JP2018022067A - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
JP2018022067A
JP2018022067A JP2016153845A JP2016153845A JP2018022067A JP 2018022067 A JP2018022067 A JP 2018022067A JP 2016153845 A JP2016153845 A JP 2016153845A JP 2016153845 A JP2016153845 A JP 2016153845A JP 2018022067 A JP2018022067 A JP 2018022067A
Authority
JP
Japan
Prior art keywords
optical path
image
viewing angle
unit group
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153845A
Other languages
English (en)
Other versions
JP6620697B2 (ja
Inventor
篠原 正幸
Masayuki Shinohara
正幸 篠原
靖宏 田上
Yasuhiro Tagami
靖宏 田上
剛大 倉田
Kodai Kurata
剛大 倉田
智和 北村
Tomokazu Kitamura
智和 北村
和幸 岡田
Kazuyuki Okada
和幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2016153845A priority Critical patent/JP6620697B2/ja
Priority to CN201780042498.XA priority patent/CN109416476B/zh
Priority to US16/318,028 priority patent/US11067826B2/en
Priority to PCT/JP2017/025981 priority patent/WO2018025628A1/ja
Priority to DE112017003904.5T priority patent/DE112017003904T5/de
Publication of JP2018022067A publication Critical patent/JP2018022067A/ja
Application granted granted Critical
Publication of JP6620697B2 publication Critical patent/JP6620697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/18Edge-illuminated signs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイスを提供する。
【解決手段】光デバイス1Aは、光源から入射された光を導光し、導光された光を光路偏向して出射面12から出射させることにより空間上に画像を結像させる導光板10を備える。導光板10の出射面12に直交しかつ側面14に平行な基準面に対して0度以上かつ第1角度未満の低視野角方向の空間に画像を結像させる低視野角光路偏向部群27と、基準面に対して第1角度以上かつ90度未満の高視野角方向の空間に画像を結像させる高視野角光路偏向部群28とを備える。低視野角光路偏向部群27による結像状態と高視野角光路偏向部群28による結像状態とが異なっている。
【選択図】図1

Description

本発明は、立体画像を表示する光デバイスに関するものである。
従来、立体画像を表示する光デバイスとして、例えば、特許文献1に開示された画像表示装置が知られている。
前記特許文献1に開示された画像表示装置100は、図28の(a)に示すように、導光板110と、導光板110の端部に設けられた光源101と、導光板110の裏面に形成された複数の第1プリズムを有する左目用表示パターン111a・112a・113aと、導光板110の裏面に形成された複数の第2プリズムを有する右目用表示パターン111ba・112b・113bとを含んでいる。図28の(b)に示すように、前記左目用表示パターン111aは、複数の第1プリズムP1によって2次元の面「A」を形成し、右目用表示パターン111bは、複数の第2プリズムP2によって2次元の面「A」を形成するようになっている。
この構成により、光源101からの光を複数の第1プリズムと第2プリズムとで反射することによって導光板110の表面側に左眼用画像と右眼用画像が表示される。そして、観察者がこれらの左眼用画像及び右眼用画像を観察すると、図28の(c)に示すように、奥側から手前側に向かって面画像「A」、面画像「B」、面画像「C」の順に各観察画像120が配置された立体感のある面画像を観測することができる。各観察画像120はそれぞれの左眼用画像及び右眼用画像からの光線の光路上にある交点で浮かび上がっているかのように観測されるため、間隔の大きい方がより観測者に近い側に交点を持ち、より手前となる。したがって、観測者は、自然な状態で立体的な表示を視認することができる。
特開2012−118378号公報(2012年6月21日公開)
ところで、例えば、図29の(a)に示すように、廊下の壁から側方に飛び出した3m先の立体画像を壁から1m隔てた観察者が見る場合、立体画像であることを認識できるためには、図29の(b)に示すように、壁の法線方向に対して少なくとも75度以内の角度で立体画像が見える必要がある。
しかしながら、従来の画像表示装置100では、空間に結像された立体画像が壁の法線方向に対して60度を超える高視野角となる場合には、立体画像が歪んで見え、立体感を感じ難いという問題点を有している。
この理由は、2つ存在する。
第1の理由は、図30の(a)に示すように、導光板における出射面の法線方向に対する光の出射角度をγとする場合、出射角度γ=30°では立体画像の形状に対する広がり感度は約1であり、小さい。しかし、出射角度γ=75°では立体画像の形状に対する広がり感度は約19であり、大きい。そして、この立体画像の形状に対する広がり感度は、出射角度γ=60°から急に大きくなる。この結果、出射角度γ=75°以上の高視野角部では形状の誤差がボケに大きく影響するためである。ここで、広がり感度とは、出射面の法線方向である0°方向に出射する光が導光板内での導光角が微小量変化したときの出射角の変化量に対する、各方向に出射する光が導光板内での導光角が微小量変化したときの出射角の変化量の比をいう。出射角0°のときに広がり感度=1とする。
第2の理由は、図31に示すように、立体画像が形成されている場合に、視野角0度では狭い範囲を視認するためボケの発生も小さいが、視野角60度の高視野角部では広い範囲から出射された光を視ることになるのでボケを視認し易いという理由に因るためである。
本発明は、前記従来の問題点に鑑みなされたものであって、その目的は、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイスを提供することにある。
本発明の光デバイスは、前記課題を解決するために、光源から入射された光を導光し、導光された光を光路偏向して出射面から出射させることにより空間上に画像を結像させる導光板を備えた光デバイスにおいて、前記導光板の出射面に直交しかつ側面に平行な基準面に対して0度以上かつ第1角度未満の低視野角方向の空間に画像を結像させる低視野角光路偏向部群と、前記基準面に対して前記第1角度以上かつ90度未満の高視野角方向の空間に画像を結像させる高視野角光路偏向部群とを備え、前記低視野角光路偏向部群による結像状態と、前記高視野角光路偏向部群による結像状態とが異なっていることを特徴としている。
前記発明によれば、光デバイスは、光源から入射された光を導光し、導光された光を光路偏向して出射面から出射させることにより空間上に画像を結像させる導光板を備えている。
この種の光デバイスでは、空間上に立体画像を結像させる場合に、高視野角となる場合には、その立体画像がボケるので、立体画像の視認性が悪化する。
これに対して、本発明の光デバイスでは、導光板の出射面に直交しかつ側面に平行な基準面に対して0度以上かつ第1角度未満の低視野角方向の空間に画像を結像させる低視野角光路偏向部群と、前記基準面に対して前記第1角度以上かつ90度未満の高視野角方向の空間に画像を結像させる高視野角光路偏向部群とを備え、前記低視野角光路偏向部群による結像状態と、前記高視野角光路偏向部群による結像状態とが異なっている。
この結果、高視野角となる場合に立体画像がボケないようにすることができる。したがって、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイスを提供することができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記低視野角光路偏向部群によって、前記導光板とは異なる空間上に立体画像が結像される一方、前記高視野角光路偏向部群によって、前記導光板の出射面上に2次元画像が結像される。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記高視野角光路偏向部群によって結像される前記2次元画像の配置位置が、高視野角方向の角度によらず一定である。
これにより、高視野角光路偏向部群は、基準面に対して前記第1角度以上かつ90度未満の高視野角方向の空間における導光板の出射面上に2次元画像を結像させる。
この結果、高視野角方向の空間においては、2次元画像を結像させるので、ボケていない画像を表示することができる。また、高視野角方向の空間に、仮にボケない立体画像を結像しても殆ど2次元の画像と比べて変わりがない。すなわち、ボケた立体画像を視認するよりもボケていない2次元画像を視認する方が不快感が少ない。
したがって、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイスを提供することができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記高視野角光路偏向部群によって結像される前記2次元画像の配置位置が、高視野角方向の角度によって異なる。
これにより、前記導光板の出射面に2次元画像を結像させるときには、例えば、視野角の増加に伴って導光板の出射面の異なる場所に位置をずらして結像させる。この結果、視野角が高い状態から低い状態へ移動すると、それに応じて2次元画像が移動すると共に、特定の視野角となった時点から立体画像に変更する、という演出が可能となる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記高視野角光路偏向部群の配置間隔が、前記低視野角光路偏向部群の配置間隔よりも大きい。
すなわち、基準面に対して0度以上かつ第1角度未満の低視野角方向の空間においては、導光板の出射面における短い距離から立体画像が結像される。一方、基準面に対して第1角度以上かつ90度未満の高視野角方向の空間においては、導光板の出射面における長い距離から立体画像が結像される。
この結果、高視野角方向の空間における立体画像と低視野角方向の空間における立体画像とを同じ解像度で結像すると、高視野角方向の空間における立体画像ではボケが目立つようになる。
そこで、本発明では、高視野角光路偏向部群の配置間隔を、記低視野角光路偏向部群の配置間隔よりも大きくする。これにより、高視野角方向の空間における立体画像は、低視野角方向の空間における立体画像に比べて解像度が低下する。この結果、高視野角方向の空間における立体画像においてもボケが目立つことがなくなる。
したがって、この方法によっても、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイスを提供することができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記低視野角光路偏向部群及び高視野角光路偏向部群は、点画像を結像する複数の第2光路偏向部からなる第2光路偏向部群を複数列設けることにより、見かけ上、線画像を結像するようになっている。
これにより、第2光路偏向部のそれぞれが1つの点画像に結像するので、光強度が強い点画像を結像することができる。そして、第2光路偏向部群にて結像される点画像は、第2光路偏向部群が複数列設けられているので、点画像が並んだ状態となり、見かけ上、線画像として認識される。
この結果、導光板に形成される低視野角光路偏向部群及び高視野角光路偏向部群としての第2光路偏向部群により、光強度が強い線画像からなる立体画像を容易に形成することができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記低視野角光路偏向部群及び高視野角光路偏向部群は、線画像を結像する第1光路偏向部を複数有する第1光路偏向部群を複数列設けることにより、見かけ上、面画像を結像するようになっている。
これにより、導光板に形成される低視野角光路偏向部群及び高視野角光路偏向部群としての第1光路偏向部群により、面画像の一部を構成する線画像が結像される。そして、第1光路偏向部群は複数列設けられているので、線画像の太さが厚くなる。その結果、見かけ上、2次元の面画像が結像される。
したがって、導光板に形成される低視野角光路偏向部群及び高視野角光路偏向部群として第1光路偏向部群を複数列設けることにより、2次元の面画像を容易に結像することができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記2次元画像は、1区画内に設けられた複数の第4光路偏向部からなる第4光路偏向部群によって1つの点画像が結像され、前記第4光路偏向部群を複数区画内に有する前記高視野角光路偏向部群にて前記点画像を集積することにより、見かけ上、面画像が表示される。
これにより、2次元画像を具体的に結像させることができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記低視野角光路偏向部群は、前記基準面に対して0度以上かつ第1角度未満の低視野角方向の空間に画像を結像させる反射面を備えている一方、前記高視野角光路偏向部群は、前記基準面に対して前記第1角度以上かつ90度未満の高視野角方向の空間に画像を結像させる反射面を備えている。
これにより、導光板に低視野角光路偏向部群と高視野角光路偏向部群との両方を設けても同一の光源からの光により、低視野角方向の空間における画像と高視野角方向の空間における画像とを区別して結像することができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記画像は視差画像からなっており、右目用視差画像と左目用視差画像とからなる一対の前記視差画像が、複数対、横方向に並んで配列されている。
これにより、視差画像においても、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイスを提供することができる。
本発明の光デバイスは、前記記載の光デバイスにおいて、前記光源は、前記基準面に対して斜めとなる方向から前記低視野角光路偏向部群及び高視野角光路偏向部群に対して光を照射する。
すなわち、本発明では、低視野角の方向及び高視野角の方向とは、観察者が移動する方向を前提にしており、基準面が水平面に直交する場合のことを問題としている。
ここで、例えば、光デバイスの下側又は上側の側面に光源を設ける構成の場合、特に高視野角光路偏向部群によって高視野角方向へ光を反射させるには、光源から上下方向に出射された光を左右方向に大きく曲げる必要がある。この結果、高視野角方向への光量は低下する。
一方、高視野角光路偏向部群及び低視野角光路偏向部群の左右方向から、光源からの光を照射すると、隣り合う光路偏向部群によって光源からの光が干渉してしまう。この結果、適切な立体画像の表示ができなくなる。
そこで、本発明の光デバイスでは、光源は、基準面に対して斜めとなる方向から低視野角光路偏向部群及び高視野角光路偏向部群に対して光を照射する。
これにより、隣り合う光路偏向部群による干渉を生じさせることなく、また、光源からの光を曲げる角度をより小さくすることができるので、高視野角方向への光の反射光量を増加させることができる。
本発明の一態様によれば、高視野角における立体画像の視認性悪化を抑制し得る光デバイスを提供するという効果を奏する。
(a)は本発明における光デバイスの実施の一形態を示すものであって、空間に立体画像と2次元画像とを形成する場合の光デバイスの構成を示す斜視図であり、(b)は空間に立体画像と2次元画像とを形成する場合の光デバイスの構成を示すxz平面の断面図である。 前記光デバイスの構成を示す断面図である。 前記光デバイスにおける面画像を結像させるための構成を示す斜視図である。 前記光デバイスにおける面画像を結像させるための構成を示す平面図である。 前記光デバイスによって結像された面画像からなる立体画像の一例を示す正面図である。 前記面画像を結像するために光デバイスにおける導光板に形成されたプリズムの一例の構成を斜視図である。 (a)は前記光デバイスにおける導光板に形成されたプリズムの配列の一例の構成を斜視図であり、(b)(c)(d)は前記プリズムの変形例の構成を斜視図である。 (a)(b)(c)は、前記面画像を結像するために光デバイスにおける導光板に形成されたプリズムの配列例を模式的に示す平面図ある。 前記面画像を結像するために光デバイスにおける導光板に形成されたプリズムの他の変形例であって、視差画像として面画像を結像する場合のプリズムの形状を示す斜視図である。 前記光デバイスにおける線画像を結像させる第2光路偏向部群の構成を示す斜視図である。 (a)は前記光デバイスにおける線画像を結像させる第2光路偏向部群の構成を示す平面図であり、(b)は前記光デバイスにおける線画像を結像させる第2光路偏向部群の変形例の構成を示す平面図である。 (a)は前記光デバイスにおける点画像を結像させる第2光路偏向部群の構成を示す斜視図であり、(b)は点画像と共に、2次元画像を結像させる第2光路偏向部群の構成を示す斜視図である。 (a)は前記光デバイスにおける2次元画像を結像させる高視野角光路偏向部群の形状の一例を示すものであって、複数のドットから構成される矢印からなる2次元画像を示す平面図であり、(b)は一つのドットを形成するために1区画内に配置される高視野角光路偏向部群のプリズムを示す平面図であり、(c)(d)は高視野角光路偏向部群の1つのプリズムの形状例を示す図である。 (a)(b)(c)は、前記光デバイスにおける高視野角光路偏向部群の1つのプリズムの他の変形例の構成を示す斜視図である。 前記光デバイスにおける視野角と画像を結像する位置との関係を示すグラフである。 (a)は空間に立体画像を結像させる低視野角光路偏向部群と2次元画像を結像させる高視野角光路偏向部群とを示す断面図であり、(b)は2次元画像の位置をずらす場合の高視野角光路偏向部群の配置を示す断面図である。 前記光デバイスにおける第1角度を示す平面図である。 (a)は、低視野角光路偏向部群と高視野角光路偏向部群との配置間隔が同じである前記実施の形態1の光デバイスの構成を示す平面図であり、(b)は本発明における光デバイスの実施形態2を示すものであって、高視野角光路偏向部群との配置間隔が低視野角光路偏向部群の配置間隔よりも大きい光デバイスの構成を示す平面図である。 前記光デバイスにおける視野角と、高視野角光路偏向部群及び低視野角光路偏向部群の配置間隔との関係を示すグラフである。 (a)は、横方向に等ピッチで設定された視点を示す平面図であり、(b)は視点が横方向に等ピッチで設定された場合における等ピッチで配置された視差画像による立体画像を示す斜視図であり、(c)は等ピッチで配置された視差画像による立体画像を示すxz平面の断面図である。 (a)は本発明の実施の形態3の光デバイスを示すものであって、視差画像により立体画像を結像させる場合の高視野角光路偏向部群の配置を等角度ピッチとした平面図であり、(b)は高視野角光路偏向部群の配置を等角度ピッチとしたときに、高視野角になるほど隣接する視差画像との間隔が広がるように結像される視差画像を示す斜視図であり、(c)は不等ピッチで配置された視差画像による立体画像を示すxz平面の断面図である。 前記実施の形態3の光デバイスの変形例を示すものであって、視差画像により立体画像を結像させる場合に、設定された高視野角よりも外側の領域においては、2次元画像を結像させる光デバイスを示す斜視図である。 (a)(b)は、本発明の実施の形態4の光デバイスを示すものであって、光源を導光板の角部に配置した光デバイスの構成を示す平面図である。 (a)は立体画像を低視野角方向から観察する状態を示す平面図であり、(b)は立体画像を低視野角方向から観察した場合の立体画像の見え方を示す斜視図である。 (a)は立体画像を高視野角方向から観察する状態を示す平面図であり、(b)は立体画像を高視野角方向から観察した場合の立体画像の見え方を示す斜視図である。 (a)は本発明の実施の形態5の光デバイスを示すものであって、立体画像を低視野角方向から観察する状態を示す平面図であり、(b)は立体画像を低視野角方向から観察した場合の立体画像の見え方を示す斜視図である。 (a)は本発明の実施の形態5の光デバイスを示すものであって、立体画像を高視野角方向から観察する状態を示す平面図であり、(b)は立体画像を高視野角方向から観察した場合の立体画像の見え方を示す斜視図である。 (a)〜(c)は、従来の光デバイスとしての画像表示装置の構成を示す図である。 (a)は廊下の壁から側方に飛び出して結像された立体画像を示す斜視図であり、(b)は前記立体画像と該立体画像を見る観察者との関係を示す平面図である。 (a)(b)は、高視野角での立体画像の視認性が悪くなる第1の理由を説明するための図である。 高視野角での立体画像の視認性が悪くなる第2の理由を説明するための図である。
〔実施の形態1〕
本発明の一実施形態を図1〜図17に基づいて説明すれば、以下のとおりである。
(光デバイスの構成)
本実施の形態の光デバイス1Aの構成を、図1及び図2に基づいて説明する。図1の(a)は、本実施の形態の光デバイス1Aを示すものであって、空間に立体画像Iと2次元画像2Dとを形成する場合の光デバイス1Aの構成を示す斜視図であり、(b)は空間に立体画像Iと2次元画像2Dとを形成する場合の光デバイス1Aの構成を示すxz平面の断面図である。平面の断面図である。図2は、光デバイス1Aの構成を示す断面図である。
図2に示すように、実施の形態の光デバイス1Aは、光源2と、光源2から入射された光を導光して出射面12から出射する導光板10と、導光板10に配置され、導光された光を光路偏向して出射させることにより空間上に立体画像Iを結像させる複数の光路偏向部20とを備えている。
また、図1の(a)(b)に示すように、本実施の形態では、複数の光路偏向部20は、導光板10の出射面12に直交しかつ側面14に平行な基準面に対して0度以上かつ第1角度未満の低視野角方向の空間に立体画像Iを結像させる低視野角光路偏向部群27と、基準面に対して第1角度以上かつ90度未満の高視野角方向の空間に画像を結像させる高視野角光路偏向部群28とを備えている。
前記光源2は、図2に示すように、複数の例えば発光ダイオード(LED)2aにて構成されており、各発光ダイオード(LED)2aから出射された光は、入射光調節部3にて調整されて、導光板10の入射面11に入射する。尚、本実施の形態では、光源2は、複数の例えば発光ダイオード(LED)2a等からなっているが、必ずしもこれに限らず、単数の例えば発光ダイオード(LED)2a等からなっていてもよい。
入射光調節部3は、発光ダイオード(LED)2aに対して1対1に対応するように複数のレンズ3aを備えている。各レンズ3aは、対応する発光ダイオード(LED)2aの出射光の光軸に沿う方向の後述するxy平面の光の広がりを小さくしたり、大きくしたり、変化しないようにしたりする。この結果、レンズ3aは、発光ダイオード(LED)2aからの出射光を平行光に近づけたり、導光板10の内部において全域に導光したりする。導光板10によって導かれている光の広がり角は、5°以下であってよく、好ましくは1°未満である。尚、導光板10内のxy面内における光の広がり角を小さくするための他の構成として、例えば、x軸方向に所定幅より小さい開口を持つマスクを入射光調節部3に有していてもよい。
ここで、本実施の形態では、発光ダイオード(LED)2aの出射光の光軸は、後述する出射面12に対して角度θをなしている。例えば、発光ダイオード(LED)2aの出射光の光軸と出射面12とがなす狭角である角度θは、約20°である。この結果、導光板10への入射光が平行光に近い場合でも、入射光の光軸がy軸に平行である場合と比べて、出射面12と後述する裏面13とで反射を繰り返しながら導光板10内を導光する光量を増やすことができる。したがって、入射光の光軸がy軸に平行である場合と比べて、後述する光路偏向部20に入射する光量を増やすことができる。
導光板10は、透明で屈折率が比較的に高い樹脂材料で成形される。導光板10を形成する材料としては、例えばポリカーボネート樹脂(PC)、ポリメチルメタクリレート樹脂(PMMA)ガラス等を使用することができる。
導光板10は、光源2からの光が入射される入射面11と、導光板10の表面である光を出射する出射面12と、光路偏向部20が形成されている裏面13とを有している。
本実施の形態では、導光板10の出射面12から光が出射され、その出射された光によって、空間中に立体画像Iが結像される。立体画像Iは、観察者によって立体的に認識される。尚、立体画像Iとは、導光板10の出射面12とは異なる位置に存在するように認識される像をいう。立体画像Iとは、例えば、導光板10の出射面12から離れた位置に認識される2次元像も含む。つまり、立体画像Iとは、立体的な形状として認識される像だけでなく、光デバイス1Aとは異なる位置に認識される2次元的な形状の像も含む概念である。本実施の形態においては、立体画像Iは出射面12よりもz軸プラス側に位置するとして説明する。ただし、立体画像Iは出射面12よりもz軸マイナス側に位置する場合もある。
尚、本実施の形態の説明において、x軸、y軸及びz軸からなる直交座標系を用いる場合がある。本実施の形態では、z軸方向を、出射面12に垂直な方向で定めると共に、裏面13から出射面12への向きをz軸プラス方向と定める。また、y軸方向を、入射面11に垂直な方向と定めると共に、入射面11からこの入射面11に対向末卯面画像FIへの向きをy軸プラス方向と定める。さらに、x軸は、入射面11に直交する導光板10の側面間の方向であって、図1の(a)において左の側面から右の側面への方向をx軸プラス方向と定める。尚、記載が冗長にならないよう、xy平面に平行な面のことをxy面、yz平面に平行な面のことをyz面、xz平面に平行な面のことをxz面と呼ぶ場合がある。
本実施の形態の光デバイス1Aでは、導光板10の裏面13には、導光板10にて導光された光を光路偏向して出射させることにより空間上に像としての立体画像Iを結像させる互いに異なる位置にxy面内において2次元的に例えばマトリクス状に形成された複数の光路偏向部20が形成されている。光路偏向部20は例えばプリズムからなっている。
すなわち、前述したように、図2において、光源2から出射された光は、入射光調節部3を介して導光板10の入射面11から入射される。導光板10に入射された光は、導光板10の出射面12と裏面13との間を全反射して奥方へ導光される。そして、光路偏向部20によって、全反射条件が破られ、光の光路が特定の向きに偏向されて出射面12から出射されるものとなっている。
ここで、本実施の形態の光デバイス1Aでは、導光板10に形成された低視野角光路偏向部群27及び高視野角光路偏向部群28によって結像される立体画像Iは、空間上に所定形状に結像される面画像となっていてよく、又は線画像からなっていてもよい。
以下では、低視野角光路偏向部群27及び高視野角光路偏向部群28を構成する、面画像を結像させる面画像用光路偏向部群としての第1光路偏向部群と、線画像を結像させる第2光路偏向部群との構成及び機能について、順に説明する。
(面画像を結像するための構成)
最初に、本実施の形態の光デバイス1Aにおける面画像FIを結像させるための構成について、図3〜図5に基づいて説明する。図3は、光デバイス1Aにおける面画像FIを結像させるための構成を示す斜視図である。図4は、光デバイス1Aにおける面画像を結像させるための構成を示す平面図である。図5は、光デバイス1Aによって結像された面画像FIからなる立体画像Iの一例を示す正面図である。
図3に示すように、例えば、光デバイス1Aにてxz面に平行な立体画像結像面30に立体画像Iとして例えば面画像FIからなる斜め線入りリングマークを結像することを考える。
本実施の形態の光デバイス1Aでは、導光板10内を伝播する光のyz面内における広がりが大きい方が好ましい。そこで、入射光調節部3は、光源2からの光のxy面内における広がり角を小さくしない。すなわち、入射光調節部3は、光源2からの光のyz面内における広がり角に実質的に影響を与えない。
例えば、入射光調節部3が有するレンズ3aは、xy面内で曲率を持ち、yz面内で曲率を実質的に持たない凸状のシリンドリカルレンズとすることができる。このシリンドリカルレンズは、例えば、両面が凸レンズからなっている。
光デバイス1Aの導光板10には、裏面13に面画像用光路偏向部群21として機能する複数の第1光路偏向部群21a・21b・21c…が形成されている。各第1光路偏向部群21a・21b・21c…は、それぞれx軸に平行な方向に沿って設けられた複数のプリズムから形成されている。例えば、第1光路偏向部群21aは、複数のプリズムP21aから構成されている。同様に、第1光路偏向部群21bは、複数のプリズムP21bから構成され、第1光路偏向部群21cも、複数のプリズムP21cから構成されている。
例えばプリズムP21aは、入射した光を光路偏向してxy面内に平行な方向に広げて、出射面12から出射させる。プリズムP21aによって出射面12から出射した光束は、立体画像結像面30と実質的に線で交差する。図3及び図4に示すように、プリズムP21aによって出射面12から2つの光束が出射される。出射した2つの光束は、立体画像結像面30と線31a及び線31aで交差する。図3に示すように、第1光路偏向部群21aに含まれるいずれのプリズムP21aも、他のプリズムP21aと同様に、立体画像結像面30と線31a及び線31aで交差する光束を出射面12から出射させる。線31a及び線31aは、実質的にxy面に平行な面内にあり、立体画像Iの一部を結像する。このように、第1光路偏向部群21aに属する多数のプリズムP21aからの光によって、線31a及び線31aの線画像LIが結像される。尚、線31a及び線31aの像を結像する光は、x軸方向に沿って異なる位置に設けられた第1光路偏向部群21aにおける少なくとも2つのプリズムP21a・P21aによって提供されていればよい。
すなわち、第1光路偏向部群21aに属する複数のプリズムP21aのそれぞれは、複数のプリズムP21aのそれぞれに入射した光を、出射面12に平行な面内で、線31a及び線31aの像に応じた強度分布の光にx軸方向に広げて、出射面12から出射させる。これにより、第1光路偏向部群21aに属し、x軸方向に沿って配置された複数のプリズムP21aからの光が、線31a及び線31aの像に結像する光になる。
図3に示すように、同様にして、第1光路偏向部群21bの各プリズムP21bは、入射した光を光路偏向してxy面内に平行な方向に広げて、3つの光束を出射面12から出射させる。出射面12から出射した3つの光束は、立体画像結像面30と線31b、線31b及び線31bで交差する。そして、第1光路偏向部群21bに含まれるいずれのプリズムP21bも、他のプリズムP21bと同様に、立体画像結像面30と線31b・31b・31bで交差する光束を出射面12から出射させる。このように、第1光路偏向部群21bに属する複数のプリズムP21bのそれぞれは、複数のプリズムP21bのそれぞれに入射した光を、出射面12に平行な面内で、線31b・31b・31bの像に応じた強度分布の光にx軸方向に広げて、出射面12から出射させる。これにより、第1光路偏向部群21bに属し、x軸方向に沿って配置された複数のプリズムP21bからの光が、線31b・31b・31bの像に結像する光になる。尚、線31b・31b・31bは、実質的にxy面に平行な面内にあり、立体画像Iの一部を結像する。
ここで、線31b・31b・31bの結像位置と、前記線31a・31aの結像位置とは、立体画像結像面30内においてz軸方向の位置が異なる。
図3に示すように、同様にして、第1光路偏向部群21cの各プリズムP21cは、入射した光を光路偏向してxy面内に平行な方向に広げて、2つの光束を出射面12から出射させる。出射面12から出射した2つの光束は、立体画像結像面30と線31c及び線31cで交差する。そして、第1光路偏向部群21cに含まれるいずれのプリズムP21cも、他のプリズムP21cと同様に、立体画像結像面30と線31c・31cで交差する光束を出射面12から出射させる。このように、第1光路偏向部群21cに属する複数のプリズムP21cのそれぞれは、複数のプリズムP21cのそれぞれに入射した光を、出射面12に平行な面内で、線31c・31cの像に応じた強度分布の光にx軸方向に広げて、出射面12から出射させる。これにより、第1光路偏向部群21cに属し、x軸方向に沿って配置された複数のプリズムP21cからの光が、線31c・31cの像に結像する光になる。尚、線31c・31cは、実質的にxy面に平行な面内にあり、立体画像Iの一部を結像する。
ここで、線31c・31cの結像位置と、線31b・31b・31bの結像位置と、前記線31a・31aの結像位置とは、立体画像結像面30内においてz軸方向の位置がそれぞれ異なる。
ところで、図3においては、前述したように、線31c・31cの結像位置と、線31b・31b・31bの結像位置と、前記線31a・31aの結像位置とは、立体画像結像面30内においてz軸方向の位置がそれぞれ異なっており、それぞれが離れて視認される。しかしながら、実際には、第1光路偏向部群21a・21b・21cは例えば、第1光路偏向部群21a・21b・21c…のより多くの第1光路偏向部群で構成されていると共に、第1光路偏向部群21a・21b・21cのy軸方向の間隔を狭めることができる。或いは、第1光路偏向部群21a・21b・21cのy軸方向の間隔が離れていても、各プリズムP21a・P21b・P21cの光路偏向角度を調製することによって、線31a・31aの結像位置と線31b・31b・31bの結像位置と線31c・31cの結像位置との各位置をz軸方向において互い近づけることができる。その結果、図5に示すように、立体画像Iとして、斜め線入りリングマークの面画像FIが視認されることになる。
このように、光デバイス1Aによれば、2次元的に配置された第1光路偏向部群21a・21b・21c…の各複数のプリズムP21a・P21b・21cからの光束の集まりによって、光束を面画像FIに結像して観察者側の空間に提供できる。そのため、観察者はy軸方向に沿う広い位置範囲から面画像FIからなる立体画像Iを認識することができる。
(面画像を結像するための第1光路偏向部群の形状)
ここで、面画像FIを結像するための第1光路偏向部群21a・21b・21c…のプリズムP21a・P21b・P21c…の形状について、図6〜図8に基づいて説明する。図6は、光デバイス1Aにおける導光板10に形成されたプリズムP21aの一例の構成を斜視図である。図7の(a)は、光デバイス1Aにおける導光板10に形成されたプリズムP21aの配列の一例の構成を斜視図である。図7の(b)(c)(d)は、前記プリズムP21aの変形例の構成を斜視図である。図8の(a)(b)(c)は、光デバイス1Aにおける導光板10に形成されたプリズムP21a〜P21dの配列例を模式的に示す平面図ある。
図6に示すように、例えば第1光路偏向部群21aのプリズムP21aは、例えば、概ね、断面形状が山形のリングの一部を切り取った形状をしており、例えば、反射面f1・f2・f3・f4・f5を有している。これら反射面f1・f2・f3・f4・f5は、光を光路偏向する偏向面として機能する光学面の一例であり、互いに異なる方向を向く曲面からなっている。尚、前述したように、本実施の形態では、発光ダイオード(LED)2aの光軸を導光板10の出射面12に対してyz面内で角度θだけ傾けて設けている。そのため、導光板10への入射光が平行光に近い場合でも、入射光の光軸がy軸に平行である場合と比べて、出射面12と裏面13とで反射を繰り返しながら導光板10内を導光する光量を増やすことができる。したがって、入射光の光軸がy軸に平行である場合と比べて、反射面f1・f2・f3・f4・f5に入射する光量を増やすことができるようになっている。
前記反射面f1は、導光板10を導光する光L1に対して平行な方向において円弧状に湾曲する上り傾斜面となっており、反射面f1に入射した光L1を、該反射面f1の入射位置に応じて、出射面12から異なる出射角で出射させる。この結果、反射面f1は、該反射面f1に入射した光L1を、図2に示すように、立体画像Iのうちの例えば辺31の範囲に広げる。本実施の形態において、辺31は、y軸に平行な辺である。反射面f1からの反射光は、辺31が存在する方向に向かい、反射面f1から辺31が存在しない方向に向かう光は実質的に存在しない。したがって、反射面f1から反射光は、yz面内において、反射面f1から辺31に向かう角度にのみ実質的に反射光を分布させる。このように、yz面内において、反射面f1は、入射した光を角度方向に強度変調して出射する。反射面f1は曲面であるので、反射面f1への入射光である光L1が平行光である場合でも、像を描画する線を結像するための光を提供することができる。
図6に示すように、次に、反射面f2・f3は、プリズムP21aにおいて、断面形状が山形のドーナツ形状において反射面f1を挟んで円弧上に延びており、それぞれ、反射面f1と同様に、途中迄、山の斜面を上る傾斜面となっている。この結果、該反射面f2・f3に入射した光L1を反射して、図3に示すように、該反射した光を立体画像Iの線31a及び線31aの範囲に広げる。図3に示すように、立体画像Iの線31a及び線31aの間は、前記反射面f1の存在により線が存在しない状態を形成する。
図6に示すように、さらに、反射面f4・f5は、前記反射面f4・f5の途中に形成された変曲線を経て形成された登り傾斜面からなっている。この反射面f4・f5の存在により、図3に示すように、例えば、立体画像Iの線31c及び線31cを結像することができる。
このように、例えば、プリズムP21aを反射面f1・f2・f3・f4・f5の形状とすることによって、立体画像Iにおける面画像FIの基になる線31、線31a・31a、線31b・31b・31b、及び線31c・31cを結像することができる。
ここで、図6に示すプリズムP21aでは、1つのプリズムにて、面画像FIの全ての線31、線31a・31a、線31b・31b・31b、及び線31c・31cを結像するものとなっている。しかしながら、実際の面画像FIおいては、1つのプリズムにて面画像FIの全体形状を結像することは困難である。
そこで、例えば、図7の(a)に示すように、複数のプリズムP21a…、プリズムP21b…、プリズムP21c…から構成された第1光路偏向部群21a・21b・21c…を設けることになる。
前記図7の(a)に示すプリズムP21a・P21b・P21cは、例えば、三角錐のプリズムを横にしたものからなっている。しかし、必ずしもこれに限らず、例えば、図7の(b)(c)(d)に示すように、三角錐を円弧状にしたものや、三角錐を円弧状にしたものに変曲部を付したものや、一辺が波状に形成された三角錐を円弧状にしたものであってもよい。
また、図7の(a)に示す複数のプリズムP21a…、プリズムP21b…、プリズムP21c…の配列方法は、図8の(a)に示すように、y軸方向に沿って整列して設けられた配列となっている。しかし、配列方法は必ずしもこれに限らず、例えば、図8の(b)に示すように、複数の円弧状のプリズムP21a…、プリズムP21b…、プリズムP21c…・プリズムP21d…がy軸方向に沿って順に見た場合に、x軸方向に一定量ずつシフトして設けた配置とすることができる。また、図8の(c)に示すように、x軸方向に1つのプリズムP21a、プリズムP21b、プリズムP21c・プリズムP21dが連続して波型円弧状に設けられた配置とすることができる。
(面画像を結像するための第1光路偏向部群の形状の変形例)
前記の説明では、面画像FIを結像するための第1光路偏向部群21a・21b・21cの形状として、面画像FIの基礎となる線31a・31a、線31b・31b・31b、及び線31c・31cを結像するプリズムP21a・P21b・P21cの形状について説明した。しかし、面画像FIを結像するための第1光路偏向部群21a・21b・21cの形状は、必ずしもこれに限らず、例えば、面画像FIの形状をそのまま表したプリズムP22として、複数形成することにより、面画像FIを結像する面画像用光路偏向部群21としての第3光路偏向部群22とすることが可能である。
プリズムの形状をそのまま面画像FIとして結像する場合のプリズムP22の形状について、図9に基づいて説明する。図9は、視差画像として面画像FIを結像する場合のプリズムP22の形状を示す斜視図である。
図9に示すように、プリズムP22は、全体として凸形状の反射面を有しており、導光板10の裏面13に形成されている。このプリズムP22の凸形状の反射面は、導光板10内を導光する光を光路偏向して、立体画像結像面30を通過する光束が前記出射面12から出射されるように、形成されている。
例えば、プリズムP22の凸面状の表面に、「A」の文字が形成された「A」文字形成部P22aが設けられていると共に、「A」文字形成部P22a以外の部分には反射防止膜部P22bが形成されている。この反射防止膜部P22bに入射した光は反射しない。
これに対して、「A」文字形成部P22aに入射した光だけが反射する。これにより、プリズムP22は、入射した光を光路偏向して、Aの字の立体画像Iを通過する光束を前記出射面12から出射させる。
前記反射防止膜部P22bは、例えば、前記導光板10の裏面13において「A」文字形成部P22aを除いて黒塗料を塗ることによって形成することが可能である。また、反射防止膜部P22bは、「A」文字形成部P22aを除いて黒塗料を印刷することによって形成することも可能である。
このように、プリズムP22は、導光板10の裏面13に凸部を形成した後に黒塗料を印刷することによって、「A」文字形成部P22aを形成することができるので、プリズムP22の製造が容易になる。
このような、プリズムP22に「A」文字形成部P22aを形成することによって、例えば、特許文献1に示す視座画像の方法によって、面画像FIからなる立体画像Iを結像することが可能になる。
(線画像を結像するための構成)
前述したように、本実施の形態の光デバイス1Aでは、空間上に線画像LIからなる立体画像Iをと結像させることも可能である。この場合の光路偏向部20は、線画像LIを結像させる第2光路偏向部群25とからなっている。
以下では、線画像LIを結像させる第2光路偏向部群25の構成について、図10に基づいて説明する。図10は、線画像LIを結像させる第2光路偏向部群25の構成を示す斜視図である。
図10に示すように、空間上の立体画像Iとして、例えば文字「A」の線画像LIを結像することを考える。
この場合、本実施の形態の光デバイス1Aでは、光源2から光が入射される導光板10の裏面13には、第2光路偏向部群25a・25b・25c・25d・25e・25f・25gからなる複数の輪郭画像用光路偏向部群24が形成されている。尚、光源2の発光ダイオード(LED)2a等は、複数でなく1個であってもよく、また、光源2の設置場所は、導光板10の入射面11に対向する反対側の端面であってもよい。すなわち、面画像FIを結像するために導光板10の入射面11側に光源2を設けると共に、線画像LIを結像させるために、入射面11の対向端面に光源2を設けることも可能である。
線画像LIを結像させるための第2光路偏向部群25a〜25gは、それぞれフレネルレンズの一部により形成されている。第2光路偏向部群25a〜25gはx軸方向に実質的に連続して形成されている。
尚、フレネルレンズとして機能する第2光路偏向部群25a〜25gの複数の屈折面(プリズム面)の間には隙間が設けられてもよい。第2光路偏向部群25a〜25gのx軸方向の各位置には、導光板10によって導かれている光が入射する。第2光路偏向部群25a〜25gは、第2光路偏向部群25a〜25gの各位置に入射した光を、第2光路偏向部群25a〜25gにそれぞれ対応する定点に実質的に収束させる。図10には、第2光路偏向部群25a〜25gからの複数の光線が収束する様子が示されている。
具体的には、第2光路偏向部群25aは、立体画像Iの定点PAの点画像PIに対応しており、第2光路偏向部群25aの各位置からの光線は、立体画像Iの定点PAに収束する。したがって、第2光路偏向部群25aからの光の波面は、定点PAから発するような光の波面となる。
次に、第2光路偏向部群25bは、立体画像Iの上の定点PBの点画像PIに対応しており、第2光路偏向部群25bからの各位置からの光線は、定点PBに収束する。このように、任意の第2光路偏向部群25a〜25gの各位置からの光線は、第2光路偏向部群25a〜25gに対応する定点に収束する。これにより、任意の第2光路偏向部群25a〜25gによって、対応する定点から光が発するような光の波面を提供することができる。各第2光路偏向部群25a〜25gが対応する定点PA〜PGの点画像PI…は互いに異なり、第2光路偏向部群25a〜25gにそれぞれ対応する複数の定点PA〜PGの集まりによって、空間上に立体画像Iが結像される。このようにして、光デバイス1Aは空間上に立体画像Iを投影する。
すなわち、本実施の形態の光デバイス1Aでは、第2光路偏向部群25a〜25gはy軸方向に沿って密接して形成されている。この結果、複数の定点PA〜PGの集まりは立体画像Iにおいて実質的に線画像LIとして人間の目に視認される。
ここで、xy面内において、導光板10によって導かれて導光板10内の各位置を通過する光束は、導光板10内の各位置と光源2とを結ぶ方向を中心として所定値もより小さい広がり角を有する。また、導光板10内の各位置と光源2とを結ぶ線を含みxy面に直交する面内において、導光板10によって導かれて導光板10内の各位置を通過する光束は、導光板10内の各位置と光源2とを結ぶ方向中心として所定値よりも小さい広がり角を有する。第2光路偏向部群25a〜25gが光源2から離れた位置に設けられている場合、導光板10によって導かれて第2光路偏向部群25a〜25gに入射する光束は、概ねy軸方向を中心として、xy面内において広がりを有しない。したがって、例えば、定点PAを含みxz平面に平行な面では、第2光路偏向部群25aからの光は実質的に1つの定点に収束する。
尚、第2光路偏向部群25a〜25gに入射する光にz方向に広がりがある場合、後述するように、第2光路偏向部群25a〜25gからの光は、空間上の定点を含む、y軸に沿う線上に収束する。ここでは特に、第2光路偏向部群25a〜25gに入射する光のxy面内の光の広がり、及び、第2光路偏向部群25a〜25gからの光のxz面内の収束性について説明するので、第2光路偏向部群25a〜25gからの光は定点に収束するとして説明する。
図10に示すように、第2光路偏向部群25aは、線に沿って形成されている。また、第2光路偏向部群25bも、線に沿って形成されている。ここで、第2光路偏向部群25a・25bは、それぞれx軸に平行な直線で形成されている。任意の第2光路偏向部群25a〜25gは、x軸に平行な直線に沿って実質的に連続的に形成される。このように、第2光路偏向部群25a〜25gは、それぞれ出射面12に平行な面内において導光板10の導光方向に垂直な方向に長さを持って形成されている。
このように、第2光路偏向部群25a〜25gは、出射面12に平行な面内でそれぞれ予め定められた線に沿って形成されている。そして、第2光路偏向部群25a〜25gのそれぞれは、導光板10によって導かれている光が入射し、空間上の1つの収束点に実質的に収束する方向の出射光を出射面12から出射させる。尚、定点が導光板10の裏面13側にある場合は、出射光は、定点から発散する方向になる。したがって、定点が導光板10の裏面13側にある場合、第2光路偏向部群25a〜25gが有する反射面は、空間上の1つの収束点から実質的に発散する方向の出射光を出射面12から出射させる。
(線画像を結像するための第2光路偏向部群の形状)
本実施の形態の光デバイス1Aにおける線画像LIを結像するための第2光路偏向部群25a・25b・25c・25d・25e・25f・25gの具体的構成について、図11の(a)(b)及び図12の(a)(b)に基づいて説明する。図11の(a)は光デバイス1Aにおける線画像LIを結像させる第2光路偏向部群25aの構成を示す平面図である。図11の(b)は光デバイス1Aにおける線画像LIを結像させる第2光路偏向部群25aの変形例の構成を示す平面図である。図12の(a)は、図11の(a)に示す第2光路偏向部群25aによる光の集光を示す斜視図である。図12の(b)は、は点画像と共に、2次元画像を結像させる第2光路偏向部群の構成を示す斜視図である。
図11の(a)に示すように、例えば第2光路偏向部群25aは、それぞれフレネルレンズの一部により結像される。例えば、同心円を帯状に切断した形状を有している。このような、この第2光路偏向部群25aでは、各第2光路偏向部群25aの中心部が端部に比べて中心半径が小さいものとなっている。この結果、第2光路偏向部群25aの中心部に入射した光は、図12の(a)に示すように、中心部の直上の定点PAに収束する一方、第2光路偏向部群25aの端部に入射した光は、大きく屈折されて中心部の直上の定点に収束する。このように、本実施の形態の第2光路偏向部群25aは、向きの異なるプリズムが直線上に配されているので、全てのプリズムが定点PAに収束する。そして、この定点PAは、多数のプリズムP25aによって収束されているので、光量が大きい。この結果、これらの定点PA〜PGを並べて形成した実質的な線画像LIは当然ながら光量が大きいものとなる。
したがって、本実施の形態の光デバイス1Aにおいて、第2光路偏向部群25にて結像した線画像LIは光量が大きく、明確なものとなる。このため、本実施の形態の第2光路偏向部群25にて結像した線画像LIを面画像用光路偏向部群21にて結像した面画像FIの輪郭として用いるのに好ましいものとなる。
ここで、図12の(a)においては、全ての第2光路偏向部群25aが中心部の直上の定点PAに収束するとして説明した。しかし、必ずしもこれに限らず、例えば、図12の(b)に示すように、端部の第2光路偏向部群25aについては、他の点に収束させることも可能である。これにより、第2光路偏向部群25にて後述する2次元画像2Dを結像させることも可能である。
また、前記図11の(a)に示す第2光路偏向部群25aは、各レンズの間隔が一定であった。しかし、必ずしもこれに限らず。例えば、図11の(b)に示すように、第2光路偏向部群25aの各レンズが、部分的に大きな隙間が設けられていてもよい。
すなわち、図11の(b)に示すように、第2光路偏向部群25a’は、x軸方向に沿って複数のレンズ群P25a’を備えている。
前記第2光路偏向部群25aは、第2光路偏向部群25aの長さ方向に沿って連続的に変化する光学面を持つのに対し、第2光路偏向部群25a’は、複数のレンズ群P25a’のように、第2光路偏向部群25a’の長さ方向に沿って断続的に変化する光学面を持つ。この結果、第2光路偏向部群25a’の各レンズ群P25a’のそれぞれからの光は、第2光路偏向部群25a’の対応する同一の定点PAに収束する。該定点PAにおいて、各レンズ群P25a’のそれぞれからの光のx軸方向の光の強度分布は、定点PAの位置で実質的にピークを持ち、定点PAから離れるにつれて急峻に減少する分布となる。
一方、第2光路偏向部群25aの光学面をx軸方向に離間せずに連続的な光学面とした場合、光学面のうちのある部分面からの光には、その部分面の周囲の光学面からの光が一部重なってしまう。そのため、各レンズ群P25a’をx軸方向に僅かに離間して設けた場合と比べると、その対応する部分面からの光のx軸方向の強度分布に広がりが生じてしまう。つまり、第2光路偏向部群25a’を複数のレンズ群P25a’に分割して離間して設けることによって、離間しない場合と比べて、各レンズ群P25a’のそれぞれからの光の強度分布の広がりを小さくすることができる。このように、第2光路偏向部群25a’を複数のレンズ群P25a’に分割することによって、いわゆるブラックマトリックス効果が生じて、像のコントラストが高まる場合がある。
尚、第2光路偏向部群25a及び第2光路偏向部群25a’として、シリンドリカル型等のフレネルレンズに代えて、回折格子を適用してよい。また、第2光路偏向部群25a及び第2光路偏向部群25a’として、プリズム等の反射面で形成した第2光路偏向部群25aを適用してよい。
(高視野角方向の空間に視認性の高い画像を結像させるための構成)
前記図29の(a)に示すように、廊下の壁から側方に飛び出した3m先の立体画像を壁から1m隔てた観察者が見る場合、立体画像であることを認識できるためには、図29の(b)に示すように、壁の法線方向に対して少なくとも75度以内の角度で立体画像が見える必要がある。
その理由の一つとして、以下が挙げられる。
すなわち、図30の(a)(b)に示すように、導光板における出射面の法線方向に対する光の出射角度をγとする場合、出射角度γ=30°では立体画像の形状に対する広がり感度は約1であり、小さい。しかし、出射角度γ=75°では立体画像の形状に対する広がり感度は約19であり、大きい。そして、この立体画像の形状に対する広がり感度は、出射角度γ=60°から急に大きくなる。この結果、出射角度γ=75°以上の高視野角部では形状の誤差がボケに大きく影響するためである。
そこで、本実施の形態の光デバイス1Aは、この問題を解決するために、図1の(a)(b)に示すように、導光板10の出射面12に直交しかつ側面14に平行な基準面BLに対して0度以上かつ第1角度α未満の低視野角方向の空間に立体画像Iを結像させる低視野角光路偏向部群27と、基準面BLに対して第1角度α以上かつ90度未満の高視野角方向の空間に画像を結像させる高視野角光路偏向部群28とを備えている。そして、低視野角光路偏向部群27による結像状態と、高視野角光路偏向部群28による結像状態とが異なっている。
具体的には、図1の(a)(b)に示すように、低視野角光路偏向部群27によって、導光板10とは異なる空間上つまり出射面12の上方に立体画像Iとして立体画像3Dが結像される一方、高視野角光路偏向部群28によって、導光板10の出射面12上に2次元画像2Dが結像される。そして、この2次元画像2Dの配置位置は、導光板10の出射面12において高視野角方向の角度によらず一定となっている。
この結果、高視野角となる場合に立体画像Iがボケないようにすることができる。したがって、高視野角方向の空間における立体画像Iの視認性悪化を抑制し得る光デバイス1Aを提供することができる。
また、高視野角方向の空間においては、2次元画像2Dを結像させるので、ボケていない画像を表示することができる。すなわち、高視野角方向の空間に、仮にボケない立体画像を結像しても殆ど2次元画像2Dと比べて変わりがない。このため、ボケた立体画像Iを視認するよりもボケていない2次元画像2Dを視認する方が、不快感が少ない。
したがって、高視野角方向の空間における立体画像Iの視認性悪化を抑制し得る光デバイス1Aを提供することができる。
(2次元画像を結像させる高視野角光路偏向部群の形状)
ここで、本実施の形態の光デバイス1Aにおいて、導光板10の出射面12に2次元画像2Dを結像させる高視野角光路偏向部群28の形状について、図13の(a)(b)(c)(d)及び図14の(a)(b)(c)に基づいて説明する。図13の(a)は、導光板10の出射面12に2次元画像2Dを結像させる高視野角光路偏向部群28の形状の一例を示すものであって、複数のドットから構成される矢印からなる2次元画像2Dを示す平面図である。図13の(b)は一つのドットを形成するために1区画内に配置される高視野角光路偏向部群28のプリズムを示す平面図であり、図13の(c)(d)は高視野角光路偏向部群28の1つのプリズムの形状例を示す図である。図14の(a)(b)(c)は、高視野角光路偏向部群28の1つのプリズムP28aの他の変形例の構成を示す斜視図である。
図13の(a)に示すように、導光板10の出射面12に矢印からなる2次元画像2Dを形成する場合に、その矢印からなる2次元画像2Dは、複数のドットの集合にて示される。そして、この1つのドットを点画像として結像するために、図13の(b)に示すように、導光板10の裏面13における1区画内には複数の第4光路偏向部としてのプリズムP28aからなる第4光路偏向部群28aが設けられている。そして、各区画に設けられた第4光路偏向部群28a・28b・28c…によって、高視野角光路偏向部群28が構成されている。
したがって、2次元画像は、1区画内に設けられた複数の第4光路偏向部としてのプリズムP28aからなる第4光路偏向部群28a・28b・28c…によって1つの点画像が結像され、第4光路偏向部群28a・28b・28c…を複数区画内に有する高視野角光路偏向部群28にて点画像を集積することにより、見かけ上、面画像が表示されるようになっている。
尚、図13の(b)に示す高視野角光路偏向部群28においては、図13の(c)に示すように、三角錐からなる例えばプリズムP28aを使用していたが、必ずしもこれに限らず、例えば、図13の(d)に示すように、円弧状の錐にて構成することも可能である。
尚、図13の(b)に示す高視野角光路偏向部群28は指向性の強い点画像を集積して2次元画像2Dを表示するものであった。しかし、必ずしもこれに限らず、図14の(a)(b)(c)に示すように、指向性の弱い高視野角光路偏向部群28とすることも可能である。この場合には、一定範囲に2次元画像2Dを表示するために、図14の(a)に示すように、光を拡散する反射面を有するプリズムP28aとしたり、図14の(b)に示すように、円弧状の三角錐のプリズムP28aとしたり、図14の(c)に示すように、円錐形状に類似するプリズムP28aとしたりすることが可能である。尚、この場合、低視野角光路偏向部群27のための立体画像Iと重ならないように2次元画像2Dを表示することに留意する必要がある。
ここで、本実施の形態の光デバイス1Aでは、2次元画像2Dの配置位置は、導光板10の出射面12において高視野角方向の角度によらず一定となっている(図15の「同じ位置」で示す直線)。しかし、必ずしもこれに限らず、例えば、図15において「少しずらす」で示す直線で示すように、高視野角光路偏向部群28によって結像される2次元画像2Dの配置位置が、高視野角方向の角度によって異なるようにした光デバイス1A’とすることが可能である。
すなわち、図16の(a)に示すように、低視野角光路偏向部群27によって、空間に立体画像Iを形成すると共に、例えば、端部の高視野角光路偏向部群28によって、広い角度方向に2次元画像2Dを形成することが可能である。この結果、端部の高視野角光路偏向部群28によって、1箇所に2次元画像2Dを形成することによって、高視野角方向の角度によらず一定の位置に2次元画像2Dを結像させる光デバイス1Aとすることができる。
一方、図16の(b)に示すように、配置位置の異なる各高視野角光路偏向部群28によって、複数の2次元画像2Dを結像させることも可能である。これにより、例えば、2次元画像2Dの配置位置が、高視野角から低視野角に近づくに伴って、基準面BLに近づくようにした光デバイス1A’とすることも可能である。
このように、導光板10の出射面12に2次元画像2Dを結像させるときには、本実施の形態では、視野角の増加に伴って導光板10の出射面12の異なる場所に位置をずらして結像させることが可能である。この結果、視野角が高い状態から低い状態へ移動すると、それに応じて2次元画像2Dが移動すると共に、特定の視野角となった時点から立体画像Iに変更する、という演出が可能となる。
ところで、光デバイス1A・1A’における視野角と画像を結像する位置との関係は、図15に示すように、視野角が例えば45度以上でパターン位置の曲線が立ち上がるようになる。そこで、本実施の形態の光デバイス1A・1A’では、2次元画像2Dを結像させるときの第1角度α以上かつ90度未満の高視野角方向の空間における第1角度αとして、図17に示すように、例えば、第1角度α=45度とすることができる。これにより、第1角度α=45度以上かつ90度未満の高視野角方向において、立体画像がボケないようにすることができる。尚、第1角度αは50度とすることがさらに好ましい。これにより、ボケが目立つ限界まで立体画像3Dが見えることになる。尚、本実施の形態において、第1角度α=45度は、基準面BLに対する高視野角となる角度であるので、基準面BLに対する±45度を意味している。
このように、本実施の形態の光デバイス1Aは、光源2から入射された光を導光し、導光された光を光路偏向して出射面12から出射させることにより空間上に画像を結像させる導光板10を備えている。そして、導光板10の出射面12に直交しかつ側面14に平行な基準面BLに対して0度以上かつ第1角度α未満の低視野角方向の空間に画像を結像させる低視野角光路偏向部群27と、基準面BLに対して第1角度α以上かつ90度未満の高視野角方向の空間に画像を結像させる高視野角光路偏向部群28とを備える。低視野角光路偏向部群27による結像状態と、高視野角光路偏向部群28による結像状態とは異なっている。
また、本実施の形態の光デバイス1Aは、低視野角光路偏向部群27によって、導光板10とは異なる空間上に立体画像Iが結像される一方、高視野角光路偏向部群28によって、導光板10の出射面12上に2次元画像2Dが結像される。
さらに、本実施の形態の光デバイス1Aは、高視野角光路偏向部群28によって結像される2次元画像2Dの配置位置が、高視野角方向の角度によらず一定である。
また、本実施の形態の光デバイス1A’は、高視野角光路偏向部群28によって結像される2次元画像2Dの配置位置が、高視野角方向の角度によって異なるとすることも可能となっている。
この結果、高視野角となる場合に立体画像Iがボケないようにすることができる。したがって、高視野角における立体画像Iの視認性悪化を抑制し得る光デバイス1Aを提供することができる。
これにより、本実施の形態の光デバイス1A・1A’を、例えば、ホテル等の宿泊施設の廊下や地下街又は連絡通路等の狭い道路に飛び出す立体画像Iをして適用することができると共に、高齢者や車いすの利用者が通る病院等において、手すり利用者向けの立体画像Iにて結像される部屋番号等に利用することができる。
或いは、機器の表示に関しては、例えば、エスカレータの上り下りのための立体画像Iや、電車等の各種ゲート類の矢印からなる立体画像Iや、電車のドアの径表示を示す立体画像I等に利用することができる。
また、本実施の形態の光デバイス1A・1A’では、低視野角光路偏向部群27及び高視野角光路偏向部群28は、点画像PIを結像する複数の第2光路偏向部としてのプリズムP25a・P25b・P25c…からなる第2光路偏向部群25a・25b・25c…を複数列設けることにより、見かけ上、線画像LIを結像するようになっている。
換言すれば、光デバイス1A・1A’は、出射面12に平行な面内で光を導く導光板10と、導光板10によって導かれている光が入射し、空間上の1つの収束点又は収束線に実質的に収束する又は空間上の1つの収束点又は収束線から実質的に発散する方向の出射光を出射面12から出射させる光学面をそれぞれ有する複数の光収束部とを備え、複数の光収束部は、出射面12に平行な面内でそれぞれ予め定められた線に沿って形成され、収束点又は収束線は複数の光収束部の間で互いに異なり、複数の前記収束点又は収束線の集まりによって空間上に像が形成される。
これにより、光強度が強い点画像PIを結像することができる。そして、第2光路偏向部群25a・25b・25c…にて結像される点画像PIは、第2光路偏向部群25a・25b・25c…が複数列設けられているので、点画像PIが並んだ状態となり、見かけ上、線画像LIとして認識される。
この結果、導光板10に形成される低視野角光路偏向部群27及び高視野角光路偏向部群28としての第2光路偏向部群25a・25b・25c…により、光強度が強い線画像LIからなる立体画像Iを容易に形成することができる。
また、本実施の形態の光デバイス1A・1A’は、低視野角光路偏向部群27及び高視野角光路偏向部群28は、線画像LIを結像する第1光路偏向部としてのプリズムP21a・P21b・P21c…を複数有する第1光路偏向部群21a・21b・21c…を複数列設けることにより、見かけ上、面画像FIを結像するようになっている。
換言すれば、光デバイス1A・1A’は、光源2からの光を、出射面12に平行な面内で伝播する導光板10と、出射面12に平行な面内に2次元的に配置され、それぞれ導光板10内を伝播する光を偏向して、空間上の像を形成する光を出射面12から出射させる複数の光偏向部とを備え、複数の光偏向部のそれぞれが、複数の光偏向部のそれぞれに入射した光を、出射面12に平行な面内で導光板10の導光方向に直交する方向に像に応じた強度分布を持つ光に広げて出射面12から出射させることによって、導光方向に直交する方向に沿って配置された複数の光偏向部からの光が、像に結像する又は像から発散する方向の光になる。或いは、光デバイス1A・1A’は、光源2からの光を、出射面12に平行な面内で伝播する導光板10と、出射面12に平行な面内に2次元的に配置され、それぞれ導光板10内を伝播する光を偏向して、空間上の像を形成する光を出射面12から出射させる複数の光偏向部とを備え、複数の光偏向部のそれぞれが、複数の光偏向部のそれぞれに入射した光を、像に応じた強度分布の光に2次元的に広げて出射面12から出射させることによって、同一直線上にない3つ以上の光偏向部からの光が、像に結像する又は像から発散する方向の光になる。
これにより、導光板10に形成される低視野角光路偏向部群27及び高視野角光路偏向部群28としての第1光路偏向部群21a・21b・21c…により、面画像FIの一部を構成する線画像LIが結像される。そして、第1光路偏向部群21a・21b・21c…は複数列設けられているので、線画像LIの太さが厚くなる。その結果、見かけ上、2次元の面画像FIが結像される。
したがって、導光板10に形成される低視野角光路偏向部群27及び高視野角光路偏向部群28として第1光路偏向部群21a・21b・21c…を複数列設けることにより、2次元の面画像FIを容易に結像することができる。
また、本実施の形態の光デバイス1A・1A’では、低視野角光路偏向部群27は、基準面BLに対して0度以上かつ第1角度α未満の低視野角方向の空間に画像を結像させる反射面を備えている一方、高視野角光路偏向部群28は、基準面BLに対して第1角度α以上かつ90度未満の高視野角方向の空間に画像を結像させる反射面を備えているプリズムP28aからなっている。
これにより、導光板10に低視野角光路偏向部群27と高視野角光路偏向部群28との両方を設けても同一の光源2からの光により、低視野角方向の空間における画像と高視野角方向の空間における画像とを区別して結像することができる。
〔実施の形態2〕
本発明の他の実施の形態について図18及び図19に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
前記実施の形態1の光デバイス1Aでは、高視野角方向の空間に視認性の高い画像を結像させるための構成とするために、高視野角方向の空間においては、2次元画像2Dを結像させていた。これに対して、本実施の形態の光デバイス1Bは、高視野角光路偏向部群28の配置間隔を、低視野角光路偏向部群27の配置間隔よりも大きくしている点が異なっている。
本実施の形態の光デバイス1Bの構成について、図18の(a)(b)に基づいて説明する。図18の(a)は、低視野角光路偏向部群27と高視野角光路偏向部群28との配置間隔pが同じである光デバイス1Aの構成を示す平面図である。図18の(b)は高視野角光路偏向部群28との配置間隔pが低視野角光路偏向部群27の配置間隔pよりも大きい光デバイスの構成を示す平面図である。
図18の(a)に示すように、基準面BLに対して0度以上かつ第1角度α未満の低視野角方向の空間においては、導光板10の出射面12における短い距離から立体画像が結像される。一方、基準面BLに対して第1角度α以上かつ90度未満の高視野角方向の空間においては、導光板の出射面における導光板の長い距離から立体画像が結像される。
この場合、図18の(a)に示すように、前記実施の形態1の光デバイス1Aでは、低視野角光路偏向部群27の配置間隔pと高視野角光路偏向部群28の配置間隔pとが同じになっているので、高視野角方向の空間における立体画像と低視野角方向の空間における立体画像とは同じ解像度で結像されることになる。
この結果、このように、高視野角方向の空間における立体画像と低視野角方向の空間における立体画像とを同じ解像度で結像すると、高視野角方向の空間における立体画像ではボケが目立つようになる。この理由は、高視野角方向の空間における立体画像は、高視野角光路偏向部群28におけるパターン形状の向きが斜めになるためである。
そこで、本実施の形態の光デバイス1Bでは、図18の(b)に示すように、高視野角光路偏向部群28の配置間隔pを、低視野角光路偏向部群27の配置間隔pよりも大きくしている。
これにより、本実施の形態の光デバイス1Bでは、高視野角方向の空間における立体画像は、低視野角方向の空間における立体画像に比べて解像度が低下する。この結果、高視野角方向の空間における立体画像においてもボケが目立つことがなくなる。
したがって、この方法によっても、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイス1Bを提供することができる。
ここで、光デバイス1Bにおける視野角と、高視野角光路偏向部群28及び低視野角光路偏向部群27の配置間隔pとの関係は、図19によって示される。このグラフから分かるように、本実施の形態の光デバイス1Bにおいても、第1角度α=45度とすることが好ましく、第1角度α=50度とすることがさらに好ましいことが分かる。
〔実施の形態3〕
本発明のさらに他の実施の形態について図20〜図22に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1及び実施の形態2と同じである。また、説明の便宜上、前記の実施の形態1及び実施の形態2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
本実施の形態の光デバイス1Cは、低視野角光路偏向部群27及び高視野角光路偏向部群28が視差画像用になっている点が異なっている。
本実施の形態の光デバイス1Cの構成について、図20の(a)(b)(c)〜図22に基づいて説明する。図20の(a)は、横方向に等ピッチで設定された視点を示す平面図であり、図20(b)は視点が横方向に等ピッチで設定された場合における等ピッチで配置された場合の視差画像による立体画像を示す斜視図である。図20の(c)は、等ピッチで配置された視差画像による立体画像を示すxz平面の断面図である。
図20の(a)に示すように、視差画像により立体画像Iを結像させる場合には、一般的に等ピッチに設定される。その結果、図20の(b)(c)に示すように、結像される視差画像も等ピッチで結像される。これにより、前記実施の形態1の光デバイス1Aと同様に、解像度が高視野角方向の空間における視差画像及び低視野角方向の空間における視差画像の両方に対して解像度が同じであり、その結果、高視野角方向の空間における視差画像においてボケが発生することになる。
そこで、本実施の形態の光デバイス1Cでは、右目用視差画像と左目用視差画像とからなる一対の視差画像が、複数対、横方向に並んで配列されていると共に、例えば、高視野角光路偏向部群28は、隣接する視差画像との間隔が広がるように結像させる。
具体的には、図21の(a)に示すように、視差画像により立体画像Iを結像させる場合には、等角度ピッチに設定する。この結果、図21の(b)(c)に示すように、結像される視差画像は、高視野角になるほど隣接する視差画像との間隔が広がるように結像されるようになる。
これにより、視差画像においても、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイスを提供することができる。
尚、本実施の形態では、必ずしもこれに限らず、他の方法を採用することも可能である。例えば、図22示すように、設定された高視野角よりも外側の領域においては、2次元画像2Dを結像させる光デバイス1C’とすることが可能である。
これによっても、実施の形態1の光デバイス1Aと同様に、視差画像においても、高視野角方向の空間における立体画像の視認性悪化を抑制し得る光デバイス1C’を提供することができる。
〔実施の形態4〕
本発明のさらに他の実施の形態について図23に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1〜実施の形態3と同じである。また、説明の便宜上、前記の実施の形態1〜実施の形態3の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
本実施の形態の光デバイス1Dは、光源2の取り付け位置が導光板10の角部に設けられている点が異なっている。
本実施の形態の光デバイス1Dの構成について、図23(a)(b)に基づいて説明する。図23(a)(b)は、本実施の形態4の光デバイス1Dを示すものであって、光源2を導光板10の角部に配置した光デバイス1Dの構成を示す平面図である。
実施の形態の1〜4の光デバイス1A〜1Dでは、低視野角の方向及び高視野角の方向とは、観察者が移動する方向を前提にしており、基準面BLが水平面に直交する場合のことを問題としている。
ここで、光デバイス1Dの下側又は上側の側面に光源2を設ける構成の場合、特に高視野角光路偏向部群28によって高視野角方向へ光を反射させるには、光源2から上下方向に出射された光を左右方向に大きく曲げる必要がある。すなわち、高視野角方向への光量は低下する。
一方、高視野角光路偏向部群28及び低視野角光路偏向部群27の左右方向から、光源2からの光を照射すると、隣り合う光路偏向部群によって光源2からの光が干渉してしまう。この結果、適切な立体画像の表示ができなくなる。
そこで、本実施の形態の光デバイス1Dでは、図23(a)に示すように、光源2は、基準面BLに対して斜めとなる方向から前記低視野角光路偏向部群27及び高視野角光路偏向部群28に対して光を照射する。
これにより、隣り合う光路偏向部群による干渉を生じさせることなく、また、光源2からの光を曲げる角度をより小さくすることができるので、高視野角方向への光の反射光量を増加させることができる。
尚、本実施の形態の光デバイス1Dでは、図23(b)に示すように、前記図15に示す2次元画像2Dをずらす場合においても、光源2の取り付け位置を導光板10の角部に設けることが、有効な措置となる。
〔実施の形態5〕
本発明のさらに他の実施の形態について図24〜図27に基づいて説明すれば、以下のとおりである。尚、本実施の形態において説明すること以外の構成は、前記実施の形態1〜実施の形態4と同じである。また、説明の便宜上、前記の実施の形態1〜実施の形態4の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
本実施の形態の光デバイス1Eは、立体画像Iに厚みを持たしている点が異なっている。
本実施の形態の光デバイス1Eの構成について、図24(a)(b)〜図27(a)(b)に基づいて説明する。図24(a)は、立体画像Iを低視野角方向から観察する状態を示す平面図であり、図24(b)は、立体画像Iを低視野角方向から観察した場合の立体画像Iの見え方を示す斜視図である。図25(a)は、立体画像Iを高視野角方向から観察する状態を示す平面図であり、図25(b)は、立体画像Iを高視野角方向から観察した場合の立体画像Iの見え方を示す斜視図である。図26(a)は、本実施の形態の光デバイス1Eを示すものであって、立体画像Iを低視野角方向から観察する状態を示す平面図であり、図26(b)は、立体画像Iを低視野角方向から観察した場合の立体画像Iの見え方を示す斜視図である。図27(a)は、本実施の形態の光デバイス1Eを示すものであって、立体画像Iを高視野角方向から観察する状態を示す平面図であり、図27(b)は、立体画像Iを高視野角方向から観察した場合の立体画像Iの見え方を示す斜視図である。
例えば、図24の(a)に示すように、導光板10に対して垂直方向に結像された矢印からなる立体画像Iを低視野角方向の下方から観察した場合には、図24(b)に示すように、立体感を得易い立体画像Iが結像される。これに対して、図25の(a)に示すように、導光板10に対して垂直方向に結像された矢印からなる立体画像Iを高視野角方向の斜め下方から観察した場合には、図25(b)に示すように、立体感を失った立体画像Iが結像される場合がある。
そこで、本実施の形態の光デバイス1Eでは、立体画像Iに厚みを持たせる。特に、高視野角方向の立体画像Iに対して厚みを持たせることが好ましい。これにより、図26の(a)に示すように、導光板10に対して垂直方向に結像された矢印からなる立体画像Iを低視野角方向の下方から観察した場合には、図26(b)に示すように、立体感を得易い立体画像Iが結像される。また、図27の(a)に示すように、導光板10に対して垂直方向に結像された矢印からなる立体画像Iを高視野角方向の斜め下方から観察した場合にも、図27(b)に示すように、厚み方向の線が形状を理解する手掛かりとなり、導光板10に対して垂直方向の矢印からなる立体画像Iであると容易に認識することができる。
尚、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1A・1A’ 光デバイス
1B 光デバイス
1C・1C’ 光デバイス
1D 光デバイス
1E 光デバイス
2 光源
2a 発光ダイオード(LED)
3 入射光調節部
3a レンズ
10 導光板
11 入射面
12 出射面
13 裏面
14 側面
20 光路偏向部(低視野角光路偏向部群、高視野角光路偏向部群)
21 面画像用光路偏向部群
21a〜21c 第1光路偏向部群
22 第3光路偏向部群
24 輪郭画像用光路偏向部群
25 線画像用光路偏向部群
25a〜25c 第2光路偏向部群
27 低視野角光路偏向部群
28 高視野角光路偏向部群
28a〜28c 第4光路偏向部群
30 立体画像結像面
d 隙間
f1〜f5 反射面
P21a〜P21c プリズム
P22a 文字形成部
P22b 反射防止膜部
P28a プリズム(第4光路偏向部)
α 第1角度

Claims (11)

  1. 光源から入射された光を導光し、導光された光を光路偏向して出射面から出射させることにより空間上に画像を結像させる導光板を備えた光デバイスにおいて、
    前記導光板の出射面に直交しかつ側面に平行な基準面に対して0度以上かつ第1角度未満の低視野角方向の空間に画像を結像させる低視野角光路偏向部群と、
    前記基準面に対して前記第1角度以上かつ90度未満の高視野角方向の空間に画像を結像させる高視野角光路偏向部群とを備え、
    前記低視野角光路偏向部群による結像状態と、前記高視野角光路偏向部群による結像状態とが異なっていることを特徴とする光デバイス。
  2. 前記低視野角光路偏向部群によって、前記導光板とは異なる空間上に立体画像が結像される一方、
    前記高視野角光路偏向部群によって、前記導光板の出射面上に2次元画像が結像されることを特徴とする請求項1に記載の光デバイス。
  3. 前記高視野角光路偏向部群によって結像される前記2次元画像の配置位置が、高視野角方向の角度によらず一定であることを特徴とする請求項2に記載の光デバイス。
  4. 前記高視野角光路偏向部群によって結像される前記2次元画像の配置位置が、高視野角方向の角度によって異なることを特徴とする請求項2に記載の光デバイス。
  5. 前記高視野角光路偏向部群の配置間隔が、前記低視野角光路偏向部群の配置間隔よりも大きいことを特徴とする請求項1に記載の光デバイス。
  6. 前記低視野角光路偏向部群及び高視野角光路偏向部群は、点画像を結像する複数の第2光路偏向部からなる第2光路偏向部群を複数列設けることにより、見かけ上、線画像を結像するようになっていることを特徴とする請求項1〜5のいずれか1項に記載の光デバイス。
  7. 前記低視野角光路偏向部群及び高視野角光路偏向部群は、線画像を結像する第1光路偏向部を複数有する第1光路偏向部群を複数列設けることにより、見かけ上、面画像を結像するようになっていることを特徴とする請求項1〜5のいずれか1項に記載の光デバイス。
  8. 前記2次元画像は、1区画内に設けられた複数の第4光路偏向部からなる第4光路偏向部群によって1つの点画像が結像され、前記第4光路偏向部群を複数区画内に有する前記高視野角光路偏向部群にて前記点画像を集積することにより、見かけ上、面画像が表示されることを特徴とする請求項2〜4のいずれか1項に記載の光デバイス。
  9. 前記低視野角光路偏向部群は、前記基準面に対して0度以上かつ第1角度未満の低視野角方向の空間に画像を結像させる反射面を備えている一方、
    前記高視野角光路偏向部群は、前記基準面に対して前記第1角度以上かつ90度未満の高視野角方向の空間に画像を結像させる反射面を備えていることを特徴とする請求項1〜8のいずれか1項に記載の光デバイス。
  10. 前記画像は視差画像からなっており、右目用視差画像と左目用視差画像とからなる一対の前記視差画像が、複数対、横方向に並んで配列されていることを特徴とする請求項1〜5のいずれか1項に記載の光デバイス。
  11. 前記光源は、前記基準面に対して斜めとなる方向から前記低視野角光路偏向部群及び高視野角光路偏向部群に対して光を照射することを特徴とする請求項1〜10のいずれか1項に記載の光デバイス。
JP2016153845A 2016-08-04 2016-08-04 光デバイス Active JP6620697B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016153845A JP6620697B2 (ja) 2016-08-04 2016-08-04 光デバイス
CN201780042498.XA CN109416476B (zh) 2016-08-04 2017-07-18 光学设备
US16/318,028 US11067826B2 (en) 2016-08-04 2017-07-18 Optical device for presenting a stereoscopic image
PCT/JP2017/025981 WO2018025628A1 (ja) 2016-08-04 2017-07-18 光デバイス
DE112017003904.5T DE112017003904T5 (de) 2016-08-04 2017-07-18 Optische Vorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153845A JP6620697B2 (ja) 2016-08-04 2016-08-04 光デバイス

Publications (2)

Publication Number Publication Date
JP2018022067A true JP2018022067A (ja) 2018-02-08
JP6620697B2 JP6620697B2 (ja) 2019-12-18

Family

ID=61073822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153845A Active JP6620697B2 (ja) 2016-08-04 2016-08-04 光デバイス

Country Status (5)

Country Link
US (1) US11067826B2 (ja)
JP (1) JP6620697B2 (ja)
CN (1) CN109416476B (ja)
DE (1) DE112017003904T5 (ja)
WO (1) WO2018025628A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235762A1 (ja) 2017-06-23 2018-12-27 キヤノン株式会社 表示制御装置、表示制御方法、およびプログラム
CN115079437A (zh) * 2021-03-15 2022-09-20 欧姆龙株式会社 导光板器件
JP7510627B2 (ja) 2020-08-11 2024-07-04 長崎県 表示パネルの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6620697B2 (ja) * 2016-08-04 2019-12-18 オムロン株式会社 光デバイス
JP6856039B2 (ja) * 2018-02-15 2021-04-07 オムロン株式会社 導光板、発光装置、表示装置及び遊技機
US20220146855A1 (en) * 2019-03-06 2022-05-12 Omron Corporation Display device, contactless switch, and electronic device
JP7434876B2 (ja) 2019-12-19 2024-02-21 オムロン株式会社 導光板、表示装置、入力装置および電気機器
JP7494696B2 (ja) * 2020-10-19 2024-06-04 Toppanホールディングス株式会社 空中表示装置
JP2022140143A (ja) * 2021-03-12 2022-09-26 オムロン株式会社 導光板、表示装置、入力装置、および、表示装置を備えた機器
DE102022126304A1 (de) * 2022-10-11 2024-04-11 HELLA GmbH & Co. KGaA Fresnelprojektionslinse mit integrierter Funktion zur Bedienung der Overhead-Sign-Werte

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140268327A1 (en) * 2013-03-15 2014-09-18 Opsec Security Group, Inc. Optically variable device exhibiting non-diffractive three-dimensional optical effect
JP5701434B1 (ja) * 2014-07-11 2015-04-15 株式会社フジクラ 表示装置および表示方法
JP5861797B1 (ja) * 2014-10-06 2016-02-16 オムロン株式会社 光デバイス
JP2016516176A (ja) * 2013-01-31 2016-06-02 レイア、インコーポレイテッドLeia Inc. 多視点3d腕時計

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930631B2 (ja) * 2010-09-27 2012-05-16 ソニー株式会社 立体表示装置
JP5649936B2 (ja) 2010-12-02 2015-01-07 スタンレー電気株式会社 画像表示装置
TWI499800B (zh) * 2013-01-22 2015-09-11 Innolux Corp 顯示裝置及其發光模組
AU2014216006B2 (en) * 2013-09-27 2018-07-19 Omron Corporation Light Guide Body and Light-Emitting Device
WO2016114104A1 (ja) * 2015-01-13 2016-07-21 オムロン株式会社 光デバイス及び光システム
JP6638274B2 (ja) * 2015-01-13 2020-01-29 オムロン株式会社 光デバイス及び光システム
JP6544186B2 (ja) * 2015-10-07 2019-07-17 オムロン株式会社 光デバイス及び光システム
JP6743419B2 (ja) * 2015-11-10 2020-08-19 オムロン株式会社 表示システム及びゲート装置
JP6620697B2 (ja) * 2016-08-04 2019-12-18 オムロン株式会社 光デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516176A (ja) * 2013-01-31 2016-06-02 レイア、インコーポレイテッドLeia Inc. 多視点3d腕時計
US20140268327A1 (en) * 2013-03-15 2014-09-18 Opsec Security Group, Inc. Optically variable device exhibiting non-diffractive three-dimensional optical effect
JP5701434B1 (ja) * 2014-07-11 2015-04-15 株式会社フジクラ 表示装置および表示方法
JP5861797B1 (ja) * 2014-10-06 2016-02-16 オムロン株式会社 光デバイス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235762A1 (ja) 2017-06-23 2018-12-27 キヤノン株式会社 表示制御装置、表示制御方法、およびプログラム
JP7510627B2 (ja) 2020-08-11 2024-07-04 長崎県 表示パネルの製造方法
CN115079437A (zh) * 2021-03-15 2022-09-20 欧姆龙株式会社 导光板器件
US11982823B2 (en) 2021-03-15 2024-05-14 Omron Corporation Light guide plate device including optical path changer

Also Published As

Publication number Publication date
DE112017003904T5 (de) 2019-05-02
JP6620697B2 (ja) 2019-12-18
WO2018025628A1 (ja) 2018-02-08
CN109416476B (zh) 2021-07-27
US20190235263A1 (en) 2019-08-01
US11067826B2 (en) 2021-07-20
CN109416476A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
JP6620697B2 (ja) 光デバイス
CN109313349B (zh) 光设备以及立体显示方法
KR102574781B1 (ko) 2차원 라이트 필드 및 홀로그램 릴레이들을 이용한 에너지 전파와 횡방향 앤더슨 편재
JP5861797B1 (ja) 光デバイス
US20180101087A1 (en) Display device
US10890706B2 (en) Optical device
JP2010237416A (ja) 立体表示装置
CN104487877A (zh) 定向显示设备
JPH1031193A (ja) 立体画像表示装置
JP7036262B2 (ja) 導光板、車両用灯具
JP6350177B2 (ja) 発光装置
US20120249968A1 (en) Autostereoscopic display
US10859824B2 (en) Display device
JP6856039B2 (ja) 導光板、発光装置、表示装置及び遊技機
KR20190079175A (ko) 공간 영상 투영 장치
US11525953B2 (en) Light guide plate, display device, input device, and apparatus including display device
JP2013068682A (ja) 立体表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6620697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150