JP2018021564A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2018021564A
JP2018021564A JP2017207375A JP2017207375A JP2018021564A JP 2018021564 A JP2018021564 A JP 2018021564A JP 2017207375 A JP2017207375 A JP 2017207375A JP 2017207375 A JP2017207375 A JP 2017207375A JP 2018021564 A JP2018021564 A JP 2018021564A
Authority
JP
Japan
Prior art keywords
catalyst
nox
temperature
exhaust
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017207375A
Other languages
Japanese (ja)
Other versions
JP6402875B2 (en
JP2018021564A5 (en
Inventor
岩知道 均一
Kinichi Iwachido
均一 岩知道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2017207375A priority Critical patent/JP6402875B2/en
Publication of JP2018021564A publication Critical patent/JP2018021564A/en
Publication of JP2018021564A5 publication Critical patent/JP2018021564A5/ja
Application granted granted Critical
Publication of JP6402875B2 publication Critical patent/JP6402875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of purifying exhaust gas by using a simple structure.SOLUTION: An upstream side catalyst (6) and a downstream side catalyst (7) are provided in this order from the upstream side in an exhaust flow direction in an exhaust pipe (5) so as to communicate with each other. An open flow honeycomb (6c) is provided in a casing (6a) of the upstream side catalyst (6). An Nox trap catalyst layer (6e) and a low-temperature NOx adsorption catalyst layer (6f) are provided in this order from the upstream side in the exhaust flow direction in the open flow honeycomb (6c). A wall flow filter (7c) is provided in a casing (7a) of the downstream side catalyst (7). An NOx reduction catalyst layer (7e) and a PM combustion catalyst layer (7f) are provided in this order from the upstream side in the exhaust flow direction in the wall flow filter (7c).SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気浄化装置に係り、特に、触媒の構造に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to the structure of a catalyst.

従来より、ディーゼルエンジンでは、排気通路に炭化水素(HC)、一酸化炭素(CO)を浄化する酸化触媒や、窒素酸化物(NOx)を還元浄化するNOxトラップ触媒や、微粒子状物質(PM)を捕集するディーゼルパティキュレートフィルタ等を直列に複数配設している。そして、これらの触媒やフィルタにて、エンジンからの排気に含まれるHC、CO、NOx及びPMを浄化している。   Conventionally, in a diesel engine, an exhaust catalyst for purifying hydrocarbon (HC) and carbon monoxide (CO) in an exhaust passage, a NOx trap catalyst for reducing and purifying nitrogen oxide (NOx), and particulate matter (PM) A plurality of diesel particulate filters or the like are collected in series. These catalysts and filters purify HC, CO, NOx and PM contained in the exhaust from the engine.

一方で、エンジンの冷態始動時等にエンジンより排出されるNOxを効率よく浄化するべく、排気通路に複数のNOxトラップ触媒、或いは多層NOxトラップ触媒を備える排気浄化装置が開発されている(特許文献1)。   On the other hand, in order to efficiently purify NOx discharged from the engine at the time of cold start of the engine or the like, an exhaust purification device having a plurality of NOx trap catalysts or a multilayer NOx trap catalyst in the exhaust passage has been developed (patent) Reference 1).

特許4178858号公報Japanese Patent No. 4178858

ディーゼルエンジンでは、リーン燃焼運転中にエンジンから排出されるNOxの排出量が増加することが知られている。
そこで、特許文献1の技術を適用することで、エンジンの低温時のリーン燃焼運転時におけるエンジンより排出されるNOxの浄化が可能となる。
しかしながら、ディーゼルエンジンでは、NOx以外に排気中に含まれるHC、CO、及びPMを浄化するための酸化触媒やディーセルパティキュレートフィルタを備えており、NOxトラップ触媒の追加、或いはNOxトラップ触媒の多層化することで、NOxトラップ触媒の個数増加による排気圧力が上昇することでのエンジン性能の低下、或いは触媒の構造の複雑化によるコストの増加する要因となり好ましいことではない。
In a diesel engine, it is known that the amount of NOx discharged from the engine during lean combustion operation increases.
Therefore, by applying the technique of Patent Document 1, it is possible to purify NOx discharged from the engine during the lean combustion operation at a low temperature of the engine.
However, diesel engines are equipped with oxidation catalysts and diesel particulate filters for purifying HC, CO, and PM contained in the exhaust gas in addition to NOx, and adding NOx trap catalysts or multilayering of NOx trap catalysts This is not preferable because it causes a decrease in engine performance due to an increase in exhaust pressure due to an increase in the number of NOx trap catalysts, or a cost increase due to a complicated catalyst structure.

本発明は、この様な問題を解決するためになされたもので、その目的とするところは、簡易な構造で排気を浄化することのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine that can purify exhaust gas with a simple structure.

上記の目的を達成するために、請求項1の内燃機関の排気浄化装置では、酸化性能を有する高温用NOx吸着触媒と、前記高温用NOx吸着触媒の排気流れ方向の下流側に配設され、前記高温用NOx吸着触媒に対して触媒温度が低温であるときにNOxを吸着する低温用NOx吸着触媒とで構成され、内燃機関の排気通路に配設される第1の触媒を備えることを特徴とする。   In order to achieve the above object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, the high-temperature NOx adsorption catalyst having oxidation performance and the downstream of the high-temperature NOx adsorption catalyst in the exhaust flow direction are disposed. A low-temperature NOx adsorption catalyst that adsorbs NOx when the catalyst temperature is low relative to the high-temperature NOx adsorption catalyst, and includes a first catalyst disposed in an exhaust passage of the internal combustion engine. And

また、請求項2の内燃機関の排気浄化装置では、請求項1において、前記第1の触媒の排気流れ方向の下流側の前記排気通路に配設され、貴金属が担持される第2の触媒を備えることを特徴とする。
また、請求項3の内燃機関の排気浄化装置では、請求項2において、前記第2の触媒は、ウォールフローフィルタに前記貴金属を担持して形成されることを特徴とする。
According to a second aspect of the present invention, there is provided an exhaust gas purification apparatus for an internal combustion engine according to the first aspect, wherein the second catalyst is disposed in the exhaust passage on the downstream side in the exhaust flow direction of the first catalyst and carries a noble metal. It is characterized by providing.
According to a third aspect of the present invention, there is provided the exhaust gas purification apparatus for an internal combustion engine according to the second aspect, wherein the second catalyst is formed by supporting the noble metal on a wall flow filter.

また、請求項4の内燃機関の排気浄化装置では、請求項3において、前記第2の触媒の前記貴金属の担持量は、排気流れ方向の上流側の前記貴金属の担持量を前記排気流れ下流側の前記貴金属の担持量より多くすることを特徴とする。   Further, in the exhaust gas purification apparatus for an internal combustion engine according to claim 4, in claim 3, the amount of the noble metal supported by the second catalyst is set to the amount of the noble metal supported upstream in the exhaust flow direction. The amount of the noble metal supported is larger than the amount of the noble metal.

請求項1の発明によれば、酸化性能を有する高温用NOx吸着触媒の排気流れ方向の下流側に高温用NOx吸着触媒に対して触媒温度が低温であるときにNOxを吸着する低温用NOx吸着触媒を配設して、第1の触媒を形成し、当該第1の触媒を内燃機関の排気通路に配設することで、例えば、内燃機関の冷態始動等でありリーン燃焼運転中で、且つ触媒温度が低温である場合には、内燃機関から排出される炭化水素(HC)や一酸化炭素(CO)を、酸化性能を有する高温用NOx吸着触媒で酸化させて浄化し、窒素酸化物(NOx)を低温用NOx吸着触媒で吸着させることができる。また、排気温度が高温であり、触媒温度が高温である場合には、高温用NOx吸着触媒にてNOxをトラップし、空燃比をリッチ設定に制御すること(以下、NOxパージという)により還元浄化することができる。   According to the first aspect of the invention, the low-temperature NOx adsorption that adsorbs NOx when the catalyst temperature is low with respect to the high-temperature NOx adsorption catalyst on the downstream side in the exhaust flow direction of the high-temperature NOx adsorption catalyst having oxidation performance. By disposing a catalyst to form a first catalyst and disposing the first catalyst in the exhaust passage of the internal combustion engine, for example, during a cold start of the internal combustion engine and during a lean combustion operation, In addition, when the catalyst temperature is low, hydrocarbons (HC) and carbon monoxide (CO) discharged from the internal combustion engine are oxidized and purified by a high-temperature NOx adsorption catalyst having oxidation performance, and nitrogen oxides are obtained. (NOx) can be adsorbed by the low temperature NOx adsorption catalyst. Further, when the exhaust gas temperature is high and the catalyst temperature is high, NOx is trapped by the high-temperature NOx adsorption catalyst, and the air-fuel ratio is controlled to a rich setting (hereinafter referred to as NOx purge) for reduction purification. can do.

したがって、簡易な構造で排気を浄化することができる。
また、請求項2の発明によれば、貴金属が担持される第2の触媒を第1の触媒の排気流れ方向の下流側の排気通路に配設することで、NOxパージ時に、第1の触媒より放出されたNOxを第2の触媒の貴金属で確実に還元浄化することができる。
また、請求項3の発明によれば、ウォールフローフィルタに貴金属を担持して、第2の触媒を形成することで、ウォールフローフィルタにて排気中の微粒子状物質(PM)を捕集し、捕集したPMの燃焼時に発生するCOを担持した貴金属にて浄化することができる。また、第1の触媒と第2の触媒のみの簡易な構造で排気中のHC、CO、NOx及びPMを浄化することができるので、排気圧増大に伴う内燃機関の性能低下の抑制と、触媒のコストを抑制することができる。
Therefore, exhaust gas can be purified with a simple structure.
According to the invention of claim 2, the second catalyst on which the noble metal is supported is disposed in the exhaust passage on the downstream side in the exhaust flow direction of the first catalyst, so that the first catalyst at the time of NOx purge. The released NOx can be reliably reduced and purified with the precious metal of the second catalyst.
Further, according to the invention of claim 3, by carrying a noble metal on the wall flow filter and forming the second catalyst, the particulate matter (PM) in the exhaust gas is collected by the wall flow filter, The collected PM can be purified by a noble metal carrying CO generated during combustion. In addition, since the HC, CO, NOx and PM in the exhaust gas can be purified with a simple structure including only the first catalyst and the second catalyst, it is possible to suppress the deterioration in the performance of the internal combustion engine due to the increase in the exhaust pressure, and the catalyst. Cost can be reduced.

また、請求項4の発明によれば、第2の触媒における排気流れ方向の上流側の貴金属の担持量を排気流れ方向の下流側の貴金属の担持量より多くすることで、上流の第1の触媒より放出されるNOxを貴金属の担持量の多い上流側で効率よく還元浄化することができる。また、ウォールフローフィルタにて捕集したPMの燃焼時に発生するCOは、貴金属の担持量の多い上流側及び貴金属の担持量の少ない下流側で浄化することができる。そして、貴金属の担持量を上流側と下流側とで変えることで、貴金属の使用量を低減することができるのでコストの増加を抑制することができる。   According to the invention of claim 4, the upstream first noble metal loading amount in the exhaust flow direction in the second catalyst is made larger than the noble metal loading amount downstream in the exhaust flow direction, so that the upstream first NOx released from the catalyst can be efficiently reduced and purified on the upstream side where the amount of noble metal supported is large. Further, CO generated during combustion of PM collected by the wall flow filter can be purified on the upstream side where the amount of noble metal supported is large and on the downstream side where the amount of noble metal supported is small. Further, by changing the amount of the noble metal supported between the upstream side and the downstream side, the amount of noble metal used can be reduced, so that an increase in cost can be suppressed.

本発明に係る内燃機関の排気浄化装置が適用されたエンジンの概略構成図である。1 is a schematic configuration diagram of an engine to which an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied. 上流側触媒の概略構成図である。It is a schematic block diagram of an upstream catalyst. 下流側触媒の概略構成図である。It is a schematic block diagram of a downstream catalyst. 上流側触媒入口温度と各部でのNOx浄化率との関係を示す図である。It is a figure which shows the relationship between upstream catalyst inlet temperature and the NOx purification rate in each part. NOx浄化の過程を時系列で示す図である。It is a figure which shows the process of NOx purification in a time series.

以下、本発明の実施の形態を図面に基づき説明する。
図1は、本発明に係る内燃機関の排気浄化装置が適用されたエンジン(内燃機関)1の全体構成図を示している。図2は、エンジン1の排気管5に配設される上流側触媒6の概略構成図である。そして、図3は、エンジン1の排気管5配設される下流側触媒7の概略構成図である。なお、図2及び図3中の矢印は、排気流れ方向を示している。また、図4は、上流側触媒入口温度と各部でのNOx浄化率との関係を示す図である。図4中の実線「出口」は、排気管5の出口でのNOxの浄化率を、破線の「NOx吸着」は、低温NOx吸着触媒層6fのNOx浄化率を、一点鎖線の「NOxトラップ」は、NOxトラップ触媒層6eのNOx浄化率を示している。そして、図5は、NOx浄化の過程を時系列で示す図である。上段より、空燃比、各触媒層の状態、下流側触媒温度を示している。そして、図5中の二点鎖線は、ストイキを示している。また、図4中及び図5中の第1所定温度T1は、低温NOx吸着触媒層6fに吸着したNOxの脱離を開始する温度(約250℃)を示し、第2所定温度T2は、低温NOx吸着触媒層6fに吸着したNOxの脱離を終了する温度(約300℃)を示している。また、第3所定温度T3は、NOxトラップ触媒層6eに吸着したNOxの脱離が可能となる温度を示し、第4所定温度T4は、下流側触媒7に堆積したPMを燃焼することのできるPM燃焼可能温度(約650℃)を示している。なお、第1所定温度T1未満の温度範囲は、貴金属の活性温度未満であって、第1所定温度T1以上第2所定温度T2までの温度範囲は、貴金属の活性温度内に含まれている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall configuration diagram of an engine (internal combustion engine) 1 to which an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied. FIG. 2 is a schematic configuration diagram of the upstream catalyst 6 disposed in the exhaust pipe 5 of the engine 1. FIG. 3 is a schematic configuration diagram of the downstream catalyst 7 provided in the exhaust pipe 5 of the engine 1. In addition, the arrow in FIG.2 and FIG.3 has shown the exhaust gas flow direction. FIG. 4 is a graph showing the relationship between the upstream catalyst inlet temperature and the NOx purification rate at each part. The solid line “exit” in FIG. 4 indicates the NOx purification rate at the outlet of the exhaust pipe 5, the broken line “NOx adsorption” indicates the NOx purification rate of the low-temperature NOx adsorption catalyst layer 6f, and the “NOx trap” in a one-dot chain line. Indicates the NOx purification rate of the NOx trap catalyst layer 6e. FIG. 5 shows the NOx purification process in time series. From the top, the air-fuel ratio, the state of each catalyst layer, and the downstream catalyst temperature are shown. And the dashed-two dotted line in FIG. 5 has shown stoichiometry. 4 and FIG. 5, the first predetermined temperature T1 indicates a temperature (about 250 ° C.) at which desorption of NOx adsorbed on the low temperature NOx adsorption catalyst layer 6f is started, and the second predetermined temperature T2 is a low temperature. The temperature at which desorption of NOx adsorbed on the NOx adsorption catalyst layer 6f is finished (about 300 ° C.) is shown. The third predetermined temperature T3 indicates a temperature at which NOx adsorbed on the NOx trap catalyst layer 6e can be desorbed, and the fourth predetermined temperature T4 can burn the PM deposited on the downstream catalyst 7. The PM combustion possible temperature (about 650 ° C.) is shown. The temperature range below the first predetermined temperature T1 is lower than the activation temperature of the noble metal, and the temperature range from the first predetermined temperature T1 to the second predetermined temperature T2 is included in the activation temperature of the noble metal.

エンジン1は、多気筒の筒内直接噴射式内燃機関(例えばコモンレール式ディーゼルエンジン)であり、詳しくは、コモンレールに蓄圧された高圧燃料を各気筒に備わる燃料噴射ノズルに供給し、任意の噴射時期及び噴射量で当該燃料噴射ノズルから各気筒の燃焼室内に噴射可能な構成を成している。
図1に示すように、エンジン1には、エンジン1の図示しない燃焼室と連通する排気ポート2が気筒毎に形成されている。そして、エンジン1には、それぞれの排気ポート2と連通するように、排気マニフォールド3が接続されている。
The engine 1 is a multi-cylinder direct injection internal combustion engine (for example, a common rail diesel engine). Specifically, the high pressure fuel accumulated in the common rail is supplied to a fuel injection nozzle provided in each cylinder, and an arbitrary injection timing is provided. Further, the fuel injection nozzle can inject the fuel into the combustion chamber of each cylinder with the injection amount.
As shown in FIG. 1, an exhaust port 2 communicating with a combustion chamber (not shown) of the engine 1 is formed for each cylinder in the engine 1. An exhaust manifold 3 is connected to the engine 1 so as to communicate with each exhaust port 2.

排気マニフォールド3の下流には、排気のエネルギを利用し吸入された新気を圧縮して、エンジン1の燃焼室に供給するターボチャージャ4のタービンハウジング4aと、排気管(排気通路)5と、が連通するように設けられている。
排気管5には、排気流れ方向の上流から順に上流側触媒(本発明の第1の触媒に相当)6と下流側触媒(本発明の第2の触媒に相当)7とが連通するように設けられている。
Downstream of the exhaust manifold 3, a turbine housing 4 a of a turbocharger 4 that compresses fresh air sucked using exhaust energy and supplies the compressed air to the combustion chamber of the engine 1, an exhaust pipe (exhaust passage) 5, Are provided to communicate with each other.
An upstream catalyst (corresponding to the first catalyst of the present invention) 6 and a downstream catalyst (corresponding to the second catalyst of the present invention) 7 communicate with the exhaust pipe 5 in order from the upstream in the exhaust flow direction. Is provided.

上流側触媒6には、筒状のケーシング6a内に排気が通過する通路6bの両端が開放したハニカム担体、所謂オープンフローハニカム6cが備えられている。通路6bは、多孔質、またはメタル箔の壁6dで形成される。そして、オープンフローハニカム6cの通路6bを形成する多孔質の壁6dには、排気流れ方向の上流側より順にNOxトラップ触媒層(本発明の高温用NOx吸着触媒に相当)6eと低温NOx吸着触媒層(本発明の低温用NOx吸着触媒に相当)6fとが形成されている。   The upstream catalyst 6 is provided with a so-called open flow honeycomb 6c, which is a honeycomb carrier in which both ends of a passage 6b through which exhaust gas passes are opened in a cylindrical casing 6a. The passage 6b is formed of a porous or metal foil wall 6d. A porous wall 6d that forms the passage 6b of the open flow honeycomb 6c has a NOx trap catalyst layer (equivalent to the high temperature NOx adsorption catalyst of the present invention) 6e and a low temperature NOx adsorption catalyst in order from the upstream side in the exhaust flow direction. Layer (corresponding to the low-temperature NOx adsorption catalyst of the present invention) 6f.

NOxトラップ触媒層6eは、アルミナ母材にリーン雰囲気下でNOxトラップ性能を有するアルカリ金属(カリウム(K)、ナトリウム(Na)など)、アルカリ土類金属(バリウム(Ba)など)、酸化性能を有する貴金属(プラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh))及び触媒機能を高める機能を有する添加剤(酸化セリウム(CeO)、酸化ジルコニア(ZrO)、酸化チタン(TiO)など)を含んで形成されている。そして、図4及び図5に示すように、NOxトラップ触媒層6eは、上流側触媒6の入口温度が低温NOx吸着触媒層6fのNOxの脱離を終了する温度(NOx脱離温度)である第2所定温度T2よりも低い温度である第1所定温度T1であるときにNOxのトラップを開始するものである。そして、NOxトラップ触媒層6eは、下流側触媒7の温度、所謂下流側触媒温度が第3所定温度以上であるときに空燃比を断続的にリッチ空燃比とするNOxパージ運転を行うことでトラップしたNOxを還元浄化する。即ち、NOxトラップ触媒層6eは、低温NOx吸着触媒層6fのNOx脱離終了温度よりも低い温度でNOxの吸着を開始する触媒である。 The NOx trap catalyst layer 6e has an alkali metal (potassium (K), sodium (Na), etc.), alkaline earth metal (barium (Ba), etc.), oxidation performance having NOx trap performance in a lean atmosphere on an alumina base material. Precious metals (platinum (Pt), palladium (Pd), rhodium (Rh)) and additives having a function of enhancing the catalytic function (cerium oxide (CeO 2 ), zirconia oxide (ZrO 2 ), titanium oxide (TiO 2 ), etc. ). 4 and 5, in the NOx trap catalyst layer 6e, the inlet temperature of the upstream catalyst 6 is a temperature at which the NOx desorption of the low temperature NOx adsorption catalyst layer 6f ends (NOx desorption temperature). The NOx trap is started when the temperature is the first predetermined temperature T1, which is lower than the second predetermined temperature T2. The NOx trap catalyst layer 6e traps by performing a NOx purge operation that intermittently changes the air-fuel ratio to a rich air-fuel ratio when the temperature of the downstream catalyst 7, that is, the so-called downstream catalyst temperature is equal to or higher than the third predetermined temperature. NOx reduced and purified. That is, the NOx trap catalyst layer 6e is a catalyst that starts NOx adsorption at a temperature lower than the NOx desorption end temperature of the low temperature NOx adsorption catalyst layer 6f.

また、低温NOx吸着触媒層6fは、アルミナ母材にNOx吸着剤(例えば遷移金属の鉄(Fe)や、銀(Ag)や、遷移金属を含むゼオライトなど)と、助触媒(CeO、ZrO、TiO)を含んで形成されている。そして、低温NOx吸着触媒層6fのNOx吸着材は、NOxトラップ触媒層6eに対して触媒温度が低温であるときに高い窒素酸化物(NOx)の吸着能を有している。そして、図4及び図5に示すように、低温NOx吸着触媒層6fは、上流側触媒6の入口温度が貴金属の活性温度未満である第1所定温度未満でNOxの吸着を開始する。また、低温NOx吸着触媒層6fは、上流側触媒6の入口温度が貴金属の活性温度内である第1所定温度以上から第2所定温度未満の温度であるときにNOxのトラップを開始するものである。即ち、低温NOx吸着触媒層6fは、貴金属の活性温度未満でNOxの吸着を開始し、活性温度内でNOxの脱離を開始し、かつ、終了する機能を有している触媒である。 The low-temperature NOx adsorption catalyst layer 6f is composed of an NOx adsorbent (for example, transition metal iron (Fe), silver (Ag), zeolite containing a transition metal, etc.) and an auxiliary catalyst (CeO 2 , ZrO) on an alumina base material. 2 and TiO 2 ). The NOx adsorbent of the low temperature NOx adsorption catalyst layer 6f has a high nitrogen oxide (NOx) adsorption ability when the catalyst temperature is low with respect to the NOx trap catalyst layer 6e. As shown in FIGS. 4 and 5, the low temperature NOx adsorption catalyst layer 6f starts NOx adsorption when the inlet temperature of the upstream catalyst 6 is lower than a first predetermined temperature that is lower than the activation temperature of the noble metal. The low temperature NOx adsorption catalyst layer 6f starts trapping NOx when the inlet temperature of the upstream catalyst 6 is not lower than the first predetermined temperature and lower than the second predetermined temperature within the activation temperature of the noble metal. is there. That is, the low-temperature NOx adsorption catalyst layer 6f is a catalyst having a function of starting adsorption of NOx below the activation temperature of the noble metal, starting desorption of NOx within the activation temperature, and ending.

下流側触媒7には、筒状のケーシング7a内に排気が通過する通路7bの上流側及び下流側を交互にプラグで閉鎖されたハニカム担体、所謂ウォールフローフィルタ7cが備えられている。通路7bは、多孔質の壁7dで形成される。そして、ウォールフローフィルタ7cの通路7bを形成する多孔質の壁7dには、排気流れ方向の上流側より順にNOx還元触媒層7eとPM燃焼触媒層7fとが形成されている。   The downstream catalyst 7 is provided with a so-called wall flow filter 7c, which is a honeycomb carrier in which the upstream side and the downstream side of the passage 7b through which the exhaust gas passes in a cylindrical casing 7a are alternately closed by plugs. The passage 7b is formed by a porous wall 7d. A NOx reduction catalyst layer 7e and a PM combustion catalyst layer 7f are sequentially formed from the upstream side in the exhaust flow direction on the porous wall 7d forming the passage 7b of the wall flow filter 7c.

NOx還元触媒層7eは、アルミナ母材にRhを主とする貴金属(Rh、Pd、Rt)及び添加剤(例えば、CeO、ZrO、TiOなど)を含んで形成されている。そして、NOx還元触媒層7eの貴金属の担持量は、PM燃焼触媒層7fの貴金属の担持量よりも多く設定されている。
また、PM燃焼触媒層7fは、アルミナ母材に貴金属(Rt、Pd、Rh)及び添加剤(例えば、CeO、ZrO、TiOなど)を含んで形成されている。
The NOx reduction catalyst layer 7e is formed by containing a precious metal (Rh, Pd, Rt) mainly containing Rh and additives (for example, CeO 2 , ZrO 2 , TiO 2, etc.) in an alumina base material. The amount of noble metal supported on the NOx reduction catalyst layer 7e is set to be larger than the amount of noble metal supported on the PM combustion catalyst layer 7f.
Further, the PM combustion catalyst layer 7f is formed by containing a noble metal (Rt, Pd, Rh) and an additive (for example, CeO 2 , ZrO 2 , TiO 2, etc.) in an alumina base material.

以下、このように構成された本発明に係る内燃機関の排気浄化装置の作用及び効果について説明する。
図5に示すように、上流側触媒6のNOxトラップ触媒層6eでは、NOxトラップ剤としてのK、Na、Baと酸化性能を有する貴金属との作用により、上流側触媒6の温度が第1所定温度(約250℃)以上であれば、リーン雰囲気下での窒素酸化物(NOx)をトラップし、上流側触媒6の温度が第3所定温度以上であるときに空燃比を断続的にリッチ空燃比とするNOxパージ運転を行うことで、リッチ雰囲気下でトラップしたNOxを還元して浄化する。また、NOxトラップ触媒層6eでは、エンジン1の始動時等で上流側触媒6及び下流側触媒7の各触媒層が昇温しておらず上流側触媒6の温度が第2所定温度(例えば300℃)以下の低温である状態、所謂コールドフェイズで発生する炭化水素(HC)及び一酸化炭素(CO)を貴金属にて酸化反応させ浄化する。そして、上流側触媒6の低温NOx吸着触媒層6fでは、NOx吸着材の作用により、エンジン1の始動時等で上流側触媒6及び下流側触媒7の各触媒層が昇温しておらず上流側触媒6の温度が第1所定温度(約250℃)未満の低温である状態のリーン雰囲気下でのNOxを吸着する。そして、上流側触媒6の温度が第1所定温度以上となると、吸着したNOxを脱離する。
Hereinafter, the operation and effect of the exhaust gas purification apparatus for an internal combustion engine according to the present invention configured as described above will be described.
As shown in FIG. 5, in the NOx trap catalyst layer 6e of the upstream side catalyst 6, the temperature of the upstream side catalyst 6 is set to a first predetermined value by the action of K, Na, Ba as NOx trapping agents and noble metals having oxidation performance. If it is equal to or higher than the temperature (about 250 ° C.), nitrogen oxide (NOx) in a lean atmosphere is trapped, and the air-fuel ratio is intermittently enriched when the temperature of the upstream catalyst 6 is equal to or higher than the third predetermined temperature. By performing the NOx purge operation with the fuel ratio, NOx trapped in a rich atmosphere is reduced and purified. In the NOx trap catalyst layer 6e, the temperature of the upstream catalyst 6 and the downstream catalyst 7 is not increased at the time of starting the engine 1 or the like, and the temperature of the upstream catalyst 6 is set to a second predetermined temperature (for example, 300). The hydrocarbon (HC) and carbon monoxide (CO) generated in a so-called cold phase at a temperature lower than or equal to (° C.) are oxidized by a noble metal to be purified. In the low-temperature NOx adsorption catalyst layer 6f of the upstream catalyst 6, the catalyst layers of the upstream catalyst 6 and the downstream catalyst 7 are not heated due to the action of the NOx adsorbent when the engine 1 is started. It adsorbs NOx in a lean atmosphere in which the temperature of the side catalyst 6 is a low temperature lower than a first predetermined temperature (about 250 ° C.). When the temperature of the upstream catalyst 6 becomes equal to or higher than the first predetermined temperature, the adsorbed NOx is desorbed.

また、下流側触媒7のウォールフローフィルタ7cでは、排気中の微粒子状物質(PM)を捕集する。そして、下流側触媒7のNOx還元触媒層7eでは、上流側触媒6のNOxトラップ触媒層6eにトラップしたNOxと低温NOx吸着触媒層6fに吸着したNOxの浄化を行うためにリッチ空燃比とするNOxパージ運転時に、NOxトラップ触媒層6e及び低温NOx吸着触媒層6fより放出されたNOxを還元し浄化する。また、PM燃焼触媒層7fでは、下流側触媒7の温度を第4所定温度T4、所謂PM燃焼可能温度(例えば、650℃)に高めるPM燃焼運転の実行中に、ウォールフローフィルタ7cにて捕集したPMを燃焼し浄化する。そして、NOx還元触媒層7e及びPM燃焼触媒層7fでは、PM燃焼時に発生するCOを貴金属にて酸化反応させ浄化する。   In addition, the wall flow filter 7c of the downstream catalyst 7 collects particulate matter (PM) in the exhaust gas. The NOx reduction catalyst layer 7e of the downstream catalyst 7 has a rich air-fuel ratio in order to purify NOx trapped in the NOx trap catalyst layer 6e of the upstream catalyst 6 and NOx adsorbed on the low temperature NOx adsorption catalyst layer 6f. During the NOx purge operation, NOx released from the NOx trap catalyst layer 6e and the low temperature NOx adsorption catalyst layer 6f is reduced and purified. Further, in the PM combustion catalyst layer 7f, the wall flow filter 7c captures the temperature of the downstream catalyst 7 during the execution of the PM combustion operation for raising the temperature of the downstream catalyst 7 to a fourth predetermined temperature T4, a so-called PM combustion possible temperature (for example, 650 ° C.). The collected PM is burned and purified. In the NOx reduction catalyst layer 7e and the PM combustion catalyst layer 7f, CO generated during PM combustion is oxidized and purified by a noble metal.

このように、コールドフェイズのリーン雰囲気下にて発生するHC、COを上流側触媒6のNOxトラップ触媒層6eにて酸化させ浄化することができ、NOxを上流側触媒6の低温NOx吸着触媒層6fに吸着させることができ、PMを下流側触媒7のウォールフローフィルタ7cで捕集することができる。また、通常運転時のリーン雰囲気下にて発生するNOxを上流側触媒6のNOxトラップ触媒層6eでトラップし、還元浄化することができる。更にはPM燃焼時に発生するCOをNOx還元触媒層7e及びPM燃焼触媒層7fにて浄化することができる。   In this way, HC and CO generated under a cold phase lean atmosphere can be oxidized and purified by the NOx trap catalyst layer 6e of the upstream catalyst 6, and NOx can be purified by the low temperature NOx adsorption catalyst layer of the upstream catalyst 6. 6f can be adsorbed, and PM can be collected by the wall flow filter 7c of the downstream catalyst 7. Further, NOx generated under a lean atmosphere during normal operation can be trapped by the NOx trap catalyst layer 6e of the upstream side catalyst 6 and reduced and purified. Furthermore, CO generated during PM combustion can be purified by the NOx reduction catalyst layer 7e and the PM combustion catalyst layer 7f.

したがって、このように上流側触媒6と下流側触媒7との簡易な構造で確実に排気を浄化することで、排気圧増大に伴うエンジン1の性能低下を抑制し、触媒のコストを抑制しつつ、良好な排気浄化性能を得ることができる。
また、NOxトラップ触媒層6eをエンジン1に最も近い排気流れの最上流の排気管5に設けることで、貴金属の昇温に要する時間を短縮することができるので、HC及びCOを酸化反応させ浄化することができる。また、NOxの還元性能を向上させることができる。
Therefore, by reliably purifying the exhaust gas with the simple structure of the upstream side catalyst 6 and the downstream side catalyst 7 in this way, the performance degradation of the engine 1 accompanying the increase in exhaust pressure is suppressed, and the cost of the catalyst is suppressed. Good exhaust purification performance can be obtained.
Further, by providing the NOx trap catalyst layer 6e in the exhaust pipe 5 at the uppermost stream of the exhaust flow closest to the engine 1, the time required for raising the temperature of the noble metal can be shortened, so that the HC and CO are oxidized and purified. can do. In addition, NOx reduction performance can be improved.

また、低温NOx吸着触媒層6fをNOxトラップ触媒層6eの排気流れ方向の下流側に形成することで、HC及びCOをNOxトラップ触媒層6eにて浄化し、排気中のHC及びCOを少ない状態とすることで、低温NOx吸着触媒層6fのNOx吸着性を高めることができる。
以上で発明の実施形態の説明を終えるが、発明の形態は本実施形態に限定されるものではない。
Further, by forming the low temperature NOx adsorption catalyst layer 6f on the downstream side of the NOx trap catalyst layer 6e in the exhaust flow direction, the HC and CO are purified by the NOx trap catalyst layer 6e, and the HC and CO in the exhaust gas are reduced. By doing so, the NOx adsorption property of the low temperature NOx adsorption catalyst layer 6f can be enhanced.
This is the end of the description of the embodiment of the invention, but the invention is not limited to this embodiment.

例えば、本実施例では、本発明の内燃機関の排気浄化装置をコモンレール式ディーゼルエンジンに適用しているが、これに限定されるものではなく、例えば、ガソリンリーンバーンエンジンに適用してもよい。   For example, in the present embodiment, the exhaust gas purification apparatus for an internal combustion engine of the present invention is applied to a common rail diesel engine, but is not limited to this, and may be applied to, for example, a gasoline lean burn engine.

1 エンジン(内燃機関)
5 排気管(排気通路)
6 上流側触媒(第1の触媒)
6c オープンフローハニカム
6e NOxトラップ触媒層(高温用NOx吸着触媒)
6f 低温NOx吸着触媒層(低温用NOx吸着触媒)
7 下流側触媒(第2の触媒)
7c ウォールフローフィルタ
7e NOx還元触媒層
7f PM燃焼触媒層
1 engine (internal combustion engine)
5 Exhaust pipe (exhaust passage)
6 Upstream catalyst (first catalyst)
6c Open flow honeycomb 6e NOx trap catalyst layer (NOx adsorption catalyst for high temperature)
6f Low temperature NOx adsorption catalyst layer (low temperature NOx adsorption catalyst)
7 Downstream catalyst (second catalyst)
7c Wall flow filter 7e NOx reduction catalyst layer 7f PM combustion catalyst layer

Claims (4)

酸化性能を有する高温用NOx吸着触媒と、前記高温用NOx吸着触媒の排気流れ方向の下流側に配設され、前記高温用NOx吸着触媒に対して触媒温度が低温であるときにNOxを吸着する低温用NOx吸着触媒とで構成され、内燃機関の排気通路に配設される第1の触媒を備えることを特徴とする内燃機関の排気浄化装置。   The high-temperature NOx adsorption catalyst having oxidation performance and the high-temperature NOx adsorption catalyst are arranged downstream of the exhaust flow direction, and adsorb NOx when the catalyst temperature is low with respect to the high-temperature NOx adsorption catalyst. An exhaust purification apparatus for an internal combustion engine, comprising: a first catalyst that is configured of a low-temperature NOx adsorption catalyst and disposed in an exhaust passage of the internal combustion engine. 前記第1の触媒の排気流れ方向の下流側の前記排気通路に配設され、貴金属が担持される第2の触媒を備えることを特徴とする、請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, further comprising a second catalyst that is disposed in the exhaust passage on the downstream side in the exhaust flow direction of the first catalyst and carries a noble metal. . 前記第2の触媒は、ウォールフローフィルタに前記貴金属を担持して形成されることを特徴とする、請求項2に記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to claim 2, wherein the second catalyst is formed by supporting the noble metal on a wall flow filter. 前記第2の触媒の前記貴金属の担持量は、排気流れ方向の上流側の前記貴金属の担持量を前記排気流れ方向の下流側の前記貴金属の担持量より多くすることを特徴とする、請求項3に記載の内燃機関の排気浄化装置。   The amount of the noble metal supported on the second catalyst is such that the amount of the noble metal supported on the upstream side in the exhaust flow direction is larger than the amount of the noble metal supported on the downstream side in the exhaust flow direction. 3. An exhaust emission control device for an internal combustion engine according to 3.
JP2017207375A 2017-10-26 2017-10-26 Exhaust gas purification device for internal combustion engine Active JP6402875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017207375A JP6402875B2 (en) 2017-10-26 2017-10-26 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017207375A JP6402875B2 (en) 2017-10-26 2017-10-26 Exhaust gas purification device for internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013156849A Division JP2015025433A (en) 2013-07-29 2013-07-29 Exhaust emission control device for internal combustion engine

Publications (3)

Publication Number Publication Date
JP2018021564A true JP2018021564A (en) 2018-02-08
JP2018021564A5 JP2018021564A5 (en) 2018-03-29
JP6402875B2 JP6402875B2 (en) 2018-10-10

Family

ID=61165255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017207375A Active JP6402875B2 (en) 2017-10-26 2017-10-26 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6402875B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650132A (en) * 1992-07-30 1994-02-22 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JPH10205326A (en) * 1997-01-23 1998-08-04 Nissan Motor Co Ltd Exhaust emission control catalyst device of internal combustion engine
JP2000167356A (en) * 1998-12-10 2000-06-20 Toyota Motor Corp Exhaust gas purifier
JP2001207836A (en) * 2000-01-19 2001-08-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001317347A (en) * 2000-05-02 2001-11-16 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004052680A (en) * 2002-07-22 2004-02-19 Denso Corp Exhaust emission control device
JP2006150258A (en) * 2004-11-30 2006-06-15 Isuzu Motors Ltd Nox purifying system
JP2007002734A (en) * 2005-06-23 2007-01-11 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP4178858B2 (en) * 2002-07-15 2008-11-12 日産自動車株式会社 Engine exhaust purification system
JP2010053712A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2011231755A (en) * 2010-04-30 2011-11-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650132A (en) * 1992-07-30 1994-02-22 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JPH10205326A (en) * 1997-01-23 1998-08-04 Nissan Motor Co Ltd Exhaust emission control catalyst device of internal combustion engine
JP2000167356A (en) * 1998-12-10 2000-06-20 Toyota Motor Corp Exhaust gas purifier
JP2001207836A (en) * 2000-01-19 2001-08-03 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2001317347A (en) * 2000-05-02 2001-11-16 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP4178858B2 (en) * 2002-07-15 2008-11-12 日産自動車株式会社 Engine exhaust purification system
JP2004052680A (en) * 2002-07-22 2004-02-19 Denso Corp Exhaust emission control device
JP2006150258A (en) * 2004-11-30 2006-06-15 Isuzu Motors Ltd Nox purifying system
JP2007002734A (en) * 2005-06-23 2007-01-11 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2010053712A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2011231755A (en) * 2010-04-30 2011-11-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP6402875B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
KR101133009B1 (en) Compression ignition engine and exhaust system therefor
JP5676089B2 (en) Diesel oxidation catalyst and exhaust device equipped with the same
JP6197993B2 (en) Exhaust gas purification device for internal combustion engine
JP2010507480A (en) Thermally recyclable nitrogen oxide adsorbent
JP2005537417A (en) Exhaust control system for diesel engine powered vehicles
JP4251764B2 (en) Exhaust gas purification device and exhaust gas purification method using the same
JP6197994B2 (en) Exhaust gas purification device for internal combustion engine
EP2832963B1 (en) Exhaust gas purifying device of internal combustion engine
JP2011220123A (en) Exhaust purification catalyst
JP2011033017A (en) Exhaust system
JP6402875B2 (en) Exhaust gas purification device for internal combustion engine
JP3933015B2 (en) Exhaust gas purification device for internal combustion engine
JP4582806B2 (en) Exhaust gas purification device
US20090151340A1 (en) Exhaust gas purification device
JP2005224682A (en) Exhaust gas purifier for internal engine and method of purfying exhaust gas
JP2019157739A (en) Exhaust purifying device for internal combustion engine
JP2004016850A (en) Exhaust gas cleaning catalyst, production method and exhaust gas cleaning system
JP2010031676A (en) Exhaust emission control system
WO2007029339A1 (en) Exhaust gas purifying apparatus for internal combustion engine and method for exhaust gas purification
JP2004243189A (en) Purifying apparatus for exhaust gas of internal combustion engine
JP2002364339A (en) Exhaust emission control device and exhaust emission control method
WO2017104668A1 (en) Internal-combustion engine exhaust gas purification system, and internal-combustion engine exhaust gas purification method
JP2012217937A (en) Exhaust gas purifying catalyst, and exhaust gas purifying apparatus equipped therewith
JP6098092B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2010281266A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180828

R151 Written notification of patent or utility model registration

Ref document number: 6402875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350