JP2018021227A - Cleaning liquid, method for cleaning steel welded structure, and method for manufacturing steel welded structure - Google Patents

Cleaning liquid, method for cleaning steel welded structure, and method for manufacturing steel welded structure Download PDF

Info

Publication number
JP2018021227A
JP2018021227A JP2016152887A JP2016152887A JP2018021227A JP 2018021227 A JP2018021227 A JP 2018021227A JP 2016152887 A JP2016152887 A JP 2016152887A JP 2016152887 A JP2016152887 A JP 2016152887A JP 2018021227 A JP2018021227 A JP 2018021227A
Authority
JP
Japan
Prior art keywords
cleaning
welded structure
steel welded
steel
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016152887A
Other languages
Japanese (ja)
Inventor
実 宮田
Minoru Miyata
実 宮田
励一 鈴木
Reiichi Suzuki
励一 鈴木
吉田 哲
Tetsu Yoshida
哲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016152887A priority Critical patent/JP2018021227A/en
Publication of JP2018021227A publication Critical patent/JP2018021227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning liquid that well removes oxide film and fume on steel welded structure.SOLUTION: Provided are: a cleaning liquid for cleaning steel welded structure and which is an acidic solution containing EDTA or a salt thereof; and a method for cleaning steel welded structure in which a steel welded structure is immersed in an acidic solution containing EDTA or a salt thereof.SELECTED DRAWING: None

Description

本発明は、鋼製溶接構造物を洗浄するための洗浄液、鋼製溶接構造物の洗浄方法、及び鋼製溶接構造物の製造方法に関する。   The present invention relates to a cleaning liquid for cleaning a steel welded structure, a method for cleaning a steel welded structure, and a method for manufacturing a steel welded structure.

自動車部品等の溶接後に塗装を実施する構造物において、溶接部は母材部分に比べ著しく塗装性が悪く、所望の耐食性を得ることは難しい。これは、溶接部近傍の鋼板表面に付着している、酸化皮膜やヒューム等が原因である。これらは鋼板表面に密着するように付着しており、一般的な化成処理や電着塗装ラインでは除去困難となる。したがって、溶接部近傍の鋼板表面に付着した酸化皮膜やヒューム等を除去するための手法が所望されている。   In a structure in which painting is performed after welding of automobile parts and the like, the welded portion is significantly poorer in paintability than the base material portion, and it is difficult to obtain desired corrosion resistance. This is caused by an oxide film or fumes adhering to the surface of the steel plate near the weld. These are attached so as to be in close contact with the steel sheet surface, and are difficult to remove by a general chemical conversion treatment or an electrodeposition coating line. Therefore, a technique for removing an oxide film, fumes and the like attached to the surface of the steel plate near the weld is desired.

そのような手法として、たとえば、特許文献1には、EDTAやDTPA等のキレート剤を添加したpH8〜11の溶媒に、ヒュームが付着した亜鉛メッキ鋼板を浸漬させるヒューム除去方法が開示されている。   As such a technique, for example, Patent Document 1 discloses a fume removal method in which a galvanized steel sheet to which fume adheres is immersed in a solvent having a pH of 8 to 11 to which a chelating agent such as EDTA or DTPA is added.

特開2014−188528号公報JP 2014-188528 A

特許文献1に記載のヒューム除去方法によれば、EDTAを含むアルカリ性溶液を用いることで、亜鉛めっき鋼鈑表面の亜鉛とEDTAにおいてキレート作用が生じ、ヒュームを除去できるとされている。しかしながら、亜鉛めっきの施されていない鋼鈑に溶接した際に発生するヒュームについては、特許文献1に記載のヒューム除去方法に用いられるアルカリ性溶液では鉄地表面とEDTAのキレート作用が生じず、ヒュームを除去できないという課題があった。また、特許文献1では、酸化皮膜の除去については何ら着目されていない。   According to the fume removal method described in Patent Document 1, it is said that by using an alkaline solution containing EDTA, a chelate action is generated in zinc and EDTA on the surface of the galvanized steel sheet, and the fume can be removed. However, with respect to the fume generated when welding to a steel plate not subjected to galvanization, the alkaline solution used in the fume removing method described in Patent Document 1 does not cause chelation between the iron surface and EDTA. There was a problem that could not be removed. In Patent Document 1, no attention is paid to the removal of the oxide film.

そこで、本発明は、鋼製溶接構造物上の酸化皮膜やヒュームの除去に有用な洗浄液を提供することを目的とする。また、化成処理の前処理工程として、鋼製溶接構造物上の酸化皮膜やヒュームを良好に除去できる鋼製溶接構造物の洗浄方法、さらには、当該洗浄方法による洗浄工程を備える鋼製溶接構造物の製造方法を提供することを目的とする。   Then, an object of this invention is to provide the cleaning liquid useful for the removal of the oxide film and fume on a steel welded structure. Further, as a pretreatment step of chemical conversion treatment, a method for cleaning a steel welded structure that can satisfactorily remove oxide films and fumes on the steel welded structure, and further, a steel welded structure provided with a cleaning step by the cleaning method It aims at providing the manufacturing method of a thing.

本発明者らは前記目的を達成するために鋭意検討を重ねた結果、下記構成であれば当該目的を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明は、鋼製溶接構造物を洗浄するための洗浄液であって、EDTA又はその塩を含有する酸性溶液である洗浄液に関する。
As a result of intensive studies to achieve the above object, the present inventors have found that the object can be achieved with the following configuration, and have completed the present invention.
That is, the present invention relates to a cleaning solution for cleaning a steel welded structure, which is an acidic solution containing EDTA or a salt thereof.

上述した洗浄液中のEDTA又はその塩の濃度は10〜70mmol/Lであってもよい。
上述した洗浄液のpHは3〜5であってもよい。
上述した洗浄液は、pH調整剤としてポリリン酸を含んでいてもよい。
上述した洗浄液の温度は20〜80℃であってもよい。
The concentration of EDTA or a salt thereof in the cleaning liquid described above may be 10 to 70 mmol / L.
The pH of the cleaning liquid described above may be 3-5.
The above-described cleaning liquid may contain polyphosphoric acid as a pH adjuster.
The temperature of the cleaning liquid described above may be 20 to 80 ° C.

また、本発明は、EDTA又はその塩を含有する酸性溶液に鋼製溶接構造物を浸漬させる、鋼製溶接構造物の洗浄方法にも関する。   The present invention also relates to a method for cleaning a steel welded structure in which the steel welded structure is immersed in an acidic solution containing EDTA or a salt thereof.

上述した鋼製溶接構造物の洗浄方法において、酸性溶液中のEDTA又はその塩の濃度は10〜70mmol/Lであってもよい。
上述した鋼製溶接構造物の洗浄方法において、酸性溶液のpHは3〜5であってもよい。
上述した鋼製溶接構造物の洗浄方法において、酸性溶液はpH調整剤としてポリリン酸を含んでいてもよい。
上述した鋼製溶接構造物の洗浄方法において、酸性溶液の温度は20〜80℃であってもよい。
上述した鋼製溶接構造物の洗浄方法において、鋼製溶接構造物の酸性溶液への浸漬時間は1.5〜5分であってもよい。
In the above-described method for cleaning a steel welded structure, the concentration of EDTA or a salt thereof in the acidic solution may be 10 to 70 mmol / L.
In the above-described method for cleaning a steel welded structure, the acidic solution may have a pH of 3 to 5.
In the above-described method for cleaning a steel welded structure, the acidic solution may contain polyphosphoric acid as a pH adjuster.
In the above-described method for cleaning a steel welded structure, the temperature of the acidic solution may be 20 to 80 ° C.
In the above-described method for cleaning a steel welded structure, the immersion time of the steel welded structure in an acidic solution may be 1.5 to 5 minutes.

上述した鋼製溶接構造物の洗浄方法において、酸性溶液中のEDTA又はその塩の濃度をX(mmol/L)とし、浸漬時間をY(分)として、X及びYが下記式(1)の関係を満足していてもよい。
Y≧−0.03X+2.7 (1)
In the above-described method for cleaning a steel welded structure, the concentration of EDTA or a salt thereof in the acidic solution is X (mmol / L), the immersion time is Y (minutes), and X and Y are the following formula (1): You may be satisfied with the relationship.
Y ≧ −0.03X + 2.7 (1)

上述した鋼製溶接構造物の洗浄方法においては、鋼製溶接構造物を酸性溶液へ浸漬する際に、酸性溶液の撹拌及び鋼製溶接構造物の搖動のうちの少なくとも1つを行ってもよい。   In the above-described method for cleaning a steel welded structure, when the steel welded structure is immersed in an acidic solution, at least one of stirring of the acidic solution and peristalsis of the steel welded structure may be performed. .

さらに、本発明は、鋼材に溶接して鋼製溶接構造物を得る工程と、上述した鋼製溶接構造物の洗浄方法により前記鋼製溶接構造物を洗浄する工程とを備える鋼製溶接構造物の製造方法にも関する。   Further, the present invention provides a steel welded structure comprising the steps of obtaining a steel welded structure by welding to a steel material and the step of cleaning the steel welded structure by the above-described method for cleaning a steel welded structure. It also relates to the manufacturing method.

上述した鋼製溶接構造物の製造方法においては、溶接入熱が0.3〜15kJ/cmとなる溶接条件で前記鋼材を溶接してもよい。   In the above-described method for manufacturing a steel welded structure, the steel material may be welded under welding conditions where the welding heat input is 0.3 to 15 kJ / cm.

上述した鋼製溶接構造物の製造方法においては、不活性ガスの濃度が70体積%以上のシールドガスを用いて前記鋼材を溶接してもよい。   In the above-described method for manufacturing a steel welded structure, the steel material may be welded using a shield gas having an inert gas concentration of 70% by volume or more.

上述した鋼製溶接構造物の製造方法においては、1.5m/min以下の溶接速度で前記鋼材を溶接してもよい。   In the method for manufacturing a steel welded structure described above, the steel material may be welded at a welding speed of 1.5 m / min or less.

本発明の洗浄液は、鋼製溶接構造物上の酸化皮膜やヒュームの除去に有用である。また、本発明の鋼製溶接構造物の洗浄方法によれば、化成処理の前処理工程として、鋼製溶接構造物上の酸化皮膜やヒュームを良好に除去できる。さらに、本発明の鋼製溶接構造物の製造方法によれば、酸化皮膜やヒュームが良好に除去された鋼製溶接構造物が製造できる。   The cleaning liquid of the present invention is useful for removing oxide films and fumes on a steel welded structure. In addition, according to the method for cleaning a steel welded structure of the present invention, an oxide film and fumes on the steel welded structure can be favorably removed as a pretreatment step for chemical conversion treatment. Furthermore, according to the method for manufacturing a steel welded structure of the present invention, it is possible to manufacture a steel welded structure from which an oxide film and fume are well removed.

図1は、例48に係る試験片表面の顕微鏡写真である。1 is a photomicrograph of the surface of a test piece according to Example 48. FIG. 図2は、例2に係る試験片表面の顕微鏡写真である。FIG. 2 is a photomicrograph of the surface of the test piece according to Example 2. 図3は、例1〜33について、EDTA濃度:X(mmol/L)を横軸とし、浸漬時間:Y(分)を縦軸としてプロットしたグラフである。FIG. 3 is a graph in which EDTA concentration: X (mmol / L) is plotted on the horizontal axis and immersion time: Y (min) is plotted on the vertical axis for Examples 1 to 33.

以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.

<洗浄液>
まず、本発明に係る洗浄液について説明する。本発明の洗浄液は、鋼製溶接構造物を洗浄するための洗浄液であって、EDTA又はその塩を含有する酸性溶液である。鋼材に溶接して得られる鋼製溶接構造物の表面には、酸化皮膜が形成される。また、溶接時に発生したヒュームが、鋼材表面ないし酸化皮膜表面に付着する。ここで、本発明の洗浄液で鋼製溶接構造物を洗浄すると、洗浄液が酸化皮膜やヒュームと鋼材素地との界面に入り込み、酸化皮膜やヒュームを剥離させる。さらには、該洗浄液は酸化皮膜やヒュームの一部を溶解させ、EDTAのキレート作用により鉄や亜鉛イオン等を捕集する。本発明の洗浄液によれば、これらの作用によって、鋼製溶接構造物上の酸化皮膜やヒュームを除去することができる。
<Cleaning liquid>
First, the cleaning liquid according to the present invention will be described. The cleaning liquid of the present invention is a cleaning liquid for cleaning a steel welded structure, and is an acidic solution containing EDTA or a salt thereof. An oxide film is formed on the surface of a steel welded structure obtained by welding to a steel material. Further, fumes generated during welding adhere to the steel material surface or the oxide film surface. Here, when the steel welded structure is cleaned with the cleaning liquid of the present invention, the cleaning liquid enters the interface between the oxide film or fume and the steel material base, and peels off the oxide film or fume. Further, the cleaning solution dissolves part of the oxide film and fumes and collects iron, zinc ions, and the like by the chelating action of EDTA. According to the cleaning liquid of the present invention, oxide films and fumes on the steel welded structure can be removed by these actions.

本発明の洗浄液には、EDTA(Ethylene Diamine Tetraacetic Acid、エチレンジアミン四酢酸)またはその塩が含有される。なお、本明細書において、EDTAまたはその塩を含有するとは、EDTA及びその塩の両方を含有する場合も包含するものとする。
EDTAの塩としては、例えば、EDTAのNa塩(2Na塩、3Na塩、4Na塩)、K塩(2K塩、3K塩、4K塩)、及びCa・Na塩(Ca・2Na塩)などが挙げられる。これらは、水和物であってもよい。中でも、キレート作用が高いことから、EDTA2Na(エデト酸二ナトリウム)等のEDTAのNa塩がより好ましい。
EDTA又はその塩は1種を単独で、又は2種以上を組み合わせて使用できる。
The cleaning liquid of the present invention contains EDTA (Ethylene Diamine Tetraacetic Acid, ethylenediaminetetraacetic acid) or a salt thereof. In the present specification, including EDTA or a salt thereof includes a case where both EDTA and a salt thereof are included.
Examples of the EDTA salt include Na salt (2Na salt, 3Na salt, 4Na salt), K salt (2K salt, 3K salt, 4K salt), and Ca · Na salt (Ca · 2Na salt). It is done. These may be hydrates. Among them, EDTA Na salt such as EDTA2Na (edetate disodium) is more preferable because of its high chelating action.
EDTA or a salt thereof can be used alone or in combination of two or more.

本発明の洗浄液は、酸性溶液である。洗浄液が酸性(すなわちpH7未満)であることにより、上述した作用が有効に発揮され、鋼製溶接構造物上の酸化皮膜やヒュームを良好に除去することができる。洗浄液のpHは、好ましくは5以下であり、より好ましくは4以下である。
一方、洗浄液のpHの下限は特に限定されないが、pHが低いと、例えば亜鉛めっき鋼板を用いた溶接構造物に適用する場合に、亜鉛めっき鋼板上の亜鉛めっきを浸食する場合がある。この観点からは、洗浄液のpHは3以上であることが好ましい。
The cleaning liquid of the present invention is an acidic solution. When the cleaning liquid is acidic (that is, less than pH 7), the above-described action is effectively exhibited, and the oxide film and fume on the steel welded structure can be removed well. The pH of the cleaning liquid is preferably 5 or less, more preferably 4 or less.
On the other hand, the lower limit of the pH of the cleaning liquid is not particularly limited. However, when the pH is low, for example, when applied to a welded structure using a galvanized steel sheet, galvanization on the galvanized steel sheet may be eroded. From this viewpoint, the pH of the cleaning liquid is preferably 3 or more.

本発明の洗浄液中のEDTA又はその塩の濃度は特に限定されるものではないが、上記洗浄効果をより有効に発揮するためには、10mmol/L以上であることが好ましく、30mmol/L以上であることがより好ましく、60mmol/L以上であることがさらに好ましい。一方、EDTA又はその塩の濃度が高くなりすぎると、それらの沈殿を生じて均一な洗浄が行いにくくなる場合がある。この観点からは、70mmol/L以下であることが好ましい。   The concentration of EDTA or a salt thereof in the cleaning liquid of the present invention is not particularly limited, but in order to exhibit the above cleaning effect more effectively, it is preferably 10 mmol / L or more, and 30 mmol / L or more. More preferably, it is more preferably 60 mmol / L or more. On the other hand, if the concentration of EDTA or a salt thereof is too high, precipitation may occur and it may be difficult to perform uniform cleaning. From this viewpoint, it is preferably 70 mmol / L or less.

本発明の洗浄液に用いる溶媒としては、水道水、蒸留水、イオン交換水等が挙げられる。
また、pHを上述した範囲に調整するためのpH調整剤として、ポリリン酸、塩酸、硝酸、硫酸等を適宜含有させてもよい。ここで、洗浄液の安定性、pH調整の容易さ、廃液処理コスト等の観点からは、ポリリン酸を用いることが好ましい。
また、本発明の洗浄液には、本発明の効果を阻害しない範囲であれば、EDTA又はその塩以外のキレート剤、例えばクエン酸やDTPA(Diethylene Triamine Pentaacetic Acid、ジエチレントリアミン五酢酸)等をさらに含有させてもよい。さらには、本発明の効果を阻害しない限りにおいて、界面活性剤、pH緩衝剤等の、洗浄液に添加されうる公知の添加剤を適宜含有させてもよい。
Examples of the solvent used in the cleaning liquid of the present invention include tap water, distilled water, and ion exchange water.
Moreover, you may contain polyphosphoric acid, hydrochloric acid, nitric acid, a sulfuric acid, etc. suitably as a pH adjuster for adjusting pH to the range mentioned above. Here, it is preferable to use polyphosphoric acid from the viewpoint of the stability of the cleaning liquid, the ease of pH adjustment, the waste liquid treatment cost, and the like.
Further, the cleaning liquid of the present invention further contains a chelating agent other than EDTA or a salt thereof, such as citric acid or DTPA (Diethylene Triamine Pentaacetic Acid), as long as the effect of the present invention is not inhibited. May be. Furthermore, as long as the effects of the present invention are not inhibited, known additives such as surfactants and pH buffering agents that can be added to the cleaning liquid may be appropriately contained.

本発明の洗浄液を使用する際の洗浄液の温度も特に限定されるものではないが、上記洗浄効果をより有効に発揮するためには高い方が好ましく、この観点からは好ましくは20℃以上であり、より好ましくは30℃以上である。一方、高温になりすぎると洗浄液の蒸発を招き、洗浄液の濃度管理が難しくなる場合があるため、好ましくは80℃以下であり、より好ましくは60℃以下である。   The temperature of the cleaning liquid when using the cleaning liquid of the present invention is not particularly limited, but is preferably higher in order to exhibit the above-described cleaning effect more effectively. From this viewpoint, it is preferably 20 ° C. or higher. More preferably, it is 30 ° C. or higher. On the other hand, if the temperature is too high, the cleaning liquid may evaporate, and the concentration control of the cleaning liquid may be difficult. Therefore, the temperature is preferably 80 ° C. or less, and more preferably 60 ° C. or less.

<鋼製溶接構造物の洗浄方法>
つづいて、本発明に係る鋼製溶接構造物の洗浄方法について説明する。本発明の鋼製溶接構造物の洗浄方法(以下、本発明の洗浄方法ともいう)は、EDTA又はその塩を含有するpH5以下の酸性溶液、すなわち上述した洗浄液に、鋼製溶接構造物を浸漬させることを含む。本発明の鋼製溶接構造物の洗浄方法によれば、鋼製溶接構造物上の酸化皮膜やヒュームを良好に除去できる。
<Washing method of steel welded structure>
Next, a method for cleaning a steel welded structure according to the present invention will be described. The method for cleaning a steel welded structure of the present invention (hereinafter also referred to as the cleaning method of the present invention) includes immersing the steel welded structure in an acidic solution containing EDTA or a salt thereof having a pH of 5 or lower, that is, the above-described cleaning solution. Including. According to the method for cleaning a steel welded structure of the present invention, an oxide film and fume on the steel welded structure can be removed satisfactorily.

本発明の洗浄方法に用いられる酸性溶液は、上述した洗浄液であり、その好ましい各態様も同様に適用できる。   The acidic solution used in the cleaning method of the present invention is the above-described cleaning solution, and preferred embodiments thereof can be similarly applied.

本発明の洗浄方法において、鋼製溶接構造物の酸性溶液への浸漬時間は、洗浄液中のEDTA又はその塩の濃度も考慮して適宜調整することができ、特に限定されるものではないが、上記洗浄効果をより有効に発揮するためには、1.5分以上であることが好ましい。
一方、浸漬時間の上限も特には限定されないが、浸漬時間が長くなると、例えば亜鉛めっき鋼板を用いた溶接構造物に適用する場合に、亜鉛めっき鋼板上の亜鉛めっきを浸食する場合がある。この観点からは、浸漬時間は5分以下であることが好ましく、4分以下であることがより好ましい。
In the cleaning method of the present invention, the immersion time of the steel welded structure in the acidic solution can be appropriately adjusted in consideration of the concentration of EDTA or its salt in the cleaning solution, and is not particularly limited. In order to exhibit the cleaning effect more effectively, it is preferably 1.5 minutes or longer.
On the other hand, the upper limit of the immersion time is not particularly limited, but when the immersion time is long, for example, when applied to a welded structure using a galvanized steel sheet, the galvanization on the galvanized steel sheet may be eroded. From this viewpoint, the immersion time is preferably 5 minutes or less, and more preferably 4 minutes or less.

さらに、本発明の洗浄方法においては、酸性溶液中のEDTA又はその塩の濃度をX(mmol/L)とし、浸漬時間をY(分)として、X及びYが下記式(1)の関係を満足することが好ましい。
Y≧−0.03X+2.7 (1)
ここで、後述する実施例において実証されるように、上記関係式(1)を満足する条件で洗浄を行うことにより、より良好な洗浄効果を得ることができる。
Furthermore, in the cleaning method of the present invention, the concentration of EDTA or its salt in the acidic solution is X (mmol / L), the immersion time is Y (minutes), and X and Y have the relationship of the following formula (1): It is preferable to satisfy.
Y ≧ −0.03X + 2.7 (1)
Here, as demonstrated in the examples described later, a better cleaning effect can be obtained by performing cleaning under conditions that satisfy the relational expression (1).

本発明の洗浄方法の洗浄方法においては、鋼製溶接構造物を酸性溶液へ浸漬する際に、酸性溶液の撹拌及び鋼製溶接構造物の搖動のうちの少なくとも1つを行うことが好ましい。このようにすれば、処理対象となる鋼製溶接構造物表面にEDTA又はその塩を継続的に供給することができるため、上記洗浄効果をより有効に発揮することができる。   In the cleaning method of the cleaning method of the present invention, when the steel welded structure is immersed in the acidic solution, it is preferable to perform at least one of stirring of the acidic solution and peristalsis of the steel welded structure. If it does in this way, since EDTA or its salt can be continuously supplied to the steel welded structure surface used as a candidate for processing, the above-mentioned cleaning effect can be exhibited more effectively.

酸性溶液の攪拌を行う場合の攪拌方法は特に限定されるものではないが、ポンプを用いた攪拌や、撹拌子を用いた攪拌等が例示される。ここで、ポンプを用いて酸性溶液の攪拌を行う場合の条件としては、例えば、1分あたり槽容量の0.01〜100倍の溶液を送液すればよい。また、撹拌子を用いて酸性溶液の攪拌を行う場合の条件としては、例えば、0.01〜1000rpmの回転数で撹拌すればよい。
また、鋼製溶接構造物の搖動を行う場合の条件としては、例えば、1分あたり6〜120回の周期で、鋼製溶接構造物を揺り動かせばよい。
Although the stirring method in the case of stirring an acidic solution is not specifically limited, stirring using a pump, stirring using a stirring bar, etc. are illustrated. Here, as conditions for stirring the acidic solution using a pump, for example, a solution having a volume of 0.01 to 100 times the tank volume may be sent per minute. Moreover, what is necessary is just to stir with the rotation speed of 0.01-1000 rpm as conditions in the case of stirring an acidic solution using a stirring bar, for example.
Moreover, what is necessary is just to rock a steel welded structure, for example in the period of 6 to 120 times per minute as conditions in the case of rocking a steel welded structure.

なお、本発明の洗浄方法においては、上述した酸性溶液への浸漬の前に、必要に応じてアルカリ脱脂や水洗を行ってもよい。アルカリ脱脂には、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液等を用いることができる。また、アルカリ脱脂の条件としては、たとえばpH12〜14、温度20〜80℃、浸漬時間1〜3分での処理が例示される。
また、本発明の洗浄方法においては、上述した酸性溶液への浸漬後に、必要に応じて水洗及び乾燥を行ってもよい。
In addition, in the washing | cleaning method of this invention, you may perform alkali degreasing | defatting and water washing as needed before the immersion to the acidic solution mentioned above. For alkali degreasing, for example, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, or the like can be used. Moreover, as conditions of alkali degreasing, the process by pH 12-14, temperature 20-80 degreeC, and immersion time 1-3 minutes is illustrated, for example.
Moreover, in the washing | cleaning method of this invention, you may wash with water and dry as needed after the immersion to the acidic solution mentioned above.

<鋼製溶接構造物の製造方法>
つづいて、本発明に係る鋼製溶接構造物の製造方法について説明する。本発明の鋼製溶接構造物の製造方法(以下、本発明の製造方法ともいう)は、鋼材に溶接して鋼製溶接構造物を得る工程(以下、溶接工程ともいう)と、上述した鋼製溶接構造物の洗浄方法により前記鋼製溶接構造物を洗浄する工程(以下、洗浄工程ともいう)とを備える。本発明の製造方法によれば、上述した洗浄方法で鋼製溶接構造物を洗浄することにより、酸化皮膜やヒュームが良好に除去された鋼製溶接構造物が製造できる。
<Method for producing steel welded structure>
Next, a method for manufacturing a steel welded structure according to the present invention will be described. The method for manufacturing a steel welded structure of the present invention (hereinafter also referred to as the manufacturing method of the present invention) includes a step of obtaining a steel welded structure by welding to a steel material (hereinafter also referred to as a welding step), and the steel described above. A step of cleaning the steel welded structure by a method of cleaning the welded structure (hereinafter also referred to as a cleaning step). According to the manufacturing method of the present invention, a steel welded structure from which an oxide film and fume are well removed can be manufactured by cleaning the steel welded structure by the above-described cleaning method.

(溶接工程)
本発明の製造方法における溶接工程においては、アーク溶接、レーザ溶接等の公知の溶接方法を特に制限なく適用することができる。
(Welding process)
In the welding process in the manufacturing method of the present invention, known welding methods such as arc welding and laser welding can be applied without particular limitation.

ここで、溶接ビード近傍に生じる酸化皮膜の状態は、溶接入熱の差異による冷却速度の変化や、溶接時における不活性ガスによる保護効果等に大きな影響を受ける。したがって、溶接工程につづく洗浄工程において、より効果的に溶接ビード近傍を洗浄するには、溶接工程における溶接入熱やシールドガス、溶接速度等の各種条件を適宜制御することにより、酸化皮膜の厚さや密着性を制御することが好ましい。   Here, the state of the oxide film generated in the vicinity of the weld bead is greatly influenced by a change in cooling rate due to a difference in welding heat input, a protective effect by an inert gas during welding, and the like. Therefore, in order to more effectively clean the vicinity of the weld bead in the cleaning process following the welding process, the thickness of the oxide film can be controlled by appropriately controlling various conditions such as welding heat input, shielding gas, and welding speed in the welding process. It is preferable to control the sheath adhesion.

溶接入熱は冷却速度や鋼板の熱ひずみ量に影響を及ぼす。冷却速度が遅く、高温での保持時間が長い場合、酸化皮膜の膜厚が増大し、酸性溶液と鋼材素地との反応を阻害する要因となる。また、適切な入熱範囲においては冷却過程において鋼材に熱ひずみが生じ、母材である鋼材と、酸化皮膜の線膨張率の差により酸化皮膜層に亀裂が生じ、鋼材素地と溶液との反応が容易となる。これらの観点から、溶接工程における溶接入熱は0.3〜15kJ/cmであることが好ましい。溶接入熱が15kJ/cmを超えると、冷却速度が過度に遅くなるため、酸化皮膜の厚さが増大し、洗浄性が低下するおそれがある。また、溶接入熱が0.3kJ/cm未満では、溶接による鋼材の熱ひずみが抑制されるため、酸化皮膜の密着性が高く、洗浄性が低下するおそれがある。溶接入熱は、より好ましくは1.0kJ/cm以上であり、また、より好ましくは10kJ/cm以下である。   The welding heat input affects the cooling rate and the amount of thermal strain of the steel sheet. When the cooling rate is slow and the holding time at high temperature is long, the film thickness of the oxide film increases, which becomes a factor that hinders the reaction between the acidic solution and the steel material base. In addition, in the appropriate heat input range, thermal distortion occurs in the steel during the cooling process, and the oxide film layer cracks due to the difference in the coefficient of linear expansion between the base steel and the oxide film, and the reaction between the steel substrate and the solution Becomes easy. From these viewpoints, the welding heat input in the welding process is preferably 0.3 to 15 kJ / cm. When the welding heat input exceeds 15 kJ / cm, the cooling rate is excessively slowed, so that the thickness of the oxide film increases and the cleanability may be deteriorated. Further, if the welding heat input is less than 0.3 kJ / cm, the thermal distortion of the steel material due to welding is suppressed, so that the adhesion of the oxide film is high, and the cleanability may be reduced. The welding heat input is more preferably 1.0 kJ / cm or more, and more preferably 10 kJ / cm or less.

なお、本明細書における溶接入熱とは、アーク溶接の場合であれば、下記式により定義される。
{溶接電流I(A)×溶接電圧V(V)×60}/{溶接速度(cm/min)×1000}
In addition, the welding heat input in this specification is defined by the following formula in the case of arc welding.
{Welding current I (A) × welding voltage V (V) × 60} / {welding speed (cm / min) × 1000}

また、本明細書における溶接入熱とは、レーザ溶接の場合であれば、下記式により定義される。
{レーザ出力(kW)×60}/溶接速度(cm/min)
Moreover, the welding heat input in this specification is defined by the following formula in the case of laser welding.
{Laser output (kW) x 60} / Welding speed (cm / min)

シールドガスは、溶接部を周囲の大気から保護するために、レーザ溶接、アーク溶接ともに使用される。一般的に、シールドガスとしては、大気中の窒素による溶接部の気孔欠陥を抑制するために、COを主体とした混合ガスが用いられる場合が多い。しかし、COのような酸化性ガスは、溶接部近傍の鋼板表面の酸化を促すため、酸化皮膜の膜厚増加に寄与する。そのため、本発明においては、Ar、He、N等の不活性ガスの濃度が70体積%以上であるシールドガスを採用することが好ましい。また、シールドガス中の不活性ガスの濃度は、より好ましくは80体積%以上である。 Shielding gas is used for both laser welding and arc welding to protect the weld from the surrounding atmosphere. In general, a mixed gas mainly composed of CO 2 is often used as the shielding gas in order to suppress pore defects in the weld due to nitrogen in the atmosphere. However, an oxidizing gas such as CO 2 contributes to an increase in the thickness of the oxide film because it promotes oxidation of the steel sheet surface near the weld. Therefore, in the present invention, it is preferable to employ a shield gas in which the concentration of an inert gas such as Ar, He, N 2 is 70% by volume or more. The concentration of the inert gas in the shield gas is more preferably 80% by volume or more.

溶接速度は、溶接入熱に影響を与えるとともに、溶接部がシールドガスにより保護される時間に影響を与える。溶接速度が過度に早い場合、溶接部近傍は800℃を超えるような高温状態で大気にさらされるため、表面の酸化が促される場合がある。したがって、溶接速度は1.5m/min以下であることが好ましく、1.2m/min以下であることがより好ましい。   The welding speed affects the welding heat input and the time during which the weld is protected by the shielding gas. When the welding speed is excessively fast, the vicinity of the welded portion is exposed to the atmosphere at a high temperature exceeding 800 ° C., which may promote surface oxidation. Therefore, the welding speed is preferably 1.5 m / min or less, and more preferably 1.2 m / min or less.

本溶接工程において溶接される鋼材は、特に限定されないが、典型的には鋼板である。鋼板としては、めっきされていない鋼板であってもよく、亜鉛めっき鋼板やアルミめっき鋼板等の各種めっき処理された鋼板であってもよい。これら鋼材に溶接することにより、表面に酸化皮膜やヒュームが形成される。   Although the steel material welded in this welding process is not specifically limited, Typically, it is a steel plate. The steel plate may be a non-plated steel plate or a steel plate subjected to various plating treatments such as a galvanized steel plate or an aluminum plated steel plate. By welding to these steel materials, an oxide film or fume is formed on the surface.

(洗浄工程)
洗浄工程においては、溶接工程で得られた鋼製溶接構造物を上述した洗浄方法により洗浄する。これにより、鋼製溶接構造物上の酸化皮膜やヒュームを良好に除去できる。
(Washing process)
In the cleaning process, the steel welded structure obtained in the welding process is cleaned by the above-described cleaning method. Thereby, the oxide film and fume on a steel welded structure can be removed satisfactorily.

(その他の処理ないし工程)
本発明の製造方法においては、洗浄工程後に、化成処理や塗装工程等を適宜適用することができる。ここで、本発明の製造方法によれば、上記洗浄工程により鋼製溶接構造物上の酸化皮膜やヒュームが良好に除去されているため、その後の化成処理を良好に実施することができ、さらには良好な塗装性で塗装を実施することができ、耐食性に優れた溶接構造物を得ることができる。
(Other processing or process)
In the production method of the present invention, a chemical conversion treatment, a coating step, and the like can be appropriately applied after the cleaning step. Here, according to the manufacturing method of the present invention, since the oxide film and the fumes on the steel welded structure are satisfactorily removed by the cleaning step, the subsequent chemical conversion treatment can be performed satisfactorily. Can be applied with good paintability, and a welded structure excellent in corrosion resistance can be obtained.

以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。また、ここで説明する溶接条件は一例であり、本実施の形態では、以下の溶接条件に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples, and may be implemented with modifications within a range that can be adapted to the gist of the present invention. All of which are within the scope of the present invention. Further, the welding conditions described here are merely examples, and the present embodiment is not limited to the following welding conditions.

(試験条件)
各例において、板厚2.3mm×幅70mm×長さ200mmのJIS G 3141 SPCC鋼板に、表1に示される所定の溶接条件でビードオンプレート溶接を実施して試験片を作製した。つづいて、pH13、温度40℃に調整した水酸化ナトリウム水溶液中に2分間浸漬させてアルカリ脱脂を行った後に、水道水を溜めた二つの槽に順次浸漬させて2度の水洗を行った。
(Test conditions)
In each example, a bead-on-plate welding was performed on a JIS G 3141 SPCC steel plate having a thickness of 2.3 mm, a width of 70 mm, and a length of 200 mm under the predetermined welding conditions shown in Table 1 to prepare a test piece. Subsequently, after performing alkaline degreasing by immersing in a sodium hydroxide aqueous solution adjusted to pH 13 and a temperature of 40 ° C. for 2 minutes, it was successively immersed in two tanks in which tap water was stored and washed twice.

なお、表1中のシールドガスの行における「MAG」とは、20体積%のCOと80体積%のArとの混合ガスである。また、「50%CO」とは、50体積%のCOと50体積%のArとの混合ガスである。 “MAG” in the row of shielding gas in Table 1 is a mixed gas of 20% by volume of CO 2 and 80% by volume of Ar. Further, “50% CO 2 ” is a mixed gas of 50 volume% CO 2 and 50 volume% Ar.

次に、500mlビーカー内で表2に示される所定の条件で洗浄液を調製し、表2に示される所定の条件で試験片を洗浄液に浸漬させて洗浄処理を行った。その後、溶接構造物を洗浄液から取り出し、水道水を溜めた二つの槽に順次浸漬させて2度の水洗を行った後に60℃で乾燥させて、処理を完了した。   Next, a cleaning liquid was prepared in a 500 ml beaker under the predetermined conditions shown in Table 2, and the test piece was immersed in the cleaning liquid under the predetermined conditions shown in Table 2 to perform a cleaning process. Thereafter, the welded structure was taken out from the cleaning liquid, immersed in two tanks in which tap water was stored in order, washed twice with water, and then dried at 60 ° C. to complete the treatment.

なお、表2中の攪拌方法の行における「攪拌のみ」とは、試験片の洗浄液への浸漬中に、ビーカー底部に磁力によって回転する撹拌子を投入して150rpmの回転数で撹拌を実施したことを表す。また、「攪拌および揺動」とは、前記した条件での攪拌とともに、自動の試験片搖動装置を用いて、1分あたり30回の周期で試験片を搖動させたことを表す。   The “stirring only” in the row of the stirring method in Table 2 means that a stirrer that is rotated by a magnetic force is added to the bottom of the beaker while stirring the test piece in the cleaning solution, and stirring is performed at a rotation speed of 150 rpm. Represents that. In addition, “stirring and shaking” means that the test piece was rocked at a cycle of 30 times per minute using an automatic test piece rocking device together with stirring under the above-described conditions.

(洗浄効果の評価)
洗浄効果については、実体顕微鏡を用いて、洗浄後の各例の鋼板表面を観察するとともに、視野内での酸化皮膜に覆われている部分の表面積が10%未満のものを◎、10%以上30%未満のものを○、30%以上50%未満のものを△、50%以上のものを×として評価し、評価が×以外のものを合格とした。これらの結果を表3に示す。
(Evaluation of cleaning effect)
Regarding the cleaning effect, the surface of the steel plate in each example after cleaning was observed using a stereomicroscope, and the surface area of the portion covered with the oxide film in the field of view was less than 10%. Those with less than 30% were evaluated as ◯, those with 30% or more and less than 50% were evaluated as Δ, and those with 50% or more were evaluated as ×, and those other than evaluation were evaluated as ×. These results are shown in Table 3.

また、洗浄効果の評価が×である例48に係る試験片表面の顕微鏡写真を図1に示す。図1において、黒みがかった部分は酸化皮膜に覆われている部分であり、白みがかった部分は鋼板素地が露出した部分である。すなわち、図1に示される試験片では、表面の多くの部分が、酸化皮膜に覆われていることがわかる。
他方、洗浄効果の評価が◎である例2に係る試験片表面の顕微鏡写真を図2に示す。図2に示される試験片では、全体が白みがかった部分であり、すなわち酸化皮膜が良好に除去されていることが分かる。
Moreover, the microscope picture of the test piece surface which concerns on the example 48 whose evaluation of a cleaning effect is x is shown in FIG. In FIG. 1, a blackish portion is a portion covered with an oxide film, and a whiteish portion is a portion where a steel plate substrate is exposed. That is, in the test piece shown in FIG. 1, it can be seen that many portions of the surface are covered with the oxide film.
On the other hand, a micrograph of the surface of the test piece according to Example 2 in which the evaluation of the cleaning effect is A is shown in FIG. In the test piece shown in FIG. 2, it can be seen that the whole is a whitish portion, that is, the oxide film is well removed.

(亜鉛めっきへの浸食の評価)
また、各例において、非めっき鋼板の代わりに亜鉛めっき鋼板を用いて、上記と同様に溶接して試験片を作製した後、洗浄を実施した。ここで、亜鉛めっき鋼板の目付量は45g/mとした。
そして、亜鉛めっきへの浸食について、洗浄処理前後の試験片の重量を測定して、亜鉛めっき残留量が40g/m以上のものを◎、40g/m未満30g/m以上のものを○、30g/m未満20g/m以上のものを△、20g/m未満のものを×として評価した。これらの結果を表3にあわせて示す。
(Evaluation of erosion to zinc plating)
In each example, a galvanized steel sheet was used instead of a non-plated steel sheet, and a test piece was prepared by welding in the same manner as described above, followed by cleaning. Here, the basis weight of the galvanized steel sheet was 45 g / m 2 .
And about the erosion to galvanization, the weight of the test piece before and after the cleaning treatment is measured, and the galvanization residual amount is 40 g / m 2 or more, and the one having less than 40 g / m 2 and 30 g / m 2 or more. ○, less than 30 g / m 2 and 20 g / m 2 or more were evaluated as Δ, and less than 20 g / m 2 was evaluated as ×. These results are also shown in Table 3.

表3に示されるように、例47では、洗浄液のpHが7と本発明に規定の範囲外であり、洗浄後も酸化皮膜が多く残存した。
また、例48においても、洗浄液のpHが9と本発明に規定の範囲外であり、洗浄後も酸化皮膜が多く残存した。
また、EDTAではなくクエン酸を含有する洗浄液を使用した例49においても、洗浄後も酸化皮膜が多く残存した。
一方、実施例である例1〜46においては、いずれも洗浄効果の評価結果が合格であり、酸化皮膜を良好に除去できていた。
As shown in Table 3, in Example 47, the pH of the cleaning solution was 7, which was outside the range specified in the present invention, and a large amount of oxide film remained even after cleaning.
In Example 48, the pH of the cleaning solution was 9, which was outside the range specified in the present invention, and a large amount of oxide film remained after cleaning.
In Example 49 using a cleaning solution containing citric acid instead of EDTA, a large amount of oxide film remained after cleaning.
On the other hand, in Examples 1-46 which are an Example, the evaluation result of the cleaning effect was pass, and the oxide film was able to be removed favorably.

また、例1〜33について、EDTA濃度:X(mmol/L)を横軸とし、浸漬時間:Y(分)を縦軸としてプロットしたグラフを図3に示す。ここで、図3のグラフにおいて、洗浄効果の評価が◎ないし○であった例は○としてプロットし、洗浄効果の評価が△であった例は△としてプロットしている。
すると、図3に示されるように、下記式(1)を満たす領域においては、洗浄効果の評価結果が◎ないし○であり、特に良好な洗浄効果が得られることが分かる。
Y≧−0.03X+2.7 (1)
Moreover, about Examples 1-33, the graph which plotted EDTA density | concentration: X (mmol / L) on the horizontal axis and immersion time: Y (min) on the vertical axis | shaft is shown in FIG. Here, in the graph of FIG. 3, an example in which the evaluation of the cleaning effect is “◎” or “プ ロ ッ ト” is plotted as “◯”, and an example in which the evaluation of the cleaning effect is “Δ” is plotted as “Δ”.
Then, as shown in FIG. 3, in the region satisfying the following formula (1), the evaluation result of the cleaning effect is ◎ to ○, and it can be seen that a particularly good cleaning effect can be obtained.
Y ≧ −0.03X + 2.7 (1)

Claims (17)

鋼製溶接構造物を洗浄するための洗浄液であって、
EDTA又はその塩を含有する酸性溶液である洗浄液。
A cleaning liquid for cleaning a steel welded structure,
A cleaning solution which is an acidic solution containing EDTA or a salt thereof.
前記洗浄液中の前記EDTA又はその塩の濃度が10〜70mmol/Lである請求項1に記載の洗浄液。   The cleaning solution according to claim 1, wherein the concentration of the EDTA or a salt thereof in the cleaning solution is 10 to 70 mmol / L. 前記洗浄液のpHが3〜5である請求項1又は2に記載の洗浄液。   The cleaning liquid according to claim 1 or 2, wherein the cleaning liquid has a pH of 3 to 5. pH調整剤としてポリリン酸を含む請求項1〜3のいずれか1項に記載の洗浄液。   The washing | cleaning liquid of any one of Claims 1-3 containing polyphosphoric acid as a pH adjuster. 前記洗浄液の温度が20〜80℃である請求項1〜4のいずれか1項に記載の洗浄液。   The temperature of the said cleaning liquid is 20-80 degreeC, The cleaning liquid of any one of Claims 1-4. EDTA又はその塩を含有する酸性溶液に鋼製溶接構造物を浸漬させる、鋼製溶接構造物の洗浄方法。   A method for cleaning a steel welded structure, wherein the steel welded structure is immersed in an acidic solution containing EDTA or a salt thereof. 前記酸性溶液中の前記EDTA又はその塩の濃度が10〜70mmol/Lである請求項6に記載の鋼製溶接構造物の洗浄方法。   The method for cleaning a steel welded structure according to claim 6, wherein the concentration of the EDTA or a salt thereof in the acidic solution is 10 to 70 mmol / L. 前記酸性溶液のpHが3〜5である請求項6又は7に記載の鋼製溶接構造物の洗浄方法。   The method for cleaning a steel welded structure according to claim 6 or 7, wherein the acidic solution has a pH of 3 to 5. 前記酸性溶液がpH調整剤としてポリリン酸を含む請求項6〜8のいずれか1項に記載の鋼製溶接構造物の洗浄方法。   The method for cleaning a steel welded structure according to any one of claims 6 to 8, wherein the acidic solution contains polyphosphoric acid as a pH adjuster. 前記酸性溶液の温度が20〜80℃である請求項6〜9のいずれか1項に記載の鋼製溶接構造物の洗浄方法。   The temperature of the said acidic solution is 20-80 degreeC, The cleaning method of the steel welded structure of any one of Claims 6-9. 前記鋼製溶接構造物の前記酸性溶液への浸漬時間が1.5〜5分である請求項6〜10のいずれか1項に記載の鋼製溶接構造物の洗浄方法。   The method for cleaning a steel welded structure according to any one of claims 6 to 10, wherein the immersion time of the steel welded structure in the acidic solution is 1.5 to 5 minutes. 前記酸性溶液中の前記EDTA又はその塩の濃度をX(mmol/L)とし、浸漬時間をY(分)として、X及びYが下記式(1)の関係を満足する請求項6〜11のいずれか1項に記載の鋼製溶接構造物の洗浄方法。
Y≧−0.03X+2.7 (1)
The concentration of the EDTA or its salt in the acidic solution is X (mmol / L), the immersion time is Y (minutes), and X and Y satisfy the relationship of the following formula (1): A method for cleaning a steel welded structure according to any one of the preceding claims.
Y ≧ −0.03X + 2.7 (1)
前記鋼製溶接構造物を前記酸性溶液へ浸漬する際に、前記酸性溶液の撹拌及び前記鋼製溶接構造物の搖動のうちの少なくとも1つを行うことを特徴とする請求項6〜12のいずれか1項に記載の鋼製溶接構造物の洗浄方法。   13. When dipping the steel welded structure in the acid solution, at least one of stirring of the acid solution and peristalsis of the steel welded structure is performed. A method for cleaning a steel welded structure according to claim 1. 鋼材に溶接して鋼製溶接構造物を得る工程と、
請求項6〜13のいずれか1項に記載の鋼製溶接構造物の洗浄方法により前記鋼製溶接構造物を洗浄する工程と
を備える鋼製溶接構造物の製造方法。
A process of obtaining a steel welded structure by welding to a steel material;
A method for manufacturing a steel welded structure, comprising the step of cleaning the steel welded structure by the method for cleaning a steel welded structure according to any one of claims 6 to 13.
溶接入熱が0.3〜15kJ/cmとなる溶接条件で前記鋼材を溶接する請求項14に記載の鋼製溶接構造物の製造方法。   The method for manufacturing a steel welded structure according to claim 14, wherein the steel material is welded under a welding condition in which a welding heat input is 0.3 to 15 kJ / cm. 不活性ガスの濃度が70体積%以上のシールドガスを用いて前記鋼材を溶接する請求項14又は15に記載の鋼製溶接構造物の製造方法。   The method for manufacturing a steel welded structure according to claim 14 or 15, wherein the steel material is welded using a shielding gas having an inert gas concentration of 70% by volume or more. 1.5m/min以下の溶接速度で前記鋼材を溶接する請求項14〜16のいずれか1項に記載の鋼製溶接構造物の製造方法。   The method for manufacturing a steel welded structure according to any one of claims 14 to 16, wherein the steel material is welded at a welding speed of 1.5 m / min or less.
JP2016152887A 2016-08-03 2016-08-03 Cleaning liquid, method for cleaning steel welded structure, and method for manufacturing steel welded structure Pending JP2018021227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016152887A JP2018021227A (en) 2016-08-03 2016-08-03 Cleaning liquid, method for cleaning steel welded structure, and method for manufacturing steel welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016152887A JP2018021227A (en) 2016-08-03 2016-08-03 Cleaning liquid, method for cleaning steel welded structure, and method for manufacturing steel welded structure

Publications (1)

Publication Number Publication Date
JP2018021227A true JP2018021227A (en) 2018-02-08

Family

ID=61164259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016152887A Pending JP2018021227A (en) 2016-08-03 2016-08-03 Cleaning liquid, method for cleaning steel welded structure, and method for manufacturing steel welded structure

Country Status (1)

Country Link
JP (1) JP2018021227A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089458A (en) * 2004-06-24 2006-04-06 Cc Medico:Kk Cosmetic pack with heating element, and cosmetic
JP2012117116A (en) * 2010-12-01 2012-06-21 Institute Of National Colleges Of Technology Japan Agent for removing scale from welded portion of stainless steel and method for removing scale
JP2017031267A (en) * 2015-07-30 2017-02-09 独立行政法人国立高等専門学校機構 Scale remover for stainless steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089458A (en) * 2004-06-24 2006-04-06 Cc Medico:Kk Cosmetic pack with heating element, and cosmetic
JP2012117116A (en) * 2010-12-01 2012-06-21 Institute Of National Colleges Of Technology Japan Agent for removing scale from welded portion of stainless steel and method for removing scale
JP2017031267A (en) * 2015-07-30 2017-02-09 独立行政法人国立高等専門学校機構 Scale remover for stainless steel

Similar Documents

Publication Publication Date Title
JP4605409B2 (en) Surface treatment method of aluminum or aluminum alloy
JP5699794B2 (en) Aluminum oxide film removal solution and surface treatment method of aluminum or aluminum alloy
JP2001247986A (en) Composition for removing aluminum smut
JP2009127101A (en) Solution for processing of metal replacement with aluminum or aluminum alloy and method for surface processing using such solution
JP5824868B2 (en) Method for producing zinc-based plated steel material or zinc-based plated steel molded product
JP2019533768A (en) Method of electroplating an uncoated steel strip with a plating layer
JP6169479B2 (en) Rust removal / rust prevention agent and removal / rust prevention method
JP2008190033A (en) Peeling liquid for anodized film and peeling method of anodized film
JP6114770B2 (en) Tin plating method for copper alloy material
JP2011137206A (en) Plating pretreatment method of aluminum alloy
JP5621398B2 (en) Smokeless flux for hot dip galvanizing and hot dip galvanizing method using the flux
JP2018021227A (en) Cleaning liquid, method for cleaning steel welded structure, and method for manufacturing steel welded structure
JP2011099161A (en) Nickel plating liquid
JP3426800B2 (en) Pretreatment method for plating aluminum alloy material
JP2013104087A (en) Nickel plating liquid
US2761792A (en) Process for preparing aluminum cables for soldering
JP2005307283A (en) Method for producing cold rolled steel sheet comprising easily oxidizable component
JP5549615B2 (en) Chemical conversion treatment method for steel member, method for producing steel coating member subjected to electrodeposition coating, and steel coating member
JP7416425B2 (en) Plating pretreatment method for aluminum and aluminum alloys
WO2008012862A1 (en) Whisker preventive agent for tin or tin alloy plating, and method of whisker prevention making use of the same
JP5930136B1 (en) Method for producing hot-dip galvanized steel
JP6753712B2 (en) Manufacturing method of granular tin-plated steel sheet
JP6026334B2 (en) Fume removal method, steel sheet coating method and manufacturing method
KR101522388B1 (en) Manufacturing method of seawater pipe with grooving corrosion resistance
US20090250354A1 (en) Pre-Treatment Method for Plating and Instrument for Waterworks of Lead-Contained Copper Alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310