JP2008082807A - Analyzer - Google Patents

Analyzer Download PDF

Info

Publication number
JP2008082807A
JP2008082807A JP2006261915A JP2006261915A JP2008082807A JP 2008082807 A JP2008082807 A JP 2008082807A JP 2006261915 A JP2006261915 A JP 2006261915A JP 2006261915 A JP2006261915 A JP 2006261915A JP 2008082807 A JP2008082807 A JP 2008082807A
Authority
JP
Japan
Prior art keywords
sample
sulfur
nitrogen
sample gas
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006261915A
Other languages
Japanese (ja)
Other versions
JP4779911B2 (en
Inventor
Shuichi Akasaka
秀市 赤坂
Tamaki Tomoyose
環 友寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dia Instruments Co Ltd
Original Assignee
Dia Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dia Instruments Co Ltd filed Critical Dia Instruments Co Ltd
Priority to JP2006261915A priority Critical patent/JP4779911B2/en
Publication of JP2008082807A publication Critical patent/JP2008082807A/en
Application granted granted Critical
Publication of JP4779911B2 publication Critical patent/JP4779911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzer which is constituted so as to measure the amounts of chlorine, sulfur and nitrogen in a sample, enables three analysises by one operation using one analyzing sample and can obtain high analytical precision. <P>SOLUTION: The analyzer is constituted by successively arranging a sample gas supply mechanism (1), a chlorine analyzing mechanism (2), a sulfur analyzing mechanism (3), and nitrogen analyzing mechanism (4). The sample gas supply mechanism (1) is equipped with a reaction tube (10), in which the sample is charged and to which oxygen is supplied, and a heating oven (13) and constituted so as to covert chlorine, sulfur and nitrogen in the sample to hydrogen chloride, sulfur dioxide and nitrogen monoxide to recover them as a sample gas. The chlorine analyzing mechanism (2) is equipped with a first titration cell (22) for performing the coulomb titration of hydrogen chloride in the sample gas, and the sulfur analyzing mechanism (3) is equipped with a second titration cell (32) for performing coulomb titration of sulfur dioxide in the sample gas. The nitrogen analyzing mechanism (4) is equipped with an ozone generator (41) and a chemoluminescence detector (42) to measure chemoluminescence intensity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、分析装置に関するものであり、詳しくは、1回分の分析試料を使用して当該試料中の微量の塩素、硫黄および窒素を高精度に測定する分析装置に関するものである。   The present invention relates to an analyzer, and more particularly to an analyzer that uses a single analysis sample to measure a small amount of chlorine, sulfur, and nitrogen in the sample with high accuracy.

塩素、硫黄、窒素の分析は、例えば、河川水、湖沼水などの環境水や各種の工場排水の水質、あるいは、ディーゼル燃料、オイル、ガソリン等の石油類などの品質を評価する際に行われる。試料中の微量の塩素、硫黄、窒素の分析においては、より効率的に分析を行うため、昨今、複数の機能を備えた1つの分析装置が使用されている。   Chlorine, sulfur, and nitrogen are analyzed, for example, when evaluating the quality of environmental water such as river water and lake water, and the quality of various industrial wastewater, or petroleum such as diesel fuel, oil, and gasoline. . In analyzing trace amounts of chlorine, sulfur, and nitrogen in a sample, in order to perform analysis more efficiently, a single analyzer having a plurality of functions has been used recently.

上記の様な分析を行う多機能の分析装置としては、酸素を供給しながら反応管の試料を加熱し、試料中の塩素を塩化水素に、硫黄を二酸化硫黄に、窒素を一酸化窒素にそれぞれ変換した後、試料ガスを硫黄検出器/窒素検出器、または、塩素検出用のクーロメーターセルに導入する様にした分析装置が挙げられる。上記の硫黄検出器は、得られた試料ガス中の二酸化硫黄濃度を紫外線蛍光式センサーで測定する方式のものであり、窒素検出器は、得られた試料ガス中の一酸化窒素と別途供給されたオゾンとの反応で生じる化学発光の強度を測定する方式のものであり、そして、クーロメーターセルは、得られた試料ガス中の塩化水素を滴定セルにより電量滴定する方式のものである。なお、硫黄検出器/窒素検出器への試料ガスの送気と、クーロメーターセルへの試料ガスの送気は、切替弁の操作により流路を選択する様になされている。   As a multifunctional analyzer that performs the above analysis, the sample in the reaction tube is heated while supplying oxygen, and chlorine in the sample is converted into hydrogen chloride, sulfur into sulfur dioxide, and nitrogen into nitrogen monoxide, respectively. Examples of the analyzer include a sample gas introduced into a sulfur detector / nitrogen detector or a coulometer cell for chlorine detection after conversion. The above sulfur detector is a method of measuring the sulfur dioxide concentration in the obtained sample gas with an ultraviolet fluorescent sensor, and the nitrogen detector is supplied separately from nitrogen monoxide in the obtained sample gas. The coulometer cell is of a system for measuring the intensity of chemiluminescence generated by the reaction with ozone, and the coulometer cell is a system for coulometric titration of hydrogen chloride in the obtained sample gas with a titration cell. Note that the sample gas is supplied to the sulfur detector / nitrogen detector and the sample gas is supplied to the coulometer cell by selecting a flow path by operating a switching valve.

Analytikjena AG、カタログ“multi EA 3100”、[online]、[平成18年9月22日検索]、インターネット〈http://www.analytik-jena.de/frontend/files.php?dl_mg_id=2338&file=dl_mg_1153236833.pdf〉Analytikjena AG, catalog “multi EA 3100”, [online], [searched September 22, 2006], Internet <http://www.analytik-jena.de/frontend/files.php?dl_mg_id=2338&file=dl_mg_1153236833 .pdf>

ところで、上記の多機能の分析装置においては、反応管の試料を加熱して得られる試料ガスを流す流路が異なるため、塩素、硫黄および窒素を分析する場合、1回分の試料を使用して硫黄分析と窒素分析を行い、異なる1回分の試料を使用して塩素分析を行う必要がある。すなわち、3つの元素を分析するには少なくとも2回の分析操作を行わなければならない。勿論、装置の運転途中に流路を切り替えることも出来るが、その場合も、少なくとも2回分に相当する量の試料を準備しなければならない。もっとも、1回分の量の試料を使用し、硫黄検出器/窒素検出器とクーロメーターセルとに分割して試料ガスを送気することも出来るが、その場合は、試料ガスの量が少なくなる結果、分析精度が低下する虞がある。   By the way, in the above-mentioned multifunctional analyzer, the flow path of the sample gas obtained by heating the sample in the reaction tube is different, so when analyzing chlorine, sulfur and nitrogen, use one sample. It is necessary to perform sulfur analysis and nitrogen analysis, and to perform chlorine analysis using different samples. That is, in order to analyze three elements, at least two analysis operations must be performed. Of course, the flow path can be switched during the operation of the apparatus, but in this case as well, an amount of sample corresponding to at least two times must be prepared. Of course, it is possible to use a single sample amount and to supply sample gas by dividing it into a sulfur detector / nitrogen detector and a coulometer cell, but in this case, the amount of sample gas is reduced. As a result, there is a possibility that the analysis accuracy is lowered.

本発明は、多機能の分析装置における上記の実情に鑑みてなされたものであり、その目的は、試料中の塩素、硫黄および窒素の量を測定する分析装置であって、1回分の分析試料を使用して1回の操作で3つの分析が可能で且つ高い分析精度が得られる分析装置を提供することにある。   The present invention has been made in view of the above situation in a multifunctional analyzer, and its purpose is an analyzer for measuring the amount of chlorine, sulfur and nitrogen in a sample, and an analysis sample for one batch. It is an object of the present invention to provide an analyzer capable of performing three analyzes with a single operation and obtaining high analysis accuracy.

上記の課題を解決するため、本発明においては、塩素、硫黄および窒素に対する各分析手段を特定し、かつ、これら分析手段を特定の順番に配置することにより、1回分の分析試料から得られた試料ガスを前記の分析手段に順次に流し、塩素、硫黄および窒素の各分析をそれぞれ1回分の量で分析できる様にした。   In order to solve the above-mentioned problems, in the present invention, each analysis means for chlorine, sulfur and nitrogen is specified, and these analysis means are arranged in a specific order, and thus obtained from one analysis sample. The sample gas was sequentially flowed to the analysis means so that each analysis of chlorine, sulfur and nitrogen could be performed in a single amount.

すなわち、本発明の要旨は、試料中の塩素、硫黄および窒素の量を測定する分析装置であって、試料ガス供給機構、塩素分析機構、硫黄分析機構および窒素分析機構から主として構成され、前記試料ガス供給機構は、試料が装入され且つ酸素が供給される反応管と、当該反応管を加熱する加熱炉とを備え、当該加熱炉による加熱により前記反応管内の試料を燃焼させ、試料中の塩素、硫黄および窒素をそれぞれ塩化水素、二酸化硫黄および一酸化窒素に変換して試料ガスとして回収する機能を有し、前記塩素分析機構は、酢酸を含む電解液が収容され且つ前記反応管から回収された試料ガス中の塩化水素を電量滴定する第1の滴定セルを備え、前記硫黄分析機構は、ヨウ化カリウムを含む電解液が収容され且つ前記第1の滴定セルから回収された試料ガス中の二酸化硫黄を電量滴定する第2の滴定セルを備え、前記窒素分析機構は、オゾン発生器および化学発光検出器を備え、前記第2の滴定セルから回収された試料ガス中の一酸化窒素と前記オゾン発生器で生成されたオゾンとの反応による化学発光強度を前記化学発光検出器によって測定する様になされていることを特徴とする分析装置に存する。   That is, the gist of the present invention is an analyzer for measuring the amount of chlorine, sulfur and nitrogen in a sample, which mainly comprises a sample gas supply mechanism, a chlorine analysis mechanism, a sulfur analysis mechanism and a nitrogen analysis mechanism, and the sample The gas supply mechanism includes a reaction tube in which a sample is charged and oxygen is supplied, and a heating furnace that heats the reaction tube, and the sample in the reaction tube is burned by heating by the heating furnace. Chlorine, sulfur, and nitrogen are converted into hydrogen chloride, sulfur dioxide, and nitric oxide, respectively, and recovered as sample gas. The chlorine analysis mechanism contains an electrolytic solution containing acetic acid and collects it from the reaction tube. A first titration cell for coulometric titration of hydrogen chloride in the sample gas, wherein the sulfur analysis mechanism contains an electrolyte containing potassium iodide and is recovered from the first titration cell. A second titration cell for coulometric titration of sulfur dioxide in the sample gas, wherein the nitrogen analysis mechanism comprises an ozone generator and a chemiluminescence detector, and the sample gas recovered from the second titration cell The analyzer is characterized in that the chemiluminescence intensity due to the reaction between nitric oxide and ozone generated by the ozone generator is measured by the chemiluminescence detector.

本発明の分析装置によれば、試料ガス供給機構で試料から得られた試料ガスを分割することなく塩素分析機構、硫黄分析機構および窒素分析機構に順次に送気し、試料ガスの全量を使用して塩素、硫黄および窒素の各分析を行うため、1回分の量の分析試料を使用して1回の操作で3つの分析を行うことが出来、高い分析精度を得ることが出来る。   According to the analyzer of the present invention, the sample gas obtained from the sample by the sample gas supply mechanism is sequentially supplied to the chlorine analysis mechanism, the sulfur analysis mechanism, and the nitrogen analysis mechanism, and the entire amount of the sample gas is used. Since each analysis of chlorine, sulfur, and nitrogen is performed, three analyzes can be performed in one operation using a single amount of analysis sample, and high analysis accuracy can be obtained.

本発明に係る分析装置の一実施形態を図面に基づいて説明する。図1は、本発明の分析装置の主な構成を模式的に示すフロー図である。   An embodiment of an analyzer according to the present invention will be described with reference to the drawings. FIG. 1 is a flowchart schematically showing the main configuration of the analyzer of the present invention.

本発明の分析装置は、試料中の塩素、硫黄および窒素の量を測定する分析装置であり、図1に示す様に、試料ガス供給機構(1)、塩素分析機構(2)、硫黄分析機構(3)及び窒素分析機構(4)から主として構成される。本発明の分析装置においては、後述する試料ガス供給機構(1)の試料装入手段を選択することにより、河川水、湖沼水などの環境水、工場排水、ディーゼル燃料、オイル、ガソリン等の石油類などの液体試料の他、各種の個体試料、気体試料について分析することが出来る。   The analyzer of the present invention is an analyzer that measures the amounts of chlorine, sulfur, and nitrogen in a sample. As shown in FIG. 1, a sample gas supply mechanism (1), a chlorine analysis mechanism (2), and a sulfur analysis mechanism. (3) and nitrogen analysis mechanism (4). In the analyzer of the present invention, by selecting the sample charging means of the sample gas supply mechanism (1) described later, environmental water such as river water and lake water, factory effluent, diesel fuel, oil, gasoline and other petroleum In addition to liquid samples such as varieties, various solid samples and gas samples can be analyzed.

試料ガス供給機構(1)は、上記の様な試料から塩化水素、二酸化硫黄、一酸化窒素を含む試料ガスを回収する機構であり、試料が装入され且つ酸素が供給される反応管(10)と、当該反応管を加熱する加熱炉(13)とを備え、当該加熱炉による加熱により反応管(10)内の試料を燃焼させ、試料中の塩素、硫黄および窒素をそれぞれ塩化水素、二酸化硫黄、一酸化窒素に変換して試料ガスとして回収する機能を有する。   The sample gas supply mechanism (1) is a mechanism for recovering a sample gas containing hydrogen chloride, sulfur dioxide, and nitric oxide from the sample as described above, and a reaction tube (10) in which the sample is charged and oxygen is supplied. And a heating furnace (13) for heating the reaction tube, the sample in the reaction tube (10) is combusted by heating with the heating furnace, and chlorine, sulfur and nitrogen in the sample are respectively converted into hydrogen chloride and dioxide. It has the function of converting into sulfur and nitric oxide and collecting it as a sample gas.

反応管(10)は、試料導入用の内管(11)及び酸素が供給される試料ガス回収用の外管(12)から成る二重管構造を備えている。内管(11)は、長軸の円筒管の頭部に例えば液体試料を装入するための試料装入手段としてのシリンジ構造の試料注入装置(14)を設けて構成される。試料装入手段としては、固体試料の場合はボートにより内管(11)に自動装入する装置が使用される。   The reaction tube (10) has a double tube structure comprising an inner tube (11) for sample introduction and an outer tube (12) for sample gas recovery to which oxygen is supplied. The inner tube (11) is configured by providing a sample injection device (14) having a syringe structure as sample loading means for loading a liquid sample, for example, at the head of a long-axis cylindrical tube. As the sample loading means, in the case of a solid sample, a device for automatically loading the inner pipe (11) with a boat is used.

内管(11)は、外管(12)の内周面との間に気体通過用の隙間を確保するため、外管(12)の内径よりも小さな外径で且つ外管(12)の深さよりも短い長さに設計される。例えば、内管(11)の直径は20〜40mm程度とされ、内管(11)の長さは100〜200mm程度とされる。そして、内管(11)の上部には、燃焼促進用の酸素および移送用のアルゴン等の不活性ガスを導入するためのキャリアガス供給流路(51)が接続される。   The inner pipe (11) has an outer diameter smaller than the inner diameter of the outer pipe (12) and the outer pipe (12) in order to ensure a gas passage gap between the inner pipe (11) and the inner peripheral surface of the outer pipe (12). Designed to be shorter than depth. For example, the diameter of the inner tube (11) is about 20 to 40 mm, and the length of the inner tube (11) is about 100 to 200 mm. A carrier gas supply channel (51) for introducing an inert gas such as oxygen for combustion promotion and argon for transfer is connected to the upper portion of the inner pipe (11).

外管(12)は、上端が封止された長軸の有底円筒状の管で構成される。例えば、外管(12)の直径は30〜50mm程度とされ、外管(12)の長さは300〜450mm程度とされる。外管(12)の上部には、試料燃焼用の酸素を導入するための酸素供給流路(52)が接続され、外管(12)の底部には、燃焼によって得られた試料ガスを取り出すための流路(61)が接続される。また、流路(61)の外周には、試料ガスを完全に酸化させるため、配管加熱用ヒーター(15)が付設される。   The outer tube (12) is formed of a long-bottomed cylindrical tube having a sealed upper end. For example, the diameter of the outer tube (12) is about 30 to 50 mm, and the length of the outer tube (12) is about 300 to 450 mm. An oxygen supply flow path (52) for introducing oxygen for sample combustion is connected to the upper part of the outer pipe (12), and a sample gas obtained by combustion is taken out from the bottom of the outer pipe (12). A flow path (61) is connected. In addition, a pipe heating heater (15) is attached to the outer periphery of the channel (61) in order to completely oxidize the sample gas.

加熱炉(13)は、上記の反応管(10)を加熱するための加熱手段であり、通常、反応管(10)を挿入する反応管装入穴が中心に設けられた電気炉で構成される。具体的には、加熱炉(13)は、円筒状のケーシング内に保温材を収容し、かつ、保温材の内部に複数のヒーターを埋設して構成される。保温材は、セラミックファイバー、または、セラミックファイバーとアルミナファイバーの混合繊維から成る円柱状の成形体であり、その中心線に沿って上記の反応管装入穴が設けられている。   The heating furnace (13) is a heating means for heating the reaction tube (10), and is usually composed of an electric furnace provided with a reaction tube insertion hole into which the reaction tube (10) is inserted. The Specifically, the heating furnace (13) is configured by accommodating a heat insulating material in a cylindrical casing and embedding a plurality of heaters inside the heat insulating material. The heat insulating material is a cylindrical molded body made of ceramic fibers or a mixed fiber of ceramic fibers and alumina fibers, and the reaction tube insertion hole is provided along the center line.

上記のヒーターとしては、例えば、カンタル発熱体、ニクロム発熱体、シルバー発熱体などを金属管に収容して成るシーズドヒーターが使用される。そして、斯かるヒーターは、その表面が反応管装入穴に露出する状態で当該反応管装入穴の周囲に配置される。例えば、ヒーターの数は10〜12本程度とされ、合計出力は1kW程度に設定される。そして、試料ガス供給機構(1)においては、反応管(10)の温度が所定の温度となる様に、反応管(10)の温度を検出してこれらヒーターへの通電を制御する様になされている。   As the heater, for example, a seeded heater in which a Kanthal heating element, a nichrome heating element, a silver heating element or the like is accommodated in a metal tube is used. And such a heater is arrange | positioned around the said reaction-tube insertion hole in the state which the surface has exposed to the reaction-tube insertion hole. For example, the number of heaters is about 10 to 12, and the total output is set to about 1 kW. In the sample gas supply mechanism (1), the temperature of the reaction tube (10) is detected and the energization of these heaters is controlled so that the temperature of the reaction tube (10) becomes a predetermined temperature. ing.

上記の試料ガス供給機構(1)においては、試料装入手段である試料注入装置(14)から試料が装入され、キャリアガス供給流路(51)から供給された酸素および不活性ガス(アルゴン)によって前記の試料を内管(11)から外管(12)へ送り込むと共に、加熱炉(13)により外管(12)を加熱しながら、酸素供給流路(52)から供給された酸素により内管(11)の先端側の外管(12)内において酸化燃焼させる様になされている。そして、試料中の塩素、硫黄および窒素を塩化水素、二酸化硫黄および一酸化窒素にそれぞれ変換し、流路(61)を通じて試料ガスとして取り出す様に構成される。   In the sample gas supply mechanism (1), the sample and the inert gas (argon) supplied from the carrier gas supply channel (51) are loaded with the sample from the sample injection device (14) which is the sample charging means. ) By feeding the sample from the inner tube (11) to the outer tube (12) and heating the outer tube (12) by the heating furnace (13), while oxygen is supplied from the oxygen supply channel (52). The outer tube (12) on the distal end side of the inner tube (11) is oxidized and burned. Then, chlorine, sulfur and nitrogen in the sample are converted into hydrogen chloride, sulfur dioxide and nitrogen monoxide, respectively, and taken out as a sample gas through the flow path (61).

試料ガス供給機構(1)の後段(採取した試料ガスの流れ方向の下流側)には、反応管(10)から取り出された試料ガスの脱水および洗気を行うため、脱水剤として例えば硫酸が収容された脱水浴(21)が設けられる。すなわち、反応管(10)の外管(12)から伸長された流路(61)は脱水浴(21)に接続される。そして、脱水浴(21)のガス取出口は、流路(62)を介して塩素分析機構(2)に接続される。   In the latter stage of the sample gas supply mechanism (1) (downstream in the flow direction of the collected sample gas), for example, sulfuric acid is used as a dehydrating agent in order to dehydrate and clean the sample gas taken out from the reaction tube (10). A housed dehydration bath (21) is provided. That is, the flow path (61) extended from the outer tube (12) of the reaction tube (10) is connected to the dehydration bath (21). The gas outlet of the dehydration bath (21) is connected to the chlorine analysis mechanism (2) through the flow path (62).

塩素分析機構(2)は、酢酸を含む電解液が収容され且つ上記の反応管(10)から回収された試料ガス中の塩化水素を電量滴定する第1の滴定セル(22)と、当該滴定セル内の電解液を撹拌するスターラー(23)とから主に構成される。上記の脱水浴(21)から伸長された流路(62)の先端は、第1の滴定セル(22)の電解液中に浸漬されている。第1の滴定セル(22)は、電解液として70〜90%酢酸を収容した公知の滴定セルであり、電解液中に浸漬される発生電極(Ag電極)及び発生対極(Pt電極)、検出電極(Ag電極)、ならびに、参照電極(Ag/AgCl電極)を備えている。   The chlorine analysis mechanism (2) includes a first titration cell (22) in which an electrolytic solution containing acetic acid is accommodated and coulometrically titrates hydrogen chloride in a sample gas recovered from the reaction tube (10), and the titration. It is mainly comprised from the stirrer (23) which stirs the electrolyte solution in a cell. The tip of the flow path (62) extended from the dehydration bath (21) is immersed in the electrolytic solution of the first titration cell (22). The first titration cell (22) is a known titration cell containing 70 to 90% acetic acid as an electrolytic solution. The generating electrode (Ag electrode) and the generating counter electrode (Pt electrode) immersed in the electrolytic solution are detected. An electrode (Ag electrode) and a reference electrode (Ag / AgCl electrode) are provided.

第1の滴定セル(22)による電量滴定では、塩化水素を酢酸に吸収させ、電量的に発生させた銀イオンで滴定してこれに要した電気量を測定することにより、ファラデーの法則に基づいて塩素量を演算する。具体的には、上記の電量滴定においては、電解液の電位が予め設定した電位(終点電位)に保持される様に、銀発生電極と発生対極の間に電解電流を制御して流し、(Ag)と(e)の平行を維持すると共に、塩化水素の導入により(HCl+Ag→AgCl+H)の反応を生起し、電解液の電位が変化した際、電解液の電位が終点電位に戻る様に電解電流を流して銀発生電極より銀イオン(Ag)を発生させる。そして、電位が終点電位に戻って電解電流がブランク電流と等しくなった段階で滴定を終了し、滴定に要した電気量から塩素量を算出する。なお、第1の滴定セル(22)の内容積は50〜200ml程度であり、第1の滴定セル(22)に収容される上記の酢酸の量は20〜40ml程度である。 In the coulometric titration by the first titration cell (22), hydrogen chloride is absorbed into acetic acid, titrated with coulometrically generated silver ions, and the amount of electricity required for this is measured, based on Faraday's law. To calculate the amount of chlorine. Specifically, in the above coulometric titration, the electrolytic current is controlled to flow between the silver generating electrode and the generated counter electrode so that the potential of the electrolytic solution is maintained at a preset potential (end point potential). (Ag + ) and (e ) are maintained in parallel, and the reaction of (HCl + Ag + → AgCl + H + ) is caused by the introduction of hydrogen chloride. When the potential of the electrolyte changes, the potential of the electrolyte reaches the end point potential. An electrolytic current is passed so as to return to generate silver ions (Ag + ) from the silver generating electrode. Then, when the potential returns to the end point potential and the electrolysis current becomes equal to the blank current, the titration is finished, and the amount of chlorine is calculated from the amount of electricity required for the titration. The internal volume of the first titration cell (22) is about 50 to 200 ml, and the amount of the acetic acid accommodated in the first titration cell (22) is about 20 to 40 ml.

塩素分析機構(2)の後段には、硫黄分析機構(3)が配置される。すなわち、上記の第1の滴定セル(22)には、前述の滴定を終えた試料ガスを回収するため、当該滴定セルの気相部に通じる流路(63)が付設され、斯かる流路(63)の先端は、硫黄分析機構(3)の第2の滴定セル(32)の電解液中に伸長されている。   A sulfur analysis mechanism (3) is disposed following the chlorine analysis mechanism (2). That is, the first titration cell (22) is provided with a flow path (63) leading to the gas phase part of the titration cell in order to collect the sample gas after the above-described titration. The tip of (63) extends into the electrolyte of the second titration cell (32) of the sulfur analysis mechanism (3).

硫黄分析機構(3)は、ヨウ化カリウムを含む電解液が収容され且つ上記の第1の滴定セル(22)から回収された試料ガス中の二酸化硫黄を電量滴定する第2の滴定セル(32)と、当該滴定セル内の電解液を撹拌するスターラー(33)とから主に構成される。第2の滴定セル(32)は、電解液として0.1〜0.5%のヨウ化カリウム水溶液を収容した公知の滴定セルであり、電解液中に浸漬される発生電極(Pt電極)及び発生対極(Pt電極)、検出電極(Pt電極)、ならびに、参照電極(Ag/AgCl電極)を備えている。第2の滴定セル(32)は、電解液および電極が異なる点を除き、前述の第1の滴定セル(22)と同様の構造を有している。   The sulfur analysis mechanism (3) includes a second titration cell (32) for coulometric titration of sulfur dioxide in a sample gas containing an electrolytic solution containing potassium iodide and recovered from the first titration cell (22). ) And a stirrer (33) for stirring the electrolytic solution in the titration cell. The second titration cell (32) is a known titration cell containing 0.1 to 0.5% potassium iodide aqueous solution as an electrolytic solution, and a generating electrode (Pt electrode) immersed in the electrolytic solution and A generation counter electrode (Pt electrode), a detection electrode (Pt electrode), and a reference electrode (Ag / AgCl electrode) are provided. The second titration cell (32) has the same structure as the first titration cell (22) described above, except that the electrolyte and the electrodes are different.

第2の滴定セル(32)による電量滴定では、二酸化硫黄をヨウ化カリウム水溶液に吸収させ、電量的に発生させた三ヨウ化物イオンで滴定してこれに要した電気量を測定することにより、硫黄量を演算する。具体的には、上記の電量滴定においては、電解液の電位が予め設定した電位(終点電位)に保持される様に、発生電極と発生対極の間に電解電流を制御して流し、(I )と(2e)の平行を維持すると共に、二酸化硫黄の導入により(SO+I +HO→SO+2H+3I )の反応を生起し、電解液の電位が変化した際、電解液の電位が終点電位に戻る様に電解電流を流して発生電極よりイオン(I )を発生させる。そして、電位が終点電位に戻って電解電流がブランク電流と等しくなった段階で滴定を終了し、滴定に要した電気量から硫黄量を算出する。なお、第2の滴定セル(32)の内容積は50〜200ml程度であり、第2の滴定セル(32)に収容されるヨウ化カリウム水溶液の量は20〜40ml程度である。 In the coulometric titration with the second titration cell (32), sulfur dioxide is absorbed in an aqueous potassium iodide solution, and titrated with triiodide ions generated in a coulometric manner, and the amount of electricity required for this is measured. Calculate the amount of sulfur. Specifically, in the above coulometric titration, an electrolytic current is controlled to flow between the generation electrode and the generation counter electrode so that the potential of the electrolytic solution is maintained at a preset potential (end point potential). 3 over) and (2e -) while maintaining parallel to rise to reactions by the introduction of sulfur dioxide (SO 2 + I 3 over + H 2 O → SO 3 + 2H + + 3I 3 over), the potential of the electrolytic solution is changed when the potential of the electrolyte to produce ions (I 3 over) from generating electrode by flowing electrolytic current as back to the end point potential. Then, when the potential returns to the end point potential and the electrolysis current becomes equal to the blank current, the titration is completed, and the amount of sulfur is calculated from the amount of electricity required for titration. In addition, the internal volume of the 2nd titration cell (32) is about 50-200 ml, and the quantity of the potassium iodide aqueous solution accommodated in the 2nd titration cell (32) is about 20-40 ml.

硫黄分析機構(3)の後段には、窒素量を測定するための窒素分析機構(4)が設けられる。すなわち、上記の第2の滴定セル(32)には、前述の滴定を終えた試料ガスを回収するため、当該滴定セルの気相部に通じる流路(64)が付設され、斯かる流路(64)は、窒素分析機構(4)の後述する化学発光検出器(42)に接続される。   A nitrogen analysis mechanism (4) for measuring the amount of nitrogen is provided after the sulfur analysis mechanism (3). That is, the second titration cell (32) is provided with a flow path (64) leading to the gas phase portion of the titration cell in order to collect the sample gas after the above-described titration. (64) is connected to a chemiluminescence detector (42) described later of the nitrogen analysis mechanism (4).

上記の窒素分析機構(4)は、オゾン発生器(41)及び化学発光検出器(42)を備え、前述の第2の滴定セル(32)から回収された試料ガス中の一酸化窒素とオゾン発生器(41)で生成されたオゾンとの反応による化学発光強度を化学発光検出器(42)によって測定する様になされている。   The nitrogen analysis mechanism (4) includes an ozone generator (41) and a chemiluminescence detector (42), and nitrogen monoxide and ozone in the sample gas recovered from the second titration cell (32). The chemiluminescence intensity due to the reaction with ozone generated by the generator (41) is measured by the chemiluminescence detector (42).

オゾン発生器(41)としては、高電圧による放電方式などの装置を使用することも出来るが、低電圧による駆動、装置の小型化、ノイズ防止、NOの発生防止などの観点から、例えば、陽極と陰極との間に固体高分子膜をサンドイッチ接合し、電極間に直流電圧を印加して空気中の水分を電気分解し、陽極にオゾンを発生させる構造のいわゆる超小型オゾナイザー素子を利用した発生器が使用される。 The ozone generator (41), but can also be used an apparatus such as a discharge type according to a high voltage, driving by a low voltage, the size of the apparatus, from the viewpoint of noise prevention, NO X in the prevention, for example, A so-called ultra-small ozonizer element is used that has a structure in which a solid polymer film is sandwiched between an anode and a cathode, a DC voltage is applied between the electrodes to electrolyze moisture in the air, and ozone is generated at the anode. A generator is used.

化学発光検出器(42)は、酸化反応による発光を電子増倍管で受光し、波形処理を行った後にこれをAREA値とし、予め標準試料で作成した検量線を使用して前記のAREA値から試料中の全窒素量を測定する減圧化学発光方式の検出器である。具体的には、化学発光検出器(42)を使用した窒素分析では、試料ガス中の一酸化窒素にオゾンを接触させ、(NO+O→NO+O+hN (Nは振動数;ニュー))の酸化反応を生起し、590〜2500nmの波長の光を発光させる。そして、発光した光を電子増倍管で受光してその強度を測定し、上記の処理を行う。 The chemiluminescence detector (42) receives light emitted by the oxidation reaction with an electron multiplier, and after performing waveform processing, this is used as an AREA value, and the above AREA value is obtained using a calibration curve prepared in advance with a standard sample. This is a reduced pressure chemiluminescence detector that measures the total amount of nitrogen in a sample. Specifically, in nitrogen analysis using the chemiluminescence detector (42), ozone is brought into contact with nitric oxide in the sample gas, and (NO + O 3 → NO 2 + O 2 + hN (N is the frequency; New)) Oxidation reaction is caused to emit light having a wavelength of 590 to 2500 nm. Then, the emitted light is received by an electron multiplier, the intensity thereof is measured, and the above processing is performed.

オゾン発生器(41)には、オゾン生成用の酸素を導入する酸素供給流路(53)が接側される。斯かる酸素供給流路(53)は、前述の酸素供給流路(52)から分岐された流路であってもよい。化学発光検出器(42)には、オゾン発生器(41)から伸長されたオゾン供給用の流路(65)が接続され、また、前述の第2の滴定セル(32)から伸長された流路(64)が接続される。更に、化学発光検出器(42)の後段には、余剰のオゾンを無害化処理するための例えば活性炭を充填して成る除害装置(43)が流路(66)を介して配置される。そして、本発明の分析装置においては、除害装置(43)の後段には、流路(67)を介して真空ポンプ(7)が配置される。   The ozone generator (41) is in contact with an oxygen supply channel (53) for introducing oxygen for generating ozone. Such an oxygen supply channel (53) may be a channel branched from the oxygen supply channel (52). The chemiluminescence detector (42) is connected to the ozone supply channel (65) extended from the ozone generator (41), and the flow extended from the second titration cell (32) described above. The path (64) is connected. Further, a detoxifying device (43) filled with, for example, activated carbon for detoxifying surplus ozone is disposed after the chemiluminescence detector (42) via a flow path (66). And in the analyzer of this invention, a vacuum pump (7) is arrange | positioned through the flow path (67) in the back | latter stage of the abatement apparatus (43).

次に、本発明に係る分析装置の機能について説明する。本発明の分析装置による塩素、硫黄、窒素の測定においては、先ず、下流側に設けられた真空ポンプ(7)を稼働させると共に、試料ガス供給機構(1)において、キャリアガス供給流路(51)を通じて内管(11)にキャリアガスとして酸素および不活性ガス(アルゴン)を供給し、酸素供給流路(52)を通じて外管(12)に酸素を供給する。そして、試料注入装置(14)を操作して、内管(11)に試料(例えば燃料油)を10〜500μl注入する。キャリアガス及び酸素の圧力、流量は、供給流路(51)及び酸素供給流路(52)にそれぞれ付設された流量調整弁(図示省略)の制御により、例えば、0.3〜0.5MPa、0.2〜1.0L/minに設定される。   Next, the function of the analyzer according to the present invention will be described. In the measurement of chlorine, sulfur, and nitrogen by the analyzer of the present invention, first, the vacuum pump (7) provided on the downstream side is operated, and the carrier gas supply channel (51) in the sample gas supply mechanism (1). ) Is supplied with oxygen and an inert gas (argon) as carrier gas to the inner pipe (11) through oxygen), and oxygen is supplied to the outer pipe (12) through oxygen supply channel (52). Then, the sample injection device (14) is operated to inject 10 to 500 μl of sample (for example, fuel oil) into the inner tube (11). The pressure and flow rate of the carrier gas and oxygen are controlled by a flow rate adjusting valve (not shown) attached to the supply channel (51) and the oxygen supply channel (52), for example, 0.3 to 0.5 MPa, It is set to 0.2 to 1.0 L / min.

また、試料の注入に当たり、加熱炉(13)に通電し、反応管(10)の内部を600〜1100℃に加熱する。反応管(10)の加熱により、上記の試料を外管(12)において酸化し、試料中に含まれる塩素、硫黄および窒素をそれぞれ塩化水素、二酸化硫黄および一酸化窒素に変換して、これらを含む試料ガスを流路(61)を通じて取り出す。   In addition, when the sample is injected, the heating furnace (13) is energized to heat the inside of the reaction tube (10) to 600 to 1100 ° C. By heating the reaction tube (10), the above sample is oxidized in the outer tube (12), and chlorine, sulfur and nitrogen contained in the sample are converted into hydrogen chloride, sulfur dioxide and nitrogen monoxide, respectively. The contained sample gas is taken out through the channel (61).

反応管(10)で得られた試料ガスは、脱水浴(21)で脱水処理した後に塩素分析機構(2)の第1の滴定セル(22)に導入する。第1の滴定セル(22)においては、電解液である酢酸に試料ガスを吹き込み、前述した方法により電量滴定する。電量滴定においては、滴定中に電極に流れた電気量を測定することにより、別途設けられたコンピュータを使用し、塩素量を算出し、その結果を試料中の濃度として表示する。   The sample gas obtained in the reaction tube (10) is dehydrated in the dehydration bath (21) and then introduced into the first titration cell (22) of the chlorine analysis mechanism (2). In the first titration cell (22), a sample gas is blown into acetic acid as an electrolytic solution, and coulometric titration is performed by the method described above. In coulometric titration, the amount of electricity that has flowed to the electrode during titration is measured, a separately provided computer is used to calculate the amount of chlorine, and the result is displayed as the concentration in the sample.

次いで、第1の滴定セル(22)を通過した試料ガス、すなわち、二酸化硫黄および一酸化窒素が含まれる試料ガスを流路(63)を通じて取り出し、硫黄分析機構(3)の第2の滴定セル(32)に導入する。第2の滴定セル(32)においては、電解液であるヨウ化カリウム水溶液に試料ガスを吹き込み、前述した方法により電量滴定する。電量滴定においては、前述の滴定と同様に、滴定中に電極に流れた電気量を測定することにより、硫黄量を算出し、その結果を試料中の濃度として表示する。   Next, the sample gas that has passed through the first titration cell (22), that is, the sample gas containing sulfur dioxide and nitric oxide is taken out through the flow path (63), and the second titration cell of the sulfur analysis mechanism (3). (32). In the second titration cell (32), sample gas is blown into a potassium iodide aqueous solution as an electrolytic solution, and coulometric titration is performed by the method described above. In the coulometric titration, the amount of sulfur is calculated by measuring the amount of electricity flowing to the electrode during titration, and the result is displayed as the concentration in the sample, as in the above titration.

続いて、第2の滴定セル(32)通過した試料ガス、すなわち、一酸化窒素が含まれる試料ガスを流路(64)を通じて取り出し、窒素分析機構(4)の化学発光検出器(42)に導入する。一方、窒素分析機構(4)においては、オゾン発生器(41)でオゾンを生成し、流路(65)を通じて化学発光検出器(42)に導入する。化学発光検出器(42)では、第2の滴定セル(32)から回収された試料ガス中の一酸化窒素とオゾンとの反応による化学発光強度を測定することにより、別途設けられたコンピュータを使用し、窒素量を算出する。具体的には、予め標準試料から作成された検量線に基づいて窒素量を算出し、その結果を試料中の濃度として表示する。   Subsequently, the sample gas that has passed through the second titration cell (32), that is, the sample gas containing nitric oxide is taken out through the flow path (64), and is supplied to the chemiluminescence detector (42) of the nitrogen analysis mechanism (4). Introduce. On the other hand, in the nitrogen analysis mechanism (4), ozone is generated by the ozone generator (41) and introduced into the chemiluminescence detector (42) through the flow path (65). In the chemiluminescence detector (42), a computer provided separately is used by measuring the chemiluminescence intensity due to the reaction between nitrogen monoxide and ozone in the sample gas recovered from the second titration cell (32). And the amount of nitrogen is calculated. Specifically, the amount of nitrogen is calculated based on a calibration curve prepared in advance from a standard sample, and the result is displayed as the concentration in the sample.

上記の様に、本発明の分析装置においては、電量滴定法をそれぞれ利用した塩素分析機構(2)及び硫黄分析機構(3)、ならびに、化学発光法を利用した窒素分析機構(4)が順次に配置されており、試料ガス供給機構(1)において1回分の分析試料から得られた試料ガスをこれら各機構に順次に流すことにより、塩素、硫黄および窒素の各分析を行う。すなわち、本発明によれば、試料ガス供給機構(1)で試料から得られた試料ガスを分割することなく、1回の分析操作で塩素分析機構(2)、硫黄分析機構(3)及び窒素分析機構(4)に順次に送気し、それぞれ試料ガスの全量を使用して塩素、硫黄および窒素の各分析を行うことが出来る。従って、本発明によれば、試料ガスを分割する方式の分析装置に比べて、一層高い分析精度を得ることが出来る。   As described above, in the analyzer of the present invention, the chlorine analysis mechanism (2) and the sulfur analysis mechanism (3) each using a coulometric titration method, and the nitrogen analysis mechanism (4) using a chemiluminescence method are sequentially provided. In the sample gas supply mechanism (1), each of chlorine, sulfur and nitrogen is analyzed by sequentially flowing the sample gas obtained from one analysis sample to these mechanisms. That is, according to the present invention, the chlorine gas analysis mechanism (2), the sulfur analysis mechanism (3), and the nitrogen gas can be analyzed in one analysis operation without dividing the sample gas obtained from the sample by the sample gas supply mechanism (1). Sequentially sent to the analysis mechanism (4), and each analysis of chlorine, sulfur and nitrogen can be performed using the total amount of the sample gas. Therefore, according to the present invention, higher analysis accuracy can be obtained as compared with an analysis apparatus that divides the sample gas.

本発明の分析装置の主な構成を模式的に示すフロー図である。It is a flowchart which shows typically the main structures of the analyzer of this invention.

符号の説明Explanation of symbols

1 :試料ガス供給機構
10:反応管
11:内管
12:外管
13:加熱炉
14:試料注入装置
15:配管加熱用ヒーター
2 :塩素分析機構
21:脱水浴
22:第1の滴定セル
23:スターラー
3 :硫黄分析機構
32:第2の滴定セル
33:スターラー
4 :窒素分析機構
41:オゾン発生器
42:化学発光検出器
43:除害装置
51:キャリアガス供給流路
52:酸素供給流路
53:酸素供給流路
7 :真空ポンプ
1: Sample gas supply mechanism 10: Reaction tube 11: Inner tube 12: Outer tube 13: Heating furnace 14: Sample injection device 15: Heater for pipe heating 2: Chlorine analysis mechanism 21: Dehydration bath 22: First titration cell 23 : Stirrer 3: Sulfur analysis mechanism 32: Second titration cell 33: Stirrer 4: Nitrogen analysis mechanism 41: Ozone generator 42: Chemiluminescence detector 43: Detoxification device 51: Carrier gas supply flow path 52: Oxygen supply flow Channel 53: Oxygen supply channel 7: Vacuum pump

Claims (1)

試料中の塩素、硫黄および窒素の量を測定する分析装置であって、試料ガス供給機構、塩素分析機構、硫黄分析機構および窒素分析機構から主として構成され、前記試料ガス供給機構は、試料が装入され且つ酸素が供給される反応管と、当該反応管を加熱する加熱炉とを備え、当該加熱炉による加熱により前記反応管内の試料を燃焼させ、試料中の塩素、硫黄および窒素をそれぞれ塩化水素、二酸化硫黄および一酸化窒素に変換して試料ガスとして回収する機能を有し、前記塩素分析機構は、酢酸を含む電解液が収容され且つ前記反応管から回収された試料ガス中の塩化水素を電量滴定する第1の滴定セルを備え、前記硫黄分析機構は、ヨウ化カリウムを含む電解液が収容され且つ前記第1の滴定セルから回収された試料ガス中の二酸化硫黄を電量滴定する第2の滴定セルを備え、前記窒素分析機構は、オゾン発生器および化学発光検出器を備え、前記第2の滴定セルから回収された試料ガス中の一酸化窒素と前記オゾン発生器で生成されたオゾンとの反応による化学発光強度を前記化学発光検出器によって測定する様になされていることを特徴とする分析装置。   An analyzer for measuring the amount of chlorine, sulfur and nitrogen in a sample, which mainly comprises a sample gas supply mechanism, a chlorine analysis mechanism, a sulfur analysis mechanism and a nitrogen analysis mechanism, and the sample gas supply mechanism is equipped with a sample. A reaction tube to which oxygen is supplied and a heating furnace for heating the reaction tube. The sample in the reaction tube is burned by heating with the heating furnace, and chlorine, sulfur, and nitrogen in the sample are respectively chlorinated. The chlorine analysis mechanism has a function of converting it into hydrogen, sulfur dioxide and nitric oxide and recovering it as a sample gas. The chlorine analysis mechanism contains hydrogen chloride in the sample gas containing an electrolytic solution containing acetic acid and recovered from the reaction tube. The sulfur analysis mechanism includes sulfur dioxide in a sample gas containing an electrolytic solution containing potassium iodide and recovered from the first titration cell. A second titration cell for coulometric titration, wherein the nitrogen analysis mechanism comprises an ozone generator and a chemiluminescence detector, and the nitric oxide in the sample gas recovered from the second titration cell and the ozone generator An analytical apparatus characterized in that the chemiluminescence intensity due to the reaction with ozone generated in step 1 is measured by the chemiluminescence detector.
JP2006261915A 2006-09-27 2006-09-27 Analysis equipment Expired - Fee Related JP4779911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261915A JP4779911B2 (en) 2006-09-27 2006-09-27 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261915A JP4779911B2 (en) 2006-09-27 2006-09-27 Analysis equipment

Publications (2)

Publication Number Publication Date
JP2008082807A true JP2008082807A (en) 2008-04-10
JP4779911B2 JP4779911B2 (en) 2011-09-28

Family

ID=39353838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261915A Expired - Fee Related JP4779911B2 (en) 2006-09-27 2006-09-27 Analysis equipment

Country Status (1)

Country Link
JP (1) JP4779911B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571507B (en) * 2008-04-29 2012-07-04 浙江省电力试验研究院 Microcoulomb analysis method for chlorinity high-temperature burning of organic phosphate fire-resistant oil and device thereof
CN103018236A (en) * 2012-11-30 2013-04-03 济南海能仪器股份有限公司 Nitrogen content titration device
CN103913458A (en) * 2014-04-17 2014-07-09 广州天赐高新材料股份有限公司 Detection method for trace free acid in electrolyte lithium salt
JP2018021886A (en) * 2016-08-02 2018-02-08 佐藤 綾子 Rapid absorption quantitative determination system for analysis of combustion-type carbon, nitrogen, halogen, and sulfur
CN110146646A (en) * 2019-06-21 2019-08-20 辛星 A kind of full-automatic fluorine chlorine conparator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180059009A1 (en) 2015-07-16 2018-03-01 Mitsubishi Chemical Analytech Co., Ltd. Method and apparatus for analysis of nitrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571507B (en) * 2008-04-29 2012-07-04 浙江省电力试验研究院 Microcoulomb analysis method for chlorinity high-temperature burning of organic phosphate fire-resistant oil and device thereof
CN103018236A (en) * 2012-11-30 2013-04-03 济南海能仪器股份有限公司 Nitrogen content titration device
CN103018236B (en) * 2012-11-30 2014-10-29 济南海能仪器股份有限公司 Nitrogen content titration device by using titration apparatus
CN103913458A (en) * 2014-04-17 2014-07-09 广州天赐高新材料股份有限公司 Detection method for trace free acid in electrolyte lithium salt
JP2018021886A (en) * 2016-08-02 2018-02-08 佐藤 綾子 Rapid absorption quantitative determination system for analysis of combustion-type carbon, nitrogen, halogen, and sulfur
CN110146646A (en) * 2019-06-21 2019-08-20 辛星 A kind of full-automatic fluorine chlorine conparator

Also Published As

Publication number Publication date
JP4779911B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4811221B2 (en) Analysis equipment
JP4779911B2 (en) Analysis equipment
US20070114137A1 (en) Residual chlorine measuring method and residual chlorine measuring device
EP3141895A1 (en) Nitrogen analysis method and nitrogen analysis device
JP2010048582A (en) Sulfur analyzing method and sulfur analyzing apparatus
US10031105B2 (en) Electrochemical total organic carbon analyzer
US7968053B2 (en) Chlorine analyzing apparatus
JP5770491B2 (en) Method for measuring total concentration of oxidizing substance, concentration meter for measuring total concentration of oxidizing substance, and sulfuric acid electrolysis apparatus using the same
JP2008275327A (en) Analyzer for nitrogen, sulfur and/or halogen in sample
AU2016375264B2 (en) Pulsed potential gas sensors
JP2010276486A (en) Sulphur analysis method and analyzer
JP2009300203A (en) Sulfur analyzing method and sulfur analyzer
Yang et al. Determination of hydrazine compounds by capillary electrophoresis with a poly (glutamic acid) modified microdisk carbon fiber electrode
EP1444513A2 (en) Membrane-covered sensor for determining the concentration of oxygen and carbon dioxide
CN112986219B (en) Electrode sample introduction DBD micro plasma atomic emission spectrum detection system and method
US3523872A (en) Gas analysis
Herms et al. Highly sensitive coulometric titration of oxygen for the characterization of solid materials at elevated temperatures
Reddy et al. Direct determination of ultra-trace sodium in reactor secondary coolant waters and other waters by electrolyte cathode discharge atomic emission spectrometry
JPH10153577A (en) Sulfur content analysis method
Kaneko et al. New Analytical Method for Measurement of Hydrogen Partial Pressure Using a Tubular Hydrogen Pump-Gauge
RU2151434C1 (en) Hydrogen analyzer for uranium dioxide fuel pellets
JP4111339B2 (en) Method and apparatus for adjusting valence of dissolved ions in molten chloride salt
CN118794933A (en) Device and method for on-site detection and analysis of sulfides in environmental water
Gilbert et al. Voltametric, Amperometric, and Other Electrochemical Analyzers
JP5714433B2 (en) Electrolytic cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees