JP2018024966A - Far-infrared radiation fiber, nonwoven fabric, filamentous body, and method for producing far-infrared radiation fiber - Google Patents

Far-infrared radiation fiber, nonwoven fabric, filamentous body, and method for producing far-infrared radiation fiber Download PDF

Info

Publication number
JP2018024966A
JP2018024966A JP2017145225A JP2017145225A JP2018024966A JP 2018024966 A JP2018024966 A JP 2018024966A JP 2017145225 A JP2017145225 A JP 2017145225A JP 2017145225 A JP2017145225 A JP 2017145225A JP 2018024966 A JP2018024966 A JP 2018024966A
Authority
JP
Japan
Prior art keywords
far
infrared radiation
fiber
infrared
radiation fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017145225A
Other languages
Japanese (ja)
Other versions
JP6967219B2 (en
Inventor
豊 小寺
Yutaka Kodera
豊 小寺
弘美 染野
Hiromi Someno
弘美 染野
智博 松橋
Tomohiro Matsuhashi
智博 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pair Shape Co Ltd
Sml Tech Co Ltd
Sml Technology
Sml-Technology Co Ltd
Original Assignee
Pair Shape Co Ltd
Sml Tech Co Ltd
Sml Technology
Sml-Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pair Shape Co Ltd, Sml Tech Co Ltd, Sml Technology, Sml-Technology Co Ltd filed Critical Pair Shape Co Ltd
Publication of JP2018024966A publication Critical patent/JP2018024966A/en
Priority to JP2021168439A priority Critical patent/JP7177450B2/en
Application granted granted Critical
Publication of JP6967219B2 publication Critical patent/JP6967219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a far-infrared radiation fiber in which: particles, made up of a far-infrared radiation material with improved heat build-up properties, are dispersed in a polymer elemental wire, and a method of producing the same.SOLUTION: The present invention provides a far-infrared radiation fiber in which: particles of porous clay mineral are dispersed in a polymer elemental wire. The polymer elemental wire is made up of a hygroscopicic cellulose-derived polymer material.SELECTED DRAWING: Figure 1

Description

本発明は、遠赤外線放射材料からなる粒子を高分子素線の内部に分散させた遠赤外線放射繊維、不織布、糸状体、及び遠赤外線放射繊維の製造方法に関し、特に、天然素材からなり発熱性に優れた遠赤外線放射繊維、不織布、糸状体、及び遠赤外線放射繊維の製造方法に関する。   The present invention relates to a far-infrared radiation fiber, a nonwoven fabric, a filamentous body, and a method for producing a far-infrared radiation fiber in which particles composed of a far-infrared radiation material are dispersed inside a polymer strand, and in particular, a natural material made of exothermic material. The present invention relates to a far-infrared radiating fiber, a nonwoven fabric, a filamentous body, and a method for producing a far-infrared radiating fiber.

自然界において、シルトや粘土などからなる「泥」が堆積した後に脱水固結すると、多孔質粘土鉱物が生成される。かかる多孔質粘土鉱物は、「泥岩」と称されるが、堆積した泥の種類によって含まれるミネラル成分等に差が生じるものの、一般的には、遠赤外線やマイナスイオンを発生するものが多い。   In the natural world, porous clay minerals are produced when dehydrating and solidifying after “mud” made of silt or clay is deposited. Such porous clay minerals are referred to as “mudstone”, but generally, there are many that generate far-infrared rays and negative ions, although there are differences in mineral components and the like depending on the type of accumulated mud.

ここで、非特許文献1では、赤泥等から得られる泥岩を含む、様々な天然鉱物の遠赤外線放射特性のデータが示されている。これらは、粉砕された天然鉱物を含むスラリーを鋼板の表面に塗布して測定されている。放射性特性はその構成元素によりほぼ決定され結晶性はあまり影響しないとしており、おおむね3〜20μmの同程度の波長から放射強度が高くなる傾向にある。   Here, Non-Patent Document 1 shows data of far-infrared radiation characteristics of various natural minerals including mudstone obtained from red mud and the like. These are measured by applying a slurry containing a pulverized natural mineral to the surface of a steel sheet. The radioactive characteristics are almost determined by the constituent elements, and the crystallinity is not so affected, and the radiation intensity tends to increase from the same wavelength of about 3 to 20 μm.

ところで、このような遠赤外線やマイナスイオンを発生する天然鉱物を繊維と複合化させた発熱性繊維が提案され、これを加工した織物などは、衣服、農業用資材、保温用製品など、多くの応用製品に利用され得る。   By the way, exothermic fibers in which natural minerals that generate far-infrared rays and negative ions are combined with fibers have been proposed, and fabrics processed from these fibers are often used for clothing, agricultural materials, heat insulation products, etc. It can be used for application products.

例えば、特許文献1では、遠赤外線放射物質を不織布の両面又は片面に塗布して乾燥させた床暖房用遠赤外線温熱シートが開示されている。ここでは、遠赤外線放射物質に第三黒色硬質泥岩類中の断層破砕部に産出する酸化珪素を主体にした黒鉛珪石粉末(商品名「シリカブラック」)とムライト系遠赤外線放射物質とを用いている。これらを水で混練して塗布するとしている。波長600〜2000μmの遠赤外線を効率良く放射することができ、人体や物質を構成する分子に熱エネルギーおよび活性エネルギーを発生させて、分子を効率的に加熱することができるとしている。   For example, Patent Document 1 discloses a far-infrared thermal sheet for floor heating in which a far-infrared emitting material is applied to both sides or one side of a nonwoven fabric and dried. Here, using far-infrared radiation material, graphite silica powder (trade name "Silica Black") mainly composed of silicon oxide produced in the fracture section of the third black hard mudstone and mullite far-infrared radiation material. Yes. These are kneaded with water and applied. It is said that far-infrared rays having a wavelength of 600 to 2000 μm can be efficiently radiated, and heat and active energy are generated in molecules constituting a human body and a substance, whereby the molecules can be efficiently heated.

また、特許文献2では、遠赤外線を放射する粘土を化学繊維中に分散させた人工繊維、織物、保温用物品、温熱シート用材料が開示されている。ここでは、モンモリロナイトやノントロナイト等のスメクタイト系粘土の微粒子をナイロンやポリエチレンテレフタレート(PET)等の化学繊維担体に分散させて複合化させるとしている。モンモリロナイトのような粘土の微粒子をカプロラクタムのような高分子原材料と混合し、重合させ高分子材料の中に分散させている。   Patent Document 2 discloses an artificial fiber, a woven fabric, a warming article, and a thermal sheet material in which clay radiating far infrared rays is dispersed in a chemical fiber. Here, the fine particles of smectite clay such as montmorillonite and nontronite are dispersed in a chemical fiber carrier such as nylon or polyethylene terephthalate (PET) to be combined. Fine particles of clay such as montmorillonite are mixed with a polymer raw material such as caprolactam, polymerized and dispersed in the polymer material.

特開2002−317949号公報JP 2002-317949 A 特開2005−97506号公報JP-A-2005-97506

尾谷賢著、「天然物の遠赤外放射特性」、北海道立工業試験場報告No.293(1994)、115〜121ページKen Otani, "Far-infrared radiation characteristics of natural products", Hokkaido Prefectural Industrial Experiment Station Report No.293 (1994), pages 115-121

遠赤外線を放射する天然鉱物等は、放射された遠赤外線が例えば人体に吸収された際に細胞内の水分の分子活動を活発化させ、これにより発熱させる。したがって、特許文献2に開示のような遠赤外線を放射する粘土を化学繊維中に分散させた人工繊維や織物で加工された衣服等を直接、肌身に着けることで、当該人工繊維に含まれる粘土から放射される遠赤外線によって、水分を含む着用者の細胞が発熱して暖かさを感じるとされている。   Natural minerals that emit far-infrared rays, for example, activate the molecular activity of water in the cells when the emitted far-infrared rays are absorbed by the human body, thereby generating heat. Therefore, the clay contained in the artificial fiber can be directly worn on the skin such as artificial fibers in which clay radiating far infrared rays as disclosed in Patent Document 2 is dispersed in chemical fibers or clothes processed with fabrics. It is said that the wearer's cells containing moisture generate heat and feel warmth by far infrared rays radiated from.

一方、上記した人工繊維等は、それ自体が発熱するものではないため、生物の細胞等の水分を含んだ物体が遠赤外線の影響を受ける距離まで近接しなければ発熱をしない。このため、例えば、冬季等の気温が低く乾燥した状態では、これらからなる衣服を身に着けたとしても、発熱までに時間を要することになる。   On the other hand, since the above-described artificial fibers do not generate heat, they do not generate heat unless an object containing moisture such as a living cell is close to a distance affected by far infrared rays. For this reason, for example, in a dry state where the temperature is low, such as in winter, even if a garment made of these is worn, it takes time to generate heat.

本発明は以上のような状況に鑑みてなされたものであって、その目的は、より発熱性に優れた遠赤外線放射材料からなる粒子を高分子素線内部に分散させた遠赤外線放射繊維及びその製造方法、このような遠赤外線放射繊維を用いた不織布、糸状体を提供することにある。   The present invention has been made in view of the situation as described above, and the object thereof is a far-infrared radiating fiber in which particles made of a far-infrared radiating material having more excellent heat generation properties are dispersed inside a polymer strand, and An object of the present invention is to provide a manufacturing method thereof, a nonwoven fabric using such far-infrared radiation fibers, and a filamentous body.

本発明による遠赤外線放射繊維は、多孔質粘土鉱物の粒子を高分子素線の内部に分散させた遠赤外線放射繊維であって、前記高分子素線が吸湿性を有するセルロース由来の高分子材料からなり自発熱性を有することを特徴とする。   The far-infrared radiating fiber according to the present invention is a far-infrared radiating fiber in which particles of porous clay mineral are dispersed inside a polymer strand, wherein the polymer strand has a hygroscopic property. And is self-heating.

かかる発明によれば、遠赤外線放射粒子から放射された遠赤外線が吸湿性素材に捕捉された水分と容易に反応し、繊維自体を発熱させ、より発熱性に優れるのである。   According to this invention, the far infrared rays radiated from the far infrared radiation particles easily react with the moisture trapped in the hygroscopic material, and the fibers themselves generate heat, thereby being more exothermic.

上記した発明において、前記多孔質粘土鉱物は泥岩であることを特徴としてもよい。また、前記高分子材料はレーヨンであって、円形断面の一部を収縮させた断面形状を有することを特徴としてもよい。かかる発明によれば、より発熱性に優れながら、天然素材だけからなり、環境適合性にも優れるのである。   In the above-described invention, the porous clay mineral may be mudstone. The polymer material may be rayon, and may have a cross-sectional shape in which a part of a circular cross section is contracted. According to this invention, it is made of only a natural material and excellent in environmental compatibility while being more excellent in heat generation.

上記した発明による遠赤外線放射繊維は、不織布やあるいは糸状体に適用することができる。かかる発明によれば、遠赤外線放射繊維を用いて製造された衣服が人体から出た汗を吸収した場合に、衣服自体が発熱するとともに、繊維から放射される遠赤外線が人体自体に含まれる水分と反応して発熱作用を生じるため、衣服の暖かさをより強く感じることができる。また、農業用資材などに用いられることで、植物の生育に欠かせない水と反応し発熱作用を効率的且つ継続的に与え得るのである。   The far-infrared radiating fiber according to the above-described invention can be applied to a nonwoven fabric or a filamentous body. According to this invention, when a garment manufactured using far-infrared radiating fibers absorbs sweat from the human body, the garment itself generates heat and far-infrared radiation radiated from the fiber is contained in the human body itself. Reacts with and produces a heating effect, so that the warmth of the clothes can be felt more strongly. Further, by being used as an agricultural material, it reacts with water that is indispensable for the growth of plants and can efficiently and continuously give a heat generating action.

更に、本発明による製造方法は、多孔質粘土鉱物の粒子を高分子素線の内部に分散させた自発熱性の遠赤外線放射繊維の製造方法であって、前記多孔質粘土鉱物を粉砕して粉砕体とする粉砕工程と、前記粉砕体をアルカリ性水溶液中に分散させアルカリ性ビスコース溶液と混合し攪拌して前駆体を生成する混練工程と、前記前駆体をノズルから酸性溶液中に射出し繊維状に成形する成形工程と、を含むことを特徴とする。   Further, the production method according to the present invention is a method for producing a self-heating exothermic far-infrared radiating fiber in which porous clay mineral particles are dispersed inside a polymer strand, wherein the porous clay mineral is pulverized. A pulverizing step for forming a pulverized body, a kneading step for dispersing the pulverized body in an alkaline aqueous solution, mixing with an alkaline viscose solution and stirring to produce a precursor, and injecting the precursor into an acidic solution from a nozzle to produce a fiber And a molding step of molding into a shape.

かかる発明によれば、多孔質粘土鉱物からなる遠赤外線放射粒子を高分子素線の内部に効率よく分散させ、繊維自体に水分を吸収して自発熱し、より発熱性に優れる遠赤外線放射繊維を簡便な工程にて製造することが可能となる。   According to this invention, far-infrared radiation fibers composed of porous clay minerals are efficiently dispersed inside the polymer strands, and the fibers themselves absorb moisture to self-heat, and far-infrared radiation fibers that are more exothermic Can be manufactured by a simple process.

上記した発明において、前記多孔質粘土鉱物は、泥岩であってもよい。かかる発明によれば、天然素材だけからなり、環境適合性にも優れる遠赤外線放射繊維を簡便な工程にて製造することが可能となる。   In the above-described invention, the porous clay mineral may be mudstone. According to this invention, it becomes possible to manufacture a far-infrared radiation fiber made of only a natural material and excellent in environmental compatibility by a simple process.

本発明による遠赤外線放射繊維を示す部分斜視図である。It is a fragmentary perspective view which shows the far-infrared radiation fiber by this invention. 本発明による遠赤外線放射繊維に適用される遠赤外線放射材料の主要成分の含有量を示す表である。It is a table | surface which shows content of the main component of the far-infrared radiation material applied to the far-infrared radiation fiber by this invention. 本発明による遠赤外線放射繊維を製造するためのシステムを示す図である。1 shows a system for manufacturing far-infrared radiating fibers according to the present invention. FIG. 本発明による遠赤外線放射繊維のFTIR分析のチャート図である。It is a chart figure of the FTIR analysis of the far-infrared radiation fiber by this invention. 本発明による遠赤外線放射繊維の断面図である。It is sectional drawing of the far-infrared radiation fiber by this invention. 本発明による遠赤外線放射繊維の側面の電子顕微鏡写真である。It is an electron micrograph of the side surface of the far-infrared radiation fiber by this invention. 本発明による遠赤外線放射繊維の断面を含む電子顕微鏡写真である。It is an electron micrograph including the cross section of the far-infrared radiation fiber by this invention.

以下、本発明による遠赤外線放射繊維及びその製造方法の実施例について具体的に説明する。   Examples of far-infrared radiating fibers and methods for producing the same according to the present invention will be specifically described below.

図1は、本発明の代表的な一例による遠赤外線放射繊維の概要を示す部分斜視図である。遠赤外線放射繊維10は、遠赤外線放射材料からなる遠赤外線放射粒子12を、ベースとなる吸湿性素材からなる高分子素線14に分散させたものとして形成される。   FIG. 1 is a partial perspective view showing an outline of a far-infrared radiation fiber according to a typical example of the present invention. The far-infrared radiating fiber 10 is formed by dispersing far-infrared radiating particles 12 made of a far-infrared radiating material in polymer strands 14 made of a hygroscopic material serving as a base.

高分子素線14は、周囲の雰囲気中に含まれる水分を吸着して内部に保持する性質を有する材料で構成される。これらの材料は、例えば、セルロース由来の樹脂やアクリル樹脂、ポリ乳酸系樹脂等の高分子材料が適用される。このうち、セルロース由来の高分子材料としては、レーヨン、セロファン、ポリノジックあるいはキュプラ等が例示できる。これらはいずれも天然素材であり、環境適合性に優れる繊維を与えることとなり、特に農業資材用途などに好適である。   The polymer strand 14 is made of a material having a property of adsorbing and holding moisture contained in the surrounding atmosphere. As these materials, for example, polymer materials such as cellulose-derived resin, acrylic resin, and polylactic acid resin are applied. Among these, examples of the polymer material derived from cellulose include rayon, cellophane, polynosic, and cupra. These are all natural materials and give fibers excellent in environmental compatibility, and are particularly suitable for agricultural materials.

遠赤外線放射粒子12を構成する遠赤外線放射材料としては、未焼成の粘土鉱物、例えばモンモリロナイトやバーミキュライト等の多孔質泥岩が例示できる。多孔質泥岩は、後述する図2に示されるような、酸化物量比の質量パーセントで、60%程度のSiO、10〜18%程度のAlを主として構成されるもので、地中での加圧状態や微少含有鉱物によって性質が若干異なるものの、ここにおける粘度鉱物としては、わずかに吸水性を有するものであることが好ましい。遠赤外線放射粒子12は、このような遠赤外線放射材料を粉砕装置で粉砕加工されることにより、例えば、サブμmオーダー乃至数十μm程度の粒径を有する微粒子として形成される。 Examples of the far infrared radiation material constituting the far infrared radiation particles 12 include unfired clay minerals such as porous mudstone such as montmorillonite and vermiculite. The porous mudstone is mainly composed of about 60% SiO 2 and about 10 to 18% Al 2 O 3 in mass percentage of the oxide amount ratio as shown in FIG. 2 described later. Although the properties are slightly different depending on the pressure state and the micro-containing mineral, the viscosity mineral here preferably has a slight water absorption. The far-infrared radiation particles 12 are formed as fine particles having a particle size of, for example, a sub-μm order to several tens of μm by pulverizing such a far-infrared radiation material with a pulverizer.

図2は、遠赤外線放射粒子12に適用される多孔質泥岩の主要な酸化物量比の実施例を示す表である。SiO及びAlを多く含むとともに、NaO、MgO、SO、KO、CaO、TiO、FeO等の酸化物が他に含まれている。泥岩は細かい粘土粒子を固めたものであるから水溶性である。かかる特徴により、吸水性の水親和性に優れる上記したような高分子材料中に容易に分散できるのである。しかも、上記したような高分子材料とともに天然素材であり、ともに水溶性であることから、環境適合性に優れる繊維複合体を与えることとなる。 FIG. 2 is a table showing an example of the main oxide amount ratio of the porous mudstone applied to the far-infrared emitting particles 12. In addition to containing a large amount of SiO 2 and Al 2 O 3 , oxides such as Na 2 O, MgO, SO 3 , K 2 O, CaO, TiO 2 and FeO are also included. Mudstone is water-soluble because it is made of fine clay particles. Due to such characteristics, it can be easily dispersed in the above-described polymer material having excellent water-absorbing water affinity. In addition, since it is a natural material together with the polymer material as described above and both are water-soluble, a fiber composite excellent in environmental compatibility is provided.

図3は、遠赤外線放射繊維10を製造するための製造システムを示す概略図である。製造システム100は、泥岩の粉砕装置110と、粉砕された泥岩の粒子を高分子素線の原材料に混練する混練装置120と、紡糸装置130と、を含む。   FIG. 3 is a schematic view showing a manufacturing system for manufacturing the far-infrared radiating fiber 10. The production system 100 includes a mudstone crushing device 110, a kneading device 120 for kneading the crushed mudstone particles into the raw material of the polymer strand, and a spinning device 130.

粉砕装置110は、図1に示した遠赤外線放射粒子12の原料となる遠赤外線放射材料の岩石を粉砕する機構(例えばボールミル等)を備えており、原料となる岩石は、乾燥及び粉砕されて数μm〜数十μm程度の粒径を有する遠赤外線放射粒子12となる。   The crusher 110 includes a mechanism (for example, a ball mill) that crushes rocks of the far-infrared radiation material that is the raw material of the far-infrared radiation particles 12 shown in FIG. 1, and the rock that is the raw material is dried and crushed. The far-infrared radiation particles 12 having a particle size of about several μm to several tens of μm are obtained.

粉砕装置110で製造された遠赤外線放射粒子12は所定濃度の水酸化ナトリウム水溶液中に分散され、高分子素線14の原材料であるアルカリ性ビスコース溶液と混合され、攪拌する機構(例えばスクリュー等)を備えた混練装置120で混練される。これにより、遠赤外線放射粒子12は高分子素線14の原材料内に均等に分散される。なお、混練装置120は加熱機構(図示せず)を備えてもよい。   The far-infrared radiation particles 12 produced by the pulverizer 110 are dispersed in an aqueous sodium hydroxide solution having a predetermined concentration, mixed with an alkaline viscose solution that is a raw material of the polymer strand 14, and stirred (for example, a screw). Is kneaded by a kneading apparatus 120 equipped with Thereby, the far-infrared radiation particles 12 are evenly dispersed in the raw material of the polymer strand 14. The kneading device 120 may include a heating mechanism (not shown).

紡糸装置130は、混練装置120で製造された混合物(前駆体)を微小な貫通孔を複数有するノズル(口金)から押し出すことにより繊維状とする装置であり、押し出された繊維は、ノズルの後流側に位置する巻き取り機構で巻き取られて糸状に形成される。また、混練装置120で上記混合物が加熱されている場合、ノズルの後流には気体あるいは液体で押し出された繊維を冷却する冷却機構を追加的に備える。   The spinning device 130 is a device that makes the mixture (precursor) produced by the kneading device 120 into a fiber shape by extruding it from a nozzle (die) having a plurality of minute through holes. It is wound up by a winding mechanism located on the flow side and formed into a thread shape. In addition, when the mixture is heated by the kneading device 120, a cooling mechanism for cooling the fiber extruded with gas or liquid is additionally provided in the downstream of the nozzle.

このような構成の製造システムを用いて、遠赤外線放射粒子12の材料は粉砕装置110で粉砕された後、混練装置120で吸湿性素材からなる高分子素線14の原材料と混練され、その後、紡糸装置130で糸状の繊維として成形される。   Using the manufacturing system having such a configuration, the material of the far-infrared emitting particles 12 is pulverized by the pulverizing device 110 and then kneaded with the raw material of the polymer strand 14 made of the hygroscopic material by the kneading device 120, and then The yarn is formed as a fiber by the spinning device 130.

図4には、糸状の繊維の集合体をFTIRにより赤外分光光度測定を行った結果を示した。このチャート図から判るように、分光放射率は7μm以上の波長で比較的フラットであるものの、遠赤外域の10〜12μmの波長で分光放射率の落ち込みA1,A2を生じるとともに、この間に小ピークB1が明瞭に観察される。   FIG. 4 shows the result of infrared spectrophotometric measurement of an aggregate of filamentous fibers by FTIR. As can be seen from this chart, the spectral emissivity is relatively flat at a wavelength of 7 μm or more, but the spectral emissivity drops A1 and A2 occur at wavelengths of 10 to 12 μm in the far infrared region, and a small peak is produced between them. B1 is clearly observed.

以下に、図3に示した製造システムを用いて製造された本発明による遠赤外線放射繊維の具体的な一態様を示す。   Below, the specific one aspect | mode of the far-infrared radiation | emission fiber by this invention manufactured using the manufacturing system shown in FIG. 3 is shown.

まず、図2に示した実施例1乃至3の成分を含む遠赤外線放射材料の岩石を、図3に示す粉砕装置110で粉砕して粉末を準備する。   First, a rock of far infrared radiation material containing the components of Examples 1 to 3 shown in FIG. 2 is pulverized by a pulverizer 110 shown in FIG. 3 to prepare powder.

続いて、上記粉末と、高分子素線14の原材料であるビスコースと、を混練装置120内に投入し、加熱しつつ攪拌を行い、混練を行う。   Subsequently, the powder and viscose, which is a raw material of the polymer strand 14, are put into the kneading apparatus 120, stirred while heating, and kneaded.

その後、混合物(前駆体)を混練装置120から取り出し、紡糸装置130にて糸状の繊維に成形する。具体的には、多数の貫通孔が形成された口金から混合物を酸性溶液槽に押し出し、冷却とともに化学反応を生じさせることにより、泥岩質の遠赤外線放射粒子12がレーヨンからなる高分子素線14に分散されたレーヨン繊維が形成される。   Thereafter, the mixture (precursor) is taken out from the kneading device 120 and formed into a fiber in the spinning device 130. Specifically, the mixture is extruded into an acidic solution tank from a die in which a large number of through holes are formed, and a chemical reaction is caused together with cooling, whereby the mudstone far-infrared radiation particles 12 are made of rayon. A rayon fiber dispersed in is formed.

このような製造過程により製造された本発明の代表的な一例による遠赤外線放射繊維は、遠赤外線を放射する多孔質泥岩からなる粒子を、例えばレーヨン等の高分子材料からなる吸湿性素材に分散した構造を有する。これにより、遠赤外線放射繊維が水分を吸収すると、粒子から放射された遠赤外線が吸湿性素材に捕捉された水分と反応して繊維自体が発熱を生じ、発熱性に優れる。また、ある程度の保水性を有するとともに、保水された水が活性化される。このため、かかる繊維で皮膚に接触する衣類を製造するとき、例えば、手袋とするとき、皮膚に活性化した水が接触され続けることとなる。   The far-infrared radiating fiber according to a typical example of the present invention manufactured by such a manufacturing process is obtained by dispersing particles made of porous mudstone that emits far-infrared rays into a hygroscopic material made of a polymer material such as rayon. Has the structure. Thus, when the far-infrared radiating fiber absorbs moisture, the far-infrared radiated from the particles reacts with moisture trapped in the hygroscopic material, and the fiber itself generates heat, which is excellent in heat generation. Moreover, while having a certain amount of water retention, the retained water is activated. For this reason, when manufacturing the clothing which contacts skin with such a fiber, for example, when it is set as a glove, the activated water will continue to be in contact with skin.

したがって、上記した遠赤外線放射繊維を用いた農業用資材では、植物の生育に欠かせない水と反応し発熱作用を効率的且つ継続的に与え得るのである。更に、植物の根が泥岩質の遠赤外線放射粒子12を含む繊維を土のように認識し、繊維の内部へ向けて根が強固に形成され、植物の成長に寄与し得るのである。   Therefore, the agricultural material using the far-infrared radiating fibers described above can react with water that is indispensable for the growth of plants to efficiently and continuously provide a heat generating action. Furthermore, the plant root recognizes the fiber containing the mudstone-like far-infrared radiation particles 12 as soil, and the root is firmly formed toward the inside of the fiber, which can contribute to the growth of the plant.

また、不織布等の布製品や衣服等を製造することにより、水分を吸収すると発熱する機能を備えた繊維を含む布製品や衣服等を形成することが可能となる。また、このような衣服を身に着けることにより、例えば衣服を構成する繊維が人体から出た汗を吸収した場合に、衣服自体が発熱するとともに、繊維から放射される遠赤外線が人体自体に含まれる水分と反応して発熱作用を生じるため、衣服の暖かさをより強く感じるという効果を奏する。   In addition, by manufacturing a cloth product such as a non-woven fabric or clothes, it is possible to form a cloth product or clothes including a fiber having a function of generating heat when moisture is absorbed. In addition, by wearing such clothes, for example, when the fibers constituting the clothes absorb sweat from the human body, the clothes themselves generate heat and far infrared rays emitted from the fibers are included in the human body itself. It produces an exothermic effect by reacting with the moisture, so that the warmth of the clothes is felt more strongly.

図5乃至7は、泥岩質の遠赤外線放射粒子22がレーヨンからなる高分子素線24に分散されたレーヨン繊維(遠赤外線放射繊維)20の断面図及び顕微鏡写真である。   5 to 7 are a cross-sectional view and a micrograph of a rayon fiber (far-infrared radiation fiber) 20 in which mudstone far-infrared radiation particles 22 are dispersed in a polymer wire 24 made of rayon.

図5及び6に示すように、レーヨン繊維20は、吸湿性素材であるレーヨンからなる高分子素線24に泥岩質の遠赤外線放射粒子22を分散させて形成される。高分子素線24は、略円形断面(図5中の一点鎖線)の外周に対応する複数の側面24aと、当該複数の側面24aの間に位置する複数の凹面24bと、が交互に配置され、円形断面の一部を収縮させた断面形状を有する。   As shown in FIGS. 5 and 6, the rayon fiber 20 is formed by dispersing mudstone far-infrared radiation particles 22 in a polymer strand 24 made of rayon, which is a hygroscopic material. In the polymer strand 24, a plurality of side surfaces 24a corresponding to the outer periphery of a substantially circular cross section (a chain line in FIG. 5) and a plurality of concave surfaces 24b positioned between the plurality of side surfaces 24a are alternately arranged. And a cross-sectional shape in which a part of the circular cross-section is contracted.

このようなレーヨン繊維20の断面形状は、加熱された状態のビスコース材料を口金から酸性溶液槽に押し出す際に、当該酸性溶液によって急激に冷却されて、高分子材料を収縮させて形成することができる。   Such a cross-sectional shape of the rayon fiber 20 is formed by rapidly cooling the heated viscose material from the die to the acidic solution tank and rapidly cooling by the acidic solution to contract the polymer material. Can do.

このような断面形状を有することにより、レーヨン繊維20は、吸湿する繊維の側面の表面積が増加するため、水分を吸収することによる繊維自体の発熱機能を上げることができる。また、レーヨン繊維20における遠赤外線の放射面の面積も増加することとなるため、この繊維を用いた農業用資材や衣服の発熱作用も向上させることができる。特に、植物の根が泥岩質の遠赤外線放射粒子22を含むレーヨン繊維20を土のように認識し、レーヨン繊維20の内部へ向けて根が強固に形成され、植物の成長に寄与し得るのである。   By having such a cross-sectional shape, the rayon fiber 20 can increase the heat generation function of the fiber itself by absorbing moisture because the surface area of the side surface of the fiber that absorbs moisture increases. Moreover, since the area of the far-infrared radiation | emission surface in the rayon fiber 20 will also increase, the heat_generation | fever effect | action of agricultural materials and clothes using this fiber can also be improved. In particular, the root of the plant recognizes the rayon fiber 20 including mudstone-like far-infrared radiation particles 22 as soil, and the root is firmly formed toward the inside of the rayon fiber 20, which can contribute to the growth of the plant. is there.

なお、図5に示す例では、3つの側面24aと3つの凹面24bとを含む断面形状の遠赤外線放射繊維20を例示したが、図7に示すように、複数の側面及び凹面の数は3つに限定されることなく、任意の数で形成することができる。また、口金に形成する貫通孔の形状を円形以外に多角形や星形のものを採用し、断面形状としては、多角形断面や星形断面等、円形断面以外の所望の断面形状を採用され得る。   In the example shown in FIG. 5, the far-infrared radiation fiber 20 having a cross-sectional shape including the three side surfaces 24a and the three concave surfaces 24b is illustrated. However, as shown in FIG. It is not limited to one and can be formed in any number. In addition, the shape of the through-hole formed in the base adopts a polygonal shape or a star shape other than the circular shape, and a desired cross-sectional shape other than the circular cross-section such as a polygonal cross-section or a star-shaped cross-section is adopted as the cross-sectional shape. obtain.

また、繊維形状でなく、ビーズ状の分散粒ともし得る。かかる分散粒を農業用資材の土壌代替品として使用することが好適である。   Moreover, it may be a bead-like dispersed particle instead of a fiber shape. It is preferable to use such dispersed grains as a soil substitute for agricultural materials.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれら実施例に限定されるものではない。また、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。   As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to these Examples. In addition, those skilled in the art will be able to find various alternative embodiments and modifications without departing from the spirit of the present invention or the scope of the appended claims.

10、20 遠赤外線放射繊維
12、22 粒子
14、24 高分子素線
24a 側面
24b 凹面
100 製造システム
110 粉砕装置
120 混練装置
130 紡糸装置
10, 20 Far-infrared radiation fibers 12, 22 Particles 14, 24 Polymer strand 24a Side surface 24b Concave surface 100 Production system 110 Crushing device 120 Kneading device 130 Spinning device

Claims (7)

多孔質粘土鉱物の粒子を高分子素線の内部に分散させた遠赤外線放射繊維であって、前記高分子素線が吸湿性を有するセルロース由来の高分子材料からなり自発熱性を有することを特徴とする遠赤外線放射繊維。   A far-infrared radiation fiber in which porous clay mineral particles are dispersed inside a polymer strand, wherein the polymer strand is made of a hygroscopic cellulose-derived polymer material and is self-heating. Far-infrared radiation fiber characterized. 前記多孔質粘土鉱物は泥岩であることを特徴とする請求項1記載の遠赤外線放射繊維。   The far-infrared radiation fiber according to claim 1, wherein the porous clay mineral is mudstone. 前記高分子材料はレーヨンであって、円形断面の一部を収縮させた断面形状を有することを特徴とする請求項2記載の遠赤外線放射繊維。   3. The far-infrared radiation fiber according to claim 2, wherein the polymer material is rayon and has a cross-sectional shape obtained by shrinking a part of a circular cross-section. 請求項1乃至3のうちの1つに記載の遠赤外線放射繊維からなることを特徴とする不織布。   A non-woven fabric comprising the far-infrared radiation fiber according to any one of claims 1 to 3. 請求項1乃至3のうちの1つに記載の遠赤外線放射繊維からなることを特徴とする糸状体。   A filamentous body comprising the far-infrared radiation fiber according to any one of claims 1 to 3. 多孔質粘土鉱物の粒子を高分子素線の内部に分散させた自発熱性の遠赤外線放射繊維の製造方法であって、
前記多孔質粘土鉱物を粉砕して粉砕体とする粉砕工程と、
前記粉砕体をアルカリ性水溶液中に分散させアルカリ性ビスコース溶液と混合し攪拌して前駆体を生成する混練工程と、
前記前駆体をノズルから酸性浴中に射出し繊維状に成形する成形工程と、を含むことを特徴とする遠赤外線放射繊維の製造方法。
A method for producing a self-heating far-infrared emitting fiber in which porous clay mineral particles are dispersed inside a polymer strand,
A pulverizing step of pulverizing the porous clay mineral to form a pulverized body;
A kneading step in which the pulverized product is dispersed in an alkaline aqueous solution, mixed with an alkaline viscose solution and stirred to produce a precursor;
And a forming step of injecting the precursor from a nozzle into an acidic bath and forming the precursor into a fiber shape.
前記多孔質粘土鉱物は、泥岩であることを特徴とする請求項6記載の遠赤外線放射繊維の製造方法。   The method for producing a far-infrared radiation fiber according to claim 6, wherein the porous clay mineral is mudstone.
JP2017145225A 2016-07-29 2017-07-27 Manufacturing method of far-infrared radiation fiber, non-woven fabric, filament, and far-infrared radiation fiber Active JP6967219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021168439A JP7177450B2 (en) 2016-07-29 2021-10-13 Agricultural material and plant growing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016150198 2016-07-29
JP2016150198 2016-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021168439A Division JP7177450B2 (en) 2016-07-29 2021-10-13 Agricultural material and plant growing method

Publications (2)

Publication Number Publication Date
JP2018024966A true JP2018024966A (en) 2018-02-15
JP6967219B2 JP6967219B2 (en) 2021-11-17

Family

ID=61195188

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017145225A Active JP6967219B2 (en) 2016-07-29 2017-07-27 Manufacturing method of far-infrared radiation fiber, non-woven fabric, filament, and far-infrared radiation fiber
JP2021168439A Active JP7177450B2 (en) 2016-07-29 2021-10-13 Agricultural material and plant growing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021168439A Active JP7177450B2 (en) 2016-07-29 2021-10-13 Agricultural material and plant growing method

Country Status (1)

Country Link
JP (2) JP6967219B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200138A (en) * 2017-05-26 2018-12-20 コンティニューム株式会社 Air conditioner operation method and net-like resin molding
CN109457486A (en) * 2018-11-22 2019-03-12 山东如意科技集团有限公司 A kind of woven fabric of water-absorbing fast-drying
CN114606651A (en) * 2022-01-20 2022-06-10 杭州龙碧科技有限公司 Nanofiber membrane for heat radiation cooling and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181032A (en) * 1997-09-05 1999-03-26 Beam Kogyo Kk Electret fiber and its production
JP2001316933A (en) * 2000-04-04 2001-11-16 Bishu Seki Method for producing fiber containing mineral powder added thereto and fiber produced therefrom
JP2006144213A (en) * 2004-10-19 2006-06-08 Kokuyo:Kk Fiber and paper containing crushed roofing tile
JP2007002384A (en) * 2004-09-30 2007-01-11 Fujiyama:Kk Fiber including lava powder and/or volcanic ash and method for producing the same
JP2009506137A (en) * 2005-08-26 2009-02-12 レンチング アクチエンゲゼルシャフト Cellulose molded body, method for producing the same, and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234405A (en) * 2012-05-09 2013-11-21 Daiwabo Holdings Co Ltd Radioactive nuclide adsorptive regenerated cellulosic fiber, method for producing the same, fiber structure, and filtering material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181032A (en) * 1997-09-05 1999-03-26 Beam Kogyo Kk Electret fiber and its production
JP2001316933A (en) * 2000-04-04 2001-11-16 Bishu Seki Method for producing fiber containing mineral powder added thereto and fiber produced therefrom
JP2007002384A (en) * 2004-09-30 2007-01-11 Fujiyama:Kk Fiber including lava powder and/or volcanic ash and method for producing the same
JP2006144213A (en) * 2004-10-19 2006-06-08 Kokuyo:Kk Fiber and paper containing crushed roofing tile
JP2009506137A (en) * 2005-08-26 2009-02-12 レンチング アクチエンゲゼルシャフト Cellulose molded body, method for producing the same, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018200138A (en) * 2017-05-26 2018-12-20 コンティニューム株式会社 Air conditioner operation method and net-like resin molding
CN109457486A (en) * 2018-11-22 2019-03-12 山东如意科技集团有限公司 A kind of woven fabric of water-absorbing fast-drying
CN114606651A (en) * 2022-01-20 2022-06-10 杭州龙碧科技有限公司 Nanofiber membrane for heat radiation cooling and preparation method and application thereof

Also Published As

Publication number Publication date
JP2022009122A (en) 2022-01-14
JP6967219B2 (en) 2021-11-17
JP7177450B2 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
JP7177450B2 (en) Agricultural material and plant growing method
KR100815459B1 (en) Method for producing textiles and masterbatch contained of powdered ore
CN106367836B (en) A kind of manufacturing method of hollow biomass graphene polyester fiber
CN101545153B (en) Anion terylene colored fiber and preparation and application thereof
CN101187086A (en) Weaving of anion fiber
CN103320888A (en) Composite fiber with effects of heat accumulation, heat preservation and health protection
TWI575125B (en) Green energy-saving fiber, its preparation method and the fabric made of the fiber
CN108866816A (en) A kind of bacteriostatic non-woven cloth and its preparation method and application
JP2004519564A (en) Active artificial cotton production method
CN104250880A (en) Production method for multifunctional polyester wadding sheet
CN104153031A (en) Heath fiber capable of promoting microcirculation of human body and production method of health fiber
CN109355729A (en) A kind of manufacturing method of Tai Ji stone and polyester fiber composite material
KR100361928B1 (en) Fiber manufacturing method
CN102965756B (en) Method for producing health-care polyprophylene bulked continuous filament
JP2011241522A (en) Fiber and fiber containing mineral radiating application products terahertz wave
KR101905094B1 (en) Light heat cotton and method for producing the same
CN103603078A (en) Method for producing multifunctional health-care antibacterial honeycomb fiber
KR102298553B1 (en) Yarn containing biotie particle, and method of manufacturing the same
KR20220139584A (en) Yarn containing magnetic mineral particle, and method of manufacturing the same
KR101713548B1 (en) Manufacturing method of functional fiber and the fiber
CN105297171A (en) Manufacturing process of biologic elastic polyester fiber
JPH09310235A (en) Production of processed yarn by blending or twisting silk fiber with composite rayon fiber having antibacterial, deodorizing, antifungal and insectididal properties and further having far infrared light-radiating characteristic and then spinning the blend
KR100494336B1 (en) Method of making un-woven textile emitting an anion
CN111270333B (en) Preparation process of anti-ultraviolet multi-effect high-strength chinlon chemical fiber
KR101076672B1 (en) The manufacturing method of functional textile

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210423

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6967219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250