JP2018017477A - Air conditioning system and operation control method - Google Patents

Air conditioning system and operation control method Download PDF

Info

Publication number
JP2018017477A
JP2018017477A JP2016149208A JP2016149208A JP2018017477A JP 2018017477 A JP2018017477 A JP 2018017477A JP 2016149208 A JP2016149208 A JP 2016149208A JP 2016149208 A JP2016149208 A JP 2016149208A JP 2018017477 A JP2018017477 A JP 2018017477A
Authority
JP
Japan
Prior art keywords
flow rate
heat source
load
return
thermal fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016149208A
Other languages
Japanese (ja)
Other versions
JP6478951B2 (en
Inventor
潤一 萩谷
Junichi Hagitani
潤一 萩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2016149208A priority Critical patent/JP6478951B2/en
Publication of JP2018017477A publication Critical patent/JP2018017477A/en
Application granted granted Critical
Publication of JP6478951B2 publication Critical patent/JP6478951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict cut-off of water stopping due to excessive flow rate when a heat source machine is changed over at the time of increasing the number of stages of the heat source machine.SOLUTION: This invention relates to an air conditioning system 100 comprising a communicating pipe 11 communicating between a first feeding header 4 and a second returning header 10 and the same flow rate as the maximum rated flow rate of freezers 1A, 1B, 1C are stored in advance and a control device 13 for changing-over operations of the freezers 1A, 1B and 1C on the basis of the operation combination. The control device 13 starts an operation of the freezer after its changing-over after the freezer being operated is stopped under a case in which it satisfies a condition in which [flow rate during operation + additional flow rate - maximum communication flow rate]>a load flow rate is attained under an assumption that a return flow rate detected by a flow meter 22 is applied as a load flow rate, a total rated flow rate of the freezer in operation is applied as a flow rate in operation and a total of rated flow rate of the additional freezer by changing-over in operation of the freezer is applied as a flow rate after being changed over.SELECTED DRAWING: Figure 1

Description

本発明は、空調システム及び運転制御方法に関し、特に、負荷機器から戻りヘッダに戻される熱流体の流量に基づいて、空調システムにおける複数の熱源機器の運転を制御する運転制御方法に関する。   The present invention relates to an air conditioning system and an operation control method, and more particularly to an operation control method for controlling the operation of a plurality of heat source devices in an air conditioning system based on a flow rate of a thermal fluid returned from a load device to a return header.

工場やビル等に設置される空調システムがある。この空調システムは、所定温度に冷却された冷水等の熱流体を生成する複数の熱源機器と、複数の熱源機器から熱流体が供給される送りヘッダと、送りヘッダから熱流体が供給される空調機器等の負荷機器と、負荷機器において熱交換された熱流体が戻される戻りヘッダと、送りヘッダと戻りヘッダとを連通する連通管と、負荷機器から戻りヘッダに戻される熱流体の流量に基づいて、複数の熱源機器の運転を制御する制御装置とを備えている。また、複数の熱源機器には、定格流量の異なる複数の冷凍機が使用される。   There are air conditioning systems installed in factories and buildings. The air conditioning system includes a plurality of heat source devices that generate a thermal fluid such as cold water cooled to a predetermined temperature, a feed header that is supplied with the thermal fluid from the plurality of heat source devices, and an air conditioner that is supplied with the thermal fluid from the feed header. Based on a load device such as a device, a return header to which the heat fluid exchanged in the load device is returned, a communication pipe communicating the feed header and the return header, and a flow rate of the thermal fluid returned from the load device to the return header And a control device for controlling the operation of the plurality of heat source devices. A plurality of refrigerators having different rated flow rates are used for the plurality of heat source devices.

この空調システムにおいて、負荷機器から戻される熱流体の流量が増大して熱源機器の増段が必要になった場合、制御装置は、運転中の熱源機器から、運転中の熱源機器の定格流量よりも大きい定格流量を有する熱源機器への運転に切り替える。このとき、次に運転する熱源機器の運転を開始した後に、運転中の熱源機器を停止するオーバーラップ運転を行う(例えば、特許文献1参照)。このオーバーラップ運転によれば、負荷機器から戻される熱流体の流量が増大した場合、熱源機器を増段するときに、運転中の熱源機器と次に運転予定の熱源機器とは、一時的にオーバーラップして運転するので、所定温度に維持された熱流体を中断することなく負荷機器に供給することができる。   In this air conditioning system, when the flow rate of the heat fluid returned from the load device increases and it is necessary to increase the heat source device, the control device starts from the operating heat source device to the rated flow rate of the operating heat source device. Switch to heat source equipment with a larger rated flow. At this time, after starting the operation of the heat source device to be operated next, an overlap operation for stopping the heat source device in operation is performed (see, for example, Patent Document 1). According to this overlap operation, when the flow rate of the heat fluid returned from the load device increases, when the heat source device is increased, the currently operating heat source device and the next scheduled heat source device are temporarily Since the operation is performed in an overlapping manner, the thermal fluid maintained at a predetermined temperature can be supplied to the load device without interruption.

特開昭59−9442号公報JP 59-9442 A

特許文献1に記載されているオーバーラップ運転では、運転中の熱源機器と次に運転予定の熱源機器とは、一時的にオーバーラップして運転する。このオーバーラップ運転中では、両方の熱源機器によって熱流体が負荷機器に供給されるので、負荷機器には一時的に大量の熱流体が供給される。負荷機器で必要とされる熱流体の流量を超える供給量は、送りヘッダから連通管を介して戻りヘッダに戻り熱源機器に還流される。   In the overlap operation described in Patent Literature 1, the heat source device being operated and the heat source device scheduled to be operated next are overlapped and operated. During this overlap operation, the heat fluid is supplied to the load device by both the heat source devices, so that a large amount of heat fluid is temporarily supplied to the load device. The supply amount exceeding the flow rate of the thermal fluid required by the load device is returned from the feed header to the return header through the communication pipe and returned to the heat source device.

しかし、連通管の最大連通流量が少ないとき、すなわち、送りヘッダから戻りヘッダに十分に熱流体を戻すことが困難であるときには、熱源機器からの熱流体の供給量が、負荷機器で必要とされる熱流体の流量と連通管の最大連通流量との合計流量を超えてしまい、熱流体が戻りヘッダに戻れなくなって、熱流体の熱源機器への還流が困難になる。この状態を送りヘッダにおける流量過多といい、この流量過多になると、熱源機器の上流側では熱流体の流量が不足して、熱源機器は断水警報を発報して断水停止する可能性がある。   However, when the maximum communication flow rate of the communication pipe is small, that is, when it is difficult to sufficiently return the thermal fluid from the feed header to the return header, the supply amount of the thermal fluid from the heat source device is required by the load device. The total flow rate of the thermal fluid flow and the maximum communication flow rate of the communication pipe is exceeded, and the thermal fluid cannot return to the return header, making it difficult to return the thermal fluid to the heat source device. This state is called an excessive flow rate in the feed header. If this excessive flow rate occurs, the flow rate of the thermal fluid is insufficient on the upstream side of the heat source device, and the heat source device may issue a water stop alarm and stop the water stop.

そこで、本発明では、熱源機器の増段時に熱源機器の切り替えを行うときに、流量過多による断水停止を抑制することを目的とする。   Therefore, an object of the present invention is to suppress water stoppage due to excessive flow rate when the heat source device is switched when the heat source device is increased.

本発明の空調システムは、熱流体を生成する複数の熱源機器と、複数の前記熱源機器からの前記熱流体を集合する送りヘッダと、前記送りヘッダから前記熱流体が供給される負荷機器と、前記負荷機器において熱交換された前記熱流体を複数の前記熱源機器に分配する戻りヘッダと、前記負荷機器から前記戻りヘッダに戻される前記熱流体の戻り流量を検出する流量検出器と、前記送りヘッダと前記戻りヘッダとを連通し、複数の前記熱源機器の最大定格流量と同流量を最大連通流量とする連通管と、前記熱流体の前記戻り流量に基づいた複数の前記熱源機器の運転組み合わせを予め記憶しており、この運転組み合わせに基づいて複数の前記熱源機器の運転を切り替える制御装置と、を備える空調システムであって、前記制御装置は、前記流量検出器で検出される前記戻り流量を負荷流量とし、運転中の前記熱源機器の定格流量の合計を運転中流量とし、前記熱源機器の運転切替えによって追加される前記熱源機器の定格流量の合計を追加流量としたとき、
(運転中流量+追加流量−最大連通流量)>負荷流量
の条件を満たす場合に、運転中の前記熱源機器を停止した後に、切替後の前記熱源機器の運転を開始することを特徴とする。
The air conditioning system of the present invention includes a plurality of heat source devices that generate a thermal fluid, a feed header that collects the thermal fluids from the plurality of heat source devices, a load device that is supplied with the thermal fluid from the feed header, A return header that distributes the thermal fluid heat-exchanged in the load device to the plurality of heat source devices, a flow rate detector that detects a return flow rate of the thermal fluid returned from the load device to the return header, and the feed An operation combination of a plurality of heat source devices based on the return flow rate of the thermal fluid, and a communication pipe that communicates the header and the return header and sets the maximum rated flow rate and the same flow rate of the heat source devices as the maximum communication flow rate. Is stored in advance, and a control device that switches operation of the plurality of heat source devices based on the operation combination, wherein the control device The return flow detected by the detector is the load flow, the total rated flow of the heat source equipment in operation is the operating flow, and the total rated flow of the heat source equipment added by switching the operation of the heat source equipment is When the additional flow rate
(In-operation flow rate + additional flow rate−maximum communication flow rate)> When the condition of load flow rate is satisfied, the operation of the heat source device after switching is started after the heat source device in operation is stopped.

また、本発明の空調システムは、熱流体を生成する複数の熱源機器と、複数の前記熱源機器からの前記熱流体を集合する送りヘッダと、前記送りヘッダから前記熱流体が供給される負荷機器と、前記負荷機器において熱交換された前記熱流体を複数の前記熱源機器に分配する戻りヘッダと、前記負荷機器から前記戻りヘッダに戻される前記熱流体の戻り流量を検出する流量検出器と、前記送りヘッダと前記戻りヘッダとを連通し、複数の前記熱源機器の最大定格流量と同流量を最大連通流量とする連通管と、前記熱流体の前記戻り流量に基づいた複数の前記熱源機器の運転組み合わせを予め記憶しており、この運転組み合わせに基づいて複数の前記熱源機器の運転を切り替える制御装置と、を備える空調システムであって、前記制御装置は、前記流量検出器で検出される前記戻り流量を負荷流量とし、運転中の前記熱源機器が複数台あり、複数の前記熱源機器の定格流量の合計を運転中流量とし、前記熱源機器の運転切替えによって追加される前記熱源機器の定格流量の合計を追加流量としたとき、
(運転中流量+追加流量−最大連通流量)>負荷流量
の条件を満たす場合に、
(運転中流量+追加流量−負荷流量)<最大連通流量
の条件を満たす運転中の前記熱源機器の一部を停止して、追加される前記熱源機器の運転を開始し、その後、残りの運転中の前記熱源機器を停止することを特徴とする。
The air conditioning system of the present invention includes a plurality of heat source devices that generate thermal fluid, a feed header that collects the thermal fluids from the plurality of heat source devices, and a load device that is supplied with the thermal fluid from the feed header. A return header that distributes the thermal fluid heat-exchanged in the load device to the plurality of heat source devices, and a flow rate detector that detects a return flow rate of the thermal fluid returned from the load device to the return header, A communication pipe that communicates the feed header and the return header, the maximum rated flow rate of the plurality of heat source devices and the same flow rate as the maximum communication flow rate, and a plurality of the heat source devices based on the return flow rate of the thermal fluid. An air conditioning system that stores an operation combination in advance and includes a control device that switches operation of the plurality of heat source devices based on the operation combination, and the control device includes: The return flow detected by the flow rate detector is a load flow rate, there are a plurality of operating heat source devices, the total of the rated flow rates of the plurality of heat source devices is the operating flow rate, and by switching the operation of the heat source device When the total rated flow rate of the heat source equipment to be added is the additional flow rate,
(Operating flow rate + additional flow rate-maximum communication flow rate)> When the condition of load flow rate is satisfied,
(In-operation flow rate + additional flow rate-load flow rate) <part of the operating heat source device that satisfies the condition of the maximum communication flow rate is stopped, and the operation of the added heat source device is started, and then the remaining operation The heat source device inside is stopped.

また、本発明の運転制御方法は、熱流体を生成する複数の熱源機器と、複数の前記熱源機器からの前記熱流体を集合する送りヘッダと、前記送りヘッダから前記熱流体が供給される負荷機器と、前記負荷機器において熱交換された前記熱流体を複数の前記熱源機器に分配する戻りヘッダと、前記負荷機器から前記戻りヘッダに戻される前記熱流体の戻り流量を検出する流量検出器と、前記送りヘッダと前記戻りヘッダとを連通し、複数の前記熱源機器の最大定格流量と同流量を最大連通流量とする連通管と、を備える空調システムに適用され、前記熱流体の前記戻り流量に基づいた複数の前記熱源機器の運転組み合わせに基づいて複数の前記熱源機器の運転を切り替える運転制御方法であって、前記流量検出器で検出される前記戻り流量を負荷流量とし、運転中の前記熱源機器の定格流量の合計を運転中流量とし、前記熱源機器の運転切替えによって追加される前記熱源機器の定格流量の合計を切替後流量としたとき、
(運転中流量+追加流量−最大連通流量)>負荷流量
の条件を満たす場合に、運転中の前記熱源機器を停止した後に、切替後の前記熱源機器の運転を開始することを特徴とする。
The operation control method of the present invention includes a plurality of heat source devices that generate a thermal fluid, a feed header that collects the thermal fluids from the plurality of heat source devices, and a load to which the thermal fluid is supplied from the feed header. A return header that distributes the thermal fluid heat-exchanged in the load device to the plurality of heat source devices, and a flow rate detector that detects a return flow rate of the thermal fluid returned from the load device to the return header. The return flow rate of the thermal fluid is applied to an air conditioning system including a communication pipe that connects the feed header and the return header, and has a maximum communication flow rate that is the same as the maximum rated flow rate of the plurality of heat source devices. An operation control method for switching the operation of the plurality of heat source devices based on the operation combination of the plurality of heat source devices based on the method, wherein the return flow rate detected by the flow rate detector is negative. When the flow rate, the sum of the rated flow of the heat source device during operation and during operation the flow rate and the sum of the rated flow rate of the heat source device to be added by switching operation of the heat source device and post-switching rate,
(In-operation flow rate + additional flow rate−maximum communication flow rate)> When the condition of load flow rate is satisfied, the operation of the heat source device after switching is started after the heat source device in operation is stopped.

本発明によれば、熱源機器の増段時に熱源機器の切り替えを行うときに、流量過多による断水停止を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, when switching a heat source apparatus at the time of the stage increase of a heat source apparatus, the water-stop stop by excessive flow volume can be suppressed.

第1の実施形態における2ポンプ式の空調システムの概略構成図である。1 is a schematic configuration diagram of a two-pump air conditioning system in a first embodiment. 第1の実施形態における制御装置による処理を示すフローチャートである。It is a flowchart which shows the process by the control apparatus in 1st Embodiment. 第1の実施形態における制御装置による処理を示すフローチャートである。It is a flowchart which shows the process by the control apparatus in 1st Embodiment. 第1の実施形態における負荷流量、運転中流量、連通管流量の関係を示すテーブルである。It is a table which shows the relationship of the load flow volume in 1st Embodiment, the flow volume during driving | operation, and the communication pipe flow volume. 第2の実施形態における制御装置による処理を示すフローチャートである。It is a flowchart which shows the process by the control apparatus in 2nd Embodiment. 第2の実施形態における負荷流量、運転中流量、連通管流量の関係を示すテーブルの一部である。It is a part of table | surface which shows the relationship of the load flow volume in 2nd Embodiment, the flow volume during driving | operation, and a communicating pipe flow volume. 第3の実施形態における負荷流量、運転中流量、連通管流量の関係を示すテーブルの一部である。It is a part of table | surface which shows the relationship of the load flow volume in 3rd Embodiment, the flow volume during driving | operation, and a communicating pipe flow volume.

第1の実施形態を示す2ポンプ式の空調システム100について説明する。空調システム100は、工場、ビル、ショッピングモール等の大型施設の空調に使用されるセントラル空調システムである。空調システム100は、複数の冷凍機1A,1B,1C(熱源機器)を一ヶ所に集中設置し、これら冷凍機1A,1B,1Cによって冷却した冷水(熱流体)を空調機7A,7B,7C(負荷機器)に送水して空調を行うものである。   A two-pump air conditioning system 100 showing the first embodiment will be described. The air conditioning system 100 is a central air conditioning system used for air conditioning of large facilities such as factories, buildings, and shopping malls. In the air conditioning system 100, a plurality of refrigerators 1A, 1B, 1C (heat source devices) are centrally installed in one place, and cold water (thermal fluid) cooled by these refrigerators 1A, 1B, 1C is air conditioners 7A, 7B, 7C. Air is supplied to (load equipment) for air conditioning.

図1に示すように、空調システム100は、並列配置された複数の冷凍機1A,1B,1Cと、冷凍機1A,1B,1Cにそれぞれ設けられる1次冷水ポンプ2A,2B,2Cと、冷凍機1A,1B,1Cの出口側の送水管3A,3B,3Cに第1の送りヘッダ4を介して接続された複数台の2次冷水ポンプ5A,5B,5C,5Dと、2次冷水ポンプ5A,5B,5C,5Dに第2の送りヘッダ6及び送水管3A,3B,3Cを介して接続され、並列配置された複数の空調機7A,7B,7Cと、空調機7A,7B,7Cと戻水管8A,8B,8Cを介して接続される第1の戻りヘッダ9及び第2の戻りヘッダ10と、第1の送りヘッダ4と第2の戻りヘッダ10とを接続する連通管11と、連通管11に設けられた絞り弁12と、空調機7A,7B,7Cの負荷状態に応じて、冷凍機1A,1B,1Cの運転台数、1次冷水ポンプ2A,2B,2C及び2次冷水ポンプ5A,5B,5C,5Dを制御する制御装置13とを備えている。   As shown in FIG. 1, an air conditioning system 100 includes a plurality of refrigerators 1A, 1B, and 1C arranged in parallel, primary chilled water pumps 2A, 2B, and 2C provided in the refrigerators 1A, 1B, and 1C, respectively, A plurality of secondary chilled water pumps 5A, 5B, 5C, 5D connected to the water supply pipes 3A, 3B, 3C on the outlet side of the machines 1A, 1B, 1C via the first feed header 4, and secondary chilled water pumps A plurality of air conditioners 7A, 7B, and 7C connected to 5A, 5B, 5C, and 5D via the second feed header 6 and the water pipes 3A, 3B, and 3C and arranged in parallel, and the air conditioners 7A, 7B, and 7C And the first return header 9 and the second return header 10 connected via the return water pipes 8A, 8B, and 8C, and the communication pipe 11 that connects the first feed header 4 and the second return header 10. A throttle valve 12 provided in the communication pipe 11 and an air conditioner Control device 13 for controlling the number of operating refrigerators 1A, 1B, 1C, primary chilled water pumps 2A, 2B, 2C and secondary chilled water pumps 5A, 5B, 5C, 5D according to the load conditions of A, 7B, 7C. And.

第1の送りヘッダ4と第2の送りヘッダ6との間には、第2の送りヘッダ6と第1の送りヘッダ4との差圧によって、第2の送りヘッダ6の冷水を2次冷水ポンプ5A,5B,5C,5Dに戻すバイパス弁14が設けられている。   Between the first feed header 4 and the second feed header 6, the cold water of the second feed header 6 is converted into secondary cold water by the differential pressure between the second feed header 6 and the first feed header 4. A bypass valve 14 for returning to the pumps 5A, 5B, 5C, 5D is provided.

冷凍機1A,1B,1Cは、それぞれ定格流量が異なっており、例えば、冷凍機1Aの定格流量は170m3/h、冷凍機1Bの定格流量は80m3/h、冷凍機1Cの定格流量は50m3/hに設定されている。また、連通管11の最大連通流量は、冷凍機1A,1B,1Cうちの最大の定格流量と略同じ170m3/hに設定されている。 The rated flow rates of the refrigerators 1A, 1B, and 1C are different from each other. For example, the rated flow rate of the refrigerator 1A is 170 m 3 / h, the rated flow rate of the refrigerator 1B is 80 m 3 / h, and the rated flow rate of the refrigerator 1C is It is set to 50 m 3 / h. Further, the maximum communication flow rate of the communication pipe 11 is set to 170 m 3 / h which is substantially the same as the maximum rated flow rate of the refrigerators 1A, 1B, 1C.

空調システム100は、空調システム100を流通する冷水の状態を検出するための複数の検出機器を備えている。すなわち、空調システム100は、第2の送りヘッダ6の冷水の温度を検出する送りヘッダ温度センサ20と、空調機7A,7B,7Cにおいて熱交換された冷水の温度を検出する戻水温度センサ21と、空調機7A,7B,7Cにおいて熱交換されて戻ってくる冷水流量(負荷流量)を検出する流量検出器としてのフローメータ22と、第2の戻りヘッダ10の冷水の温度を検出する戻りヘッダ温度センサ23とを備えている。戻水温度センサ21及びフローメータ22は、第1の戻りヘッダ9と第2の戻りヘッダ10の間にそれぞれ設けられている。   The air conditioning system 100 includes a plurality of detection devices for detecting the state of cold water flowing through the air conditioning system 100. That is, the air conditioning system 100 includes a feed header temperature sensor 20 that detects the temperature of the cold water in the second feed header 6 and a return water temperature sensor 21 that detects the temperature of the cold water heat-exchanged in the air conditioners 7A, 7B, and 7C. And a flow meter 22 as a flow rate detector that detects the flow rate of cold water (load flow rate) that is returned after heat exchange in the air conditioners 7A, 7B, and 7C, and a return that detects the temperature of the cold water in the second return header 10. And a header temperature sensor 23. The return water temperature sensor 21 and the flow meter 22 are respectively provided between the first return header 9 and the second return header 10.

これら検出機器は、制御装置13に電気的に接続されており、その検出結果が制御装置13に入力される。また、制御装置13には、冷凍機1A,1B,1C、1次冷水ポンプ2A,2B,2C、2次冷水ポンプ5A,5B,5C,5Dも電気的に接続されている。   These detection devices are electrically connected to the control device 13, and the detection result is input to the control device 13. The control device 13 is also electrically connected to the refrigerators 1A, 1B, 1C, primary chilled water pumps 2A, 2B, 2C, and secondary chilled water pumps 5A, 5B, 5C, 5D.

制御装置13は、空調機7A,7B,7Cの負荷状態、入力された検出結果、図示しないコントロールパネルからの指示等に基づいて、冷凍機1A,1B,1Cの運転台数の制御、1次冷水ポンプ2A,2B,2C及び2次冷水ポンプ5A,5B,5C,5Dの制御を行うダイレクトデジタルコントローラ(DDC)13aと、各冷凍機1A,1B,1Cの定格流量と連通管11の最大連通流量とが記憶されている記憶部13bとを備えている。記憶部13bには、DDC13aが冷凍機1A,1B,1Cの運転台数を制御するためのプログラムも記憶されている。すなわち、本実施形態においては、フローメータ22により検出された冷水流量(負荷流量)を常に上回るように冷凍機1A,1B,1Cを運転する運転組み合わせが記憶されている。なお、記憶部13bは、ハードディスクドライブ(HDD)やランダムアクセスメモリ(RAM)等から構成されている。   The control device 13 controls the number of operating refrigerators 1A, 1B, 1C based on the load state of the air conditioners 7A, 7B, 7C, the input detection result, an instruction from a control panel (not shown), and the primary cold water. Direct digital controller (DDC) 13a for controlling the pumps 2A, 2B, 2C and the secondary chilled water pumps 5A, 5B, 5C, 5D, the rated flow rate of each refrigerator 1A, 1B, 1C and the maximum communication flow rate of the communication pipe 11 Are stored in the storage unit 13b. The storage unit 13b also stores a program for the DDC 13a to control the number of operating refrigerators 1A, 1B, and 1C. That is, in the present embodiment, an operation combination for operating the refrigerators 1A, 1B, and 1C is stored so as to always exceed the cold water flow rate (load flow rate) detected by the flow meter 22. The storage unit 13b includes a hard disk drive (HDD), a random access memory (RAM), and the like.

具体的には、図4に示す冷凍機1A,1B,1Cの運転組み合わせが記憶されている。空調システム100では、常に負荷流量を上回る冷水を供給する必要があり、定格流量の少ない冷凍機1Cから順に運転を開始し、負荷流量に対して、冷凍機1Cの定格流量では不足したときに冷凍機1Bを増段し、これら冷凍機1B,1Cの定格流量の合計でも不足したときにこれら冷凍機1B,1Cに代えて冷凍機1Aを増段する。さらに、負荷流量が増加した場合には、冷凍機1Aに冷凍機1Bまたは冷凍機1Cを増段し、さらに、負荷流量が増加した場合には、冷凍機1A,1B,1Cの全てを運転する。また、負荷流量が減少したときには、上述した増段とは逆の順序で減段する制御を行う。   Specifically, the operation combinations of the refrigerators 1A, 1B, and 1C shown in FIG. 4 are stored. In the air conditioning system 100, it is necessary to always supply chilled water exceeding the load flow rate, and the operation is started in order from the refrigerator 1C having a smaller rated flow rate, and the refrigeration is performed when the rated flow rate of the refrigerator 1C is insufficient with respect to the load flow rate. When the total flow rate of the refrigerators 1B and 1C is insufficient, the refrigerator 1A is increased in place of the refrigerators 1B and 1C. Further, when the load flow rate increases, the refrigerator 1B or the refrigerator 1C is added to the refrigerator 1A, and when the load flow rate further increases, all of the refrigerators 1A, 1B, 1C are operated. . Further, when the load flow rate is decreased, control is performed to decrease in the reverse order to the above-described increase.

また、制御装置13は、冷凍機1A,1B,1Cを増段する場合に以下の4つの運転制御方法を有しており、負荷流量や冷凍機1A,1B,1Cの運転状況等に応じて、4つの制御方法を使い分ける。すなわち、制御装置13は、運転中冷凍機を停止した後に、切替後冷凍機の運転を開始する停止優先制御と、切替後冷凍機の運転を開始した所定時間後に、運転中冷凍機を停止する運転優先制御と、運転中冷凍機の全ての運転を継続しつつ、追加冷凍機の運転を開始する継続運転制御と、運転中冷凍機の一部の運転を継続しつつ、追加冷凍機の運転を開始する一部継続運転制御とを有している。これら4つの運転制御方法の使い分けの詳しい説明については後述する。なお、運転中冷凍機とは、現在運転している冷凍機を意味し、切替後冷凍機とは、運転切替後に運転される冷凍機を意味し、追加冷凍機とは、運転切替によって追加される冷凍機を意味する。   Further, the control device 13 has the following four operation control methods when increasing the number of stages of the refrigerators 1A, 1B, and 1C, depending on the load flow rate, the operation status of the refrigerators 1A, 1B, and 1C, and the like. Four control methods are used properly. That is, after stopping the operating freezer, the control device 13 stops the operating prioritized control for starting the operation of the switched freezer and the operating freezer after a predetermined time after starting the switched freezer operation. Operation priority control, continuous operation control to start the operation of the additional refrigerator while continuing all the operations of the operating refrigerator, and the operation of the additional refrigerator while continuing a part of the operation of the operating refrigerator And partly continuous operation control to start. A detailed description of how to use these four operation control methods will be described later. The in-operation refrigerator means a refrigerator that is currently in operation, the post-switching refrigerator means a refrigerator that is operated after switching operation, and the additional refrigerator is added by switching operation. Means a freezer.

空調システム100における冷水の概略の流れについて説明する。1次冷水ポンプ2A,2B,2Cにより圧送された冷水は、冷凍機1A,1B,1Cにおいて冷却されて第1の送りヘッダ4に送られる。第1の送りヘッダ4では、1次冷水ポンプ2A,2B,2Cにより圧送された冷水が集合する。第1の送りヘッダ4の冷水は、2次冷水ポンプ5A,5B,5C,5Dにより圧送されて第2の送りヘッダ6及び送水管3A,3B,3Cを介して空調機7A,7B,7Cに送られる。空調機7A,7B,7Cに供給された冷水は、空調機7A,7B,7Cにおいて熱交換されて、戻水管8A,8B,8C、第1の戻りヘッダ9及び第2の戻りヘッダ10を介して、1次冷水ポンプ2A,2B,2Cに戻る。1次冷水ポンプ2A,2B,2Cに戻った冷水は、再び、1次冷水ポンプ2A,2B,2Cによって圧送されて、第1の送りヘッダ4、第2の送りヘッダ6、空調機7A,7B,7C、第1の戻りヘッダ9、第2の戻りヘッダ10を循環する。   The general flow of cold water in the air conditioning system 100 will be described. The cold water pumped by the primary cold water pumps 2A, 2B, 2C is cooled in the refrigerators 1A, 1B, 1C and sent to the first feed header 4. In the first feed header 4, the cold water pumped by the primary cold water pumps 2A, 2B, 2C is gathered. The chilled water in the first feed header 4 is pumped by the secondary chilled water pumps 5A, 5B, 5C, 5D and sent to the air conditioners 7A, 7B, 7C via the second feed header 6 and the water feed pipes 3A, 3B, 3C. Sent. The cold water supplied to the air conditioners 7A, 7B, and 7C is subjected to heat exchange in the air conditioners 7A, 7B, and 7C, and passes through the return pipes 8A, 8B, and 8C, the first return header 9, and the second return header 10. To the primary cold water pumps 2A, 2B, 2C. The chilled water that has returned to the primary chilled water pumps 2A, 2B, and 2C is again pumped by the primary chilled water pumps 2A, 2B, and 2C, and the first feed header 4, the second feed header 6, and the air conditioners 7A and 7B. , 7C, the first return header 9 and the second return header 10 are circulated.

次に、制御装置13による冷凍機1A,1B,1Cの運転切替制御について、図2、3に示すフローチャートと図4に示すテーブルとを参照して説明する。図4に示すテーブルでは、フローメータ22による検出流量を負荷流量とし、運転中の冷凍機1A,1B,1Cの定格流量の合計を運転中流量とし、負荷流量、運転中流量及び連通管11の流量の関係を示している。   Next, the operation switching control of the refrigerators 1A, 1B, and 1C by the control device 13 will be described with reference to the flowcharts shown in FIGS. 2 and 3 and the table shown in FIG. In the table shown in FIG. 4, the flow rate detected by the flow meter 22 is the load flow rate, the total of the rated flow rates of the operating refrigerators 1A, 1B, and 1C is the operating flow rate, and the load flow rate, the operating flow rate, and the communication pipe 11 The flow rate relationship is shown.

図2のステップS100において、フローメータ22の検出結果を取得してステップS101に進む。フローメータ22に検出される冷水流量は、空調機7A,7B,7Cにおける負荷流量である。ステップS101では、運転中冷凍機の定格流量を合計して運転中流量を求めてステップS102に進む。   In step S100 of FIG. 2, the detection result of the flow meter 22 is acquired, and the process proceeds to step S101. The cold water flow rate detected by the flow meter 22 is a load flow rate in the air conditioners 7A, 7B, and 7C. In step S101, the rated flow rate of the operating refrigerator is totaled to obtain the operating flow rate, and the process proceeds to step S102.

ステップS102では、負荷流量と運転中流量とを比較する。比較した結果、負荷流量が運転中流量より多い場合(Yes)、ステップS103に進み、ステップS103では、運転中流量では負荷流量を満たしていない、すなわち、運転中流量では冷水流量が足りないので冷凍機増段が必要であると判断してステップS104に進む。   In step S102, the load flow rate and the operating flow rate are compared. As a result of the comparison, if the load flow rate is larger than the operating flow rate (Yes), the process proceeds to step S103. In step S103, the operating flow rate does not satisfy the load flow rate. It is determined that an additional stage is necessary, and the process proceeds to step S104.

ステップS104では、冷凍機増段前に、増段後の冷凍機の定格流量の合計を算出する。ここでは、冷凍機増段前に、増段により追加される追加冷凍機の定格流量の合計を算出する場合について説明する。次に追加する追加冷凍機は、予め記憶されている冷凍機運転の組み合わせによって把握することができる。次に追加する追加冷凍機が複数あれば、それら追加冷凍機の定格流量の合計を算出して追加流量とし、次に追加する追加冷凍機が一つであれば、その追加冷凍機の定格流量を追加流量として図3に示すステップS105に進む。   In step S104, the total rated flow rate of the chiller after the stage increase is calculated before the stage increase of the chiller. Here, a case will be described in which the sum of the rated flow rates of the additional refrigerators added by the stage increase is calculated before the stage increase of the refrigerator. The additional refrigerator to be added next can be grasped by the combination of the refrigerator operations stored in advance. If there are multiple additional refrigerators to be added next, calculate the sum of the rated flow rates of those additional refrigerators as the additional flow rate, and if there is one additional refrigerator to be added next, the rated flow rate of that additional refrigerator To the step S105 shown in FIG.

ステップS105では、下記条件式Xを満たすかを判断する。
(運転中流量+追加流量−最大連通流量)>負荷流量・・・条件式X
In step S105, it is determined whether the following conditional expression X is satisfied.
(Flow during operation + Additional flow-Maximum communication flow)> Load flow ... Conditional expression X

すなわち、ステップS101で算出した運転中流量とステップS104で算出した追加流量とを加算した流量から連通管11の最大連通流量を減算した流量と、ステップS100で検出した負荷流量とを比較する。ステップS105において、条件式Xを満たす場合(Yes)、ステップS106に進む。ステップS106では、追加流量と負荷流量とを比較する。比較した結果、追加流量が負荷流量より多い場合(Yes)、ステップS107に進んで停止優先制御を行う。すなわち、運転中冷凍機を停止した後に、切替後冷凍機である追加冷凍機の運転を開始して一連の制御を終了する。   That is, the flow rate obtained by subtracting the maximum communication flow rate of the communication pipe 11 from the flow rate obtained by adding the operating flow rate calculated in step S101 and the additional flow rate calculated in step S104 is compared with the load flow rate detected in step S100. In step S105, when the conditional expression X is satisfied (Yes), the process proceeds to step S106. In step S106, the additional flow rate is compared with the load flow rate. As a result of the comparison, when the additional flow rate is larger than the load flow rate (Yes), the process proceeds to step S107 and stop priority control is performed. That is, after stopping the freezer during operation, the operation of the additional freezer that is the post-switching freezer is started, and the series of controls is completed.

また、ステップS106において、追加流量が負荷流量以下の場合(No)、ステップS108に進んで一部継続運転制御を行う。すなわち、ステップS108では、追加流量のみでは負荷流量を賄うことができないので、運転中流量の一部を供給する必要がある。このため、運転中流量が複数の運転中冷凍機の合計である場合、運転中流量を供給する複数の運転中冷凍機のうち、(負荷流量−追加流量)の流量差を賄える運転中冷凍機の運転を継続し、それ以外の運転中冷凍機を停止する。そして、追加冷凍機の運転を開始してフローチャートを終了する。   In step S106, if the additional flow rate is equal to or lower than the load flow rate (No), the process proceeds to step S108 where partial continuous operation control is performed. That is, in step S108, since the load flow rate cannot be covered only by the additional flow rate, it is necessary to supply a part of the operation flow rate. For this reason, when the operating flow rate is the sum of a plurality of operating refrigerators, among the operating refrigerators supplying the operating flow rate, the operating refrigerator that can provide a flow rate difference of (load flow rate−additional flow rate) The chiller is stopped during other operations. Then, the operation of the additional refrigerator is started and the flowchart is ended.

ここで、冷凍機を増段する場合にステップS105における条件式Xの判断を行う理由について、図4のテーブルにおける数値を参照して説明する。図4の符号E1から符号E2への変化で示すように、フローメータ22の検出結果(負荷流量)が120m3/hから130m3/hに増大した場合、それまでに運転していた冷凍機1B,1Cの定格流量の合計である運転中流量130m3/hでは足りなくなり、冷凍機1Aを増段(追加)する必要が生じる。このとき、冷凍機1Aを追加する場合、上述した運転優先制御を行うと、符号E2で示すように、冷凍機1A,1B,1Cの3台が一時的に同時に運転される。これらの運転により、第1の送りヘッダ4には、冷凍機1A,1B,1Cの定格流量の合計300m3/hの冷水が供給される。 Here, the reason why the conditional expression X is determined in step S105 when increasing the number of refrigerators will be described with reference to the numerical values in the table of FIG. As indicated by the change from the symbol E1 to the symbol E2 in FIG. 4, when the detection result (load flow rate) of the flow meter 22 increases from 120 m 3 / h to 130 m 3 / h, the refrigerator operated until then The operating flow rate of 130 m 3 / h, which is the sum of the rated flow rates of 1B and 1C, is not sufficient, and it is necessary to increase (add) the refrigerator 1A. At this time, when the refrigerator 1A is added, if the above-described operation priority control is performed, the three refrigerators 1A, 1B, and 1C are temporarily operated simultaneously as indicated by reference numeral E2. By these operations, the first feed header 4 is supplied with chilled water having a total rated flow rate of 300 m 3 / h of the refrigerators 1A, 1B, and 1C.

空調機7A,7B,7Cにおいて必要とする負荷流量は130m3/hであるので、これ以外の冷水(流量170m3/h)は連通管11によって第2の戻りヘッダ10に戻される。しかし、連通管11の最大連通流量は170m3/hであるので、連通管11は冷水で満たされてしまって流量過多になり、冷水が第2の戻りヘッダ10に戻りきれなくなって、1次冷水ポンプ2A,2B,2Cの上流側では冷水の流量が不足する。この状態が続くと、空調システム100は、冷凍機1A,1B,1C及び1次冷水ポンプ2A,2B,2Cにおいて断水警報を発報して断水停止する可能性がある。このため、この状態を上述した条件式Xにより判断して、条件式Xを満たす場合、すなわち、流量過多の場合には、図4の符号E3で示すように、運転優先制御ではなく停止優先制御を行う。 Since the load flow rate required in the air conditioners 7A, 7B, and 7C is 130 m 3 / h, other cold water (flow rate 170 m 3 / h) is returned to the second return header 10 through the communication pipe 11. However, since the maximum communication flow rate of the communication pipe 11 is 170 m 3 / h, the communication pipe 11 is filled with cold water, resulting in an excessive flow rate, and the cold water cannot be completely returned to the second return header 10. The flow rate of cold water is insufficient on the upstream side of the cold water pumps 2A, 2B, 2C. If this state continues, the air conditioning system 100 may issue a water stop alarm in the refrigerators 1A, 1B, 1C and the primary chilled water pumps 2A, 2B, 2C and stop the water stop. For this reason, when this condition is judged by the above-mentioned conditional expression X and the conditional expression X is satisfied, that is, when the flow rate is excessive, as shown by the symbol E3 in FIG. I do.

この停止優先制御では、まず、図4の符号E3で示すように、運転中の冷凍機1A,1B,1Cを停止する。これら冷凍機1A,1B,1Cの停止によって、冷凍機1A,1B,1Cによる運転中流量は0m3/hになり、連通管流量も一時的に0m3/hとなる。そして、図4の符号E4で示すように、負荷流量を賄うために必要な冷凍機1Aのみを運転する。この停止優先制御を行うことによって、負荷流量130m3/hに対し、冷凍機1Aの定格流量170m3/hが供給され、負荷流量130m3/hを超えた冷水(流量40m3/h)は連通管11を介して第2の戻りヘッダ10に戻される。 In this stop priority control, first, the operating refrigerators 1A, 1B, and 1C are stopped as indicated by reference numeral E3 in FIG. When the refrigerators 1A, 1B, and 1C are stopped, the flow rate during operation by the refrigerators 1A, 1B, and 1C becomes 0 m 3 / h, and the communication pipe flow rate temporarily becomes 0 m 3 / h. And only the refrigerator 1A required in order to cover a load flow volume is drive | operated as shown with the code | symbol E4 of FIG. By performing this stop priority control, to the load flow 130m 3 / h, rated flow 170m 3 / h of the refrigerator 1A is supplied cold water exceeding the load flow 130m 3 / h (flow rate 40 m 3 / h) is It is returned to the second return header 10 via the communication pipe 11.

一方、ステップS102において、負荷流量が運転中流量より少ない場合(No)、現在の運転中冷凍機によって、負荷流量を供給することができているので、現在の運転中冷凍機の運転を維持して一連の制御を終了する。   On the other hand, in step S102, when the load flow rate is smaller than the operating flow rate (No), since the load flow rate can be supplied by the current operating refrigerator, the operation of the current operating refrigerator is maintained. To end the series of controls.

また、ステップS105において、条件式Xを満たさない場合(No)、つまり、断水停止する可能性が低い場合、ステップS109に進む。ステップS109では、追加流量と負荷流量とを比較する。比較した結果、追加流量が負荷流量より多い場合(Yes)、ステップS110に進み、ステップS110では、切替後冷凍機である追加冷凍機の運転を開始した所定時間後に、運転中冷凍機を停止する運転優先制御を行う。この運転優先制御では、運転中冷凍機と追加冷凍機とが所定時間の間オーバーラップして運転される。   In Step S105, when the conditional expression X is not satisfied (No), that is, when it is unlikely that the water stoppage is stopped, the process proceeds to Step S109. In step S109, the additional flow rate is compared with the load flow rate. As a result of the comparison, when the additional flow rate is higher than the load flow rate (Yes), the process proceeds to step S110, and in step S110, the operating refrigerator is stopped after a predetermined time after the operation of the additional refrigerator that is the switched refrigerator is started. Perform operation priority control. In this operation priority control, the refrigerator during operation and the additional refrigerator are operated so as to overlap for a predetermined time.

このステップS109、S110の具体的な制御について図4を参照して説明する。符号F1,F2で示すように、フローメータ22の検出結果(負荷流量)が40m3/hから50m3/hに増大した場合、運転中の冷凍機1Cの定格流量50m3/hでは足りなくなり、冷凍機1B(定格流量80m3/h)を増段する必要が生じる。このとき、追加流量は負荷流量よりも多いので、冷凍機1Bの追加後、運転中の冷凍機1Cによる冷水供給は必要なくなり、冷凍機1Cから冷凍機1Bへの切替時に、冷凍機1B,1Cは、所定時間の間オーバーラップ運転を行った後、運転中の冷凍機1Cを停止する(符号F3参照)。また、符号Gで示す部分においても、同様の運転優先制御を行う。 Specific control in steps S109 and S110 will be described with reference to FIG. As indicated by reference numerals F1 and F2, when the detection result (load flow rate) of the flow meter 22 increases from 40 m 3 / h to 50 m 3 / h, the rated flow rate 50 m 3 / h of the operating refrigerator 1C is insufficient. It is necessary to increase the stage of the refrigerator 1B (rated flow rate 80 m 3 / h). At this time, since the additional flow rate is larger than the load flow rate, after the addition of the refrigerator 1B, the cold water supply by the operating refrigerator 1C is not necessary, and the refrigerators 1B and 1C are switched when switching from the refrigerator 1C to the refrigerator 1B. After performing the overlap operation for a predetermined time, the operating refrigerator 1C is stopped (see symbol F3). Further, similar operation priority control is performed in the portion indicated by the reference symbol G.

ステップS109において、追加流量が負荷流量以下の場合(No)、ステップS111に進み、ステップS111では、運転中冷凍機の運転を継続しつつ、追加冷凍機の運転を開始する継続優先制御を行う。この継続優先制御では、運転中冷凍機に、追加冷凍機を加えて、両方の冷凍機をそれぞれ運転する。   In step S109, when the additional flow rate is equal to or lower than the load flow rate (No), the process proceeds to step S111. In step S111, continuous priority control is performed to start the operation of the additional refrigerator while continuing the operation of the operating refrigerator. In this continuous priority control, an additional refrigerator is added to the operating refrigerator and both refrigerators are operated.

このステップS109、S111の具体的な制御について図4を参照して説明する。符号H1,H2で示すように、フローメータ22の検出結果(負荷流量)が70m3/hから80m3/hに増大した場合、運転中の冷凍機1Bの定格流量である運転中流量80m3/hでは足りなくなり、冷凍機1Cを増段(追加)する必要が生じる。このとき、追加する冷凍機1Cのみでは、負荷流量を賄うことができないので、負荷流量を賄うために、冷凍機1B,1Cの2つの冷凍機を運転する必要がある。このため、運転中の冷凍機1Bに、追加する冷凍機1Cを加えて、これらの冷凍機1B,1Cによって負荷流量を超える冷水を供給する(符号H2参照)。また、符号J、Kで示す部分においても、同様の継続運転制御を行う。 Specific control in steps S109 and S111 will be described with reference to FIG. As indicated by reference numerals H1 and H2, when the detection result (load flow rate) of the flow meter 22 increases from 70 m 3 / h to 80 m 3 / h, the operating flow rate 80 m 3 that is the rated flow rate of the operating refrigerator 1B. / H becomes insufficient, and it is necessary to increase (add) the refrigerator 1C. At this time, since only the additional refrigerator 1C cannot cover the load flow rate, it is necessary to operate the two refrigerators 1B and 1C in order to cover the load flow rate. For this reason, the additional refrigerator 1C is added to the operating refrigerator 1B, and cold water exceeding the load flow rate is supplied by these refrigerators 1B and 1C (see reference H2). Further, similar continuous operation control is performed in the portions indicated by the symbols J and K.

このように図4の符号E2で示すように、冷凍機増段時に、流量過多により断水停止する可能性を条件式Xにより判断し、断水停止する可能性が高い場合には、停止優先制御を行い、第1の送りヘッダ4における流量過多を抑制して、冷凍機1A,1B,1C及び1次冷水ポンプ2A,2B,2Cの上流側における冷水流量の不足を抑制する。その結果、断水警報の発報を抑制して断水停止を未然に防止することができる。   In this way, as indicated by the symbol E2 in FIG. 4, when the stage of the refrigerator is increased, the possibility that the water supply is stopped due to excessive flow rate is determined by the conditional expression X, and when the possibility of the water supply stop is high, the stop priority control is performed. The flow rate excess in the 1st feed header 4 is suppressed, and the shortage of the cold water flow rate in the upstream of the refrigerators 1A, 1B, 1C and the primary chilled water pumps 2A, 2B, 2C is suppressed. As a result, it is possible to prevent the water stoppage by preventing the water stop alarm from being issued.

なお、熱源機器として冷凍機1A,1B,1Cを用いて冷水を空調機7A,7B,7Cに供給していたが、熱源機器としてボイラー等を用いて温水を空調機7A,7B,7Cに供給してもよい。また、本発明を1ポンプ式の空調システムに適用することも可能である。   Although cold water was supplied to the air conditioners 7A, 7B, 7C using the refrigerators 1A, 1B, 1C as the heat source equipment, hot water was supplied to the air conditioners 7A, 7B, 7C using a boiler or the like as the heat source equipment. May be. The present invention can also be applied to a one-pump air conditioning system.

次に、第2の実施形態について図5、6を参照して説明する。図1〜4を参照して説明した第1の実施形態と同様の部分には同様の符号を付して説明は省略する。   Next, a second embodiment will be described with reference to FIGS. Parts similar to those of the first embodiment described with reference to FIGS. 1 to 4 are denoted by the same reference numerals and description thereof is omitted.

第2の実施形態では、運転中冷凍機が複数台ある場合を想定している。運転中冷凍機の組み合わせは、制御装置13の記憶部13bに記憶されているので、この組み合わせに基づいて、運転中冷凍機の台数を把握することができる。   In the second embodiment, it is assumed that there are a plurality of operating refrigerators. Since the combination of operating refrigerators is stored in the storage unit 13b of the control device 13, the number of operating refrigerators can be grasped based on this combination.

第2の実施形態では、図5のステップS106までは第1の実施形態と同様であり、ステップS106において追加流量と負荷流量とを比較した結果、追加流量が負荷流量より多い場合(Yes)、ステップS120に進む。   In the second embodiment, the process up to step S106 in FIG. 5 is the same as in the first embodiment. As a result of comparing the additional flow rate and the load flow rate in step S106, the additional flow rate is greater than the load flow rate (Yes). Proceed to step S120.

ステップS120では、追加流量が負荷流量を上回っているので、ステップS108のように運転中冷凍機を継続運転する必要はないが、冷凍機の運転を切り替えるときに、一時的に全ての冷凍機が停止することにより冷水温度の維持が困難になる場合があるので、これを防止するために、運転中冷凍機の一部を継続運転する。このため、複数の運転中冷凍機のうち、一部の運転中冷凍機の運転を継続するとともに、それ以外の運転中冷凍機を停止する。また、同時に追加冷凍機の運転を開始して、ステップS121に進む。   In step S120, since the additional flow rate exceeds the load flow rate, it is not necessary to continuously operate the operating refrigerator as in step S108. However, when switching the operation of the refrigerator, all the refrigerators are temporarily turned on. Since it may be difficult to maintain the cold water temperature by stopping, a part of the refrigerator during operation is continuously operated to prevent this. For this reason, among the plurality of operating refrigerators, the operation of some of the operating refrigerators is continued, and the other operating refrigerators are stopped. At the same time, the operation of the additional refrigerator is started, and the process proceeds to step S121.

ステップS120において、複数の運転中冷凍機のうち、運転継続する冷凍機と停止する冷凍機との選択は、下記条件式Yに基づいて行う。
(運転中流量+追加流量−負荷流量)<最大連通流量・・・条件式Y
すなわち、第1の送りヘッダ4において流量過多とならないように、複数の運転中冷凍機のうち、条件式Yを満たす運転中冷凍機を停止して、それ以外の運転中冷凍機の運転を継続する。
In step S120, among the plurality of operating refrigerators, selection of a refrigerator that continues operation and a refrigerator that stops operation is performed based on the following conditional expression Y.
(Operating flow rate + additional flow rate-load flow rate) <maximum communication flow rate ··· Conditional Y
That is, among the plurality of operating refrigerators, the operating refrigerator satisfying the conditional expression Y is stopped and the operation of the other operating refrigerators is continued so as not to cause an excessive flow rate in the first feed header 4. To do.

ステップS121では、追加冷凍機の運転が開始されたことを確認して、運転中冷凍機の残りを停止する。その後、一連の制御を終了する。   In step S121, it is confirmed that the operation of the additional refrigerator is started, and the rest of the operating refrigerator is stopped. Then, a series of control is complete | finished.

このステップS120、S121の具体的な制御について図6を参照して説明する。図6の符号L1から符号L2への変化で示すように、フローメータ22の検出結果(負荷流量)が120m3/hから130m3/hに増大した場合、それまでに運転していた冷凍機1B,1Cの定格流量の合計である運転中流量130m3/hでは足りなくなり、冷凍機1Aを増段する必要が生じる。 Specific control in steps S120 and S121 will be described with reference to FIG. As the sign L1 in FIG 6 illustrates a change in the code L2, the detection result of the flow meter 22 (load flow) is 120 m 3 / If was increased to 130m 3 / h from h, the refrigerator was driving until then The operating flow rate of 130 m 3 / h, which is the sum of the rated flow rates of 1B and 1C, is not sufficient, and it is necessary to increase the number of stages of the refrigerator 1A.

このとき、条件式Yに基づいて、冷凍機1B,1Cのいずれか一方の運転を継続し、他方を停止する。図6に示す場合では、冷凍機1B,1Cのうちどちらを停止しても条件式Yを満たすので、冷凍機1Bの運転を継続し、冷凍機1Cを停止する。冷凍機1Cの停止に伴い1次冷水ポンプ2Cも停止し、この1次冷水ポンプ2Cの停止後に冷凍機1Aの運転を開始する。   At this time, based on the conditional expression Y, the operation of either one of the refrigerators 1B and 1C is continued and the other is stopped. In the case shown in FIG. 6, the condition formula Y is satisfied regardless of which of the refrigerators 1B and 1C is stopped, so the operation of the refrigerator 1B is continued and the refrigerator 1C is stopped. With the stop of the refrigerator 1C, the primary cold water pump 2C is also stopped, and after the primary cold water pump 2C is stopped, the operation of the refrigerator 1A is started.

符号L2で示すように、冷凍機1A,1Bが運転されて、負荷流量(130m3/h)に対し、冷凍機1A,1Bの定格流量の合計(250m3/h)が供給されて、これ以外の冷水(流量120m3/h)は連通管11によって第2の戻りヘッダ10に戻される。その後、符号L3で示すように、冷凍機1Bも停止されるので、負荷流量(130m3/h)に対し、冷凍機1Aの定格流量(170m3/h)が供給される。 As shown at L2, refrigerator 1A, 1B is operated, to the load flow (130m 3 / h), the refrigerator 1A, 1B sum of rated flow of (250m 3 / h) is supplied, this The cold water (flow rate 120 m 3 / h) other than is returned to the second return header 10 through the communication pipe 11. Thereafter, as indicated at L3, since the refrigerator 1B is also stopped, to the load flow (130m 3 / h), the rated flow of the refrigerator 1A (170m 3 / h) is supplied.

以上、説明したように、第2の実施形態では、条件式Yによって、複数の運転中冷凍機のうち、一部の運転中冷凍機の運転を継続するとともに、それ以外の運転中冷凍機を停止するので、冷凍機増段時の冷水温度を維持することができる。その結果、第1の送りヘッダ4における流量過多を抑制できるとともに、冷凍機増段時の冷水温度も維持できる。   As described above, in the second embodiment, according to the conditional expression Y, among the plurality of operating refrigerators, the operation of some of the operating refrigerators is continued, and the other operating refrigerators are replaced. Since it stops, the chilled water temperature at the time of refrigerating stage addition can be maintained. As a result, excessive flow rate in the first feed header 4 can be suppressed, and the chilled water temperature when the refrigerator is increased can be maintained.

次に、第3の実施形態について図7を参照して説明する。第3の実施形態では、図1における3つの冷凍機1A,1B,1Cに代えて、5つの冷凍機1D,1E,1F,1G,1Hが設けられている。冷凍機1D,1E,1F,1G,1Hは、同定格流量(100m3/h)である。また、予め運転する順序が決まっており、負荷流量に応じて、冷凍機1D,1E,1F,1G,1Hの順序で増段する。減段する場合はその逆の順序で減段する。また、連通管11の最大連通流量は、冷凍機1D,1E,1F,1G,1Hの最大の定格流量と略同じ100m3/hに設定されている。 Next, a third embodiment will be described with reference to FIG. In the third embodiment, five refrigerators 1D, 1E, 1F, 1G, and 1H are provided instead of the three refrigerators 1A, 1B, and 1C in FIG. The refrigerators 1D, 1E, 1F, 1G, and 1H have the same rated flow rate (100 m 3 / h). Further, the order of operation is determined in advance, and the stages are increased in the order of the refrigerators 1D, 1E, 1F, 1G, and 1H according to the load flow rate. When stepping down, step down in the reverse order. The maximum communication flow rate of the communication pipe 11 is set to 100 m 3 / h, which is substantially the same as the maximum rated flow rate of the refrigerators 1D, 1E, 1F, 1G, 1H.

図7の符号M1で示すように、フローメータ22の検出結果(負荷流量)が350m3/hであるとき、予め決まっている運転順序に従って冷凍機1D,1E,1F,1Gを運転して、これら冷凍機合計流量である400m3/hが供給される。その結果、負荷流量350m3/hを超えた冷水(流量50m3/h)が連通管11を介して第2の戻りヘッダ10に戻される。 As indicated by reference numeral M1 in FIG. 7, when the detection result (load flow rate) of the flow meter 22 is 350 m 3 / h, the refrigerators 1D, 1E, 1F, 1G are operated according to a predetermined operation sequence, A total flow rate of these refrigerators, 400 m 3 / h, is supplied. As a result, cold water (flow rate 50 m 3 / h) exceeding the load flow rate 350 m 3 / h is returned to the second return header 10 via the communication pipe 11.

図7の符号M2で示すように、冷凍機1Gが故障すると、冷凍機1Gの代わりに冷凍機1Hを運転する。すなわち、冷凍機1Hを冷凍機1Gの代替運転として運転する。その後、図7の符号M3で示すように、冷凍機1Gの修理が完了し、冷凍機1Gが復旧すると、冷凍機1G,1Hの両方が一時的に運転されてしまう。つまり、この場合には、冷凍機1D,1E,1F,1G,1Hの全てが運転される。その結果、負荷流量350m3/hを超えた冷水(流量150m3/h)が連通管11を介して第2の戻りヘッダ10に戻される。しかし、連通管11の最大連通流量は100m3/hであるので、連通管11は冷水で満たされてしまって流量過多になる。この状態が続くと、空調システム100は、断水警報を発報して断水停止する可能性がある。このため、冷凍機1Gを復旧するときには、図7の符号M4で示すように、冷凍機1Hと、この冷凍機1Hの1次冷水ポンプ(図示せず)との停止後、冷凍機1Gの運転を開始する。 As indicated by reference numeral M2 in FIG. 7, when the refrigerator 1G fails, the refrigerator 1H is operated instead of the refrigerator 1G. That is, the refrigerator 1H is operated as an alternative operation of the refrigerator 1G. Thereafter, as shown by the symbol M3 in FIG. 7, when the repair of the refrigerator 1G is completed and the refrigerator 1G is restored, both the refrigerators 1G and 1H are temporarily operated. That is, in this case, all of the refrigerators 1D, 1E, 1F, 1G, and 1H are operated. As a result, cold water (flow rate 150 m 3 / h) exceeding the load flow rate 350 m 3 / h is returned to the second return header 10 via the communication pipe 11. However, since the maximum communication flow rate of the communication pipe 11 is 100 m 3 / h, the communication pipe 11 is filled with cold water, resulting in an excessive flow rate. If this state continues, the air conditioning system 100 may issue a water stop alarm and stop the water stop. For this reason, when the refrigerator 1G is restored, as shown by the symbol M4 in FIG. 7, the operation of the refrigerator 1G is performed after the refrigerator 1H and the primary chilled water pump (not shown) of the refrigerator 1H are stopped. To start.

このように、冷凍機1D,1E,1F,1G,1Hが同定格流量の場合であっても、図7の符号M2、M3で示すように、冷凍機増段時に、流量過多により断水停止する可能性が高い場合を判断し、このような場合を検出したときには、増段による流量過多を抑制する。その結果、流量過多による断水警報の発報を抑制して断水停止を未然に防止することができる。   In this way, even when the refrigerators 1D, 1E, 1F, 1G, and 1H have the same rated flow rate, as shown by the symbols M2 and M3 in FIG. When the possibility is high, and when such a case is detected, an excessive flow rate due to the step increase is suppressed. As a result, it is possible to prevent the water stoppage by preventing the water stop warning from being caused by excessive flow rate.

1A,1B,1C 冷凍機、2A,2B,2C 1次冷水ポンプ、3A,3B,3C 送水管、4 第1の送りヘッダ、5A,5B,5C,5D 2次冷水ポンプ、6 第2の送りヘッダ、7A,7B,7C 空調機、8A,8B,8C 戻水管、9 第1の戻りヘッダ、10 第2の戻りヘッダ、11 連通管、12 絞り弁、13 制御装置、13a DDC、13b 記憶部、14 バイパス弁、20 送りヘッダ温度センサ、21 戻水温度センサ、22 フローメータ、23 戻りヘッダ温度センサ、100 空調システム、X,Y 条件式。

1A, 1B, 1C refrigerator, 2A, 2B, 2C primary chilled water pump, 3A, 3B, 3C water pipe, 4 first feed header, 5A, 5B, 5C, 5D secondary chilled water pump, 6 second feed Header, 7A, 7B, 7C Air conditioner, 8A, 8B, 8C Return pipe, 9 First return header, 10 Second return header, 11 Communication pipe, 12 Throttle valve, 13 Control device, 13a DDC, 13b Storage unit , 14 Bypass valve, 20 Feed header temperature sensor, 21 Return water temperature sensor, 22 Flow meter, 23 Return header temperature sensor, 100 Air conditioning system, X, Y Conditional expression.

Claims (3)

熱流体を生成する複数の熱源機器と、
複数の前記熱源機器からの前記熱流体を集合する送りヘッダと、
前記送りヘッダから前記熱流体が供給される負荷機器と、
前記負荷機器において熱交換された前記熱流体を複数の前記熱源機器に分配する戻りヘッダと、
前記負荷機器から前記戻りヘッダに戻される前記熱流体の戻り流量を検出する流量検出器と、
前記送りヘッダと前記戻りヘッダとを連通し、複数の前記熱源機器の最大定格流量と同流量を最大連通流量とする連通管と、
前記熱流体の前記戻り流量に基づいた複数の前記熱源機器の運転組み合わせを予め記憶しており、この運転組み合わせに基づいて複数の前記熱源機器の運転を切り替える制御装置と、
を備える空調システムであって、
前記制御装置は、
前記流量検出器で検出される前記戻り流量を負荷流量とし、運転中の前記熱源機器の定格流量の合計を運転中流量とし、前記熱源機器の運転切替えによって追加される前記熱源機器の定格流量の合計を追加流量としたとき、
(運転中流量+追加流量−最大連通流量)>負荷流量
の条件を満たす場合に、運転中の前記熱源機器を停止した後に、切替後の前記熱源機器の運転を開始することを特徴とする空調システム。
A plurality of heat source devices for generating a thermal fluid;
A feed header that collects the thermal fluid from a plurality of the heat source devices;
A load device to which the thermal fluid is supplied from the feed header;
A return header that distributes the thermal fluid heat-exchanged in the load device to the plurality of heat source devices;
A flow rate detector for detecting a return flow rate of the thermal fluid returned from the load device to the return header;
A communication pipe that connects the feed header and the return header, and has a maximum communication flow rate that is the same as the maximum rated flow rate of the plurality of heat source devices,
A control device that previously stores an operation combination of the plurality of heat source devices based on the return flow rate of the thermal fluid, and switches the operation of the plurality of heat source devices based on the operation combination;
An air conditioning system comprising:
The controller is
The return flow rate detected by the flow rate detector is a load flow rate, the total rated flow rate of the operating heat source device is the operating flow rate, and the rated flow rate of the heat source device is added by switching the operation of the heat source device. When the total flow is an additional flow rate,
(Operating flow rate + additional flow rate−maximum communication flow rate)> When the condition of load flow rate is satisfied, after the heat source device being operated is stopped, the operation of the heat source device after switching is started. system.
熱流体を生成する複数の熱源機器と、
複数の前記熱源機器からの前記熱流体を集合する送りヘッダと、
前記送りヘッダから前記熱流体が供給される負荷機器と、
前記負荷機器において熱交換された前記熱流体を複数の前記熱源機器に分配する戻りヘッダと、
前記負荷機器から前記戻りヘッダに戻される前記熱流体の戻り流量を検出する流量検出器と、
前記送りヘッダと前記戻りヘッダとを連通し、複数の前記熱源機器の最大定格流量と同流量を最大連通流量とする連通管と、
前記熱流体の前記戻り流量に基づいた複数の前記熱源機器の運転組み合わせを予め記憶しており、この運転組み合わせに基づいて複数の前記熱源機器の運転を切り替える制御装置と、
を備える空調システムであって、
前記制御装置は、
前記流量検出器で検出される前記戻り流量を負荷流量とし、運転中の前記熱源機器が複数台あり、複数の前記熱源機器の定格流量の合計を運転中流量とし、前記熱源機器の運転切替えによって追加される前記熱源機器の定格流量の合計を追加流量としたとき、
(運転中流量+追加流量−最大連通流量)>負荷流量
の条件を満たす場合に、
(運転中流量+追加流量−負荷流量)<最大連通流量
の条件を満たす運転中の前記熱源機器の一部を停止して、追加される前記熱源機器の運転を開始し、その後、残りの運転中の前記熱源機器を停止することを特徴とする空調システム。
A plurality of heat source devices for generating a thermal fluid;
A feed header that collects the thermal fluid from a plurality of the heat source devices;
A load device to which the thermal fluid is supplied from the feed header;
A return header that distributes the thermal fluid heat-exchanged in the load device to the plurality of heat source devices;
A flow rate detector for detecting a return flow rate of the thermal fluid returned from the load device to the return header;
A communication pipe that connects the feed header and the return header, and has a maximum communication flow rate that is the same as the maximum rated flow rate of the plurality of heat source devices,
A control device that previously stores an operation combination of the plurality of heat source devices based on the return flow rate of the thermal fluid, and switches the operation of the plurality of heat source devices based on the operation combination;
An air conditioning system comprising:
The controller is
The return flow rate detected by the flow rate detector is a load flow rate, and there are a plurality of operating heat source devices, the total of the rated flow rates of the plurality of heat source devices is the operating flow rate, and by switching the operation of the heat source device When the total rated flow rate of the heat source equipment to be added is the additional flow rate,
(Operating flow rate + additional flow rate-maximum communication flow rate)> When the condition of load flow rate is satisfied,
(In-operation flow rate + additional flow rate-load flow rate) <part of the operating heat source device that satisfies the condition of the maximum communication flow rate is stopped, and the operation of the added heat source device is started, and then the remaining operation An air conditioning system characterized in that the heat source device is stopped.
熱流体を生成する複数の熱源機器と、
複数の前記熱源機器からの前記熱流体を集合する送りヘッダと、
前記送りヘッダから前記熱流体が供給される負荷機器と、
前記負荷機器において熱交換された前記熱流体を複数の前記熱源機器に分配する戻りヘッダと、
前記負荷機器から前記戻りヘッダに戻される前記熱流体の戻り流量を検出する流量検出器と、
前記送りヘッダと前記戻りヘッダとを連通し、複数の前記熱源機器の最大定格流量と同流量を最大連通流量とする連通管と、
を備える空調システムに適用され、前記熱流体の前記戻り流量に基づいた複数の前記熱源機器の運転組み合わせに基づいて複数の前記熱源機器の運転を切り替える運転制御方法であって、
前記流量検出器で検出される前記戻り流量を負荷流量とし、運転中の前記熱源機器の定格流量の合計を運転中流量とし、前記熱源機器の運転切替えによって追加される前記熱源機器の定格流量の合計を切替後流量としたとき、
(運転中流量+追加流量−最大連通流量)>負荷流量
の条件を満たす場合に、運転中の前記熱源機器を停止した後に、切替後の前記熱源機器の運転を開始することを特徴とする運転制御方法。
A plurality of heat source devices for generating a thermal fluid;
A feed header that collects the thermal fluid from a plurality of the heat source devices;
A load device to which the thermal fluid is supplied from the feed header;
A return header that distributes the thermal fluid heat-exchanged in the load device to the plurality of heat source devices;
A flow rate detector for detecting a return flow rate of the thermal fluid returned from the load device to the return header;
A communication pipe that connects the feed header and the return header, and has a maximum communication flow rate that is the same as the maximum rated flow rate of the plurality of heat source devices,
An operation control method for switching operation of a plurality of heat source devices based on an operation combination of the plurality of heat source devices based on the return flow rate of the thermal fluid,
The return flow rate detected by the flow rate detector is a load flow rate, the total rated flow rate of the operating heat source device is the operating flow rate, and the rated flow rate of the heat source device is added by switching the operation of the heat source device. When the total is the flow rate after switching,
(Operating flow rate + additional flow rate−maximum communication flow rate)> When the condition of load flow rate is satisfied, after the heat source device in operation is stopped, the operation of the heat source device after switching is started. Control method.
JP2016149208A 2016-07-29 2016-07-29 Air conditioning system and operation control method Active JP6478951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149208A JP6478951B2 (en) 2016-07-29 2016-07-29 Air conditioning system and operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149208A JP6478951B2 (en) 2016-07-29 2016-07-29 Air conditioning system and operation control method

Publications (2)

Publication Number Publication Date
JP2018017477A true JP2018017477A (en) 2018-02-01
JP6478951B2 JP6478951B2 (en) 2019-03-06

Family

ID=61081631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149208A Active JP6478951B2 (en) 2016-07-29 2016-07-29 Air conditioning system and operation control method

Country Status (1)

Country Link
JP (1) JP6478951B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018674A (en) * 1998-06-24 2000-01-18 Yamatake Corp Controlling device of heat source apparatus
JP2000018683A (en) * 1998-06-24 2000-01-18 Yamatake Corp Controller for heat source machine
JP2004278884A (en) * 2003-03-14 2004-10-07 Mitsubishi Jisho Sekkei Inc Control device
JP2005127586A (en) * 2003-10-23 2005-05-19 Yamatake Corp Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP2006189228A (en) * 2005-01-07 2006-07-20 Osaka Gas Co Ltd Air conditioning system
JP2008070067A (en) * 2006-09-15 2008-03-27 Yamatake Corp Device and method for determining number of operating refrigerators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000018674A (en) * 1998-06-24 2000-01-18 Yamatake Corp Controlling device of heat source apparatus
JP2000018683A (en) * 1998-06-24 2000-01-18 Yamatake Corp Controller for heat source machine
JP2004278884A (en) * 2003-03-14 2004-10-07 Mitsubishi Jisho Sekkei Inc Control device
JP2005127586A (en) * 2003-10-23 2005-05-19 Yamatake Corp Primary pump type heat source variable flow rate control system and primary pump minimum flow rate securing method
JP2006189228A (en) * 2005-01-07 2006-07-20 Osaka Gas Co Ltd Air conditioning system
JP2008070067A (en) * 2006-09-15 2008-03-27 Yamatake Corp Device and method for determining number of operating refrigerators

Also Published As

Publication number Publication date
JP6478951B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
EP3115707B1 (en) Heat source device
JP6566916B2 (en) Air conditioning system and operation control method
JP5150472B2 (en) Heat pump equipment
JP6261724B2 (en) Heat pump chilling system and control method thereof
JP5622859B2 (en) Heat source equipment
JP2011257108A (en) Refrigerating air conditioner
JP6609697B2 (en) Heat source system and control method of heat source system
JP6716238B2 (en) Refrigerating and air-conditioning device, control device, and computer program
JP5240134B2 (en) Cold water circulation system
JP2013119954A (en) Heat pump hot water heater
JP2016090178A (en) Air conditioner and its renewal method
JP6616925B2 (en) Heat pump equipment
JP6603627B2 (en) Air conditioning system and operation control method
JP6186293B2 (en) Power consumption reduction device and power consumption reduction method
JP5286479B2 (en) Cold water circulation system
JP6478951B2 (en) Air conditioning system and operation control method
JP5314542B2 (en) Cold water circulation system
JP2017009269A (en) Air conditioning system
JP5195696B2 (en) Cold water circulation system
JP4838776B2 (en) Heat source control device and heat source control method
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP2006189228A (en) Air conditioning system
JP6257993B2 (en) Refrigeration system and method for controlling the number of refrigeration systems
JP2020098049A (en) Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system
JP5248461B2 (en) Air conditioning system with multiple systems of heat storage air conditioners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6478951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250