JP2018023671A - 画像処理装置、x線撮像装置及び画像処理方法 - Google Patents

画像処理装置、x線撮像装置及び画像処理方法 Download PDF

Info

Publication number
JP2018023671A
JP2018023671A JP2016158544A JP2016158544A JP2018023671A JP 2018023671 A JP2018023671 A JP 2018023671A JP 2016158544 A JP2016158544 A JP 2016158544A JP 2016158544 A JP2016158544 A JP 2016158544A JP 2018023671 A JP2018023671 A JP 2018023671A
Authority
JP
Japan
Prior art keywords
base material
energy range
projection data
energy
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016158544A
Other languages
English (en)
Inventor
康隆 昆野
Yasutaka Konno
康隆 昆野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016158544A priority Critical patent/JP2018023671A/ja
Priority to PCT/JP2017/025196 priority patent/WO2018030055A1/ja
Publication of JP2018023671A publication Critical patent/JP2018023671A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】
冗長性を生じさせず、演算時間を増大させることなく基底物質の物理量を算出し、所望の画像を取得する。
【解決手段】
複数のX線検出素子に入射したX線フォトンを3以上のエネルギー範囲に分別して計数することにより得られた該エネルギー範囲毎の投影データを取得するデータ取得部と、前記エネルギー範囲毎の投影データに基づいて、前記エネルギー範囲の数よりも少ない数の複数の基底物質の物理量を算出する基底物質演算部と、前記基底物質の物理量を用いて所定の画像を生成する画像生成部と、を備え、前記基底物質演算部が、前記基底物質の物理量の算出に用いる適用エネルギー範囲として、3以上の前記エネルギー範囲のうち、前記基底物質と同数の前記エネルギー範囲を選択し、選択された前記適用エネルギー範囲の投影データに基づいて前記基底物質の物理量を算出する画像処理装置を提供する。
【選択図】図1

Description

本願発明は、画像処理装置、X線撮像装置及び画像処理方法に関し、特に、フォトンカウンティング型のX線検出器により取得されたデータに対する画像処理を行う画像処理装置、X線撮像装置及び画像処理方法に関する。
X線CT装置は、複数の方向から撮影した被検体のX線透過像である投影データからX線吸収係数(線減弱計数)を算出し、被検体の断層像である再構成像を得る装置である。従来、投影データを取得するためのX線検出器として、積分型のX線検出器を用いたX線CT装置が主流であったが、近年、X線フォトンの個数を計測するフォトンカウンティング型のX線検出器を搭載したX線CT装置が開発されつつある(例えば、特許文献1)。この装置では、これまでのX線CT装置では取得できなかったエネルギー毎の疑似単色の再構成像や、原子番号などの分布を示す吸収係数以外の再構成像(以降、これらの画像をマルチエネルギー画像と記す)を生成することができる。このような画像の生成は、例えば、投影データから基底物質の長さや面密度などの物理量を求めることで行われる。
一方、フォトンカウンティング型のX線検出器は、複数のエネルギー範囲に分別して、エネルギー範囲毎の投影データを得ることができ、基底物質数よりも多い数のエネルギー範囲に分別されることもある。このとき、すべてのエネルギー範囲を基底物質の物理量の決定に用いると冗長性が生じる。例えば、3つのエネルギー範囲の投影データから2つの基底物質の物理量の決定する場合である。すなわち、2つの基底物質の物理量の決定は2つの投影データで行うことができるが、3つのエネルギー範囲の投影データがある場合、2つの基底物質の物理量は、投影データの選び方で複数の解が存在することになり、冗長となる。これら複数の解が一致する場合も有り得るが、入射するX線のフォトン数に揺らぎが存在するため、多くの場合は一致しない。このような場合、例えば、揺らぎをモデル化し共役勾配法などの最適化処理を行って最適な解を求める必要があるが、このような最適化処理は多くの計算量が必要となり、結果の表示に遅延が生じる。特にスキャノ画像や、撮影範囲を確認などのためにリアルタイムでの表示が望ましい投影像、再構成像などの表示の妨げとなる場合もある。
そこで、例えば、特許文献1に記載されたX線CT装置では、エネルギー範囲を加算して、加算後のエネルギー範囲数を基底物質数と同数にし、加算後のエネルギー範囲の投影データを用いて、基底物質の物理量を算出している。この場合、冗長性が生じないため、結果を即時に得ることができる。
特開2014−233633号公報
しかしながら、特許文献1のX線CT装置では、複数のエネルギー範囲の投影データを加算するため、加算処理のための演算時間や、加算後のデータの保存のための記憶媒体が必要となってしまう。
また、加算処理後に得た基底物質の物理量に比して、加算処理を行わずに最適化処理を行って求めた基底物質の物理量はその情報量が多いことから、これらから求めた画像(以降、全エネルギー範囲利用画像と記す)が診断に供するために必要になると考えられる。このため、加算して得た画像とは別に、全エネルギー範囲利用画像を生成することが望ましいと考えられる。ところが、全エネルギー範囲利用画像の算出には、加算した画像の生成の際に取得した基底物質の物理量や生成したデータを活用することはできないため、全エネルギー範囲利用画像の生成には、画像生成に必要な演算を改めて行った上で再構成像を生成する必要が生じてしまう。
本発明は上記実情に鑑みてなされたものであり、冗長性を生じさせず、演算時間を増大させることなく基底物質の物理量を算出し、所望の画像を取得することを目的とする。
上記課題を解決するために、本発明は以下の手段を提供する。
本発明の一態様は、複数のX線検出素子に入射したX線フォトンを3以上のエネルギー範囲に分別して計数することにより得られた該エネルギー範囲毎の投影データを取得するデータ取得部と、エネルギー範囲毎の投影データに基づいて、エネルギー範囲の数よりも少ない数の複数の基底物質の物理量を算出する基底物質演算部と、基底物質の物理量を用いて所定の画像を生成する画像生成部と、を備え、基底物質演算部が、基底物質の物理量の算出に用いる適用エネルギー範囲として、3以上の前記エネルギー範囲のうち、基底物質と同数の前記エネルギー範囲を選択し、選択された前記適用エネルギー範囲の投影データに基づいて基底物質の物理量を算出する画像処理装置を提供する。
このように基底物質の物理量を算出する際に用いる適用エネルギー範囲を、算出する基底物質と同数とするので、基底物質の算出の際に冗長性が生じず所望の画像を少ない演算時間で取得することができる。
本発明によれば、冗長性を生じさせず、演算時間を増大させることなく基底物質の物理量を算出し、所望の画像を取得することができる。
本発明の実施形態に係る画像処理装置を適用したX線CT装置の概略を示すブロック図である。 本発明の実施形態に係る画像処理装置を適用したX線CT装置における演算部の概略を示すブロック図である。 図1のX線CT装置の検出部の概略を示す参考図である。 図1のX線CT装置の検出部において生じた電荷に応じた電圧信号を示すグラフである。 本発明の実施形態に係る画像処理装置を適用したX線CT装置における演算処理に係るフローチャートである。 本発明の実施形態に係る画像処理装置を適用したX線CT装置における高速算出モードの基底物質演算処理に係るフローチャートである。 本発明の実施形態に係る画像処理装置を適用したX線CT装置の高速算出モードの基底物質演算処理において用いる変換マップである。 本発明の実施形態に係る画像処理装置を適用したX線CT装置における通常算出モードの基底物質演算処理に係るフローチャートである。 本発明の実施形態に係る画像処理装置を適用したX線CT装置の通常算出モードの基底物質演算処理において用いる変換マップである。 本発明の実施形態の変形例2に係る画像処理装置を適用したX線CT装置におけるスキャノ画像生成処理に係るフローチャートである。 本発明の実施形態の変形例2に係る画像処理装置を適用したX線CT装置においてスキャノ画像用投影データからスキャノ画像を生成する際の説明図である。 本発明の実施形態の変形例3に係る画像処理装置を適用したX線CT装置の表示部に表示されるユーザーインターフェースの一例を示す参考図である。 本発明の実施形態の変形例3に係る画像処理装置を適用したX線CT装置における適用エネルギー範囲の選択処理に係るフローチャートである。 本発明の実施形態の変形例4に係る画像処理装置を適用したX線CT装置における適用エネルギー範囲の選択処理に係るフローチャートである。 本発明の実施形態の変形例5に係る画像処理装置を適用したX線CT装置における適用エネルギー範囲の選択処理に係るフローチャートである。 本発明に係る画像処理装置のブロック図である。 本発明の実施形態の変形例6に係る画像処理装置を適用したX線CT装置における演算処理に係るフローチャートである。
以下、本発明の一実施形態について、図面を参照して説明する。
本発明に係る画像処理装置は、複数のX線検出素子に入射したX線フォトンを3以上のエネルギー範囲に分別して計数することにより得られた該エネルギー範囲毎の投影データを取得するデータ取得部と、エネルギー範囲毎の投影データに基づいて、エネルギー範囲の数よりも少ない数の複数の基底物質の物理量を算出する基底物質演算部と、基底物質の物理量を用いて所定の画像を生成する画像生成部と、を備え、基底物質演算部が、基底物質の物理量の算出に用いる適用エネルギー範囲として、3以上の前記エネルギー範囲のうち、基底物質と同数の前記エネルギー範囲を選択し、選択された前記適用エネルギー範囲の投影データに基づいて基底物質の物理量を算出する。
このように構成された画像処理装置や、このような画像処理装置を備えたX線CT装置などのX線撮像装置によれば、基底物質の物理量を算出する際に用いる適用エネルギー範囲を、算出する基底物質と同数とするので、基底物質の算出の際に冗長性が生じず所望の画像を少ない演算時間で取得することができる。
以下、より具体的に本発明の実施形態について説明する。
<実施形態>
以下、本発明の実施形態に係るX線CT装置について図面を参照して説明する。
図1に示すように、X線CT装置は、撮影系としての、X線源100と、X線検出器111と、これらX線源100及び検出器111の検出部104(後述)を対向配置し所定の回転軸を中心に回転するガントリー回転部101と、ガントリー回転部101の開口内に配置された寝台天板103と、これら撮影系の動作に伴いX線検出器111が取得した信号を処理する信号処理部112とを備えている。
X線源100は、例えば管電圧で加速した電子ビームをタングステンやモリブデンなどのターゲット金属に衝突させ、その衝突位置(焦点)からX線を発生させる。
ガントリー回転部101は、X線源100及び検出部104を互いに対向配置し、所定の回転軸を中心に回転する。ガントリー回転部101の中央には、被検体102が挿入される開口が設けられ、この開口内に、被検体102が寝かせられる寝台天板103が配置されている。寝台天板103とガントリー回転部101とは、所定の方向に相対的に移動可能となっている。
X線検出器111は、入射したX線フォトンを検出し、3つのエネルギー範囲に分別して計数を行うフォトンカウンティング方式のX線検出素子が複数配置された検出部104と、X線検出素子から出力される投影像を収集する信号収集部108とを備えている。検出部104の詳細は後述する。
信号処理部112は、演算部105、表示部106、制御部107、記憶部109及び入力部110を備えている。
図2に示すように、演算部105は、収集した信号に所定の演算処理を行うため、信号収集部108で収集した信号に対して補正処理を行う補正処理部1052、マルチエネルギー画像等の再構成像を生成する再構成処理部1053、及び補正処理部1052と再構成処理部1053とを制御する主制御部1050を備えている。
補正処理部1052は、エア補正部1054を含んでいる。
再構成処理部1053は、基底物質演算部1055、マルチエネルギー画像用投影データ生成部1056、及び再構成像生成部1057を含んで構成されている。
演算部105の計算に用いられるパラメータやデータは、記憶部109に保存されており、演算部105は必要に応じて記憶部109からパラメータ等を読み出し、補正処理、演算処理、画像再構成などの計算を行う。このパラメータやデータには、例えば、エア補正部1054が用いるX線感度分布やX線分布を含む感度・X線分布データ141、基底物質演算部1055が面密度値から成る投影データ(以降、面密度投影データと記す)を算出する際や、マルチエネルギー画像用投影データ生成部1056がマルチエネルギー画像用の投影データを生成する際に用いるX線スペクトル分布と質量吸収係数データなどの計算用データ140などが含まれる。
ここで、感度・X線分布データ141は、エネルギー範囲毎に生成して予め記憶部109に記憶させておく。感度・X線分布データ141は、例えば、被検体102を設けずに、X線管100からX線を照射してエネルギー毎に投影データを取得し、それらに対してX線検出素子毎にビュー方向に加算平均を行い、X線検出器104での出力の平均値によって規格化して生成する。
表示部106は、演算部105により生成された再構成像などを表示する。
制御部107は、X線源100の発生駆動源の動作を制御するX線制御部、X線検出器111の信号読み出し動作を制御する読み出し制御部、ガントリー回転部101の回転と寝台天板103の移動を制御する撮影制御部、及びこれら各部全体を制御する全体制御部を備えている。記憶部109は、演算部105における演算処理に用いられるパラメータやデータ等を記憶している。入力部110は、X線CT装置における撮影条件等の入力を行う。
演算部105及び制御部107は、その一部又は全部をCPU(中央処理装置)、メモリ及び主記憶部109を含むシステムとして構築することができ、演算部105及び制御部107を構成する各部の機能は、予め記憶部に格納されたプログラムをCPUがメモリにロードし、実行することにより実現することができる。また機能の一部は、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などのハードウェアで構成することも可能である。
以下の説明においては、特に説明しない限り、上述した撮影系、制御部107及び信号処理部112を構成する要素は、公知のX線CT装置が備える要素と同様の構成を有し、同様の機能を持つ。
続いて、X線検出器111の検出部104について説明する。
検出部104は、X線源100を略中心とした円弧状に複数配置されており、ガントリー回転部101の回転に伴い、X線源100との位置関係を保ちながら回転する。なお、図1においては、説明の便宜上、検出部104が8個の場合を示したが、実際の装置では、例えば40個程度である。また検出部104の前面にはX線グリッド(図示せず)が設置されており、X線源100から照射されたX線のうち、被検体300などで散乱されたX線が、検出部104に入射するのを防ぐ。
検出部104は、例えば複数の同一のサイズのX線検出素子が、チャネル方向とスライス方向に2次元的に配置され、それぞれの方向で等間隔に配置された構造となっている。X線検出素子は、図1のX線CT装置において、チャネル方向と回転方向113を、スライス方向と回転軸方向114とを略一致させて配置されている。
一方、検出部104の断面は、例えば、図3に示すように、検出層401を挟むように正負の電極402,403が設けられてX線検出素子が構成され、その電極402,403には、読み出し回路405が接続された構造を有する。本実施形態では、正の電極402は、各X線検出素子で共通の構造である。
検出層401は、例えばCdTe(テルル化カドミウム)、CdZnTe(カドミジンクテルル)、Si(シリコン)などの半導体材料から成る。X線は、図2中の矢印404で示すように、正の電極402側から検出層401に入射し、X線フォトンを検出してそのエネルギーに応じた量の電荷を生じる。そして、検出部104は、この電荷に応じたアナログの電気信号を信号収集部108に出力する。
検出部104からのアナログ信号は、信号収集部108の読出し回路405に入力される。読出し回路405は、入射をトリガーとして読み出し、エネルギー分別とデジタル変換を行う。エネルギー分別は、入射した電荷で生じた電気信号を、所定の閾値により複数のエネルギー範囲に分別する処理である。このとき、発生した電気信号の波高や発生量は、入射したX線フォトンのエネルギーに依存するため、X線フォトンに応じたエネルギー範囲に分別できる。このようにエネルギー範囲に分別してそれぞれでカウントすることで、デジタル信号を得る。信号収集部108は、このように得たエネルギー範囲毎のデジタル信号を演算部105に出力する。
ここで、読出し回路405で行われる分別方法の一例を説明する。ここでは、3つのエネルギー範囲、つまり、所定の低エネルギー閾値未満であるエネルギー範囲(以下、「低エネルギー範囲」という)、所定の低エネルギー閾値以上高エネルギー閾値未満のエネルギー範囲(以下、「中エネルギー範囲」という)、所定の高エネルギー閾値以上のエネルギー範囲(以下、「高エネルギー範囲」という)に判別する例について説明する。
図4は、発生した電荷により生じた電圧信号127を示すグラフであり、横軸は時間、縦軸は電圧を示す。また、閾値131が低エネルギー閾値を、閾値132が高エネルギー閾値を表す。図4の例では、サンプリング時間123中にX線が入射してパルス出力120を生じ、サンプリング時間124中にX線が入射してパルス出力121を生じ、サンプリング時間125中にX線が入射してパルス出力122を生じている。なお、図4では、サンプリングはX線が入射するタイミングだけでなく、X線が入射しない場合(サンプリング時間126)でも周期的に行われる場合を示したが、X線フォトンが入射したタイミングでサンプリングが行われる場合も在り得る。
本実施形態においては、読み出し回路405は、入射信号によるX線フォトンをエネルギー範囲に分けて分別する前に、X線フォトンが入射したかを判断する。このため、読み出し回路405は、サンプリング毎に、その区間における出力電圧127の最大値と、閾値130と比較する。ここで閾値130は、X線フォトンの入力の有無を判断する閾値であり、出力電圧120が閾値130以上の場合には、以下に説明するエネルギー範囲の分別を行い、出力電圧120は閾値130未満の場合は行わない。このような閾値130は、電圧127は、X線が入力しないときにも検出部104の回路ノイズによって変動しており、これをX線による信号と誤検出しないために必要となる。そのため閾値130は、ゼロより大きく低エネルギー閾値131より小さな値で設定される。
図4におけるサンプリング時間126はX線が入射していないが、雑音によって変動が生じた出力電圧127の一例であり、出力電圧120は低エネルギー閾値121未満のため、読み出し回路405は、信号のエネルギー範囲の分別を行わない。
X線が入射して閾値130以上の電圧127が生じた場合、読み出し回路405は、その信号をエネルギー範囲に分別し、それぞれのエネルギー範囲で入射X線フォトン数をカウントする。この分別は、例えば、出力電圧127の最大値を、低エネルギー閾値131と高エネルギー閾値132と比較することで行う。
例えば、サンプリング時間123では、出力電圧120は低エネルギー閾値131未満のため、低エネルギー範囲と分別する。サンプリング時間124では、出力電圧121は低エネルギー閾値131以上であって、高エネルギー閾値132未満のため、中エネルギー範囲と分別する。サンプリング時間125では、出力電圧120は高エネルギー閾値132以上のため、高エネルギー範囲と分別する。
エネルギー範囲が分別されて入射したX線フォトン数をエネルギー範囲毎にカウントし、この合計をビュー毎に出力する。サンプリング時間はビューの時間と比較して非常に短く、ビュー間に多数回サンプリングを行うことになる。
このように、入射の有無とエネルギー範囲の分別を行い、信号収集部108は、ビュー毎に、エネルギー範囲毎のデジタル信号を生成する。
なおサンプリングでの最大値を用いて分別を行う代わりに、例えば、サンプリング中の出力電圧の積分値を用いてもよく、分別手法は上記手法に限定されない。
このように構成されたX線CT装置では、一般に、以下のように撮影動作が行われる。
まず撮影者が、入力部110から撮影条件を入力して実撮影の開始を入力すると、制御部107はX線源100からのX線の照射と、ガントリー回転部101を制御し撮影を開始する。例えば、X線源100では、120kVの管電圧で電子ビームを加速して、寝台天板103に載った被検体300に向けて照射されX線が照射される。被検体300を透過したX線は検出部104で検出される。検出部104は、X線検出素子毎に入射X線のエネルギーに応じた電荷を発生する。信号収集部108は、上述の通り、この電荷を高エネルギー範囲、中エネルギー範囲、低エネルギー範囲に分別し、エネルギー範囲毎及びビュー毎にデジタル信号を得て演算部105に出力する。
制御部107は、ガントリー回転部101を回転方向に回転させることで、被検体300に対するX線の照射角度を変化させる。このように回転駆動させながら、ビュー毎に焦点位置を変更させて撮影を繰り返し行い、360度分のデジタル信号を取得する。撮影は、例えば0.4度ごとに複数ビューにわたって行われる。このような撮影により、360度分のデジタル信号が得られ、360度分のデジタル信号を投影データとする。なお、X線源100から発生されるX線は、各ビューに同期したパルスX線でも良いし、連続X線でも良い。
演算部105は、取得した投影データに対し、所定の補正処理や演算処理を行い、マルチエネルギー投影データを生成する。すなわち、補正処理部102において、補正処理として、例えば、エア補正を、再構成処理部1053では、各演算処理として、例えば、密度画像生成、マルチエネルギー画像用投影データ生成、再構成像生成を行う。
以下、演算部105による演算処理について、図5のフローチャートに従って説明する。
図5に示すように、演算部105が信号収集部108から投影データを受け取ると、ステップS101において、エア補正部1054が信号収集部108から受け取った投影データに対してエア補正を行う。エア補正は、例えば、本撮影の事前に計測し生成して記憶部109に保存しておいた感度・X線分布データ141を用いて、投影データをエネルギー範囲毎に除することで実現する。エア補正は、各エネルギー範囲で取得した投影データ毎に行う。
ステップS102では、3つのエネルギー範囲の投影データを用いて、基底物質演算部1055において基底物質演算処理を行う。本実施形態に係るX線CT装置では、基底物質の物理量として面密度値を算出することとする。従って、本実施形態における基底物質演算処理は、面密度投影データ算出処理であり、ここでは、撮影範囲の確認等を目的として撮影後に直ちに表示が必要なリアルタイム画像を算出する高速算出モードと、時間をかけて診断に活用することのできる高質な画像を生成するための通常算出モードとの2つの算出モードを有することとして説明する。各モードにおける処理の詳細は後述する。
次のステップS103では、マルチエネルギー画像用投影データ生成部1056において、マルチエネルギー画像用の投影データを生成する。本実施形態では、マルチエネルギー画像の一つである疑似単色画像の投影データを生成することとし、以下、疑似単色画像の投影データ生成方法の一例について説明する。
疑似単色画像は、ある特定の単色のエネルギーの再構成像である。その単色のエネルギーをE、投影データをPE0とし、2つの基底物質を基底物質1と基底物質2としてそれらの投影データの値をδとδ、エネルギーEにおける質量吸収係数をμm(E)とμm(E)とすると、基底物質演算部1055にて算出した2つの基底物質の面密度投影データの値δ、δを用いて、投影データPE0は、例えば式(1)を用いることで算出することができる。
Figure 2018023671
ここで、エネルギーEにおけるフォトン数S(E)や、各基底物質の質量吸収係数μm(E)、μm(E)は、シミュレーションやデータベースなどを用いて計算用データ(140)として事前に用意しておくことができるため、面密度投影データの値δ、δが求まると、疑似単色画像の投影データが生成できることが分かる。
また面密度投影データの値δ、δは、焦点と検出素子とを結ぶ経路中にある物質の密度を積分したものになるため、以下の説明においては、面密度値という。なお、基底物質とは、例えば、脂肪、水、骨等の被検体を構成する特定の物質を示す。
次のステップS104では、再構成像生成部1057にて、再構成処理を行ってマルチエネルギー画像を取得する。再構成処理は、例えば、従来のX線CT装置で行われている一般的な再構成処理を適用すればよい。このようにして生成したマルチエネルギー画像は、表示部106に表示される。
本実施形態では、マルチエネルギー画像として疑似単色画像を生成する例について説明したが、基底物質密度画像、実効原子番号画像、電子密度画像、光電効果画像、コンプトン散乱画像、撮影で用いたスペクトル以外のスペクトルにおける吸収係数像などの画像など、他のさまざまなマルチエネルギー画像を生成することもできる。
続いて、ステップS102の面密度投影データ算出処理の詳細について説明する。
基底物質演算部1055は、高速算出モードの場合には、撮影で得た投影データから、基底物質と同数のエネルギー範囲のデータを抽出し、これらを用いて基底物質の物理量を求める。この基底物質の物理量を算出のために抽出したエネルギー範囲を、以下の説明においては、「適用エネルギー範囲」という。本実施形態においては、基底物質の物理量として、面密度値を求めることとしているため、基底物質演算部1055では、面密度値の算出を、全X線検出素子分及び全ビュー分の投影データに対して行うことで、面密度値データの集合である面密度投影データを得ることができる。
基底物質演算部1055における、高速算出モードの演算処理について図6のフローチャートに従って説明する。
ステップS201で、基底物質演算部1055は、投影データを用いて適用エネルギー範囲を決定する。ここで基底物質の物理量の決定は、X線がより多く入射しているエネルギー範囲を用いることで、SNRが良く精度が向上するため、X線フォトンが最も多くカウントされたエネルギー範囲を選択することが望ましい。
従って、ステップS201では、まず全X線検出素子及び全ビュー分のカウント値の合計値を、エネルギー範囲毎に算出する。つまり、高エネルギー範囲、中エネルギー範囲、低エネルギー範囲の夫々について、カウント値の合計値を算出する。そして、算出されたエネルギー範囲毎の合計値を用いて、当該合計値の大きい方から順に、基底物質と同数のエネルギー範囲を、適用エネルギー範囲として決定する。ここでは、基底物質が2つであり、中エネルギー範囲と高エネルギー範囲の2つのエネルギー範囲を適用エネルギー範囲として選択したとして説明する。
次のステップS202において、基底物質演算部1055は、投影データ中の1つのX線検出素子、ビューに対応するデータ点に対して、基底物質変換処理を行う。
図7に、基底物質変換処理に用いる変換用マップの例を示した。図7(A)に示す中エネルギー範囲の変換用マップ及び図7(B)に示す高エネルギー範囲の変換用マップは、いずれも基底物質1の面密度値と基底物質2の面密度値との組み合わせから投影データが取り得る値をプロットしたものである。つまり、中エネルギー範囲の変換用マップは中エネルギー範囲の投影データが取り得る値をプロットしたもの、高エネルギー範囲の変換用マップは高エネルギー範囲の投影データが取り得る値をプロットしたものである。
これらの変換用マップは、横軸が基底物質1の面密度値であり、縦軸が基底物質2の面密度値であり、基底物質1と基底物質2との組み合わせから予想される投影データの出力値が記録されたものである。このような変換用マップは、例えばシミュレーションなどにより事前に生成し、計算用データ140として記憶部109に事前に記憶しておく。曲線155は、中エネルギー範囲の変換マップ中で投影データの値が同一である等高線であり、中エネルギー範囲で計測された値と一致するものの集合である。曲線156は、高エネルギー範囲の変換マップ中での等高線であり、高エネルギー範囲で計測された値と一致するものの集合である。
これらの変換用マップの等高線から理解されるように、1つのエネルギー範囲の1つの出力値に対して、変換用マップ中に、複数の組み合わせの基底物質1と基底物質2の面密度値が存在する。そこで、曲線155と曲線156を重ね合わせた変換用マップを生成する(図7(C))。曲線155と曲線156との交点157は、2つのエネルギー範囲の投影データ値を両立する基底物質1と基底物質2の面密度値であり、交点157から基底物質1の面密度値は値158、基底物質2の面密度値は値159と決定することができる。このようにして、2つのエネルギー範囲の結果から2つの基底物質の面密度値を決定する。
次に、次のステップS203に進み、基底物質演算部1055により基底物質変換処理が完了したか否かを判定する。すなわち、基底物質演算部1055は、投影データの全てのデータ点で、言い換えると全てのX線検出素子分かつ全てのビューにおける基底物質変換処理が完了しているかを判定し、完了していないと判定された場合には、ステップS202に戻り、未処理のデータ点について基底物質変換処理を行う。
一方、ステップS203において、投影データの全てのデータ点に対して基底物質変換処理が完了したと判定された場合には、ステップS204に進み、得られた基底物質の面密度値の集まりである基底物質の面密度投影データを生成し、処理を終了する。この基底物質の面密度投影データは、基底物質毎に生成する。なお、このようにして生成された基底物質の面密度投影データは、図5のステップS103におけるマルチエネルギー画像用投影データの生成に用いられる。
続いて、基底物質演算部1055における、通常算出モードの演算処理について図8のフローチャートに従って説明する。通常撮影モードは、全てのエネルギー範囲の投影データを用いて基底物質の面密度値を求め、基底物質の面密度投影データを生成するものである。
図8のステップS301において、基底物質演算部1055は、まず投影データ中の1つのX線検出素子、ビューに対応するデータ点に対して、基底物質変換処理を行う。
図9に、基底物質変換処理に用いる変換用マップの例を示した。図9(A)は、低エネルギー範囲の変換用マップ、図9(B)は中エネルギー範囲の変換用マップ、図9(C)は高エネルギー範囲の変換用マップであり、これらの変換用マップは、いずれも基底物質1の面密度値と基底物質2の面密度値との組み合わせにおいて投影データが取り得る値を示す。各変換用マップは、横軸が基底物質1の面密度値、縦軸が基底物質2の面密度値であり、それらの組み合わせで予想される投影データの出力値が記録されたものである。
これらの変換用マップは、例えばシミュレーションなどにより事前に生成され、計算用データ140として記憶部109に事前に記憶しておく。曲線161は、低エネルギー範囲の変換マップ中で投影データの値が同一である等高線であり、低エネルギー範囲で計測された値と一致するものの集合である。曲線155は、中エネルギー範囲の変換マップ中での等高線であり、中エネルギー範囲で計測された値と一致するものの集合である。曲線156は、高エネルギー範囲の変換マップ中での等高線であり、高エネルギー範囲で計測された値と一致するものの集合である。
高速算出モードと同様に、1つのエネルギー範囲の1つの出力値に対して、複数の組み合わせの基底物質1と基底物質2の面密度値が存在する。図9(D)は、曲線160と曲線155と曲線156を重ね合わせた変換用マップである。これらの曲線の交点は2つのエネルギー範囲の投影データ値を両立する基底物質1と基底物質2の面密度値であるが、ここで通常算出モードでは、高速算出モードとは異なり、3つの曲線の交点が位置しない。
図9(D)の変換用マップでは、2つの曲線の交点157−1、交点157−2、交点157−3の3点が存在し、3つの曲線の共通の交点が存在しない。これは、例えば、照射されたX線のフォトン数の揺らぎなどの雑音に起因するものである。すなわち、例えば、1ビュー間に入射したX線フォトンが、低エネルギー範囲に属し、かつ、フォトン数が少ない場合、曲線161は共通の交点が存在する曲線からはずれるため、共通の交点を結ばなくなることからも理解できる。
このように、3つの曲線に共通する交点が存在しないことから、ステップS302において、最適化処理を行う。具体的には、雑音を考慮し、最も確からしい基底物質1と基底物質2の面密度値の組み合わせを決定する。この処理では、例えば、それぞれのエネルギー範囲の投影データの出力に対して、各曲線161、155、156はX線の量子揺らぎなどによる雑音によってどの程度の誤差を有しているかを求め、その誤差から交点157−1、交点157−2、交点157−3の位置がどの程度の誤差の分布を持つかを求め、最も誤差の少ない位置を最も確からしい基底物質1と基底物質2の面密度値として算出する。このように最適な値を求める方法として、例えば、共役勾配法などを適用することができる。
このように1組の基底物質1と基底物質2の面密度値を決定した後、次のステップS303に進み、基底物質演算部1055により基底物質変換処理が完了したか否かを判定する。すなわち、基底物質演算部1055は、投影データの全てのデータ点で、言い換えると全てのX線検出素子分かつ全てのビューにおける基底物質変換処理が完了しているかを判定し、完了していないと判定された場合には、ステップS301に戻り、未処理のデータ点について基底物質変換処理及びステップS302の最適化処理を行う。
一方、ステップS303において、投影データの全てのデータ点に対して基底物質変換処理が完了したと判定された場合には、ステップS304に進み、得られた基底物質の面密度値の集まりである基底物質の面密度投影データを生成し、処理を終了する。この基底物質の面密度投影データは、基底物質毎に生成する。
以上述べたように、高速算出モードは、エネルギー範囲数と基底物質数とが同じであるため、冗長性は無く、一意に基底物質の面密度投影データを求めることができる。このため、撮影直後に撮影範囲を確認するために用いる再構成像のように、リアルタイムでの表示が望ましい再構成像を提供できる。
一方、通常撮影モードは、エネルギー範囲数が基底物質数よりも多いため、冗長性がある。このため、一意に基底物質の面密度投影データを求めることができず、最適化処理を要する。このため、処理に時間を必要として、リアルタイム用の画像生成には適さないが、高速算出モードよりも多くのエネルギー範囲の投影データを用いることができる。
従って、エネルギー情報を用いて、より正確に基底物質の面密度値を決定できる。更に多くのデータを用いているので、高速算出モードよりもSNRも良く、より正確に基底物質の面密度値を決定できる。従って、通常撮影モードにて、診断で使用できる高質な画像を提供できる。
以上のようにX線CT装置を構成することにより、高速に基底物質の物理量を算出し、撮影して直ぐに再構成像を提供することが可能となる。
なお、上記した高速算出モード及び通常撮影モードに関し、各モードによる画像の生成は必要に応じて行うことができる。すなわち、高速算出モード及び通常撮影モードによる画像の生成を所望の順番で双方行うこともでき、何れか一方のみを行うこともできる。
例えば、高速算出モード、に次いで、通常撮影モードの順で画像生成を行い、高速算出モードで得た画像を表示した後、通常撮影モードで得た画像を取得する等、モードの使用についてはユーザが適宜決定することができる。このように、まず高速モードによる画像を表示することで、ユーザは、先に表示された再構成像で撮影直後に撮影範囲を確認することができ、その後に表示された通常モードによる精細な再構成像にて、診断を行うことが可能となる。特に、通常撮影モードで生成した再構成像を表示する際、高速算出モードで生成して先に表示している再構成像と同じ撮影位置のものを、高速算出モードの再構成像を置き換えるように重ねて表示することにより、高速算出モードにより取得した画像がどの位置の画像であるかを認識することが容易となる。
また、本実施形態では、X線検出器は3つのエネルギー範囲にX線フォトンを分別する例について説明したが、エネルギー範囲は3つに限られず、4つ以上であってもよい。同様に、2つの基底物質を同定する例について説明したが、2つ以上で、エネルギー範囲数よりも少ない数の基底物質に分別することもできる。またこのときも、通常算出モードでは、全てのエネルギー範囲を用いて基底物質を算出し、高速算出モードでは、基底物質数と同数の一部のエネルギー範囲を用いて基底物質を算出することができる。
更に、通常算出モードでは、基底物質数よりも多い一部のエネルギー範囲の投影データを選定して用いることができる。通常算出モード及び高速算出モードの両モードとも、一部の複数のエネルギー範囲の投影データを加算して用いることもできる。ただし加算後のエネルギー範囲数は、通常算出モードでは基底物質数よりも多く、高速算出モードでは基底物質数と同数とする。
さらに、本実施形態では、基底物質の物理量として、基底物質演算部1055が面密度値を求める例について説明したが、基底物質の物理量は面密度値に限られず、基底物質の長さ(厚さ)であっても良い。基底物質の長さは、基底物質の面密度と密度が分かれば求めることができることから分かるように、基底物質の密度を仮定することや実際に決定することで、求めることができる。
(変形例1)
上述の例では、高速算出モードによる画像生成と通常撮影モードによる画像生成を別個独立の処理として説明したが、これに限られず、例えば、高速算出モードによる画像生成の際に算出したデータを通常算出モードの画像を生成する際に活用することができる。
すなわち、基底物質演算部1055は、上述した高速算出モードによる面密度投影データ算出処理において、適用エネルギー範囲を決定して、決定したエネルギー範囲において行った基底物質変換処理の結果を記憶部109に記憶しておき、これを通常算出モードによる面密度投影データ算出処理に活用する。
つまり、記憶部109には適用エネルギー範囲の基底物質変換処理の結果が記憶されているので、基底物質演算部1055はこれをこのまま活用すると共に、適用エネルギー範囲の組み合わせ以外のエネルギー範囲の組み合わせの投影データに対して基底物質変換処理を行う。そして、変換した結果と、記憶部109に記憶した変換結果を用いて、最適化処理を行う。最適化処理については上述した処理と同様であるのでここでの説明は省略する。
このように高速算出モードによる画像生成の際に算出したデータを通常算出モードの画像を生成する際に活用することで、通常算出モードにおいて、演算処理を削減することができる。
(変形例2)
上述の実施形態においては、高速算出モードにより再構成画像を生成する例について説明したが、スキャノ画像を生成することもできる。
以下、演算部105がスキャノ画像を生成する場合について図10のフローチャートに従って説明する。
まずステップS401において、ガントリー回転部101を回転せずに、寝台天板103を移動して撮影して得た投影データに対して、演算部105が信号収集部108から投影データを受け取ると、ステップS401において、エア補正部1054が信号収集部108から受け取った投影データに対してエア補正を行う。
ステップS402において、エア補正後の投影データに対して、演算部105が、上述した高速算出モードによる面密度投影データ算出処理を行って基底物質の面密度投影データを生成する。
そして、次のステップS403において、演算部105が、スキャノ画像生成処理を行う。スキャノ画像生成処理では、ステップS402において生成された基底物質の面密度投影データから、まずはスキャノ画像用投影データを生成する。スキャノ画像用投影データPは、例えば、以下の式(2)を適用することにより算出することができる。
Figure 2018023671
ただし、δ、δは基底物質の面密度投影データの値、S(E)はエネルギーEにおけるフォトン数、μm(E)とμm(E)はエネルギーEにおける基底物質1と基底物質2の質量吸収係数を表す。
上記式(2)によって得られたスキャノ画像用投影データに基づいて、演算部105がスキャノ画像を生成する。具体的には、演算部105は、スキャノ画像用投影データとスキャノ画像との画素の中心位置の違いを考慮して、スキャノ画像用投影データの出力値を重み付け加算して、スキャノ画像の画素値を算出する。
スキャノ画像の画素値の算出手法の一例について、図11に従って説明する。
図11は、検出部104がスライス数を4とし、3ビューのスキャノ画像用投影データから、5スライス分のスキャノ画像173を生成する例を説明するための投影データに関する概念図である。このような処理は、スキャノ撮影で得られたスライス方向に位置がずれたデータを合成して、検出部104のスライス幅よりも大きな幅の画像を作成するため、更に重複または近いサンプル点でのデータを、スキャノ画像の1点とすることでSNRを向上するために行う。 図11では1つのチャネルの場合を示しているが、チャネル方向に並ぶ複数のX線検出素子の出力に対して行うことは言うまでもない。
図11において、スキャノ画像用投影データ170〜172は、夫々1から3ビューで取得したスキャノ画像用投影データであり、位置170−i、171−i、172−i(i=1,2,3,4)は、各スキャノ画像用投影データ170〜172のスライスiのデータが取得された中心位置である。撮影の際に、寝台天板103を移動させながらデータを取得するため、各スキャノ画像用投影データ170〜172のスライスiのデータが取得された中心位置170−i、171−i、172−i(i=1,2,3,4)は、スライス方向115に対してずれている。
また、スキャノ画像用投影データ170〜172に基づいて生成されるスキャノ画像13における位置173−i(i=1,2,3,4,5)は、スキャノ画像173のスライスjのデータの位置を示す。
スキャノ画像173は、上述したように、スキャノ画像用投影データとスキャノ画像との画素の中心位置の違いを考慮して、スキャノ画像用投影データの出力値を重み付け加算して算出する。これは、例えば、位置173−1のスキャノ画像173の画素値は、同一位置である位置170−1で取得したスキャノ画像用投影データと、スライス方向の画素幅の半分だけずれた位置で計測した位置171−1で取得したスキャノ画像用投影データを、重みをそれぞれ1,0.5として重み付加算する。
同様に、位置173−2のスキャノ画像の画素値は、同一位置である位置170−2と位置172−1で取得したスキャノ画像用投影データの重みを何れも1とし、スライス方向の画素幅の半分だけずれた位置で計測した位置171−1と位置171−2で取得したスキャノ画像用投影データの重みを何れも0.5として、重み付加算する。他の画素に対しても同様に重み付け加算して、全画素の値を求める。このように重み付加算することで、SNRの良いスキャノ画像を得ることができる。
次に、重み付けの違いを規格化する。例えば、位置173−1のスキャノ画像の画素値は、位置170−1と位置171−1のスキャノ画像用投影データから生成される。位置170−1と位置171−1における画素値の重みの合計は1.5であったが、位置173−2のスキャノ画像の画素値は、位置170−2、位置171−1、位置171−2、位置172−1のスキャノ画像用投影データから生成され、それらの重みの合計は3であった。このため出力差が生じてしまうため、例えばこの重みの合計でそれぞれの合計値を除することで規格化する。
このようにスキャノ画像用投影データ170〜172に基づいてスキャノ画像173を生成することができる。
(変形例3)
上述した第1の実施形態では、演算部105が、信号収集部108から受け取った投影データを用いて、X線フォトンのカウント値が大きいエネルギー範囲を順に選択して適用エネルギー範囲を決定する例について説明した。
この他、例えば、予め適用エネルギー範囲の一部を定めておくこともできる。特に、照射X線のスペクトル内で、実質的に最も高いエネルギー範囲を適用エネルギーの1つとして定めておくことができる。一般に、多くの物質は、エネルギーが高い方が吸収し難くなるため、高エネルギー範囲を適用エネルギー範囲として選択することで、被検体のサイズに依存したX線フォトン数の変化が小さく、高速算出モードであっても、安定したSNRで、再構成像などを生成することができるからである。
また、N個(Nは3以上の整数)のエネルギー範囲を適用エネルギー範囲とする際、1個以上(N−1)個以下のエネルギー範囲を固定しても良いし、照射X線のスペクトル内で、実質的に最も高いエネルギー範囲から1個以上(N−1)個以下のエネルギー範囲を適用エネルギー範囲として選択するように予め定めておくことができる。
さらに、投影データに基づいて適用エネルギー範囲を決定するのではなく、他のエネルギー範囲に入射するX線フォトン数に関する情報を用いてエネルギー範囲を決定することもできる。例えば、入力部110に入力した被検体の情報に基づいて適用エネルギー範囲を定めることができる。
被検体の情報として、具体的には、例えば、大人と子供、体格、体重、撮影部位等が考えられる。大人と子供との比較から検討すると、大人に比して体が小さいためX線フォトン数の低減(減弱)が少なく、大人は子供よりも体が大きいためX線フォトン数の低減(減弱)が大きいと判断する。減弱が大きいときは、特に低エネルギー範囲でのX線フォトン数が大幅に減り、このように大幅に減弱したエネルギー範囲のデータを用いると基底物質の決定精度が低下すると予想される。
従って、子供を撮影する際には、適用エネルギー範囲として低エネルギーと高エネルギー範囲を用い、大人の場合には適用エネルギー範囲として、中エネルギーと高エネルギー範囲を用いる等、体格、体重、撮影部位などの被検体に応じて減弱の大小を判断し、減弱が大きくなると判断できる場合では、そうでない場合よりも高いエネルギー範囲を適用エネルギー範囲として選択することができる。
このように制御することで、被検体による減弱の大きさに応じて適したエネルギー範囲を適用エネルギー範囲として選択することができ、被検体に応じて高速でありながらSNRの向上した画像を生成することができる。
なお、被検体の情報を入力する入力部としては、キーボードや音声入力機器を用いる場合の他にも、体重計や可視光のカメラなどの計測機器等種々のものを適用することができる。
このように、被検体の情報に応じて適用エネルギー範囲を選択する場合は、予め定めた適用エネルギー範囲を記憶部109に保存しておくことができる他、適用エネルギー範囲を決定するための条件を記憶部109に記憶させておこともできる。又、例えば、各エネルギー範囲のカウント値の合計値を推定して適用エネルギー範囲を決定してもよい。
更に、ユーザが何れのエネルギー範囲を適用エネルギー範囲とするかについて直接選択して決定しても良い。
これらの適用エネルギー範囲の決定するための条件を、ユーザが決定することもできる。
この場合、表示部106に表示されるUI(ユーザインターフェース)を介してユーザが適用エネルギー範囲を決定するための条件の入力を行う。図12に表示部106に表示されるUIの一例を示した。
図12に示すUI900には、適用エネルギー範囲を決定するための条件を入力するための項目として、「撮影条件」、「カウント数」を示す選択バー901,902の他、直接エネルギー範囲を指定するための「指定」を示す選択バー903を備えている。[指定]欄には、領域905中にさらに「高エネルギー範囲」、「中エネルギー範囲」、「低エネルギー範囲」を選択することができる選択バー904A〜904Cが設けられ、各エネルギー範囲を選択することができるようになっている。
各選択バー901〜903は、入力部からの入力で選択が可能である。図12に示す例では、選択バー901が選択された場合に、被検体の情報を用いて適用エネルギー範囲を決定する。選択バー902が選択された場合に、投影データに基づいてカウント値から適用エネルギー範囲として決定する。選択バー903が選択された場合に、適用エネルギー範囲をユーザが直接指定することができる。すなわち、例えば、選択バー903が選択されると、領域905の選択がアクティブになり、この中の選択バー904−1,904−2,904−3の内から任意のエネルギー範囲を適用エネルギー範囲として選択することができる。
選択バー901〜903は、選択されると選択バー中のドットが、白から黒に変わるようになっており、これにより選択されたことをユーザが目視でわかるようになっている。図12においては、選択バー901が選択されている。このような選択は撮影開始前まで可能であり、撮影開始を入力した際に選択されていた選択バーに従った方法で適用エネルギー範囲が決定され、画像が生成される。
具体的に、適用エネルギー範囲の選択処理について図13のフローチャートに従って説明する。
ステップS501において、演算部105は入力部110からの撮影開始の入力と共にユーザにより何れの選択バー901〜903が選択されたかに係る情報を受けて、ステップS502に進む。ステップS502では、ユーザからの入力を受け付けて適用エネルギー範囲の選択方法を決定する。具体的には、ユーザが選択バー901を選択している場合には、演算部105は「カウント値」が選択されていると判定してステップS503に進む。また、ユーザが選択バー902を選択している場合には、演算部105は「撮影条件」が選択されていると判定してステップS504に進む。さらに、ユーザが選択バー903を選択している場合には、演算部105は「指定」が選択されていると判定してステップS505に進む。
ステップS503では、基底物質演算部1055は、信号収集部108により受け取った投影データを用いて、エネルギー範囲毎にカウント数の合計値を求め、次のステップS506において、例えば、合計値が大きい順に適用エネルギー範囲を決定する。
ステップS504では、基底物質演算部1055は、撮影条件に応じた各エネルギー範囲のカウント数の合計値を推定して、ステップS506において、適用エネルギー範囲を決定する。
ステップS505では、基底物質演算部1055は、選択バー903にて「指定」が選択されたことから、適用エネルギー範囲が所定数指定されか否かを判定する。所定数が選択されている場合にはステップS506に進み、選択されたエネルギー範囲を適用エネルギー範囲として決定する。ステップS505の判定において、適用エネルギー範囲として所定数が選択されていない場合にはステップS507に進み、例えば、UI上に設定すべき項目が不足している旨の表示を行って撮影処理を停止する。ここで、所定数の適用エネルギー範囲とは、本変形例においては基準物質の数と同一数とする。
(変形例4)
なお、上述した変形例3のステップS507では、選択された適用エネルギー範囲が所定数に満たない場合には、撮影処理を停止する例について説明したが、例えば、適用エネルギー範囲が不足している場合には、その不足分を、撮影条件やカウント数の合計値等に基づいて決定しても良い。すなわち、「指定」を示す選択バー903と、「カウント値」を示す選択バー901又は「撮影条件」を示す選択バー902とを組み合わせて選択することができることとし、不足分については撮影条件又はカウント数の合計値に従って適用エネルギー範囲を決定することができる。
より具体的に、適用エネルギー範囲の選択処理について図14のフローチャートに従って説明する。
ステップS601において、演算部105は入力部110からの撮影開始の入力と共にユーザにより何れの選択バー901〜903が選択されたかに係る情報を受けて、ステップS602に進む。ステップS602では、演算部105は、ユーザにより選択バー901が選択されている場合には、「カウント値」が選択されていると判定してステップS603に進み、選択バー902が選択されている場合には、「撮影条件」が選択されていると判定してステップS604に進み、選択バー903が選択されている場合には、「指定」が選択されていると判定してステップS605に進む。
ステップS603では、基底物質演算部1055は、信号収集部108により受け取った投影データを用いて、エネルギー範囲毎にカウント数の合計値を求め、次のステップS606において、例えば、合計値が大きい順に適用エネルギー範囲を決定する。
ステップS604では、基底物質演算部1055は、撮影条件に応じた各エネルギー範囲のカウント数の合計値を推定して、ステップS606において、適用エネルギー範囲を決定する。
ステップS605では、基底物質演算部1055は、選択バー903にて「指定」が選択されたことから、適用エネルギー範囲が所定数指定されか否かを判定する。所定数が選択されている場合にはステップS606に進み、選択されたエネルギー範囲を適用エネルギー範囲として決定する。
ステップS605の判定において、適用エネルギー範囲として所定数が選択されていない場合にはステップS607に進み、何れの選択バー901〜903が選択されたかを判定する。つまり、「カウント値」か「撮影条件」のどちらが選択されているか判定する。ステップS607において、選択バー901が選択されている場合には、「カウント値」が選択されていると判定してステップS608に進み、選択バー902が選択されている場合には、「撮影条件」が選択されていると判定してステップS609に進み、何れも選択されていない場合にはステップS610に進む。
ステップS608では、基底物質演算部1055が、不足分のエネルギー範囲について、エネルギー範囲毎にカウント数の合計値を求め、次のステップS606において、例えば、合計値が大きいものを優先的に適用エネルギー範囲として決定する。
ステップS609では、基底物質演算部1055は、撮影条件に応じた各エネルギー範囲のカウント数の合計値を推定して、ステップS606において、適用エネルギー範囲を決定する。
ステップS610では、設定項目が不足している旨を表示部に表示してユーザに注意喚起し、撮影を停止する。
このように、指定された適用エネルギー範囲と共に、全ての適用エネルギー範囲を決定することができる。
なお、ステップS610において「カウント値」と「撮影条件」の両方とも指定されていない場合は、デフォルトとして自動的に「カウント値」と「撮影条件」のどちらか一方が選択されるように設定することもできる。
上述の説明においては、適用エネルギー範囲の選択に関し、「撮影条件」に基づいて選択する例、「カウント数」に基づいて選択する例、ユーザが「指定」する例の3つの例について説明したが、「撮影条件」、「カウント数」及び「指定」のうち、2つから選択することもでき、「撮影条件」、「カウント数」及び「指定」に他の方法を加えたN個(Nは4以上の整数)から2つ以上(N−1)の方法から選択するように設定することもできる。
(変形例5)
本実施形態の高速算出モードでは、投影データを用いてカウント数の合計値の高い順に適用エネルギー範囲を選択し、再構成像を生成する場合について説明した。この他、例えば、適用エネルギー範囲の組み合わせを複数パターン決定し、夫々の組み合わせに対して夫々再構成像を生成し、複数の再構成像の中から最適な再構成像を選択することもできる。
以下、このような処理について、図15のフローチャートに従って説明する。
ステップS701において、基底物質演算部1055は、次のステップS702における基底物質変換処理に用いる適用エネルギー範囲を決定する。本変形例では、例えば、高エネルギー範囲、中エネルギー範囲及び低エネルギー範囲の3つのエネルギー範囲から、適用エネルギー範囲として2つを組み合わせて選択する場合について説明する。従って、適用エネルギー範囲の組み合わせとしては、高エネルギー範囲と中エネルギー範囲との組み合わせ、高エネルギー範囲と低エネルギー範囲の組み合わせ、及び、中エネルギー範囲と低エネルギー範囲の組み合わせの3パターンが考えられ、このパターンを予め定めた順番に従って、順次処理していく。
次のステップS702において、基底物質演算部1055は、投影データ中の1つのX線検出素子、ビューに対応するデータ点に対して、基底物質変換処理を行う。基底物質変換処理は、上述した第1の実施形態における基底物質変換処理と同様に、例えば、図7に示す変換用マップを用いて行われる。
続いて、ステップS703において、基底物質演算部1055は、投影データの全てのデータ点に対して基底物質変換処理が完了したか否かを判定する。ステップS703において全てのデータ点に対して基底物質変換処理が完了していないと判定された場合には、ステップS702に戻り基底物質変換処理を繰り返す。ステップS703において、全てのデータ点に対して基底物質変換処理が完了したと判定された場合には、ステップS704に進む。ステップS704では、基底物質演算部1055が、得られた基底物質の面密度値の集まりである基底物質の面密度投影データを生成し、記憶部109に記憶する。この基底物質の面密度投影データは、基底物質毎に生成する。
ステップS705では、適用エネルギー範囲の全ての組み合わせに対して基底物質変換処理が終了しているか否かを判定する。ステップS705の判定において、適用エネルギー範囲の全ての組み合わせに対して基底物質変換処理が終了していない場合は、ステップS701に戻り、未処理の適用エネルギー範囲の組み合わせに対する処理を行う。ステップS705の判定において、適用エネルギー範囲の全ての組み合わせに対して基底物質変換処理が終了したと判定した場合には、ステップS706に進み、マルチエネルギー画像用投影データ生成部1056により夫々マルチエネルギー画像用投影データを生成し、ステップS707において、再構成像生成部1057が再構成画像を生成する。
次のステップS708では、先のステップS707で生成された適用エネルギー範囲の全ての組み合わせに対する再構成画像のうち、最適な画像を選択する。最適な画像の選択は、公知の最適化手法を用いて行われ、例えば、再構成像中の特定位置のCNR(コントラスト−ノイズ比)が最も良いものを選択することができる。ここで、CNRについての特定位置は、予め定めておいてもよく、また、入力部110にて指定された位置であっても良い。また、雑音レベルなどの物理量を基に、最も良い再構成像を選択しても良い。最適な画像としては、予め定めた条件に鑑みて適宜選択するように設定することができる。そして、選択された再構成像の投影データのエネルギー範囲が、最終的な適用エネルギー範囲となる。
ステップS709において、演算部105は、選択された最適な画像を表示部106に表示させ処理を終了する。
なお、上述の説明では、全ての通りのエネルギー範囲から複数の適用エネルギー範囲の組み合わせに対して夫々基底物質の投影データを生成したが、必ずしもすべての組み合わせに対して投影データを生成する必要はなく、一部の適用エネルギー範囲の組み合わせについてのみ投影データを生成することとしてもよい。これにより処理を低減し、処理時間を短縮できる。
また、上述の例では、エネルギー範囲の全ての組み合わせから基底物質の投影データを生成した後に再構成像を取得して最適な画像を選択しているが、適用エネルギー範囲の何れか1つの組み合わせに対して、基底物質変換処理から再構成像の生成までを順次行ってから、最適画像の選択を行ってもよい。つまり、処理の順序は上記例に限られない。
表示部106への画像の表示は、通常撮影モードで生成した再構成像を、高速撮影モードで生成した再構成像に重ねて表示することができる他、2つの再構成像を並列して、また別個独立に表示することもできる。
(変形例6)
上述した本実施形態における高速算出モードでは、投影データを用いて基準物質の物理量を算出し、再構成像を生成する場合について説明した。この他に、エネルギー範囲毎の投影データから再構成像を作成し、その中から最適な再構成像の組を選定して、基準物質の物理量を求めてマルチエネルギー画像を作成しても良い。本変形例における基準物質の物理量は、例えば密度である。
このような処理の一例を、図17を参照して説明する。
演算部105が信号収集部108から投影データを受け取ると、例えば、図5で説明した場合と同様に、ステップS801において、エア補正部1054が信号収集部108から受け取った投影データに対してエア補正を行う。次のステップS802では、再構成像生成部1057にて、再構成処理を行う。再構成処理は、例えば、従来のX線CT装置で行われている一般的な再構成処理を適用すればよい。
続いて、ステップS803の密度画像算出処理の詳細について説明する。
基底物質演算部1055は、高速算出モードの場合には、ステップS802において取得した再構成像から、基底物質と同数の適用エネルギー範囲のデータを抽出し、これらを用いて基底物質の物理量を求める。これらの適用エネルギー範囲には、例えば雑音のレベルが低い順に、基準物質数だけのエネルギー範囲を選択する。このような選択方法は、投影データにおいてSNRが良い範囲を選ぶ方法と同じである。
本実施形態においては、基底物質の物理量として、密度値を求めることとしているため、基底物質演算部1055では、密度値の算出を、再構成像の全てのボクセルに対して行うことで、密度値データの集合である再構成像(以降、密度画像と記す)を得ることができる。このような物理量への変換は、例えば図7で説明した面密度値を求める場合と同様に、変換マップを用いる。ただし本変形例での変換マップは、横軸が基底物質1の密度値であり、縦軸が基底物質2の密度値であり、基底物質1と基底物質2との組み合わせから予想される再構成像のボクセル値が記録されたものとなる。
次に、ステップS804のマルチエネルギー画像作成処理では、密度画像を用いてマルチエネルギー画像を求める。この一例として、例えば、それぞれの基準物質の密度画像に、所定のエネルギーの質量吸収係数を乗じて和を取ることで、その所定のエネルギーの疑似単色画像を作成する。なお、このマルチエネルギー画像は一例であり、さまざまなマルチエネルギー画像を作成する場合があることは言うまでもない。また、ステップS804のマルチエネルギー画像作成処理では処理をせず、密度画像をマルチエネルギー画像とすることもできる。更に、密度画像を順投影処理して面密度の物理量から成る投影データを求め、先に記したように、面密度からさまざまなマルチエネルギー画像を求めることもできる。
そして、ステップS805において、、以上のように作成したマルチエネルギー画像を表示部106に表示させる。
このような処理により、最適な再構成像の組を選定して、基準物質の物理量を求めてマルチエネルギー画像を作成することができる。
本変形例では、物理量が密度の場合について説明したが、物理量は適宜選択することができ、例えば、物理量を存在率とすることもできる。これは、上述した実施形態及びその変形例において、面密度から成る投影データを再構成すると、再構成像において密度が物理量となること、長さから成る投影データを再構成すると存在率となることから、存在率も物理量に成り得ることは容易に理解できる。
本変形例では、適用エネルギー範囲として、再構成像の雑音のレベルが低い順に、エネルギー範囲を適用エネルギー範囲として選択する場合について説明したが、これは一例であり、本発明を限定するものではない。上述した実施形態及びその変形例のように、例えば、実質的に最も高いエネルギー範囲を適用エネルギー範囲の1つとして事前に定めておき、他の適用エネルギー範囲を再構成像を用いて選択しても良い。更に事前に定めておく適用エネルギー範囲が複数あって、他の1つ以上の適用エネルギー範囲を選択するようにして、全ての適用エネルギー範囲を決定しても良い。
以上述べた実施形態及びその変形例では、適用エネルギー範囲を決定するに際し、投影データの全データ点を用いてカウント数の合計値を算出する例について説明したが、例えば、一部のX線検出素子のデータ点や、一部のビューのデータ点のカウント数の合計値を算出することとしてもよい。
なお、上述した実施形態及びその変形例では、X線CT装置により撮像を行って投影データを取得し、この投影データに対して演算処理を行う例について説明したが、投影データを他の撮像装置から取得して演算処理を行う構成とすることもできる。すなわち、別個のX線撮像装置により撮像された投影データのからデータを取得して、これに対して演算処理を行う画像処理装置とすることができる。
具体的には、図16に示すように、演算部105、表示部106、制御部107、記憶部109及び入力部110を備えた画像処理装置とすることができる。図16の画像処理装置では、別個のX線撮像装置で撮影して取得した投影データを、例えば、入力部110により入力して記憶部109に記憶させ、演算部105がこの投影データに基づいて、投影データ、スキャノ画像、再構成像等所望の画像を生成する。
上述した実施形態及び各変形例においてはX線CT装置について説明したが、例えば、画像再構成処理を行わない装置や、X線源を有さない装置などにも適用することができる。具体的には、X線画像診断装置、X線画像撮影装置、X線透視装置、マンモグラフィー、デジタルサブトラクション装置、X線検出器、放射線検出器等にも適用することができる。
104・・・検出部、105・・・演算部、106・・・表示部、107・・・制御部、108・・・信号収集部、109・・・記憶部、110・・・入力部、111・・・X線検出器、112・・・信号処理部、140・・・計算用データ、141・・・感度・X線分布データ、1052・・・補正処理部、1053・・・再構成処理部、1054・・・エア補正部、1055・・・基底物質演算部、1056・・・マルチエネルギー画像用投影データ生成部、1057・・・再構成像生成部

Claims (12)

  1. 複数のX線検出素子に入射したX線フォトンを3以上のエネルギー範囲に分別して計数することにより得られた該エネルギー範囲毎の投影データを取得するデータ取得部と、
    前記エネルギー範囲毎の投影データに基づいて、前記エネルギー範囲の数よりも少ない数の複数の基底物質の物理量を算出する基底物質演算部と、
    前記基底物質の物理量を用いて所定の画像を生成する画像生成部と、を備え、
    前記基底物質演算部が、前記基底物質の物理量の算出に用いる適用エネルギー範囲として、3以上の前記エネルギー範囲のうち、前記基底物質と同数の前記エネルギー範囲を選択し、選択された前記適用エネルギー範囲の投影データに基づいて前記基底物質の物理量を算出する画像処理装置。
  2. 前記基底物質演算部において、演算する前記基底物質の数と、選択する前記適用エネルギー範囲の数とが共に2であることを特徴とする請求項1記載の画像処理装置。
  3. 前記基底物質演算部が、前記エネルギー範囲毎の投影データにおけるX線フォトンのカウント値に基づいて前記適用エネルギー範囲を選択する請求項1記載の画像処理装置。
  4. 前記基底物質演算部が、前記エネルギー範囲毎の投影データのうち、X線フォトンのカント値が最大となる前記エネルギー範囲を前記適用エネルギー範囲の一つとして選択する請求項3記載の画像処理装置。
  5. 前記基底物質演算部が、前記エネルギー範囲毎の投影データのうち、X線フォトンのカント値が大きい順に前記適用エネルギー範囲を選択する請求項3記載の画像処理装置。
  6. 前記基底物質演算部が、前記エネルギー範囲毎の再構成像のうち、雑音レベルが小さい順に前記適用エネルギー範囲を選択する請求項3記載の画像処理装置。
  7. 前記データ取得部が、被検体の情報を含む撮像条件を取得し、
    前記基底物質演算部が、前記撮像条件に基づいて前記適用エネルギー範囲を選択する請求項1記載の画像処理装置。
  8. ユーザにより指定された適用エネルギー範囲の入力を受け付ける入力部をさらに備え、
    前記基底物質演算部が、ユーザにより指定され前記入力部に入力されたエネルギー範囲を、前記適用エネルギー範囲として選択する請求項1記載の画像処理装置。
  9. ユーザによる入力を受け付ける入力部に備え、
    前記基底物質演算部が、前記適用エネルギー範囲を、前記エネルギー範囲毎の投影データにおけるX線フォトンのカウント値、前記エネルギー範囲毎の再構成における雑音レベル、撮像条件、又はユーザによる前記入力部への入力のうち少なくとも2つに基づいて前記適用エネルギー範囲を選択する請求項1記載の画像処理装置。
  10. 前記投影データから再構成像を作成する再構成処理部をさらに備え、
    前記基底物質演算部は、前記投影データから作成された前記再構成像に基づいて前記基底物質の物理量を算出する請求項1記載の画像処理装置。
  11. 複数のX線検出素子に入射したX線フォトンを3以上のエネルギー範囲に分別して計数することにより該エネルギー範囲毎の投影データを生成するX線検出部と、
    請求項1乃至請求項10の何れか1項に記載の画像処理装置と、を備えたX線撮像装置。
  12. 複数のX線検出素子に入射したX線フォトンを3以上のエネルギー範囲に分別して計数することにより得られた該エネルギー範囲毎の投影データを取得するデータ取得工程と、
    前記エネルギー範囲毎の投影データに基づいて、前記エネルギー範囲の数よりも少ない数の複数の基底物質の物理量を算出する基底物質演算工程と、
    前記基底物質の物理量を用いて所定の画像を生成する画像生成工程と、を備え、
    前記基底物質演算工程において、前記基底物質の物理量の算出に用いる適用エネルギー範囲として、3以上の前記エネルギー範囲のうち、前記基底物質と同数の前記エネルギー範囲を選択し、選択された前記適用エネルギー範囲の投影データに基づいて前記基底物質の物理量を算出する画像処理方法。
JP2016158544A 2016-08-12 2016-08-12 画像処理装置、x線撮像装置及び画像処理方法 Pending JP2018023671A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016158544A JP2018023671A (ja) 2016-08-12 2016-08-12 画像処理装置、x線撮像装置及び画像処理方法
PCT/JP2017/025196 WO2018030055A1 (ja) 2016-08-12 2017-07-11 画像処理装置、x線撮像装置及び画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016158544A JP2018023671A (ja) 2016-08-12 2016-08-12 画像処理装置、x線撮像装置及び画像処理方法

Publications (1)

Publication Number Publication Date
JP2018023671A true JP2018023671A (ja) 2018-02-15

Family

ID=61163245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016158544A Pending JP2018023671A (ja) 2016-08-12 2016-08-12 画像処理装置、x線撮像装置及び画像処理方法

Country Status (2)

Country Link
JP (1) JP2018023671A (ja)
WO (1) WO2018030055A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162358A (ja) * 2018-03-20 2019-09-26 キヤノン株式会社 放射線撮影システム、撮影制御装置及び方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014032123A2 (pt) * 2012-06-29 2017-06-27 Koninklijke Philips Nv aparelho de processamento de dados do detector, método de processamento de dados do detector, sistema de imagem por raios x, elemento de programa de computador para controlar um aparelho, e meio legível por computador
CN104703540B (zh) * 2012-12-19 2017-08-25 东芝医疗系统株式会社 X射线ct装置、图像处理装置以及图像处理方法
JP6656891B2 (ja) * 2014-11-19 2020-03-04 キヤノンメディカルシステムズ株式会社 X線ct装置、画像処理装置およびプログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162358A (ja) * 2018-03-20 2019-09-26 キヤノン株式会社 放射線撮影システム、撮影制御装置及び方法
WO2019181229A1 (ja) * 2018-03-20 2019-09-26 キヤノン株式会社 撮影制御装置、撮影制御方法、放射線撮影システム及びプログラム
JP7075250B2 (ja) 2018-03-20 2022-05-25 キヤノン株式会社 放射線撮影システム、撮影制御装置及び方法
JP2022097760A (ja) * 2018-03-20 2022-06-30 キヤノン株式会社 放射線撮影システム、撮影制御装置及び方法
US11422098B2 (en) 2018-03-20 2022-08-23 Canon Kabushiki Kaisha Radiation imaging system, imaging control apparatus, and method
JP7352687B2 (ja) 2018-03-20 2023-09-28 キヤノン株式会社 放射線撮影システム、撮影制御装置及び方法
US11933743B2 (en) 2018-03-20 2024-03-19 Canon Kabushiki Kaisha Radiation imaging system, imaging control apparatus, and method

Also Published As

Publication number Publication date
WO2018030055A1 (ja) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6665158B2 (ja) X線ct装置
EP2377468B1 (en) System of acquiring multi-energy CT imaging data
CN108135560B (zh) X射线ct数据处理装置以及搭载其的x射线ct装置
US8000434B2 (en) Energy spectrum reconstruction
US8199874B2 (en) System and method of mitigating low signal data for dual energy CT
US7885372B2 (en) System and method for energy sensitive computed tomography
CN110678125B (zh) 能量鉴别光子计数检测器及其用途
CN110072459B (zh) 用于自校准的自校准ct检测器、系统和方法
EP3088918A2 (en) Conventional imaging with an imaging system having photon counting detectors
CN111435120A (zh) X射线成像系统的使用和校准
US11058384B2 (en) Image processing device, X-ray CT device, and image processing method
WO2017150068A1 (ja) X線検出器、x線ct装置、x線検出方法、及びx線検出プログラム
Gaudreault et al. Comparative study of image quality in time-correlated single-photon counting computed tomography
JP2016154837A (ja) X線ct装置および画像再構成方法
CN109381214B (zh) 利用不同能量门限集的计算机断层摄影记录
WO2018030055A1 (ja) 画像処理装置、x線撮像装置及び画像処理方法
JP2018118038A (ja) X線ct装置及び再構成処理装置
EP4398189A1 (en) Systems and methods for ct image reconstruction
JP2023129298A (ja) 計算機式断層写真法システムのための適応型データ取得
JP2021013489A (ja) X線ctシステム及び医用処理装置