向および厚み方向に変化させ、破断強度が低下した加工層を前記くり抜き対象部の外周側に形成することで加工層含有基板とする第2工程と、を備え、
前記第2工程では、前記加工対象結晶基板内部および少なくとも一方の加工対象結晶基板面近傍で、レーザ光の集光位置において生じる加工痕が、前記加工対象結晶基板の結晶方位に沿って伸張しかつ前記加工対象結晶基板の異なる結晶方位に沿って伸長しないように前記レーザ集光手段に入射するレーザ光の出力を制御することを特徴とする基板加工方法。
A first step of disposing laser condensing means for condensing laser light in a non-contact manner on the irradiated surface of the crystal substrate to be processed;
While condensing laser light inside the processing target crystal substrate by the laser condensing means, the focusing position of the laser light is changed in the circumferential direction and the thickness direction of the cut target portion of the processing target crystal substrate, and the breaking strength is increased. Including a second step of forming a lowered processed layer on the outer peripheral side of the cut-out target portion to form a processed layer-containing substrate,
In the second step, a processing mark generated at a laser beam condensing position in the processing target crystal substrate and in the vicinity of at least one processing target crystal substrate surface extends along a crystal orientation of the processing target crystal substrate; The substrate processing method characterized by controlling the output of the laser beam which injects into the said laser condensing means so that it may not extend | stretch along the different crystal orientation of the said process target crystal substrate.
前記加工対象結晶基板面近傍を前記被照射面近傍とすることを特徴とする請求項1に記載の基板加工方法。   The substrate processing method according to claim 1, wherein the vicinity of the crystal substrate surface to be processed is the vicinity of the irradiated surface. 前記第2工程では、
前記被照射面とは反対側の面である基板裏面から所定範囲内の基板厚み位置にレーザ光の焦点を合わせ、
前記レーザ集光手段を前記基板裏面から離れるように移動させつつレーザ光を照射して前記加工層を形成することを特徴とする請求項2に記載の基板加工方法。
In the second step,
Focus the laser beam on the substrate thickness position within a predetermined range from the back surface of the substrate that is the surface opposite to the irradiated surface,
The substrate processing method according to claim 2, wherein the processing layer is formed by irradiating a laser beam while moving the laser condensing unit away from the back surface of the substrate.
前記第2工程では、前記移動に伴い、前記加工痕が形成可能となるレーザ出力の閾値の増大に応じてレーザ出力を増大させることを特徴とする請求項3に記載の基板加工方法。   4. The substrate processing method according to claim 3, wherein, in the second step, the laser output is increased in accordance with an increase in a laser output threshold value at which the processing trace can be formed with the movement. 前記加工痕の長さを10μm以下とすることを特徴とする請求項2〜4の何れか1項に記載の基板加工方法。   The substrate processing method according to claim 2, wherein the length of the processing mark is 10 μm or less. 前記加工痕の長さを3〜7μmの範囲とすることを特徴とする請求項5に記載の基板加工方法。   6. The substrate processing method according to claim 5, wherein a length of the processing mark is in a range of 3 to 7 [mu] m. 前記加工痕の長さを4〜7μmの範囲とすることを特徴とする請求項6に記載の基板加工方法。   The substrate processing method according to claim 6, wherein a length of the processing mark is in a range of 4 to 7 μm. 前記第2工程では、レーザ光の出力を増大させる際、前記被照射面から前記集光位置までの基板厚みの低減量に対する前記出力の増大量の割合を一定とすることを特徴とする請求項2または3に記載の基板加工方法。   The ratio of the increase amount of the output to the decrease amount of the substrate thickness from the irradiated surface to the condensing position is made constant when increasing the output of the laser light in the second step. 4. The substrate processing method according to 2 or 3. 前記第2工程では、レーザ光の出力を増大させる際、前記被照射面から前記集光位置までの基板厚みの低減量に対する前記出力の増大量の割合を前記被照射面に近くなるほど抑えることを特徴とする請求項2または3に記載の基板加工方法。   In the second step, when increasing the output of the laser beam, the ratio of the increase in the output to the decrease in the substrate thickness from the irradiated surface to the condensing position is suppressed as it becomes closer to the irradiated surface. The substrate processing method according to claim 2, wherein the substrate processing method is characterized. 前記第2工程では、前記加工層を短円筒状に形成することを特徴とする請求項2〜9の何れか1項に記載の基板加工方法。   The substrate processing method according to claim 2, wherein in the second step, the processing layer is formed in a short cylindrical shape. 前記第2工程では、レーザ光の集光によって前記加工層に形成される加工痕の基板厚み方向の長さを10μm以下とすることを特徴とする請求項2〜10の何れか1項に記載の基板加工方法。   11. The method according to claim 2, wherein, in the second step, a length in a substrate thickness direction of a processing mark formed in the processing layer by condensing a laser beam is set to 10 μm or less. Substrate processing method. 前記レーザ集光手段が収差補正の調整機能を備え、
前記第2工程では、前記被照射面とは反対側の面である基板裏面の位置に収差補正した後、前記調整機能によるレーザ光の調整状態を一定にしておくことを特徴とする請求項1〜11の何れか1項に記載の基板加工方法。
The laser focusing means has an aberration correction adjustment function,
2. In the second step, after the aberration is corrected to the position of the back surface of the substrate that is the surface opposite to the irradiated surface, the adjustment state of the laser beam by the adjustment function is kept constant. The substrate processing method according to any one of ˜11.
前記加工層のうち前記一方の加工対象単結晶基板面側を構成する加工層一方基板面方部の外周側は、前記一方の加工対象単結晶基板面から離れるにつれて径が徐々に大きくなる湾曲凸面状にされていることを特徴とする請求項1〜12の何れか1項に記載の基板加工方法。   Among the processed layers, the outer peripheral side of the one substrate surface side portion of the processed layer constituting the one processed target single crystal substrate surface side is a curved convex surface whose diameter gradually increases as the distance from the one processed target single crystal substrate surface increases. It is made into the shape, The board | substrate processing method of any one of Claims 1-12 characterized by the above-mentioned. 載置された加工対象結晶基板を保持して回転する回転ステージと、
前記回転ステージ上に保持された前記加工対象結晶基板に向けてレーザ光を集光するレーザ集光手段と、
前記回転ステージと前記レーザ集光手段との距離を変える照射軸方向距離変更手段と、
前記レーザ集光手段に入射するレーザ光の出力を前記距離に応じて変化させるレーザ出力制御手段と、を備え、
前記レーザ出力制御手段は、加工対象結晶基板内部および少なくとも一方の加工対象結晶基板面近傍で、レーザ光集光位置において生じる加工痕が前記加工対象結晶基板の結晶方位に沿って伸張しかつ前記加工対象結晶基板の異なる結晶方位に沿って伸長しないように制御することを特徴とする基板加工装置。
A rotating stage that holds and rotates the processing target crystal substrate;
Laser condensing means for condensing laser light toward the processing target crystal substrate held on the rotating stage;
An irradiation axis direction distance changing means for changing a distance between the rotary stage and the laser focusing means;
Laser output control means for changing the output of the laser light incident on the laser focusing means according to the distance,
The laser output control means is configured such that a processing mark generated at a laser beam condensing position extends along a crystal orientation of the processing target crystal substrate in the processing target crystal substrate and in the vicinity of at least one processing target crystal substrate surface. A substrate processing apparatus, which is controlled so as not to extend along different crystal orientations of a target crystal substrate.
前記レーザ出力制御手段は、
前記加工対象結晶基板面近傍を前記被照射面近傍とし、
前記被照射面とは反対側の面である基板裏面から所定範囲内の基板厚み位置にレーザ光の焦点を合わせ、
前記レーザ集光手段を前記基板裏面から離れるように移動させつつレーザ光を照射させて前記加工層を形成するように制御することを特徴とする請求項14に記載の基板加工装置。
The laser output control means includes
The vicinity of the crystal substrate surface to be processed is the vicinity of the irradiated surface,
Focus the laser beam on the substrate thickness position within a predetermined range from the back surface of the substrate that is the surface opposite to the irradiated surface,
The substrate processing apparatus according to claim 14, wherein the laser condensing unit is controlled to move away from the back surface of the substrate so as to irradiate laser light to form the processed layer.
前記回転ステージの回転中心軸と前記レーザ集光手段の前記加工対象結晶基板への照射中心軸との距離を変える半径方向距離変更手段を備えることを特徴とする請求項15に記載の基板加工装置。   16. The substrate processing apparatus according to claim 15, further comprising a radial distance changing unit that changes a distance between a rotation center axis of the rotary stage and an irradiation center axis of the laser focusing unit to the processing target crystal substrate. .
JP2016215253A 2016-08-16 2016-11-02 Substrate processing method and substrate processing equipment Active JP6851041B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016159669 2016-08-16
JP2016159669 2016-08-16

Publications (2)

Publication Number Publication Date
JP2018027565A true JP2018027565A (en) 2018-02-22
JP6851041B2 JP6851041B2 (en) 2021-03-31

Family

ID=61248205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215253A Active JP6851041B2 (en) 2016-08-16 2016-11-02 Substrate processing method and substrate processing equipment

Country Status (1)

Country Link
JP (1) JP6851041B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010988A (en) * 2000-09-13 2003-01-15 Hamamatsu Photonics Kk Laser machining device
JP2007165848A (en) * 2005-11-16 2007-06-28 Denso Corp Method of manufacturing semiconductor chip
JP2010024064A (en) * 2008-07-15 2010-02-04 Seiko Epson Corp Method for manufacturing structure and droplet ejection head
JP2011206838A (en) * 2010-03-30 2011-10-20 Hamamatsu Photonics Kk Laser beam machining method
WO2012108054A1 (en) * 2011-02-10 2012-08-16 信越ポリマー株式会社 Production method for monocrystalline substrate and production method for monocrystalline member with modified layer formed therein
JP2013158778A (en) * 2012-02-01 2013-08-19 Shin Etsu Polymer Co Ltd Method for producing monocrystalline substrate, monocrystalline substrate, and method for producing monocrystalline member with modified layer formed therein
JP2015123465A (en) * 2013-12-26 2015-07-06 信越ポリマー株式会社 Substrate processing device and substrate processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003010988A (en) * 2000-09-13 2003-01-15 Hamamatsu Photonics Kk Laser machining device
JP2007165848A (en) * 2005-11-16 2007-06-28 Denso Corp Method of manufacturing semiconductor chip
JP2010024064A (en) * 2008-07-15 2010-02-04 Seiko Epson Corp Method for manufacturing structure and droplet ejection head
JP2011206838A (en) * 2010-03-30 2011-10-20 Hamamatsu Photonics Kk Laser beam machining method
WO2012108054A1 (en) * 2011-02-10 2012-08-16 信越ポリマー株式会社 Production method for monocrystalline substrate and production method for monocrystalline member with modified layer formed therein
JP2013158778A (en) * 2012-02-01 2013-08-19 Shin Etsu Polymer Co Ltd Method for producing monocrystalline substrate, monocrystalline substrate, and method for producing monocrystalline member with modified layer formed therein
JP2015123465A (en) * 2013-12-26 2015-07-06 信越ポリマー株式会社 Substrate processing device and substrate processing method

Also Published As

Publication number Publication date
JP6851041B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP6818273B2 (en) Substrate processing method
JP5917862B2 (en) Processing object cutting method
JP5449665B2 (en) Laser processing method
JP4418282B2 (en) Laser processing method
JP6516184B2 (en) Apparatus and method for slicing brittle substrate
JP2017071074A (en) Method for manufacturing internal processing layer formation single crystal substrate, and method for manufacturing single crystal substrate
JP5491761B2 (en) Laser processing equipment
WO2012096096A1 (en) Laser processing method
JP4837320B2 (en) Processing object cutting method
WO2010116917A1 (en) Laser machining device and laser machining method
WO2012096094A1 (en) Laser processing method
WO2017056739A1 (en) Laser processing method
JP2002192369A (en) Laser beam machining method and laser beam machining device
WO2012096092A1 (en) Laser processing method
WO2013039012A1 (en) Laser machining method and laser machining device
JP3867109B2 (en) Laser processing method
WO2012096093A1 (en) Laser processing method
JP3867110B2 (en) Laser processing method
JP6779486B2 (en) Substrate processing method and substrate processing equipment
EP3467159B1 (en) Substrate manufacturing method
JP6605277B2 (en) Laser processing method and laser processing apparatus
JP6851040B2 (en) Substrate processing method and substrate processing equipment
JP6752232B2 (en) How to cut the object to be processed
JP6202695B2 (en) Single crystal substrate manufacturing method
JP2018027565A (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6851041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250