CN112986219B - Electrode sampling DBD microplasma atomic emission spectrometry detection system and method - Google Patents
Electrode sampling DBD microplasma atomic emission spectrometry detection system and method Download PDFInfo
- Publication number
- CN112986219B CN112986219B CN202110181815.4A CN202110181815A CN112986219B CN 112986219 B CN112986219 B CN 112986219B CN 202110181815 A CN202110181815 A CN 202110181815A CN 112986219 B CN112986219 B CN 112986219B
- Authority
- CN
- China
- Prior art keywords
- electrode
- dbd
- micro
- sample
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005070 sampling Methods 0.000 title claims description 40
- 238000001636 atomic emission spectroscopy Methods 0.000 title claims description 28
- 239000000523 sample Substances 0.000 claims abstract description 87
- 239000012491 analyte Substances 0.000 claims abstract description 40
- 239000010453 quartz Substances 0.000 claims abstract description 36
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 36
- 238000004458 analytical method Methods 0.000 claims abstract description 28
- 238000000295 emission spectrum Methods 0.000 claims abstract description 25
- 230000005284 excitation Effects 0.000 claims abstract description 25
- 229910052754 neon Inorganic materials 0.000 claims abstract description 24
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000013307 optical fiber Substances 0.000 claims abstract description 13
- 230000002572 peristaltic effect Effects 0.000 claims abstract description 13
- 238000011065 in-situ storage Methods 0.000 claims abstract description 8
- 238000001228 spectrum Methods 0.000 claims abstract description 8
- 239000012488 sample solution Substances 0.000 claims abstract description 4
- 229910001385 heavy metal Inorganic materials 0.000 claims description 20
- 238000001637 plasma atomic emission spectroscopy Methods 0.000 claims description 14
- 230000003595 spectral effect Effects 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 3
- 238000004445 quantitative analysis Methods 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 description 24
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- 239000007789 gas Substances 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 11
- 239000010935 stainless steel Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000012086 standard solution Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000001391 atomic fluorescence spectroscopy Methods 0.000 description 3
- 238000000889 atomisation Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004094 preconcentration Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000012496 blank sample Substances 0.000 description 2
- 238000004737 colorimetric analysis Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000004846 x-ray emission Methods 0.000 description 2
- 206010007269 Carcinogenicity Diseases 0.000 description 1
- 238000003968 anodic stripping voltammetry Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000559 atomic spectroscopy Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007670 carcinogenicity Effects 0.000 description 1
- 231100000260 carcinogenicity Toxicity 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002536 laser-induced breakdown spectroscopy Methods 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical group [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/71—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
- G01N21/73—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明属于原子发射光谱检测设备和分析技术领域,具体涉及一种电极进样DBD微等离子体原子发射光谱检测系统及方法。The invention belongs to the technical field of atomic emission spectrum detection equipment and analysis, and in particular relates to an electrode sampling DBD microplasma atomic emission spectrum detection system and method.
背景技术Background technique
原子发射光谱分析法是食品、环境等科学领域中元素含量检测十分常用的分析技术,也是生态建设和环境保护的重要手段。实验室中的大型光谱分析仪器能够实现元素的稳定、准确、高灵敏检测,但因其高能耗、体积大等缺点往往只能在实验室进行分析检测无法满足野外现场分析检测的需求。由于重金属的毒性、致癌性和生物积累性,重金属污染对人类健康的危害已引起世界各国的广泛关注。重金属污染事故时有发生,如意外泄漏或非法排放,甚至经过处理的纯净水也可能由于从管道浸出而含有重金属。环境水中重金属污染的检测通常需要采集、保存和运输大量水样(250-1000mL)到实验室用基准法分析,例如原子吸收光谱法(Atomic Absorption Spectrometry,AAS)、原子荧光光谱法(AtomicFluorescence Spectrometry,AFS)以及电感耦合等离子体发射光谱/质谱(InductivelyCoupled Plasma-Optical Emission Spectrometry/Mass Spectrometry,ICP-OES/MS)等。这种检测方式不仅增加了物流运输的压力,而且样品与氧气、容器壁的接触或温度和压力的物理变化将不可避免地导致样品存储过程中分析物的损失和样品的污染,这将严重影响分析结果准确性和可重复性。因此,迫切需要开发便携式分析仪器来满足现场重金属污染分析的需求。Atomic emission spectrometry is a very commonly used analytical technique for element content detection in scientific fields such as food and environment, and is also an important means of ecological construction and environmental protection. Large-scale spectral analysis instruments in the laboratory can achieve stable, accurate and highly sensitive detection of elements, but due to the disadvantages of high energy consumption and large volume, they can only be analyzed and detected in the laboratory, which cannot meet the needs of field analysis and detection. Due to the toxicity, carcinogenicity and bioaccumulation of heavy metals, the harm of heavy metal pollution to human health has aroused widespread concern around the world. Heavy metal pollution accidents such as accidental leakage or illegal discharge occur from time to time, and even treated pure water may contain heavy metals due to leaching from pipes. The detection of heavy metal pollution in environmental water usually requires the collection, preservation and transportation of a large number of water samples (250-1000mL) to the laboratory for analysis by benchmark methods, such as Atomic Absorption Spectrometry (AAS), Atomic Fluorescence Spectrometry (Atomic Fluorescence Spectrometry, AFS) and Inductively Coupled Plasma-Optical Emission Spectrometry/Mass Spectrometry (ICP-OES/MS). This detection method not only increases the pressure of logistics transportation, but also the contact of the sample with oxygen, container walls or physical changes in temperature and pressure will inevitably lead to loss of analytes and contamination of samples during sample storage, which will seriously affect Analyze results for accuracy and repeatability. Therefore, there is an urgent need to develop portable analytical instruments to meet the needs of on-site heavy metal pollution analysis.
目前,一些基于便携式检测器的重金属分析方法,例如阳极溶出伏安法(AnodicStripping Voltammetry,ASV)和比色法(Colorimetry)可用于野外痕量重金属的检测,但由于存在未知共存金属离子的干扰,不能完全适用于复杂真实水样中重金属的检测。X射线荧光光谱法(X-ray Fluorescence,XRF)和激光诱导击穿光谱法(Laser InducedBreakdown Spectroscopy,LIBS)在直接取样时可分析元素特征,特别适用于重金属的快速现场分析,但受到样品异质性和检测灵敏度不足的限制。At present, some heavy metal analysis methods based on portable detectors, such as anodic stripping voltammetry (ASV) and colorimetry (Colorimetry), can be used for the detection of trace heavy metals in the field, but due to the interference of unknown coexisting metal ions, It is not fully applicable to the detection of heavy metals in complex real water samples. X-ray Fluorescence Spectroscopy (XRF) and Laser Induced Breakdown Spectroscopy (LIBS) can analyze elemental characteristics in direct sampling, which are especially suitable for rapid on-site analysis of heavy metals, but are limited by sample heterogeneity. Limitations of insufficient sensitivity and detection sensitivity.
原子发射光谱仪器的最核心部件是其中的原子化器/激发源,它直接决定了整个原子发射光谱仪器的整体分析性能、体积大小及其附件设备的多少。目前,各种微等离子体激发源在原子发射光谱检测系统中的应用加速了便携式仪器的发展,在痕量元素分析领域显示出了高效的性能。常见的微等离子体包括:介质阻挡放电(Dielectric BarrierDischarge,DBD)、点放电(Point Discharge,PD)、大气压辉光放电(Atmospheric PressureGlow Discharge,APGD)等。由于微等离子体的功率远低于传统的电感耦合等离子体(ICP)和微波诱导等离子体(Microwave Induced Plasmas,MIP)源,而且溶剂和基体的蒸发会严重恶化微等离子体的原子化/激发能力,因此,进样方式的开发已成为微等离子体原子发射光谱检测系统的重要挑战。一般来说,为了保证微等离子体有足够的原子化/激发能力,将液体样品引入微等离子体的理想方法是通过化学/光化学/电化学蒸气发生(VaporGeneration,VG)或者电热蒸发(Electrothermal Vaporization,ETV)将分析物转化为“纯”和“干”的挥发性物质。由于反应条件的限制,用于样品引入微等离子体的蒸气发生法将导致可检测元素的数量有限、试剂消耗量大,并且难以同时测量多个元素。用于样品引入微等离子体的基于钨丝线圈的电热蒸发易于实现多种元素的同时测定,但是钨丝线圈上有限的样品上样量阻碍了其灵敏度的进一步提高,且钨丝线圈的使用寿命限制了其长期使用。受微等离子体用作质谱电离源原位电离表面样品的启发,微等离子体激发源如果能够激发沉积在基质表面上的分析物来实现元素分析,将为高效的样品导入和仪器的微型化提供了一种有希望的方法。发明专利授权公告号CN104749139A为利用具有较高能量的微波诱导等离子体尾焰引发样品基底的燃烧,利用燃烧热促进基底附着的待测样品元素的原子化、激发来实现元素的测定。然而,DBD、PD等微等离子的能量低至无法引燃纸张,使用微等离子体激发源对基质表面上分析物有效激发的关键在于如何提高样品引入微等离子体激发源的进样量以及克服因样品沉积不均匀导致的“咖啡环”效应。Marcus等人(Anal.Chem.2016,88,5579-5584.)提出使用液体采样APGD挥发和激发干溶液残留物并通过原子发射光谱检测重金属的概念证明,然而该系统仅对重金属进行了定性分析。The core component of an atomic emission spectrometer is the atomizer/excitation source, which directly determines the overall analytical performance, size and number of accessories of the entire atomic emission spectrometer. At present, the application of various microplasma excitation sources in atomic emission spectrometry detection systems has accelerated the development of portable instruments, which have shown efficient performance in the field of trace element analysis. Common microplasma includes: Dielectric Barrier Discharge (DBD), Point Discharge (PD), Atmospheric Pressure Glow Discharge (APGD) and the like. Since the power of the microplasma is much lower than that of conventional inductively coupled plasma (ICP) and microwave-induced plasma (MIP) sources, and the evaporation of the solvent and matrix can seriously deteriorate the atomization/excitation capability of the microplasma Therefore, the development of sample injection methods has become an important challenge for microplasma atomic emission spectrometry detection systems. Generally speaking, in order to ensure that the microplasma has sufficient atomization/excitation ability, the ideal method to introduce liquid samples into the microplasma is through chemical/photochemical/electrochemical vapor generation (VaporGeneration, VG) or electrothermal vaporization (Electrothermal Vaporization, ETV) converts analytes into "pure" and "dry" volatile species. Due to the limitations of the reaction conditions, the vapor generation method for sample introduction into the microplasma will result in a limited number of detectable elements, high reagent consumption, and difficulty in measuring multiple elements simultaneously. The electrothermal evaporation based on tungsten wire coil for sample introduction into microplasma is easy to realize the simultaneous determination of multiple elements, but the limited sample loading on the tungsten wire coil hinders the further improvement of its sensitivity, and the service life of the tungsten wire coil limited its long-term use. Inspired by the use of microplasma as an ionization source for mass spectrometry to ionize surface samples in situ, a microplasma excitation source that can excite analytes deposited on a substrate surface for elemental analysis will provide efficient sample introduction and instrument miniaturization. a promising approach. The invention patent authorization announcement number CN104749139A is to use the microwave-induced plasma tail flame with higher energy to trigger the combustion of the sample substrate, and use the combustion heat to promote the atomization and excitation of the element to be tested attached to the substrate to achieve the determination of the element. However, the energy of microplasma such as DBD and PD is so low that it cannot ignite paper. The key to using microplasma excitation source to effectively excite analytes on the substrate surface lies in how to increase the amount of sample introduced into the microplasma excitation source and overcome the The "coffee ring" effect caused by uneven sample deposition. Marcus et al. (Anal. Chem. 2016, 88, 5579-5584.) proposed a proof-of-concept of using liquid sampling APGD to volatilize and excite dry solution residues and detect heavy metals by atomic emission spectroscopy, however this system only provides qualitative analysis of heavy metals .
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于为现场重金属污染分析提供能够方便高效的引入样品的微等离子体原子发射光谱检测系统以及使用该检测系统的相应的分析方法。具体为一种电极进样DBD微等离子体原子发射光谱检测系统及方法,该电极进样DBD微等离子体原子发射光谱检测系统能够利用DBD微等离子体原子发射光谱检测系统原位分析电极表面所吸附的待测物。The technical problem to be solved by the present invention is to provide a microplasma atomic emission spectrometry detection system capable of introducing samples conveniently and efficiently and a corresponding analysis method using the detection system for on-site heavy metal pollution analysis. Specifically, an electrode sampling DBD microplasma atomic emission spectroscopy detection system and method, the electrode sampling DBD microplasma atomic emission spectroscopy detection system can use the DBD microplasma atomic emission spectroscopy detection system to in-situ analyze the adsorption on the electrode surface the test object.
本发明的电极进样DBD微等离子体原子发射光谱检测系统,包括DBD微等离子体激发源、光谱检测系统;The electrode sampling DBD microplasma atomic emission spectrum detection system of the present invention includes a DBD microplasma excitation source and a spectrum detection system;
所述的DBD微等离子体激发源包括样品电极、带支管的石英管、石英管外壁缠绕的高压导线、霓虹灯电源、调压器和气路系统;The DBD micro-plasma excitation source includes a sample electrode, a quartz tube with a branch tube, a high-voltage wire wound around the outer wall of the quartz tube, a neon light power supply, a voltage regulator and a gas circuit system;
所述的样品电极材质为具有导电性和待测物吸附性的材料,用于富集待测物于样品电极的表面;The material of the sample electrode is a material with conductivity and adsorption of the analyte, and is used to enrich the analyte on the surface of the sample electrode;
样品电极富集待测物的一端插入石英管的管内,并和石英管同轴;The end of the sample electrode enriching the substance to be tested is inserted into the tube of the quartz tube, and is coaxial with the quartz tube;
调压器的输入端和交流电连接,调压器的输出端和霓虹灯电源输入端连接,霓虹灯电源的输出端分别和高压导线以及样品电极未富集待测物的一端连接;The input end of the voltage regulator is connected with the alternating current, the output end of the voltage regulator is connected with the input end of the neon light power supply, and the output end of the neon light power supply is respectively connected with the high-voltage wire and the end of the sample electrode that is not enriched with the object to be tested;
石英管上带有的支管和气路系统连接;The branch pipe on the quartz tube is connected to the gas system;
光谱检测系统包括透镜、光纤和微型光谱仪,透镜通过光纤和微型光谱仪连接,透镜设置在石英管轴向或者侧面的水平方向,用于聚焦产生的特征发射光谱,微型光谱仪用于将透镜聚焦后的特征发射光谱通过光纤耦合到微型光谱仪中进行检测。The spectral detection system includes a lens, an optical fiber and a micro-spectrometer. The lens is connected to the micro-spectrometer through an optical fiber. The lens is arranged in the horizontal direction of the axial or lateral side of the quartz tube to focus the characteristic emission spectrum generated. The micro-spectrometer is used to focus the lens after focusing. The characteristic emission spectrum is detected by optical fiber coupling into a miniature spectrometer.
所述的电极进样DBD微等离子体原子发射光谱检测系统还包括计算机和微型光谱仪对应的光谱分析软件,微型光谱仪和计算机连接,计算机上的光谱分析软件用于对微型光谱仪检测的光谱进行分析。微型光谱仪可以是Ocean Optics QE65000光谱仪,光谱仪对应的光谱分析软件为SpectraSuite。The electrode sampling DBD micro-plasma atomic emission spectrometry detection system also includes spectrum analysis software corresponding to the computer and the micro-spectrometer, the micro-spectrometer is connected to the computer, and the spectrum analysis software on the computer is used to analyze the spectrum detected by the micro-spectrometer. The miniature spectrometer can be an Ocean Optics QE65000 spectrometer, and the spectral analysis software corresponding to the spectrometer is SpectraSuite.
所述的微等离子体激发源产生的微等离子体产生在石英管的管内,样品电极沉浸在微等离子体中;The micro-plasma generated by the micro-plasma excitation source is generated in the tube of the quartz tube, and the sample electrode is immersed in the micro-plasma;
所述样品电极优选包括电极头和连接支撑件;电极头的一端和连接支撑件连接;电极头用于富集重金属,电极头材质优选为活性炭、石墨烯、不锈钢等。连接支撑件优选为空心金属管,如空心不锈钢管、空心钨管,用于支撑和连接高压导线。优选地,电极头直径0.4-1.2mm、长度2-8mm;空心金属管内径0.4-1.2mm、管壁厚度0.05-0.1mm、长度40-100mm;电极头的外径和空心金属管的内径相同,电极头插入空心金属管后,电极头的裸露长度为1-7mm。The sample electrode preferably includes an electrode head and a connection support; one end of the electrode head is connected to the connection support; the electrode head is used to enrich heavy metals, and the material of the electrode head is preferably activated carbon, graphene, stainless steel, etc. The connection support is preferably a hollow metal tube, such as a hollow stainless steel tube and a hollow tungsten tube, for supporting and connecting high-voltage wires. Preferably, the diameter of the electrode tip is 0.4-1.2mm and the length is 2-8mm; the inner diameter of the hollow metal tube is 0.4-1.2mm, the thickness of the tube wall is 0.05-0.1mm, and the length is 40-100mm; the outer diameter of the electrode tip is the same as the inner diameter of the hollow metal tube , After the electrode head is inserted into the hollow metal tube, the exposed length of the electrode head is 1-7mm.
所述的样品电极还配合设置有蠕动泵和加热台,蠕动泵用于将含有待测物的溶液以均速流入样品电极,所述的加热台用于干燥样品电极。The sample electrode is also equipped with a peristaltic pump and a heating table. The peristaltic pump is used to flow the solution containing the object to be tested into the sample electrode at a uniform speed, and the heating table is used to dry the sample electrode.
所述的带支管的石英管的外径1-4mm、管壁厚度0.05-0.1mm、长度60-100mm。The outer diameter of the quartz tube with branch tubes is 1-4 mm, the thickness of the tube wall is 0.05-0.1 mm, and the length is 60-100 mm.
所述的调压器用于通过调节调压器的输出电压控制霓虹灯电源加载在样品电极和高压导线的电压。The voltage regulator is used to control the voltage applied to the sample electrode and the high-voltage wire by the neon power supply by adjusting the output voltage of the voltage regulator.
所述的高压导线优选为铜线。The high-voltage wires are preferably copper wires.
本发明的一种电极进样DBD微等离子体原子发射光谱分析方法,采用上述电极进样DBD微等离子体原子发射光谱检测系统,包括以下步骤:An electrode sampling DBD micro-plasma atomic emission spectroscopy analysis method of the present invention adopts the above-mentioned electrode sampling DBD micro-plasma atomic emission spectroscopy detection system, comprising the following steps:
步骤1:step 1:
通过蠕动泵以恒定流速将含有待测物的样品溶液流过样品电极表面,进行预浓缩,得到预浓缩有待测物的样品电极;The sample solution containing the analyte is flowed over the surface of the sample electrode at a constant flow rate by a peristaltic pump, and pre-concentrated to obtain a sample electrode with pre-concentrated analyte;
将预浓缩有待测物的样品电极进行加热去除水分,得到富集待测物的样品电极;The sample electrode with pre-concentrated analyte is heated to remove moisture to obtain a sample electrode enriched with analyte;
步骤2:Step 2:
将富集待测物的样品电极插入带支管的石英管的管内,并通过气路系统向石英管内通入微等离子体放电气体;Insert the sample electrode enriched with the analyte into the tube of the quartz tube with the branch tube, and pass the micro-plasma discharge gas into the quartz tube through the gas circuit system;
将霓虹灯电源的输出端和样品电极远离富集待测物的一端连接,将霓虹灯电源的另一个输出端和缠绕在石英管外壁的高压导线连接;Connect the output end of the neon light power supply to the end of the sample electrode away from the enriched object to be tested, and connect the other output end of the neon light power supply to the high-voltage wire wound on the outer wall of the quartz tube;
调压器的输出端和霓虹灯电源输入端连接,调压器的输入端和交流电连接。通过调压器调节富集待测物的样品电极和高压导线的电压为点燃等离子体电压,然后将电压升至能够激发待测物的电压,此时样品电极表面吸附的待测物被微等离子体原位激发,3-5秒钟的时间内样品电极表面的待测物即可完成激发过程,产生特征发射光谱;The output end of the voltage regulator is connected with the input end of the neon light power supply, and the input end of the voltage regulator is connected with the alternating current. The voltage of the sample electrode and the high-voltage wire enriched with the analyte is adjusted by a voltage regulator to ignite the plasma voltage, and then the voltage is raised to a voltage that can excite the analyte. In situ excitation in vivo, the object to be tested on the surface of the sample electrode can complete the excitation process within 3-5 seconds to generate a characteristic emission spectrum;
步骤3:Step 3:
采用透镜将特征发射光谱进行聚焦,通过光纤耦合到微型光谱仪中进行检测。The characteristic emission spectrum is focused by a lens and coupled to a miniature spectrometer for detection through an optical fiber.
所述的电极进样DBD微等离子体原子发射光谱分析方法,还包括将微型光谱仪检测的特征发射光谱通过计算机光谱分析软件显示各个待测物的光谱强度,采用各个待测物光谱峰高进行定量分析,得到溶液中待测物种类和对应的含量。The electrode sampling DBD micro-plasma atomic emission spectrometry analysis method further comprises: displaying the spectral intensity of each object to be tested by using the characteristic emission spectrum detected by the micro-spectrometer through computer spectrum analysis software, and using the spectral peak height of each object to be tested for quantification Analysis to obtain the type and corresponding content of the analyte in the solution.
所述的步骤1中,恒定流速优选为3-10mL/min。In the
所述的步骤1中,加热温度优选为50~70℃,加热时间为3~10min。In the
所述的步骤1中,可根据蠕动泵所具有的多通道属性对多个样品电极同时进样。In the
所述的步骤2中,霓虹灯电源的输入电源为220V,输出电压为6kV、30mA的高压电源。In the
所述的步骤2中,微等离子体放电气体优选为惰性气体,更优选为氩气或氦气。In the
所述的步骤2中,点燃等离子体电压根据石英管厚度和样品电极与高压导线的相对位置确定,优选为3.4-3.6kV。In the
所述的步骤2中,激发待测物的电压根据石英管不被击穿、待测物能够产生特征发射信号确定,优选为3.6-6.0kV。In the
所述的步骤3中,微等离子体和透镜之间的距离优选为6-12cm。In the
本发明一种电极进样DBD微等离子体原子发射光谱检测系统及方法,与现有技术相比,优势在于:Compared with the prior art, an electrode sampling DBD microplasma atomic emission spectrometry detection system and method of the present invention has the following advantages:
(1)本发明最重要的是将采样、预浓缩和微等离子体激发集成在一个样品电极上,不仅简化了样品的前处理步骤、提高了便携性,而且显著提高了微等离子体原子发射光谱检测系统待测物分析的灵敏度,具体为镉和铅元素的检测限可以在优化条件下达到亚ppb水平,该检出限可达到污染检测标准。(1) The most important thing of the present invention is to integrate sampling, pre-concentration and micro-plasma excitation on one sample electrode, which not only simplifies the pre-processing steps of the sample, improves portability, but also significantly improves the micro-plasma atomic emission spectrum The sensitivity of the analyte analysis of the detection system, specifically the detection limit of cadmium and lead elements, can reach the sub-ppb level under optimized conditions, and the detection limit can meet the pollution detection standard.
(2)采用介质阻挡放电微等离子体作为激发源,可在大气压下操作、能耗低;采用微型光谱仪进行检测,体积小、成本低。所提出的发明系统为原子光谱仪器向小型化和现场分析奠定了基础。(2) The dielectric barrier discharge micro-plasma is used as the excitation source, which can be operated under atmospheric pressure and has low energy consumption; the micro-spectrometer is used for detection, which is small in size and low in cost. The proposed inventive system lays the foundation for the miniaturization and field analysis of atomic spectroscopy instruments.
(3)采用本发明提供的装置和方法对样品进行检测分析,具有较高的分析速度,单次检测富集了待测物的样品电极所需时间仅为3-5秒,非常适合批量样品的快速高通量分析。(3) The device and method provided by the present invention are used to detect and analyze the sample, which has a high analysis speed, and the time required for a single detection of the sample electrode enriched with the analyte is only 3-5 seconds, which is very suitable for batch samples rapid high-throughput analysis.
(4)并且本发明提供的装置和方法能够对现场待测物污染分析提供方便高效的样品导入方法。本发明通过简单的液固相转变,样品电极被用作待测物捕获载体。无需任何样品传输通道,通过简单地调节电场强度,吸附在样品电极表面的待测物可以被微等离子体原子发射光谱检测系统定量分析。(4) And the device and method provided by the present invention can provide a convenient and efficient sample introduction method for on-site contamination analysis of the analyte. In the present invention, the sample electrode is used as the analyte capture carrier through simple liquid-solid phase transition. Without any sample transmission channel, by simply adjusting the electric field intensity, the analyte adsorbed on the surface of the sample electrode can be quantitatively analyzed by the microplasma atomic emission spectrometry detection system.
附图说明Description of drawings
图1是电极进样DBD微等离子体原子发射光谱检测系统的装置图,其中1-样品电极,2-带支管的石英管,3-高压导线,4-霓虹灯电源,5-调压器,6-气路系统,7-透镜,8-光纤,9-微型光谱仪。Figure 1 is the device diagram of the electrode sampling DBD microplasma atomic emission spectrometry detection system, in which 1-sample electrode, 2-quartz tube with branch tube, 3-high voltage wire, 4-neon lamp power supply, 5-voltage regulator, 6- -Pneumatic system, 7-lens, 8-fiber, 9-miniature spectrometer.
图2是电极进样DBD微等离子体原子发射光谱检测系统的样品引入单元,其中:10-活性碳棒,11-空心不锈钢管,12-蠕动泵,13-加热台。Figure 2 is the sample introduction unit of the electrode sampling DBD microplasma atomic emission spectrometry detection system, wherein: 10- activated carbon rod, 11- hollow stainless steel tube, 12- peristaltic pump, 13- heating stage.
图3是采用本发明的装置和方法测量到的不含镉和含6μg/L镉元素的标准溶液的发射光谱谱图。FIG. 3 is the emission spectrum of the standard solution without cadmium and 6 μg/L of cadmium element measured by the device and method of the present invention.
图4是采用本发明的装置和方法测量到的不含铅和含70μg/L铅元素的标准溶液的发射光谱谱图。Fig. 4 is the emission spectrogram of the standard solution containing no lead and 70 μg/L lead element measured by the device and method of the present invention.
具体实施方式Detailed ways
以下结合附图和实施方式对本发明作进一步详述,下述实施方式仅用于说明本发明,而非限制本发明。The present invention will be described in further detail below with reference to the accompanying drawings and embodiments, and the following embodiments are only used to illustrate the present invention, but not to limit the present invention.
以下实施例采用的设备和仪器,除特殊说明外,均为市购。The equipment and instruments used in the following examples are commercially available unless otherwise specified.
实施例1Example 1
图1是电极进样DBD微等离子体原子发射光谱检测系统的装置的整体结构示意图。如图1所示,所提出的电极进样DBD微等离子体原子发射光谱检测系统的装置包括DBD微等离子体激发源、光谱检测系统;Figure 1 is a schematic diagram of the overall structure of the device of the electrode sampling DBD microplasma atomic emission spectrometry detection system. As shown in Figure 1, the proposed electrode sampling DBD microplasma atomic emission spectroscopy detection system device includes a DBD microplasma excitation source and a spectral detection system;
所述DBD微等离子体激发源包括样品电极1、带支管的石英管2、石英管外壁缠绕的高压导线3,本实施例的高压导线为铜线、霓虹灯电源4、调压器5和气路系统6;The DBD microplasma excitation source includes a
样品电极1包括活性碳棒10和空心不锈钢管11,活性碳棒10的一端和空心不锈钢管11的一端连接;The
样品电极1的空心不锈钢管11一端和高压导线3的一端分别与霓虹灯电源4的输出端相连。霓虹灯电源4的输入端连接调压器5的输出端,调压器5的输入端与220V电源相连接。带支管的石英管2的支口连接气路系统6,用于引入微等离子体放电气体。DBD微等离子体产生于支管的石英管2内部,样品电极1沉浸在DBD微等离子体中。通过调节调压器5的输出电压控制霓虹灯电源4加载在样品电极1和高压导线3之间的高压。One end of the hollow
光谱检测系统包括透镜7、光纤8和微型光谱仪9,透镜7通过光纤8和微型光谱仪9连接,透镜设置在带支管的石英管2远离其支口的轴向或者侧面的水平方向。样品电极1表面的待测物被DBD微等离子体激发产生的待测物特征光发射沿着带支管的石英管2,经透镜7聚焦后通过光纤8耦合到微型光谱仪9进行信号的检测与放大,最后由计算机上的光谱分析软件显示各待测物的光谱强度后,采用峰高进行定量分析,从而实现待测物的检测。The spectral detection system includes a lens 7, an optical fiber 8 and a
本实施例中,活性碳棒10直径0.9mm、长度5mm;空心不锈钢管11内径0.9mm、管壁厚度0.05mm、长度50mm;活性碳棒10插入空心不锈钢管11后,活性碳棒10从空心不锈钢管11中伸出4mm。可根据蠕动泵12所具有的多通道属性对多个样品电极1同时进样。In this embodiment, the activated
带支管的石英管2外径3.3mm、管壁厚度0.8mm、长度85mm。高压导线3直径0.5mm。载气为氩气,气体流速600mLmin-1。霓虹灯电源4可采用输入电压220V,输出6kV、30mA的高压源。调压器5输入电压220V,输出电压0-250V。微等离子体放电区域与透镜中心位置距离10cm。The
以下说明使用本发明装置检测重金属元素的方法。The method for detecting heavy metal elements using the device of the present invention will be described below.
电极进样DBD微等离子体原子发射光谱检测系统的样品引入单元见图2,通过蠕动泵12以恒定流速10mL/min将含有待测物的样品溶液,流过活性碳棒10表面进行预浓缩,得到预浓缩有待测物的样品电极1。然后通过加热台13将样品电极1烘干除水,得到富集待测物的样品电极。加热台温度60℃,加热时间为5min。The sample introduction unit of the electrode sampling DBD microplasma atomic emission spectrometry detection system is shown in Figure 2, and the sample solution containing the analyte is passed through the surface of the activated
将富集待测物的样品电极插入石英管的管内,并通过气路系统向石英管内通入DBD微等离子体放电气体,本实施例为氩气,将霓虹灯电源的输出端和样品电极远离富集待测物的一端连接,将霓虹灯电源的另一个输出端和缠绕在石英管外壁的高压导线连接;Insert the sample electrode for enriching the analyte into the tube of the quartz tube, and pass DBD micro-plasma discharge gas into the quartz tube through the gas circuit system. In this example, argon gas is used, and the output end of the neon power supply and the sample electrode are kept away from the rich Connect one end of the object to be tested, and connect the other output end of the neon power supply to the high-voltage wire wound on the outer wall of the quartz tube;
连接电源,并通过调压器调节富集待测物的样品电极和高压导线的电压为点燃等离子体电压,本实施例为3.4kV,然后将电压升至能够激发待测物的电压,此时富集待测物的样品电极表面吸附的待测物被微等离子体原位激发,本实施例中激发待测物的电压为5.8kV,3-5秒的时间内样品电极表面的待测物即可完成激发过程产生特征发射光谱。微型光谱仪检测的特征发射光谱通过计算机光谱分析软件显示各个待测物的光谱强度,采用各个待测物光谱峰高进行定量分析,得到溶液中待测物种类和对应的含量。Connect the power supply, and adjust the voltage of the sample electrode and high-voltage wire for enriching the test object through the voltage regulator to ignite the plasma voltage, which is 3.4kV in this example, and then increase the voltage to the voltage that can excite the test object. At this time The analyte adsorbed on the surface of the sample electrode enriched with the analyte is excited in situ by the microplasma. In this embodiment, the voltage to excite the analyte is 5.8kV, and the analyte on the surface of the sample electrode is excited within 3-5 seconds. The excitation process can be completed to generate the characteristic emission spectrum. The characteristic emission spectrum detected by the micro-spectrometer is used to display the spectral intensity of each analyte through computer spectrum analysis software, and the spectral peak height of each analyte is used for quantitative analysis to obtain the type and corresponding content of the analyte in the solution.
以镉和铅为例,对采用发明的电极进样DBD微等离子体原子发射光谱检测系统以及使用该系统的分析方法进行检测的可行性说明。Taking cadmium and lead as an example, the feasibility of using the invented electrode sampling DBD microplasma atomic emission spectrometry detection system and the analysis method using the system is described.
图3是采用本发明的检测系统和方法测量到的不含镉Cd和含6μg/L镉元素的标准溶液的发射光谱谱图,横坐标代表波长范围,纵坐标代表发射信号强度。由图3可以看出,从空白发射光谱中清楚地分离出228.8nm处的特定镉原子发射线,验证了本发明检测装置及方法的可行性。继续对不同浓度的镉进行多次测试,对建立的方法进行灵敏度说明。当样品体积为50mL,蠕动泵进样时间5min,实验结果表明镉的检出限(由测量11次空白样品的标准偏差乘以3再除以标准曲线的回归方程的斜率计算得出)低至0.03μg/L,线性范围0.1-12μg/L,信号RSD(5μg/L Cd的11次测量值的相对标准偏差)低于3%。该检出限可达到污染检测标准。3 is the emission spectrum of the standard solution containing no cadmium Cd and 6 μg/L cadmium measured by the detection system and method of the present invention, the abscissa represents the wavelength range, and the ordinate represents the emission signal intensity. It can be seen from FIG. 3 that the specific cadmium atomic emission line at 228.8 nm is clearly separated from the blank emission spectrum, which verifies the feasibility of the detection device and method of the present invention. Continue to perform multiple tests with different concentrations of cadmium to illustrate the sensitivity of the established method. When the sample volume is 50mL and the peristaltic pump injection time is 5min, the experimental results show that the detection limit of cadmium (calculated by multiplying the standard deviation of 11 blank samples by 3 and dividing by the slope of the regression equation of the standard curve) is as low as 0.03 μg/L, linear range 0.1-12 μg/L, signal RSD (relative standard deviation of 11 measurements of 5 μg/L Cd) below 3%. The detection limit can reach the pollution detection standard.
图4是采用本发明的装置和方法测量到的不含铅Pb和含70μg/L铅元素的标准溶液的发射光谱谱图,横坐标代表波长范围,纵坐标代表发射信号强度。由图4可以看出,从空白发射光谱中清楚地分离出368.3nm和363.9nm处的特定铅原子发射线,验证了本发明检测装置及方法的可行性。继续对不同浓度的铅进行多次测试,对建立的方法进行灵敏度说明。当样品体积为50mL,蠕动泵进样时间5min,实验结果表明铅的检出限(由测量11次空白样品的标准偏差乘以3再除以标准曲线的回归方程的斜率计算得出)低至0.6μg/L,线性范围2-100μg/L,信号RSD(50μg/L Pb的11次测量值的相对标准偏差)低于4%。该检出限可达到污染检测标准。4 is the emission spectrum of the standard solution containing lead-free Pb and 70 μg/L lead measured by the device and method of the present invention, the abscissa represents the wavelength range, and the ordinate represents the emission signal intensity. It can be seen from FIG. 4 that the specific lead atom emission lines at 368.3 nm and 363.9 nm are clearly separated from the blank emission spectrum, which verifies the feasibility of the detection device and method of the present invention. Continue to perform multiple tests with different concentrations of lead to illustrate the sensitivity of the established method. When the sample volume is 50mL and the peristaltic pump injection time is 5min, the experimental results show that the detection limit of lead (calculated by multiplying the standard deviation of 11 blank samples by 3 and dividing by the slope of the regression equation of the standard curve) is as low as 0.6 μg/L, linear range 2-100 μg/L, signal RSD (relative standard deviation of 11 measurements for 50 μg/L Pb) below 4%. The detection limit can reach the pollution detection standard.
实施例2Example 2
电极进样DBD微等离子体原子发射光谱检测系统,结构同实施例1,区别在于,样品电极1包括的活性碳棒10为空心不锈钢管,即样品电极1为一体化的空心不锈钢管。此时样品电极1对待测物的富集能力比实施例1中所使用的样品电极1弱。The structure of the electrode sampling DBD microplasma atomic emission spectrometry detection system is the same as that of Example 1, except that the activated
一种电极进样DBD微等离子体原子发射光谱检测重金属元素的方法同实施例1,以镉为例,采用本发明的检测系统和方法测量到的含镉元素的标准溶液的发射光谱谱图,在228.8nm处出现镉的特征发射光谱。当实施例1所测量的Cd浓度(6μg/L)为实施例2的1%时,在228.8nm处,实施例1通过计算机光谱分析软件显示镉的光谱强度是实施例2的8倍。A method for detecting heavy metal elements by electrode sampling DBD micro-plasma atomic emission spectrometry is the same as that in
实施例3Example 3
电极进样DBD微等离子体原子发射光谱检测系统,结构同实施例1,区别在于,激发待测物的电压为4.0kV。The electrode sampling DBD microplasma atomic emission spectrometry detection system has the same structure as that of Example 1, except that the voltage to excite the object to be tested is 4.0 kV.
一种电极进样DBD微等离子体原子发射光谱检测重金属元素的方法同实施例1,以镉为例,采用本发明的检测系统和方法测量到的含镉元素的标准溶液的发射光谱谱图,在228.8nm处出现镉的特征发射光谱,当实施例1所测量的Cd浓度(6μg/L)与实施例3的相同时,在228.8nm处,实施例1通过计算机光谱分析软件显示镉的光谱强度是实施例3的2.5倍。A method for detecting heavy metal elements by electrode sampling DBD micro-plasma atomic emission spectrometry is the same as that in
实施例4Example 4
采用本发明的电极进样DBD微等离子体原子发射光谱检测系统测定湖水中的镉和铅,一种电极进样DBD微等离子体原子发射光谱检测重金属元素的方法同实施例1,不同点是湖水水样经0.22μm滤膜过滤后进行分析。The electrode sampling DBD microplasma atomic emission spectrometry detection system of the present invention is used to measure cadmium and lead in lake water, and a method for detecting heavy metal elements by electrode sampling DBD microplasma atomic emission spectrometry is the same as that in Example 1, except that the lake water is different. The water samples were filtered through a 0.22 μm filter for analysis.
本实施例将获得的镉和铅的光谱峰高,根据标准曲线回归方程换算成浓度,得到湖水中的镉浓度为0.34±0.01μg/L,铅未检出,镉和铅分别加标3μg/L和50μg/L时加标回收率是96.5%和100.5%。In this example, the obtained spectral peak heights of cadmium and lead are converted into concentrations according to the regression equation of the standard curve, and the concentration of cadmium in the lake water is 0.34±0.01 μg/L, and lead is not detected. The spiked recoveries were 96.5% and 100.5% at L and 50 μg/L.
实施例5Example 5
采用本发明的电极进样DBD微等离子体原子发射光谱检测系统测定饮用水中的镉和铅,一种电极进样DBD微等离子体原子发射光谱检测重金属元素的方法同实施例1。The electrode sampling DBD microplasma atomic emission spectrometry detection system of the present invention is used to measure cadmium and lead in drinking water, and a method for detecting heavy metal elements by electrode sampling DBD microplasma atomic emission spectrometry is the same as that in Example 1.
本实施例将获得的镉和铅的光谱峰高,根据标准曲线回归方程换算成浓度,镉和铅均未检出,镉和铅分别加标5μg/L和20μg/L时加标回收率是95.5%和101.4%。In this example, the obtained spectral peak heights of cadmium and lead were converted into concentrations according to the regression equation of the standard curve. Neither cadmium nor lead was detected. When cadmium and lead were spiked at 5 μg/L and 20 μg/L, respectively, the standard recovery rate was 95.5% and 101.4%.
与已有的原位表面分析方法相比,本发明提出的体积型原位微等离子体激发方式克服了干残渣不均匀造成的咖啡环效应。此外,高效的微等离子体激发能力和使用对液体样品具有预浓缩功能的活性炭载体进一步提高系统的灵敏度。Compared with the existing in-situ surface analysis methods, the volume-type in-situ micro-plasma excitation method proposed by the present invention overcomes the coffee ring effect caused by the uneven dry residue. In addition, the efficient microplasma excitation capability and the use of activated carbon supports with preconcentration capabilities for liquid samples further enhance the sensitivity of the system.
以上的实施例仅是对本发明的实施方式进行描述,并非对范围进行限定。在不脱离本发明设计精神的前提下,对本发明作出的各种变形和改进,均应落入本发明的权利要求书确定的保护范围内。The above embodiments are merely to describe the embodiments of the present invention, and not to limit the scope. On the premise of not departing from the design spirit of the present invention, various modifications and improvements made to the present invention shall fall within the protection scope determined by the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110181815.4A CN112986219B (en) | 2021-02-08 | 2021-02-08 | Electrode sampling DBD microplasma atomic emission spectrometry detection system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110181815.4A CN112986219B (en) | 2021-02-08 | 2021-02-08 | Electrode sampling DBD microplasma atomic emission spectrometry detection system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112986219A CN112986219A (en) | 2021-06-18 |
CN112986219B true CN112986219B (en) | 2022-05-10 |
Family
ID=76393859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110181815.4A Expired - Fee Related CN112986219B (en) | 2021-02-08 | 2021-02-08 | Electrode sampling DBD microplasma atomic emission spectrometry detection system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112986219B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113720811B (en) * | 2021-08-19 | 2022-12-30 | 中国地质大学(武汉) | Micro-plasma excitation source and excitation method based on ultrasonic atomization sampling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295854A (en) * | 1979-01-29 | 1981-10-20 | Bodenseewerk Perkin-Elmer & Co., Gmbh | Apparatus and methods for sample enrichment for flameless atomic absorption spectroscopy |
CN105115959A (en) * | 2015-07-09 | 2015-12-02 | 西北师范大学 | Metal element liquid phase cathode discharge plasma spectrum rapid detection system and detection method thereof |
CN105717092A (en) * | 2016-01-28 | 2016-06-29 | 东北大学 | DBD (Dielectric Barrier Discharge) excitation source, DBD-AES (atomic emission spectroscopy) system and detection analysis method of DBD-AES system |
WO2020106633A1 (en) * | 2018-11-19 | 2020-05-28 | Altius Institute For Biomedical Sciences | Compositions and methods for detection of cleavage of genomic dna by a nuclease |
CN111693512A (en) * | 2020-06-15 | 2020-09-22 | 天津大学 | Method for quantitatively detecting heavy metal elements in milk based on laser-induced breakdown spectroscopy |
-
2021
- 2021-02-08 CN CN202110181815.4A patent/CN112986219B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4295854A (en) * | 1979-01-29 | 1981-10-20 | Bodenseewerk Perkin-Elmer & Co., Gmbh | Apparatus and methods for sample enrichment for flameless atomic absorption spectroscopy |
CN105115959A (en) * | 2015-07-09 | 2015-12-02 | 西北师范大学 | Metal element liquid phase cathode discharge plasma spectrum rapid detection system and detection method thereof |
CN105717092A (en) * | 2016-01-28 | 2016-06-29 | 东北大学 | DBD (Dielectric Barrier Discharge) excitation source, DBD-AES (atomic emission spectroscopy) system and detection analysis method of DBD-AES system |
WO2020106633A1 (en) * | 2018-11-19 | 2020-05-28 | Altius Institute For Biomedical Sciences | Compositions and methods for detection of cleavage of genomic dna by a nuclease |
CN111693512A (en) * | 2020-06-15 | 2020-09-22 | 天津大学 | Method for quantitatively detecting heavy metal elements in milk based on laser-induced breakdown spectroscopy |
Non-Patent Citations (2)
Title |
---|
"Advances in dielectric barrier discharge-optical emission spectrometry for the analysis of trace species";Yong-Liang Yu.et al;《Analytical Methods》;20150204;第1660–1666页 * |
"Electrochemical spectral methods for trace detection of heavy metals:A review";Shi-Hua Chen.et al;《Trends in Analytical Chemistry》;20180721;第139-150页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112986219A (en) | 2021-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zou et al. | Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review | |
He et al. | Flowing and nonflowing liquid electrode discharge microplasma for metal ion detection by optical emission spectrometry | |
Jiang et al. | Electrothermal vaporization for universal liquid sample introduction to dielectric barrier discharge microplasma for portable atomic emission spectrometry | |
CN105115959B (en) | The liquid phase cathodic discharge plasma spectrometry rapid detection system and detection method of metallic element | |
Liu et al. | Advances in discharge-based microplasmas for the analysis of trace species by atomic spectrometry | |
CN102866224B (en) | A gas chromatographic detection method for the determination of carbon-containing compounds based on carbon atomic emission spectroscopy | |
Cai et al. | Alternating-current-driven microplasma for multielement excitation and determination by optical-emission spectrometry | |
Zhu et al. | Evaluation of a new dielectric barrier discharge excitation source for the determination of arsenic with atomic emission spectrometry | |
Yang et al. | Highly sensitive determination of arsenic and antimony based on an interrupted gas flow atmospheric pressure glow discharge excitation source | |
JP5987968B2 (en) | Discharge ionization current detector and adjustment method thereof | |
CN106568833B (en) | A kind of liquid cathode glow discharge optical emission spectrometry device and method for heavy metal analysis | |
Qian et al. | Highly sensitive determination of cadmium and lead in whole blood by electrothermal vaporization-atmospheric pressure glow discharge atomic emission spectrometry | |
Butcher | Recent advances in optical analytical atomic spectrometry | |
CN106290307A (en) | Liquid discharge plasma emission spectrum device and the assay method of metallic element | |
Yu et al. | Evaluation of analytical performance for the simultaneous detection of trace Cu, Co and Ni by using liquid cathode glow discharge-atomic emission spectrometry | |
Yu et al. | Iodine excitation in a dielectric barrier discharge micro-plasma and its determination by optical emission spectrometry | |
Zheng et al. | Dielectric barrier discharge micro-plasma emission source for the determination of lead in water samples by tungsten coil electro-thermal vaporization | |
Zhou et al. | Sensitivity improvement of solution cathode glow discharge-optical emission spectrometry by external magnetic field for optical determination of elements | |
Zheng et al. | Analytical performance of hollow anode-solution cathode glow discharge-atomic emission spectrometry | |
US6900734B2 (en) | Capillary-discharge based detector for chemical vapor monitoring | |
CN112986219B (en) | Electrode sampling DBD microplasma atomic emission spectrometry detection system and method | |
Yang et al. | Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath | |
CN209707381U (en) | A kind of automatic sample handling system for liquid cathode glow discharge atomic emission spectrum | |
US8272249B1 (en) | Axial-geometry micro-discharge detector | |
Yuan et al. | Temporal resolved atomic emission spectroscopy on a pulsed electrolyte cathode discharge for improving the detection sensitivity of Cu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220510 |