JP2018021886A - Rapid absorption quantitative determination system for analysis of combustion-type carbon, nitrogen, halogen, and sulfur - Google Patents

Rapid absorption quantitative determination system for analysis of combustion-type carbon, nitrogen, halogen, and sulfur Download PDF

Info

Publication number
JP2018021886A
JP2018021886A JP2016161552A JP2016161552A JP2018021886A JP 2018021886 A JP2018021886 A JP 2018021886A JP 2016161552 A JP2016161552 A JP 2016161552A JP 2016161552 A JP2016161552 A JP 2016161552A JP 2018021886 A JP2018021886 A JP 2018021886A
Authority
JP
Japan
Prior art keywords
sample
combustion
halogen
nitrogen
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016161552A
Other languages
Japanese (ja)
Other versions
JP6880354B2 (en
JP2018021886A5 (en
Inventor
佐藤 綾子
Ayako Sato
綾子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016161552A priority Critical patent/JP6880354B2/en
Publication of JP2018021886A publication Critical patent/JP2018021886A/en
Publication of JP2018021886A5 publication Critical patent/JP2018021886A5/en
Application granted granted Critical
Publication of JP6880354B2 publication Critical patent/JP6880354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an environmentally conscious, rapid, and easy analysis method which eliminates the disadvantages including a poor efficiency and too many procedures of a flask combustion method for decomposing a sample for quantitative determination of halogen or sulfur or the disadvantages including an extensive configuration, a large power consumption, and a large environmental load of a combustion furnace-type decomposition device.SOLUTION: The present invention relates to a system which performs decomposition and quantitative determination of a sample at one time by the steps of: collecting gas from a combustion system to a 100 ml container of an absorption liquid; putting an electrode and a buret chip of an automatic titrator into the container; and automatically performing absorption and quantitative determination of a fuel gas in the 100 ml container while agitating the liquid with a propeller-type agitation rod.SELECTED DRAWING: None

Description

本発明は、燃焼式炭素、窒素、ハロゲン、硫黄分析測定に関するThe present invention relates to combustion-type carbon, nitrogen, halogen and sulfur analysis measurement

炭素、窒素の定量については燃焼式有機元素分析法があるが、炭酸イオンや硝酸イオンの定量もある。ハロゲン、硫黄の定量については、フラスコ燃焼法が一般的であるが、フラスコ燃焼法は試料の重量をミクロ天びんで正確に量り、ろ紙にくるんで酸素を充満させた分解フラスコ中で燃やし、予め入れておいた吸収液に該イオンを吸収させたものを滴定又はイオンクロマト法で定量する。一方、近年開発された燃焼式ハロゲン硫黄分析計は、試料を800度以上の高温で燃焼し、イオンクロマト法を組み合わせて自動化されている。There is a combustion type organic element analysis method for the determination of carbon and nitrogen, but there is also the determination of carbonate ion and nitrate ion. For the determination of halogen and sulfur, the flask combustion method is common, but the flask combustion method accurately measures the weight of the sample with a microbalance, burns it in a decomposition flask filled with oxygen by wrapping it in filter paper, and put it in advance. A solution obtained by absorbing the ions in the absorption solution is quantified by titration or ion chromatography. On the other hand, combustion-type halogen sulfur analyzers developed in recent years are automated by combusting a sample at a high temperature of 800 degrees or more and combining ion chromatography.

炭酸イオンや硝酸イオンの定量は環境や食品中に溶けている各イオンの定量が挙げられる。ハロゲン・硫黄の定量は、有機合成化合物の構造決定や、開発素材中の含有量を調べるなどに利用されるが、石油、鉄鋼、土壌中のハロゲン、硫黄の測定やゴミ焼却用高温ガス炉の安定化と制御のために可燃分中の塩素の定量、ダイオキシン含有判定の高効率な塩素の定量、さらにRoHS指令など環境分野の利用を挙げることができる。The determination of carbonate ions and nitrate ions includes determination of each ion dissolved in the environment and food. The determination of halogen and sulfur is used to determine the structure of organic synthetic compounds and to check the content of the developed materials. For example, it is used to measure halogen and sulfur in petroleum, steel, and soil, and to use high-temperature gas reactors for garbage incineration. For stabilization and control, determination of chlorine in the combustible component, high-efficiency determination of chlorine for determining dioxin content, and utilization in the environmental field such as the RoHS directive can be given.

現在多く普及しているフラスコ燃焼法は、有機微量分析(非特許文献1)に記載されているように、
1.燃焼用フラスコに30mlの吸収液を入れる。
2.試料の重さを正確に計り、図に示すような形のろ紙にくるむ
3.試料の入ったろ紙を白金網に挟んで取り付ける。
4.純酸素をフラスコに充填し、白金網に挟んだろ紙の先端に点火してすばやくフラスコに挿入する。
4.ろ紙にくるまれた試料がフラスコ中で燃焼し、燃焼ガスがフラスコ中の吸収液に吸収されるまでしばらく放置する。
5.フラスコから吸収液を滴定装置用のビーカーに移す。
6.自動滴定装置装置により各ハロゲン・硫黄の成分を定量する。
もう一方の燃焼式ハロゲン硫黄分析計は特許文献1に記述されているように、
1.試料の重さを正確に計り、燃焼管に挿入する
2.燃焼により発生したガスをキャリヤガスで吸収ユニットに移動させる。
3.イオンクロマト計を用いて各ハロゲン・硫黄の成分を定量する。
As described in the organic microanalysis (Non-Patent Document 1), the flask combustion method that is currently widely used is
1. Place 30 ml of absorbent into the combustion flask.
2. 2. Weigh the sample accurately and wrap it in a filter paper shaped as shown in the figure. Attach the filter paper containing the sample to the platinum mesh.
4). Fill the flask with pure oxygen, ignite the tip of the filter paper sandwiched between platinum meshes, and quickly insert it into the flask.
4). The sample wrapped in the filter paper burns in the flask and is left for a while until the combustion gas is absorbed by the absorbent in the flask.
5. Transfer absorbent from flask to beaker for titrator.
6). Each halogen / sulfur component is quantified by an automatic titrator.
The other combustion type halogen sulfur analyzer, as described in Patent Document 1,
1. 1. Weigh the sample accurately and insert it into the combustion tube. The gas generated by the combustion is moved to the absorption unit by the carrier gas.
3. Quantify each halogen / sulfur component using an ion chromatograph.

有機微量分析 (有機微量分析懇談会編集)1969年南港堂出版 p383−414Organic microanalysis (edited by organic microanalysis round-table) 1969 Nankodo Publishing p383-414

特開2010−156568JP2010-156568

フラスコ燃焼方法は手作業が多く、時間効率が悪い。一方、燃焼式ハロゲン硫黄分析方法は試料を燃焼させる装置と、燃焼により発生するガスを吸収させる装置と定量するためのイオンクロマト計を要し、装置全体が極めて大きく高価で普及しにくい。また検量線を作成しなければならないので、自動滴定装置に比べて作業が効率的ではない。さらに高温炉からの放熱による室温の上昇を抑えるために、エアコンによる測定環境の調整が必要という問題がある。The flask combustion method involves many manual operations and is not time efficient. On the other hand, the combustion type halogen sulfur analysis method requires a device for burning a sample, a device for absorbing gas generated by combustion, and an ion chromatograph for quantification, and the entire device is extremely large and expensive and difficult to spread. Moreover, since a calibration curve has to be created, the work is not efficient compared to an automatic titrator. Furthermore, there is a problem that adjustment of the measurement environment by an air conditioner is necessary to suppress an increase in room temperature due to heat radiation from the high temperature furnace.

従って、本発明は分析作業の効率化を図るとともに、分析計の小型化と省エネ化により電気エネルギー消費量を抑えて地球温暖化対策を考慮した設計を提供することを目的としている。Accordingly, it is an object of the present invention to provide a design that takes into account global warming countermeasures by reducing the amount of electric energy consumed by reducing the size and energy of the analyzer while improving the efficiency of analysis work.

上述した課題を解決するために、本発明は、試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、試料を収納する燃焼管と、
前記燃焼管に収納された試料を加熱する燃焼炉と、
前記燃焼炉で加熱された試料から発生する気体を吸収する為の吸収液を入れた容器を有し、試料から発生する気体を吸収し、吸収の終了を電位変化で検出し、其の検出に連動して滴定を開始する制御プログラムを有して、該試料に含有された炭素、窒素、ハロゲン及び硫黄のいずれかを定量することを特徴としている。
In order to solve the above-mentioned problems, the present invention provides an analytical measurement system for determining the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in a sample by burning the sample. A combustion tube for storing,
A combustion furnace for heating the sample stored in the combustion tube;
It has a container containing an absorption liquid for absorbing gas generated from a sample heated in the combustion furnace, absorbs gas generated from the sample, detects the end of absorption by a potential change, and detects it. It has a control program for starting titration in conjunction with it, and quantifies any of carbon, nitrogen, halogen and sulfur contained in the sample.

本発明は、試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、
燃焼により発生したガスが吸収容器に全量達したことを吸収液の電位の測定によって決定し、連携して自動滴定が稼動するように設計された制御システムを有することを特徴としている。
The present invention relates to an analytical measurement system for determining the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in a sample by burning the sample.
It is characterized by having a control system designed to determine that the gas generated by combustion has reached the absorption container in its entirety by measuring the potential of the absorption liquid and to operate automatic titration in cooperation.

本発明は、試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、
燃焼により発生したガスが吸収容器に全量達したことを吸収液の電位の測定によって決定し、連携して自動滴定が稼動し、滴定が終了して終末点を得られたら、次の試料を燃焼管へ送入するように設計された制御システムを有することを特徴としている。
The present invention relates to an analytical measurement system for determining the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in a sample by burning the sample.
It is determined by measuring the potential of the absorbing liquid that the gas generated by combustion has reached the absorption container, and automatic titration is activated in cooperation.When titration is completed and the end point is obtained, the next sample is burned. It is characterized by having a control system designed to feed into the tube.

このように構成された本発明においては、試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、加熱された試料から発生する気体を溶液に吸収する手段は燃焼式ハロゲン硫黄分析計のガス吸収ボックスが大型であるのに対し、100mlの容器として小型化される効果がある。In the present invention configured as described above, the sample is heated in an analytical measurement system for determining the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in the sample by burning the sample. The means for absorbing the gas generated from the sample into the solution has the effect of downsizing as a 100 ml container, whereas the gas absorption box of the combustion type halogen sulfur analyzer is large.

このように構成された本発明によれば、燃焼分解により発生したガスの吸収が終わるのと連動して滴定し、滴定装置が終了すれば、連動して次の試料を燃焼するので、吸収に要する時間を含有量に合わせて合理化し、試料の燃焼から吸収、滴定の連動した制御システムにより効率的、迅速に定量できる効果がある。According to the present invention configured as described above, titration is performed in conjunction with the end of absorption of the gas generated by combustion decomposition, and the next sample is combusted in conjunction with the end of the titration apparatus. There is an effect that the time required can be rationalized according to the content, and the quantity can be quantified efficiently and quickly by the control system linked with the absorption and titration from the burning of the sample.

本発明の効果は発生するガスの吸収が終了する時間を電位で検出するので、試料中の炭素、窒素、ハロゲン、硫黄の含有量に比例した合理的な時間の短縮を図れる。連動して滴定が始また、試料をボートにはかり、燃焼管に送入する方式であるのでフラスコ燃焼法に比較して手作業が少なく、送入部分にオートサンプラーを取り付け、滴定が終わると自動で次の試料を挿入するプログラムにして効率的な定量ができる効果がある。The effect of the present invention is to detect the time when the absorption of the generated gas is completed by the electric potential, so that a reasonable time can be shortened in proportion to the contents of carbon, nitrogen, halogen and sulfur in the sample. The titration starts in conjunction with the method, and the sample is loaded onto the boat and sent to the combustion tube, so there is less manual work compared to the flask combustion method. This makes it possible to efficiently determine the amount of the program by inserting the next sample.

本発明は定量手段に自動滴定法を用いているので、検量線を作成するための手間がなく、自動的に分析値%、μg、ppm濃度を得られる効果がある。Since the present invention uses an automatic titration method as a quantitative means, there is no need to create a calibration curve, and there is an effect that the analytical value%, μg, and ppm concentrations can be obtained automatically.

本発明は上述した小型化、迅速化により燃焼式イオンクロマト法に比べて電気エネルギーの損失をおさえる効果がある。The present invention has an effect of suppressing the loss of electric energy as compared with the combustion ion chromatography method by the above-described miniaturization and speeding up.

本発明を実施するシステムの構成図である。  It is a block diagram of the system which implements this invention. 本発明の実施例における手順のフロー図である。It is a flowchart of the procedure in the Example of this invention. 本発明の吸収区間と滴定区間の電位変化である。It is the electric potential change of the absorption area of this invention, and a titration area.

図1aに示すように、本発明のシステムの構成は、試料を収納する燃焼管(8)と、
前記燃焼管に収納された試料を加熱する燃焼炉(9)と、
前記燃焼炉で加熱された試料から発生する気体を溶液に吸収する為の吸収液を入れた容器(1)とで構成されており、其の容器にかぶせた蓋(14)の部分に試料から発生する気体を吸収容器に吸収するための注入用差込口(7)と自動滴定装置のビュレットチッ(3)と電極(6)と、吸収液を攪拌するための攪拌機(4)をセットできるような穴図b(15−18)をもつ。
As shown in FIG. 1a, the configuration of the system of the present invention includes a combustion tube (8) for storing a sample,
A combustion furnace (9) for heating the sample stored in the combustion tube;
And a container (1) containing an absorbing solution for absorbing gas generated from the sample heated in the combustion furnace into the solution, and the lid (14) covered with the container is covered with the sample from the sample. The inlet for injection (7) for absorbing the generated gas into the absorption container, the bullet tip (3) and the electrode (6) of the automatic titrator, and the stirrer (4) for stirring the absorbing liquid can be set. It has a hole diagram b (15-18) like this.

本発明の方法で該試料の炭素、窒素、ハロゲン及び硫黄のいずれかの定量を行う実施方法を図2と図3に従って以下に示す。
1.試料の重さを燃焼ボートにはかり、加熱された燃焼炉に設置されている燃焼管に送入する。
2.試料の燃焼により発生したガスはキャリヤーガスにより吸収液を入れた容器へ送られる。
3.吸収液を入れた容器にセットされた攪拌機が作動し、同じく容器にセットされた電極により電位の変化を測る。該試料の炭素、窒素、ハロゲン及び硫黄のいずれかの定量を行う各イオンに対応する電極がセットされている。
4.電位が決められた範囲内に安定したところで吸収が完了すると判断し(図3)、連動して容器にセットされた自動滴定装置のビュレットチップから滴定液が滴下される。予め決められた滴定終末点決定方法で吸収液の濃度に対応しながら滴下量を制御して終末点を得る。
5.含有量% 、μg、ppmが示される。
6.終末点が得られると連動して、次の試料が燃焼管に送入される。つまり、試料を燃焼管に送入して、分析結果を得られるまで、制御プログラムにより連続してコントロールされている。さらに、分析結果が出ると連動して次の試料が送られる仕組みである。
An implementation method for quantifying any one of carbon, nitrogen, halogen and sulfur in the sample according to the method of the present invention is shown below according to FIGS.
1. The sample is weighed on a combustion boat and sent to a combustion tube installed in a heated combustion furnace.
2. The gas generated by the combustion of the sample is sent to the container containing the absorbing liquid by the carrier gas.
3. The stirrer set in the container containing the absorption liquid operates, and the change in potential is measured by the electrode set in the container. An electrode corresponding to each ion for quantifying any of carbon, nitrogen, halogen and sulfur of the sample is set.
4). When the electric potential is stabilized within the determined range, it is determined that the absorption is completed (FIG. 3), and the titrant is dropped from the burette tip of the automatic titrator set in the container in conjunction with the potential. The end point is obtained by controlling the dropping amount while corresponding to the concentration of the absorbing solution by a predetermined titration end point determining method.
5. Content%, μg, ppm are indicated.
6). In conjunction with the end point being obtained, the next sample is fed into the combustion tube. That is, the sample is continuously controlled by the control program until an analysis result is obtained by feeding the sample into the combustion tube. In addition, the next sample is sent in conjunction with the analysis result.

塩素の定量の場合について
装置は自動滴定装置及び複合銀電極を用いる。滴定液はN/200硝酸銀溶液,吸収液は特級アセトン、又は特級イソプロピルアルコール、又は水を用いる。10%硝酸でPH2に調整する。
試料は有機元素分析用標準試料Sベンジルチウロニウムクロリド(キシダ化学製)Cl含有量17.49を約5.0mg正確に量り、燃焼管に送入する。試料が燃焼し、ガスが発生すると、吸収容器の電位が下がる。吸収が終わると、電位(mv)はこの例の場合約−210mv(図3)に一定になる。
決められた範囲に一定になったときを吸収の終わりとみなし、連動して滴定液が滴下し、自動滴定を開始する。濃度のわかっているテスト液で滴定の終末電位を求めたところ、終末電位(Ep)は15.0mv(図3)であったので未知試料は電位が15.0mvに達したところを終末点と判断する。その結果、17.47%、901.1μg、20.02ppmが得られた。
臭素の定量の例として有機元素分析用標準試料ブロムアセトアニリド(キシダ化学製Br:37.33%)を約1.6mg量り燃焼管に送入する。この場合、装置のオートサンプラーを用いれば前の試料の終了に連動して自動に送入する。臭素の場合は吸収液はアセトンやイソプロピルアルコールより水が良い。試料のガスが吸収液に入ると電位がさがり約−225mv(図3)で一定になる。前と同じように滴定装置が連動して硝酸銀が滴下され、滴定が始まる。予め濃度のわかっているテスト液で滴定の終末電位を求めたところ、終末電位(Ep)は−71.6mv(図3)であったので、未知試料は電位が−71.6mvに達したところを終末点と判断する。その結37.35%、608.0μg、20.27ppmが得られた。
ヨウ素の定量の例として有機元素分析用標準試料ヨード安息香酸(キシダ化学製I:51.17%)を約2.0量り燃焼管に送入する。この場合、装置のオートサンプラーを用いれば前の試料の終了に連動して自動に送入する。吸収液は臭素と同じく、アセトンやイソプロピルアルコールより水が良い。試料のガスが吸収液に入ると電位がさがり、約−357mvで一定になる。
前と同じように滴定装置が連動して硝酸銀が滴下され、滴定が始まる。予め濃度のわかっているテスト液で滴定の終末電位を求めたところ、終末電位(Ep)は−102.1mvであったので、未知試料は電位が−102.1mvに達したところを終末点と判断する。その結果51.29%、1042.2μg、41.69ppmが得られた。吸収液の濃度とハロゲン定量の濃度範囲を調べたところ、2−3ppmくらいまで良好であった。以上の方法は未知試料のハロゲンの含有量に対応して合理的に分析が進行できるので、時間と電力の消費を抑えることが出来る。
For the determination of chlorine, the apparatus uses an automatic titrator and a composite silver electrode. The titrant is N / 200 silver nitrate solution, and the absorbing solution is special grade acetone, special grade isopropyl alcohol, or water. Adjust to PH2 with 10% nitric acid.
As a sample, an organic element analysis standard sample S benzylthiouronium chloride (manufactured by Kishida Chemical Co.) Cl content of 17.49 is accurately weighed by about 5.0 mg and fed into a combustion tube. When the sample burns and gas is generated, the potential of the absorption container decreases. When the absorption is finished, the potential (mv) becomes constant at about −210 mv (FIG. 3) in this example.
When it becomes constant within the determined range, it is regarded as the end of absorption, the titrant is dripped in conjunction with it, and automatic titration is started. When the terminal potential of titration was determined with a test solution having a known concentration, the terminal potential (Ep) was 15.0 mV (FIG. 3), so the unknown sample reached the end point when the potential reached 15.0 mV. to decide. As a result, 17.47%, 901.1 μg, 20.02 ppm were obtained.
As an example of the determination of bromine, about 1.6 mg of a standard sample bromoacetanilide (Brida made by Kishida Chemical Co., Ltd .: 37.33%) for organic element analysis is fed into a combustion tube. In this case, if the autosampler of the apparatus is used, it is automatically fed in conjunction with the end of the previous sample. In the case of bromine, the absorption solution is better than acetone or isopropyl alcohol. When the gas of the sample enters the absorbing solution, the potential decreases and becomes constant at about −225 mv (FIG. 3). As before, the titration device is interlocked and silver nitrate is dropped and titration begins. When the terminal potential of titration was determined with a test solution whose concentration was known in advance, the terminal potential (Ep) was −71.6 mV (FIG. 3), and thus the unknown sample reached a potential of −71.6 mv. Is judged as the end point. As a result, 37.35%, 608.0 μg, and 20.27 ppm were obtained.
As an example of quantification of iodine, a standard sample for organic element analysis iodobenzoic acid (I: 51.17%, manufactured by Kishida Chemical Co., Ltd.) is weighed by about 2.0 and fed into a combustion tube. In this case, if the autosampler of the apparatus is used, it is automatically fed in conjunction with the end of the previous sample. As for bromine, water is better than acetone or isopropyl alcohol, like bromine. When the gas of the sample enters the absorbing solution, the potential is reduced and becomes constant at about -357 mV.
As before, the titration device is interlocked and silver nitrate is dropped and titration begins. When the terminal potential of titration was determined in advance using a test solution with a known concentration, the terminal potential (Ep) was -102.1 mv. to decide. As a result, 51.29%, 1042.2 μg, 41.69 ppm were obtained. When the concentration of the absorbing solution and the concentration range of halogen determination were examined, they were good up to about 2-3 ppm. Since the above method can reasonably proceed in accordance with the halogen content of the unknown sample, time and power consumption can be suppressed.

本発明の方法は該試料の炭素、窒素、ハロゲン及び硫黄の燃焼による発生ガスを吸収液に吸収させると同時に滴定液と接触させるので、フラスコ法のように吸収液を容器にあけかえる際のロスがないため正確である。さらに、燃焼式のようにあらゆる濃度の試料を想定して十分な「吸収するための時間」をとる必要がないため、迅速である。In the method of the present invention, the gas generated by the combustion of carbon, nitrogen, halogen and sulfur of the sample is absorbed into the absorbing solution and simultaneously brought into contact with the titrant. Therefore, the loss when the absorbing solution is replaced in the container as in the flask method. It is accurate because there is no. Furthermore, since it is not necessary to take a sufficient “time for absorption” assuming a sample of any concentration as in the combustion type, it is quick.

近年環境規制対象物質としてPBB,ポリ臭素化ジフェニル類の含有されない証明が必要である。それには原料に臭素化合物を含有していないかどうか調べる必要が多くなってきた。特に電気電子機器の有害物質使用制限RoHS指令で規制されている有機化合物中の臭化物イオンの定量のニーズが高い。本発明の方法は医薬品やその他産業用試料の塩素、臭素、ヨウ素及び硫黄の含有の判定や品質検査用として利用できる。また石油、鉄鋼、土壌中の微量の塩素や硫黄の測定やゴミ焼却用高温ガス炉の安定化と制御のために可燃分中の塩素の定量、ダイオキシン含有判定の高効率な塩素の定量など多くの環境分野の利用を挙げることができる。  In recent years, proof that PBB and polybrominated diphenyls are not contained as environmentally regulated substances is required. For this purpose, it has become necessary to examine whether the raw material contains a bromine compound. In particular, there is a great need for the determination of bromide ions in organic compounds regulated by the RoHS Directive, which restricts the use of hazardous substances in electrical and electronic equipment. The method of the present invention can be used for determination of the content of chlorine, bromine, iodine and sulfur in pharmaceuticals and other industrial samples and for quality inspection. In addition, measurement of trace amounts of chlorine and sulfur in petroleum, steel and soil, quantification of chlorine in flammable components for stabilization and control of high temperature gas furnaces for incineration of garbage, and high-efficiency quantification of chlorine for determining dioxin content Can be mentioned in the environmental field.

本発明は燃焼と吸収と滴定を連動して定量を行い、数分で完了する。検量線を作成する手間を省き、消費電力量を1日8時間稼動する場合1/4削減できる。特に電気炉式燃焼装置は長時間の放熱により室温が上昇するのを空冷により抑えなければならないため、本発明の方法で迅速な定量を行うことで環境調整に要する消費電力量を削減し、地球温暖化排出量規制に効果をもたらすものである。  The present invention performs quantification in conjunction with combustion, absorption and titration, and is completed in a few minutes. This saves the labor of creating a calibration curve and reduces the power consumption by a quarter when operating for 8 hours a day. In particular, the electric furnace type combustion apparatus must suppress the rise in the room temperature due to long-term heat dissipation by air cooling. Therefore, quick quantification using the method of the present invention reduces the power consumption required for environmental adjustment, It has an effect on the regulation of global warming emissions.

1.試料ガス吸収容器
2.自動滴定装置
3.自動滴定装置ビュレット
4.プロペラスターラー
5.自動滴定装置ビュレットチップ
6.自動滴定装置電極
7.燃焼系からのガス注入口
8.燃焼管
9.燃焼炉
10.試料
11.燃焼ボート
12.送入棒
13.キャリアガス
14.吸収容器ふた
15.電極用差込穴
16.ビュレットチップ差込穴
17.プロペラスターラー差込穴
18.燃焼ガス注入パイプ差込穴
1. Sample gas absorption container 2. Automatic titrator Automatic titrator burette 4. Propeller stirrer 5. Automatic titrator burette tip 6. Automatic titrator electrode 7. 7. Gas inlet from combustion system Combustion tube 9. Combustion furnace 10. Sample 11. Combustion boat 12. Infeed bar 13. Carrier gas14. Absorption container lid 15. Electrode insertion hole 16. Burette tip insertion hole 17. Propeller stirrer insertion hole 18. Combustion gas injection pipe insertion hole

Claims (5)

試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、試料を収納する燃焼管と、
前記燃焼管に収納された試料を加熱する燃焼炉と、
前記燃焼炉で加熱された試料から発生する気体を吸収する為の吸収液を入れた容器を有し、試料から発生する気体を吸収し、吸収の終了を電位変化で検出し、其の検出に連動して滴定を開始する制御プログラムを有して、該試料に含有された炭素、窒素、ハロゲン及び硫黄のいずれかを定量することを特徴とする分析測定システム。
In an analytical measurement system for determining the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in the sample by burning the sample, a combustion tube for storing the sample,
A combustion furnace for heating the sample stored in the combustion tube;
It has a container containing an absorption liquid for absorbing gas generated from a sample heated in the combustion furnace, absorbs gas generated from the sample, detects the end of absorption by a potential change, and detects it. An analytical measurement system characterized by having a control program for starting titration in conjunction and quantifying any of carbon, nitrogen, halogen and sulfur contained in the sample.
試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、試料を収納する燃焼管と、
前記燃焼管に収納された試料を加熱する燃焼炉と、
前記燃焼炉で加熱された試料から発生する気体を吸収する為の吸収液を入れた容器と、
試料から発生する気体を吸収し、吸収の終了を電位変化で検出し、其の検出に連動して滴定を開始する制御プログラムを有して、該試料に含有された炭素、窒素、ハロゲン及び硫黄のいずれかを定量することを特徴とする分析装置。
In an analytical measurement system for determining the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in the sample by burning the sample, a combustion tube for storing the sample,
A combustion furnace for heating the sample stored in the combustion tube;
A container containing an absorbing liquid for absorbing gas generated from a sample heated in the combustion furnace;
It has a control program that absorbs the gas generated from the sample, detects the end of absorption by a potential change, and starts titration in conjunction with the detection, and contains carbon, nitrogen, halogen and sulfur contained in the sample. An analyzer characterized by quantifying any of the above.
試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、
燃焼により発生したガスが吸収容器に全量達したことを吸収液の電位の測定によって決定し、連携して自動滴定が稼動するように設計された制御システムを有することを特徴とする分析測定システム。
In an analytical measurement system for determining the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in the sample by burning the sample,
An analytical measurement system characterized by having a control system designed so that automatic titration is activated by determining that the gas generated by combustion has reached the absorption container in its entirety by measuring the potential of the absorption liquid.
試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、燃焼により発生したガスが吸収容器に全量達したことを吸収液の電位の測定によって決定し、連携して自動滴定が稼動し、滴定が終了して終末点を得られたら、次の試料を燃焼管へ送入するように設計された制御システムを有することを特徴とする分析測定システム。In an analytical measurement system that calculates the content of a predetermined element selected from carbon, nitrogen, halogen, and sulfur contained in the sample by burning the sample, the fact that the gas generated by the combustion has reached the absorption container in its entirety Having a control system designed to deliver the next sample to the combustion tube once the titration is complete and the end point is obtained, determined by measuring the potential of the absorbent and working together An analytical measurement system characterized by that. 試料を燃焼して該試料に含有された炭素、窒素、ハロゲン及び硫黄の中から選んだ所定の元素の含有量を求める分析測定システムにおいて、攪拌機と滴定装置のビューレットチップと滴定装置の電極と燃焼ガスの吸収口を入れる穴を4個有し、吸収液を入れるための容器に
取り付ける蓋。
In an analytical measurement system for burning a sample to determine the content of a predetermined element selected from carbon, nitrogen, halogen and sulfur contained in the sample, a stirrer, a burette tip of a titrator, and an electrode of the titrator A lid that has four holes for the combustion gas absorption ports and is attached to the container for the absorption liquid.
JP2016161552A 2016-08-02 2016-08-02 Analytical measurement system Active JP6880354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161552A JP6880354B2 (en) 2016-08-02 2016-08-02 Analytical measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161552A JP6880354B2 (en) 2016-08-02 2016-08-02 Analytical measurement system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019134202A Division JP2019194620A (en) 2019-07-21 2019-07-21 Rapid absorption quantification system for analyzing combustion type carbon, nitrogen, halogen, and sulfur

Publications (3)

Publication Number Publication Date
JP2018021886A true JP2018021886A (en) 2018-02-08
JP2018021886A5 JP2018021886A5 (en) 2019-10-10
JP6880354B2 JP6880354B2 (en) 2021-06-02

Family

ID=61164454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161552A Active JP6880354B2 (en) 2016-08-02 2016-08-02 Analytical measurement system

Country Status (1)

Country Link
JP (1) JP6880354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829867A (en) * 2020-07-17 2020-10-27 贵州理工学院 Method for rapidly determining sulfur species in solid-phase minerals by using infrared-temperature programming oxidation combination method
CN114544855A (en) * 2022-02-08 2022-05-27 内蒙古众元测试技术有限公司 Detection apparatus for non-metallic element content in wastes material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520479A (en) * 1978-08-01 1980-02-13 Fujisawa Pharmaceut Co Ltd Assembling combustion flask unit
JPS57146148A (en) * 1981-03-04 1982-09-09 Nippon Steel Corp Method and apparatus for automatic quantitative measurement of non-metal element in metal
US4409336A (en) * 1981-02-17 1983-10-11 Standard Oil Company (Indiana) Method of analysis for determining very low sulfur levels in volatilizable samples
JPS61189458A (en) * 1985-02-19 1986-08-23 Nippon Kokan Kk <Nkk> Automatic analysis of sulfur content of coal or the like by using robot hand
JP2008082807A (en) * 2006-09-27 2008-04-10 Dia Instr:Kk Analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520479A (en) * 1978-08-01 1980-02-13 Fujisawa Pharmaceut Co Ltd Assembling combustion flask unit
US4409336A (en) * 1981-02-17 1983-10-11 Standard Oil Company (Indiana) Method of analysis for determining very low sulfur levels in volatilizable samples
JPS57146148A (en) * 1981-03-04 1982-09-09 Nippon Steel Corp Method and apparatus for automatic quantitative measurement of non-metal element in metal
JPS61189458A (en) * 1985-02-19 1986-08-23 Nippon Kokan Kk <Nkk> Automatic analysis of sulfur content of coal or the like by using robot hand
JP2008082807A (en) * 2006-09-27 2008-04-10 Dia Instr:Kk Analyzer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829867A (en) * 2020-07-17 2020-10-27 贵州理工学院 Method for rapidly determining sulfur species in solid-phase minerals by using infrared-temperature programming oxidation combination method
CN111829867B (en) * 2020-07-17 2022-10-21 贵州理工学院 Method for rapidly determining sulfur species in solid-phase minerals by using infrared-temperature programming oxidation combination method
CN114544855A (en) * 2022-02-08 2022-05-27 内蒙古众元测试技术有限公司 Detection apparatus for non-metallic element content in wastes material
CN114544855B (en) * 2022-02-08 2024-02-02 内蒙古众元测试技术有限公司 Detection device for nonmetallic element content in waste

Also Published As

Publication number Publication date
JP6880354B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
Eshetu et al. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries
Flores et al. Sample preparation techniques based on combustion reactions in closed vessels—A brief overview and recent applications
CN103529162A (en) Determination method for total organic carbon (TOC) of solid combustible matters
WO2014064985A1 (en) System for unified quantitative determination of various forms of carbon and nitrogen which employs calibration curves based on organic compounds
Windmöller et al. Use of a direct mercury analyzer® for mercury speciation in different matrices without sample preparation
JP2018021886A (en) Rapid absorption quantitative determination system for analysis of combustion-type carbon, nitrogen, halogen, and sulfur
Mesko et al. Determination of halogens and sulfur in honey: a green analytical method using a single analysis
Sun et al. Chemical source profiles of particulate matter and gases emitted from solid fuels for residential cooking and heating scenarios in Qinghai-Tibetan Plateau
CN103512858A (en) Measuring method of carbon, hydrogen and nitrogen contents in biomass fuel
Larsson et al. Measurement of self‐heating potential of biomass pellets with isothermal calorimetry
Uruski et al. The ability of Polish coals to release mercury in the process of thermal treatment
Sredović Ignjatović et al. Experimental design optimization of the determination of total halogens in coal by combustion–ion chromatography
Chen et al. Determination of antimony in plant and peat samples by hydride generation-atomic fluorescence spectrometry (HG-AFS)
JP2019194620A (en) Rapid absorption quantification system for analyzing combustion type carbon, nitrogen, halogen, and sulfur
Devaprasad et al. Characterization of paddy-residue burning derived carbonaceous aerosols using dual carbon isotopes
JP5228144B2 (en) Low temperature combustion analysis and measurement system using metal catalyst effect
CN106404706A (en) Detection method of content of carbon and content of sulphur in calcium carbide slag
Haloua et al. Traceable measurement and uncertainty analysis of the gross calorific value of methane determined by isoperibolic calorimetry
JP2009198124A (en) Fuel monitoring device, boiler facility, and mixing ratio determining method of fuel oil
Bradna et al. Impact of differences in combustion conditions of rape straw on the amount of flue gases and fly ash properties.
Pham Minh et al. Generic and advanced characterization techniques
Pushp et al. Heat production in municipal and industrial waste as revealed by isothermal microcalorimetry
Long et al. Traceability of the output concentration of mercury vapor generators
CN107741406A (en) The method of carbon and sulphur contents in a kind of synchronous detection solid mineral material and biomass fuel
Bernius et al. Determination of total sulfur in fertilizers by high temperature combustion: single-laboratory validation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210313

R150 Certificate of patent or registration of utility model

Ref document number: 6880354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150