JP2018017458A - Freezing prevention system for air conditioner and control device for air conditioner - Google Patents

Freezing prevention system for air conditioner and control device for air conditioner Download PDF

Info

Publication number
JP2018017458A
JP2018017458A JP2016148089A JP2016148089A JP2018017458A JP 2018017458 A JP2018017458 A JP 2018017458A JP 2016148089 A JP2016148089 A JP 2016148089A JP 2016148089 A JP2016148089 A JP 2016148089A JP 2018017458 A JP2018017458 A JP 2018017458A
Authority
JP
Japan
Prior art keywords
cold water
flow rate
opening
temperature
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016148089A
Other languages
Japanese (ja)
Inventor
佐藤 智洋
Tomohiro Sato
智洋 佐藤
英次 根本
Eiji Nemoto
英次 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2016148089A priority Critical patent/JP2018017458A/en
Publication of JP2018017458A publication Critical patent/JP2018017458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a freezing prevention system for an air conditioner capable of preventing cold water freezing more surely than a conventional one, and a control device for an air conditioner.SOLUTION: A control device 12 calculates a first opening A1 corresponding to a cold water temperature acquired from a water temperature sensor 32 from a temperature-opening map obtained by associating the cold water temperature with the opening of the control valve 30 when the cold water temperature is less than a prescribed freezing prevention threshold temperature. Further, the control device calculates a first cold water flow amount Q1 corresponding to the cold water temperature acquired from the water temperature sensor 32 from the temperature-flow rate map obtained by associating the cold water temperature with a cold water flow rate. Then, the control device calculates a second opening A2 corresponding to the first cold water flow rate Q1 from a flow rate-opening map obtained by associating the cold water flow rate with the opening of the control valve. The control device 12 sets a larger opening between the first and second openings A1, A2 to an opening command value A* of the control valve 30.SELECTED DRAWING: Figure 2

Description

本発明は、空気調和機用の凍結防止システム及び空気調和機用の制御装置に関する。   The present invention relates to a freeze prevention system for an air conditioner and a control device for the air conditioner.

例えば中央式の空調設備には、空気調和機(空調機)が設けられる。空気調和機は外気を取り込み、加熱(加温)または冷却し、また必要に応じて除湿または加湿して調和空気を生成し、これをテナントやオフィススペース等の空調対象空間に供給する。   For example, an air conditioner (air conditioner) is provided in a central air conditioning facility. The air conditioner takes outside air, heats (warms) or cools it, and dehumidifies or humidifies it as necessary to generate conditioned air, which is supplied to a space to be air-conditioned such as a tenant or office space.

外気の冷却に当たり、空気調和機には冷水が供給される冷水コイルが設けられる。また外気の加熱に当たり、空気調和機には温水が供給される温水コイルが設けられる。これらのコイルは空気調和機の外気導入口から送気ファンまでの間に設けられる。例えば、外気導入口→冷水コイル→温水コイル→送気ファンの順に各機器が配置される。空気調和機内に導入された外気(導入外気)が各コイルを通過することで冷却または加熱される。   When the outside air is cooled, the air conditioner is provided with a cold water coil to which cold water is supplied. In addition, when heating the outside air, the air conditioner is provided with a hot water coil to which hot water is supplied. These coils are provided between the outside air inlet of the air conditioner and the air supply fan. For example, each device is arranged in the order of outside air introduction port → cold water coil → hot water coil → air supply fan. The outside air introduced into the air conditioner (introduced outside air) is cooled or heated by passing through each coil.

例えば冬季等、導入外気を専ら加熱し、冷却する必要が無い場合には、冷水コイルへの冷水供給が止められる。これにより冷水コイル内に冷水が滞留する。寒冷地における寒波の通過時等に、導入外気が冷水コイルを通過することで、冷水コイル内に滞留した冷水が凍結・膨張し、冷水コイルの破損に繋がるおそれがある。   For example, when it is not necessary to heat and cool the introduced outside air exclusively during winter, the cold water supply to the cold water coil is stopped. Thereby, cold water stays in the cold water coil. When the introduced outside air passes through the cold water coil, for example, when a cold wave passes in a cold region, the cold water staying in the cold water coil may be frozen and expanded, leading to damage to the cold water coil.

そこで例えば特許文献1では、冷水コイルに循環する冷水温度を監視し、その温度に応じて、循環水の流量を調整している。また特許文献2では、冷水コイルに流れる冷水温度が凍結防止設定温度となるように、例えば熱源設備から送出された時点での冷水温度とほぼ等しくなるように、冷水配管の制御弁の開度を調整している。   Therefore, for example, in Patent Document 1, the temperature of the cold water circulating in the cold water coil is monitored, and the flow rate of the circulating water is adjusted according to the temperature. Moreover, in patent document 2, the opening degree of the control valve of the chilled water pipe is set so that the chilled water temperature flowing through the chilled water coil becomes the freeze prevention set temperature, for example, approximately equal to the chilled water temperature at the time of being sent from the heat source equipment. It is adjusted.

実開平1−100044号公報Japanese Utility Model Publication No. 1-100044 特開2009−216321号公報JP 2009-216321 A

ところで、冷水の凍結防止の制御パラメータとして、流量のみを用いる場合、例えば冷水流量が目標流量に到達したか否かのみに基づいた凍結防止制御を行う場合は、例えば冷水を供給するポンプの吐出圧が高いと、制御弁の開度が小さくてもその流量が目標流量に到達する可能性がある。このような場合、制御弁の開度が小さいために配管内の冷水の流れが滞り、その滞留箇所で凍結が生じるおそれがある。   By the way, when only the flow rate is used as a control parameter for preventing freezing of cold water, for example, when performing anti-freezing control based only on whether or not the cold water flow rate has reached the target flow rate, for example, the discharge pressure of a pump for supplying cold water If it is high, the flow rate may reach the target flow rate even if the opening of the control valve is small. In such a case, since the opening degree of the control valve is small, the flow of cold water in the piping is stagnated, and there is a possibility that freezing occurs at the staying location.

また、冷水の凍結防止の制御パラメータとして、制御弁の開度のみを用いる場合、例えば制御弁の開度が目標開度に到達したか否かのみに基づいた凍結防止制御を行う場合、例えば冷水を供給するポンプの吐出圧が低いと、制御弁の開度が大きくても十分な流量が得られず、冷水の流れが緩慢となって凍結に至るおそれがある。   Further, when only the opening degree of the control valve is used as a control parameter for preventing freezing of cold water, for example, when anti-freezing control is performed based only on whether the opening degree of the control valve has reached the target opening degree, for example, cold water If the discharge pressure of the pump that supplies the pressure is low, a sufficient flow rate cannot be obtained even if the opening of the control valve is large, and the flow of cold water may become slow and may freeze.

上記課題に鑑みて、本発明は、従来よりも確実に冷水凍結を防止可能な、空気調和機用の凍結防止システム、及び空気調和機用の制御装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an anti-freezing system for an air conditioner and a control device for the air conditioner that can prevent cold water freezing more reliably than in the past.

本発明は、空気調和機用凍結防止システムに関する。当該システムは、送水配管から冷水が供給され、自身を通過する空気との熱交換が行われる、冷水コイルと、前記冷水コイルからの戻り冷水が送られる還水配管に設けられ、戻り冷水の流量を調整する制御弁と、前記還水配管に設けられた水温センサと、前記水温センサから取得した冷水温度に基づいて、前記制御弁の開度指令を生成する制御装置と、を備える。前記制御装置は、前記冷水温度が所定の凍結防止閾値温度未満であるときに、冷水温度と前記制御弁の開度とが関連付けられた温度−開度マップから、前記水温センサから取得した冷水温度に対応する第1の開度を求める。また、前記制御装置は、冷水温度と冷水流量とが関連付けられた温度−流量マップから、前記水温センサから取得した冷水温度に対応する第1の冷水流量を求める。また、前記制御装置は、冷水流量と前記制御弁の開度とが関連付けられた流量−開度マップから、前記第1の冷水流量に対応する第2の開度を求める。また、前記制御装置は、前記第1及び第2の開度のうち、より大きい開度を前記制御弁の開度指令に設定する。   The present invention relates to an antifreezing system for an air conditioner. The system is provided in a chilled water coil in which chilled water is supplied from a water supply pipe and heat is exchanged with the air passing through the chilled water, and a return water pipe to which chilled water returned from the chilled water coil is sent. And a control device that generates an opening degree command of the control valve based on a cold water temperature acquired from the water temperature sensor. The control device, when the cold water temperature is less than a predetermined antifreezing threshold temperature, the cold water temperature acquired from the water temperature sensor from a temperature-opening map in which the cold water temperature and the opening of the control valve are associated A first opening corresponding to is obtained. Moreover, the said control apparatus calculates | requires the 1st cold water flow rate corresponding to the cold water temperature acquired from the said water temperature sensor from the temperature-flow rate map with which the cold water temperature and the cold water flow rate were linked | related. Moreover, the said control apparatus calculates | requires the 2nd opening degree corresponding to a said 1st cold water flow rate from the flow volume-opening degree map with which the cold water flow rate and the opening degree of the said control valve were linked | related. Moreover, the said control apparatus sets the larger opening degree among the said 1st and 2nd opening degree to the opening degree command of the said control valve.

また、本発明は、空気調和機用の制御装置に関する。空気調和機は、送水配管から冷水が供給され、自身を通過する空気との熱交換が行われる、冷水コイルと、前記冷水コイルからの戻り冷水が送られる還水配管に設けられ、戻り冷水の流量を調整する制御弁と、前記還水配管に設けられた水温センサと、を備える。制御装置は、前記水温センサから取得した冷水温度に基づいて、前記制御弁の開度指令を生成する。前記制御装置は、前記冷水温度が所定の凍結防止閾値温度未満であるときに、冷水温度と前記制御弁の開度とが関連付けられた温度−開度マップから、前記水温センサから取得した冷水温度に対応する第1の開度を求める、温度ベース開度算出部と、前記水温センサが取得した冷水温度が所定の凍結防止閾値温度未満であるときに、冷水温度と冷水流量とが関連付けられた温度−流量マップから、前記水温センサから取得した冷水温度に対応する第1の冷水流量を求める、温度ベース流量算出部と、冷水流量と前記制御弁の開度とが関連付けられた流量−開度マップから、前記第1の冷水流量に対応する第2の開度を求める、流量ベース開度算出部と、前記第1及び第2の開度のうち、より大きい開度を前記制御弁の開度指令に設定する開度設定部と、を備える。   The present invention also relates to a control device for an air conditioner. The air conditioner is provided in a cold water coil in which cold water is supplied from a water supply pipe and heat exchange is performed with air passing through the air conditioner, and a return water pipe in which the return cold water from the cold water coil is sent. A control valve for adjusting the flow rate, and a water temperature sensor provided in the return water pipe. A control apparatus produces | generates the opening degree command of the said control valve based on the cold water temperature acquired from the said water temperature sensor. The control device, when the cold water temperature is less than a predetermined antifreezing threshold temperature, the cold water temperature acquired from the water temperature sensor from a temperature-opening map in which the cold water temperature and the opening of the control valve are associated When the cold water temperature acquired by the water temperature sensor is less than a predetermined freezing prevention threshold temperature, the cold water temperature and the cold water flow rate are associated with each other. A temperature-based flow rate calculation unit that obtains a first chilled water flow rate corresponding to the chilled water temperature acquired from the water temperature sensor from a temperature-flow rate map, and a flow rate-opening amount associated with the chilled water flow rate and the opening degree of the control valve. From the map, a flow rate base opening degree calculation unit for obtaining a second opening degree corresponding to the first cold water flow rate, and a larger opening degree among the first opening degree and the second opening degree is set to open the control valve. Opening set in degree command It includes a tough, a.

本発明によれば、冷水の凍結防止の制御パラメータとして、流量と制御弁の開度の両者を用いるため、どちらか一方を用いた場合と比較して、より確実に冷水凍結を防止可能となる。   According to the present invention, since both the flow rate and the opening degree of the control valve are used as the control parameters for preventing freezing of cold water, it becomes possible to prevent freezing of cold water more reliably as compared with the case where either one is used. .

本実施形態に係る空気調和機の凍結防止システムを含む。空調システムの構成を例示する図である。The freeze prevention system of the air conditioner concerning this embodiment is included. It is a figure which illustrates the composition of an air-conditioning system. コントローラの機能ブロックを例示する図である。It is a figure which illustrates the functional block of a controller. 温度−開度マップ(T−Aマップ)を例示する図である。It is a figure which illustrates a temperature-opening degree map (TA map). 温度−流量マップ(T−Qマップ)を例示する図である。It is a figure which illustrates a temperature-flow rate map (TQ map). 流量−開度マップ(Q−Aマップ)を例示する図である。It is a figure which illustrates a flow-opening degree map (QA map). 本実施形態に係る、制御弁の開度設定フローを例示する図である。It is a figure which illustrates the opening degree setting flow of a control valve based on this embodiment.

図1に、本実施形態に係る空気調和機用の凍結防止システムを例示する。このシステムには、空気調和機10及びコントローラ12(制御装置)が含まれる。なお、信号線を一点鎖線で示す。また、フィルタやフィルタ詰まりを検知する微差圧スイッチや、加湿機構等の、冷水コイル14の凍結防止との関連が低い機器については、適宜図示を省略している。   FIG. 1 illustrates a freeze prevention system for an air conditioner according to the present embodiment. This system includes an air conditioner 10 and a controller 12 (control device). The signal line is indicated by a one-dot chain line. In addition, illustrations are omitted as appropriate for devices such as a filter, a micro differential pressure switch that detects filter clogging, and a humidification mechanism that are not related to freezing prevention of the cold water coil 14.

空気調和機10は、外気を導入して調和空気を生成し、これをテナントやオフィススペース等の空調対象空間に供給する。空気調和機10は、外気側から順に、ダンパ16、ダンパモータ18、冷水コイル14、温水コイル20、及び送気ファン22を備える。   The air conditioner 10 introduces outside air to generate conditioned air, and supplies the conditioned air to an air-conditioning target space such as a tenant or office space. The air conditioner 10 includes a damper 16, a damper motor 18, a cold water coil 14, a hot water coil 20, and an air supply fan 22 in order from the outside air side.

ダンパ16は外気ダクト24の開度を調節することで、外気(OA)の導入量を調節する、いわゆる風量調節ダンパ(VD)である。ダンパ16は、例えば板部材から構成される。ダンパモータ18はダンパ16を駆動させて外気ダクト24の開度を調整する。ダンパモータ18は例えばパルスモータから構成される。   The damper 16 is a so-called air volume adjusting damper (VD) that adjusts the amount of outside air (OA) introduced by adjusting the opening of the outside air duct 24. The damper 16 is composed of a plate member, for example. The damper motor 18 adjusts the opening degree of the outside air duct 24 by driving the damper 16. The damper motor 18 is composed of, for example, a pulse motor.

冷水コイル14では、外気ダクト24から導入され自身を通過する空気(外気)との熱交換が行われる。図1に示す実施形態では、冷水コイル14と熱交換する空気として、外気に加えて、空調対象空間から戻された還気の一部が含まれる。冷水コイル14は送水配管26に接続され、図示しない熱源設備から冷水の供給を受ける。冷水コイル14を通過した冷水は、還水配管28から熱源設備に戻される。   In the cold water coil 14, heat exchange is performed with air (outside air) introduced from the outside air duct 24 and passing through the outside. In the embodiment shown in FIG. 1, the air exchanged with the cold water coil 14 includes a part of the return air returned from the air-conditioning target space in addition to the outside air. The cold water coil 14 is connected to a water supply pipe 26 and receives cold water from a heat source facility (not shown). The cold water that has passed through the cold water coil 14 is returned to the heat source facility from the return water pipe 28.

還水配管28には、当該還水配管28を流れる戻り冷水の流量を調整する制御弁30と、戻り冷水の温度を測定する水温センサ32と、戻り冷水の流量を測定する流量センサ34が設けられる。後述するように、コントローラ12は、水温センサ32及び流量センサ34の測定値に基づいて、制御弁30の開度を調整し、冷水コイル14内の冷水凍結を防ぐ。   The return water pipe 28 is provided with a control valve 30 for adjusting the flow rate of the return cold water flowing through the return water pipe 28, a water temperature sensor 32 for measuring the temperature of the return cold water, and a flow rate sensor 34 for measuring the flow rate of the return cold water. It is done. As will be described later, the controller 12 adjusts the opening degree of the control valve 30 based on the measured values of the water temperature sensor 32 and the flow rate sensor 34 to prevent the cold water in the cold water coil 14 from freezing.

温水コイル20は、冷水コイル14と同様に、外気ダクト24から導入され自身を通過する空気(外気)及び一部の還気との熱交換が行われる。温水コイル20は送水配管36に接続され、図示しない熱源設備から温水の供給を受ける。温水コイル20を通過した温水は、還水配管38から熱源設備に戻される。還水配管38には、当該還水配管38を流れる戻り温水の流量を調整する制御弁40が設けられる。   As with the cold water coil 14, the hot water coil 20 exchanges heat with air (outside air) introduced from the outside air duct 24 and passing through itself and a part of the return air. The hot water coil 20 is connected to a water supply pipe 36 and receives supply of hot water from a heat source facility (not shown). The hot water that has passed through the hot water coil 20 is returned to the heat source facility from the return water pipe 38. The return water pipe 38 is provided with a control valve 40 for adjusting the flow rate of the return warm water flowing through the return water pipe 38.

冷水コイル14と温水コイル20とは、基本的には一方のみが使用される。例えば外気を冷却させる際には冷水コイル14に冷水が供給される一方で温水コイル20への温水の供給が停止される(制御弁40閉止)。また外気を加熱(加温)させる際には温水コイル20に温水が供給される一方で冷水コイル14への冷水の供給が停止される(制御弁30閉止)。なお、導入外気の除湿を行う、いわゆるドライ運転では、目標温度を下回る温度まで外気を冷却(過冷却)させた後に加熱する再熱制御が実行される場合がある。このような場合には、冷水コイル14と温水コイル20とにそれぞれ冷水と温水とが供給される。冷却、加熱、除湿、または必要に応じて加湿された調和空気は、送気ファン22から送気ダクト42を介してそれぞれの空調対象空間に送られる。   Only one of the cold water coil 14 and the hot water coil 20 is basically used. For example, when the outside air is cooled, cold water is supplied to the cold water coil 14 while supply of hot water to the hot water coil 20 is stopped (control valve 40 is closed). Further, when heating (heating) the outside air, hot water is supplied to the hot water coil 20 while supply of cold water to the cold water coil 14 is stopped (control valve 30 is closed). In the so-called dry operation in which the introduced outside air is dehumidified, reheat control may be executed in which the outside air is cooled (supercooled) to a temperature lower than the target temperature and then heated. In such a case, cold water and hot water are supplied to the cold water coil 14 and the hot water coil 20, respectively. The conditioned air that has been cooled, heated, dehumidified, or humidified as necessary is sent from the air supply fan 22 to each air conditioning target space via the air supply duct 42.

コントローラ12は、例えばPLC(プログラマブルロジックコンピュータ)から構成される。コントローラ12は、例えばBA(Building Automation)に対応可能とするために、通信プロトコルであるBACnet(Building Automation and Control Network)に準拠するものであってよい。このBACnetに則り、コントローラ12は中央監視装置(図示せず)と通信可能となっている。   The controller 12 is composed of, for example, a PLC (programmable logic computer). The controller 12 may be compliant with BACnet (Building Automation and Control Network), which is a communication protocol, in order to be compatible with, for example, BA (Building Automation). In accordance with this BACnet, the controller 12 can communicate with a central monitoring device (not shown).

図1にはコントローラ12のハード構成図が例示されている。コントローラ12は、内部バスに接続された種々の機器を制御可能となっている。   FIG. 1 illustrates a hardware configuration diagram of the controller 12. The controller 12 can control various devices connected to the internal bus.

コントローラ12は、CPU44、メモリ46、ユーザインターフェース48(UI)、及び外部インターフェース50を備える。ユーザインターフェース48は、ユーザの情報を入力する際に用いられ、また情報を表示する際にも用いられる。   The controller 12 includes a CPU 44, a memory 46, a user interface 48 (UI), and an external interface 50. The user interface 48 is used when inputting user information, and is also used when displaying information.

外部インターフェース50は外部機器との接続やデータ通信に用いられる。具体的には、水温センサ32から、還水配管28を流れる戻り冷水温度の測定値Tmが送られる。また、流量センサ34から、還水配管28を流れる戻り冷水流量の測定値Qmが送られる。また、送気ダクト42の送気温度センサ52から、送気温度の測定値が送られる。   The external interface 50 is used for connection with external devices and data communication. Specifically, a measured value Tm of the return cold water temperature flowing through the return water pipe 28 is sent from the water temperature sensor 32. Further, the flow rate sensor 34 sends a measured value Qm of the flow rate of the return chilled water flowing through the return water pipe 28. Further, a measured value of the air supply temperature is sent from the air supply temperature sensor 52 of the air supply duct 42.

メモリ46はROM、RAM、ハードディスクドライブ(HDD)等の不揮発性及び揮発性メモリを含んで構成される。メモリ46には、CPU44を後述する機能ブロックに構成するためのプログラム、後述する制御弁30の開度設定フローを実行するためのプログラム、後述する温度−開度マップ(T−Aマップ)、温度−流量マップ(T−Qマップ)、及び流量−開度マップ(Q−Aマップ)等が記憶されている。   The memory 46 includes nonvolatile and volatile memories such as a ROM, a RAM, and a hard disk drive (HDD). The memory 46 includes a program for configuring the CPU 44 into functional blocks described later, a program for executing an opening setting flow of the control valve 30 described later, a temperature-opening map (TA map) described later, and temperature. A flow rate map (TQ map), a flow rate-opening map (QA map), and the like are stored.

CPU44は、メモリ46に記憶された開度設定フローを実行し、制御弁30の開度を設定する。設定された開度は、外部インターフェース50を介して制御弁30に送られる。また、CPU44から外部インターフェース50を介して、温水の還水配管38に設けられた制御弁40への開度指令が送られる。さらに、CPU44から外部インターフェース50を介して、ダンパモータ18に外気ダクト24の開度指令が送られる。   The CPU 44 executes the opening setting flow stored in the memory 46 and sets the opening of the control valve 30. The set opening degree is sent to the control valve 30 via the external interface 50. Further, an opening degree command is sent from the CPU 44 to the control valve 40 provided in the warm water return water pipe 38 via the external interface 50. Further, an opening degree command for the outside air duct 24 is sent from the CPU 44 to the damper motor 18 via the external interface 50.

図2に、コントローラ12の機能ブロック図が例示されている。コントローラ12は、温度ベース開度算出部54、温度ベース流量算出部56、流量ベース開度算出部58、及び開度設定部60を含んで構成される。   FIG. 2 illustrates a functional block diagram of the controller 12. The controller 12 includes a temperature base opening calculation unit 54, a temperature base flow rate calculation unit 56, a flow rate base opening calculation unit 58, and an opening setting unit 60.

温度ベース開度算出部54は、図3に例示する温度−開度マップ(T−Aマップ)を有する。温度−開度マップは、横軸に戻り冷水の温度、縦軸に制御弁30の目標開度を取り、冷水温度と制御弁30の開度とが関連付けられている。温度−開度マップは、冷水コイル14内の冷水凍結を防止するために作成されており、例えば過去データから、凍結を回避可能な制御弁30の開度が、戻り冷水の温度別にプロットされている。温度ベース開度算出部54は、水温センサ32から取得した戻り冷水温度T1(Tm=T1)を温度−開度マップにプロットし、温度T1に対応する制御弁の目標開度A1(第1の開度)を求める。   The temperature base opening calculation unit 54 has a temperature-opening map (TA map) illustrated in FIG. In the temperature-opening map, the horizontal axis represents the cold water temperature, the vertical axis represents the target opening of the control valve 30, and the cold water temperature and the opening of the control valve 30 are associated with each other. The temperature-opening degree map is created in order to prevent freezing of the cold water in the cold water coil 14, and for example, from the past data, the opening degree of the control valve 30 that can avoid freezing is plotted for each return cold water temperature. Yes. The temperature base opening calculation unit 54 plots the return chilled water temperature T1 (Tm = T1) acquired from the water temperature sensor 32 in a temperature-opening map, and sets the target opening A1 (first first) of the control valve corresponding to the temperature T1. Opening degree).

温度ベース流量算出部56は、図4に例示する温度−流量マップ(T−Qマップ)を有する。温度−流量マップは、横軸に戻り冷水の温度、縦軸に制御弁30を通過する戻り冷水の目標流量を取り、冷水温度と冷水流量とが関連付けられている。温度−流量マップは、冷水コイル14内の冷水凍結を防止するために作成されており、例えば過去データから、凍結を回避可能な戻り冷水の流量が、戻り冷水の温度別にプロットされている。温度ベース流量算出部56は、水温センサ32から取得した戻り冷水温度T1を温度−流量マップにプロットし、温度T1に対応する戻り冷水の流量Q1(第1の冷水流量)を求める。   The temperature-based flow rate calculation unit 56 has a temperature-flow rate map (TQ map) illustrated in FIG. In the temperature-flow rate map, the horizontal axis represents the temperature of the return chilled water, the vertical axis represents the target flow rate of the returned chilled water passing through the control valve 30, and the chilled water temperature and the chilled water flow rate are associated with each other. The temperature-flow rate map is created in order to prevent cold water freezing in the cold water coil 14, and for example, from the past data, the flow rate of the returning cold water that can avoid freezing is plotted for each temperature of the returning cold water. The temperature-based flow rate calculation unit 56 plots the return chilled water temperature T1 acquired from the water temperature sensor 32 in a temperature-flow rate map, and obtains the return chilled water flow rate Q1 (first chilled water flow rate) corresponding to the temperature T1.

流量ベース開度算出部58は、図5に例示する流量−開度マップ(Q−Aマップ)を有する。流量−開度マップは、横軸に戻り冷水の流量、縦軸に制御弁30の目標開度を取り、冷水流量と制御弁30の開度とが関連付けられている。流量−開度マップは、例えば過去データから、任意の流量に対応する制御弁30の開度がプロットされている。   The flow rate base opening degree calculation unit 58 has a flow rate-opening degree map (QA map) illustrated in FIG. In the flow rate-opening degree map, the horizontal axis represents the flow rate of cold water, the vertical axis represents the target opening degree of the control valve 30, and the cold water flow rate and the opening degree of the control valve 30 are associated with each other. In the flow rate-opening degree map, for example, the opening degree of the control valve 30 corresponding to an arbitrary flow rate is plotted from past data.

例えば熱源設備における運転状況や、熱源設備を共有する他の空気調和機10の稼働状況に応じて、送水配管26への冷水の吐出圧等は変動し、これに応じて流量と開度との対応関係も変動する。本実施形態では、例えば過去の実績から、所定の流量に対応する開度として最も頻度の高い開度を抽出し、これを流量−開度マップ(Q−Aマップ)にプロットしている。流量ベース開度算出部58は、温度ベース流量算出部56が求めた目標流量Q1を流量−開度マップにプロットし、流量Q1に対応する制御弁30の目標開度A2(第2の開度)を求める。   For example, the discharge pressure of cold water to the water supply pipe 26 varies depending on the operation status of the heat source facility and the operation status of other air conditioners 10 sharing the heat source facility, and the flow rate and the opening degree are changed accordingly. Correspondence also varies. In the present embodiment, for example, from the past results, the most frequent opening is extracted as the opening corresponding to the predetermined flow rate, and this is plotted in a flow rate-opening map (QA map). The flow rate base opening degree calculation unit 58 plots the target flow rate Q1 obtained by the temperature base flow rate calculation unit 56 on the flow rate-opening degree map, and the target opening degree A2 (second opening degree) of the control valve 30 corresponding to the flow rate Q1. )

開度設定部60では、温度ベース開度算出部54が求めた開度A1(第1の開度)と、温度ベース流量算出部56を経て流量ベース開度算出部58が求めた開度A2(第2の開度)を比較して、より高い値(より大きい開度)を制御弁30の開度設定値A*(開度指令)とする。   In the opening setting unit 60, the opening A1 (first opening) obtained by the temperature base opening calculation unit 54 and the opening A2 obtained by the flow rate base opening calculation unit 58 via the temperature base flow rate calculation unit 56. (Second opening) is compared, and a higher value (larger opening) is set as an opening setting value A * (opening command) of the control valve 30.

このように、単純に温度と開度との関係から求められた開度A1と、流量を加味した開度A2の、両者の要求を満足するような開度設定をすることで、開度のみに基づく開度設定や、流量のみに基づく開度設定と比較して、より確実に冷水コイル14内の冷水凍結を防止可能となる。   Thus, only the opening degree is set by setting the opening degree so as to satisfy both of the opening degree A1 obtained from the relationship between the temperature and the opening degree and the opening degree A2 in consideration of the flow rate. Compared with the opening setting based on the above and the opening setting based only on the flow rate, it is possible to prevent the cold water freezing in the cold water coil 14 more reliably.

<凍結防止フロー>
図6に、コントローラ12による開度設定フローが例示されている。コントローラ12は、水温センサ32から、還水配管28を流れる戻り冷水の温度Tmを取得する(S10)。続いてコントローラ12は、戻り冷水温度Tmが所定の閾値温度未満(凍結防止閾値温度未満)であるか否かを判定する(S12)。閾値温度は、例えば制御弁30を全閉しても冷水コイル14内で冷水が凍結しない温度であり、例えば−10℃である。
<Anti-freezing flow>
FIG. 6 illustrates an opening setting flow by the controller 12. The controller 12 acquires the temperature Tm of the return cold water flowing through the return water pipe 28 from the water temperature sensor 32 (S10). Subsequently, the controller 12 determines whether or not the return chilled water temperature Tm is lower than a predetermined threshold temperature (lower than the freeze prevention threshold temperature) (S12). The threshold temperature is a temperature at which cold water does not freeze in the cold water coil 14 even when the control valve 30 is fully closed, for example, −10 ° C.

戻り冷水温度Tmが閾値温度以上である場合には、本フローの末尾(Return)まで進み、再度フローの起点(Start)まで戻る。戻り冷水温度Tmが閾値温度未満(凍結防止閾値温度未満)である場合には、コントローラ12は還水配管28を流れる戻り冷水の流量Qmを取得する(S14)。続いてコントローラ12は、戻り冷水流量Qmが所定の閾値流量未満であるか否かを判定する(S16)。閾値流量は、例えば温度−流量マップ(図4)で設定されている温度の最低値であっても凍結に至らないような流量である。コントローラ12は、戻り冷水流量Qmが閾値流量以上である場合には、本フローの末尾(Return)まで進み、再度フローの起点まで戻る。   When the return chilled water temperature Tm is equal to or higher than the threshold temperature, the process proceeds to the end (Return) of the flow and returns to the start point (Start) of the flow again. When the return chilled water temperature Tm is less than the threshold temperature (less than the freeze prevention threshold temperature), the controller 12 acquires the flow rate Qm of the return chilled water flowing through the return water pipe 28 (S14). Subsequently, the controller 12 determines whether or not the return chilled water flow rate Qm is less than a predetermined threshold flow rate (S16). The threshold flow rate is a flow rate at which freezing does not occur even at the lowest temperature set in the temperature-flow rate map (FIG. 4), for example. When the return chilled water flow rate Qm is equal to or higher than the threshold flow rate, the controller 12 proceeds to the end of this flow (Return) and returns to the starting point of the flow again.

一方、戻り冷水流量Qmが閾値流量未満である場合には、コントローラ12は、凍結防止のため、制御弁30の開度を設定する。まず温度ベース開度算出部54が、戻り冷水温度TmとT−Aマップ(図3)に基づいて目標開度A1(第1の開度)を求める(S18)。これと並行に、温度ベース流量算出部56が、戻り冷水温度TmとT−Qマップ(図4)に基づいて目標流量Q1(第1の流量)を求める(S20)。さらに流量ベース開度算出部58が目標流量Q1とQ−Aマップ(図5)に基づいて目標開度A2(第2の開度)を求める(S22)。開度設定部60は、目標開度A1,A2のうち、より大きい開度を制御弁30の開度指令値A*に設定する(S24)。   On the other hand, when the return chilled water flow rate Qm is less than the threshold flow rate, the controller 12 sets the opening degree of the control valve 30 to prevent freezing. First, the temperature base opening calculation part 54 calculates | requires target opening A1 (1st opening) based on return cold water temperature Tm and TA map (FIG. 3) (S18). In parallel with this, the temperature-based flow rate calculation unit 56 obtains the target flow rate Q1 (first flow rate) based on the return chilled water temperature Tm and the TQ map (FIG. 4) (S20). Further, the flow rate base opening calculation unit 58 obtains the target opening A2 (second opening) based on the target flow Q1 and the QA map (FIG. 5) (S22). The opening setting unit 60 sets a larger opening of the target opening A1, A2 to the opening command value A * of the control valve 30 (S24).

なお、上述した実施形態では、冷水コイル14内の冷水の凍結防止を目的として制御弁30の開度調整を行っていたが、この形態に限らない。例えば温水コイル20内の温水供給が停止されているとき、温水コイル20内に滞留する温水が温水コイル20を通過する外気により凍結するおそれがある。そこで、温水の還水配管38にも水温センサ及び流量センサを設けるとともに、図6の開度設定フローを還水配管38の制御弁40に対して実行してもよい。   In the above-described embodiment, the opening degree of the control valve 30 is adjusted for the purpose of preventing freezing of the cold water in the cold water coil 14, but this is not a limitation. For example, when the hot water supply in the hot water coil 20 is stopped, the hot water staying in the hot water coil 20 may be frozen by the outside air passing through the hot water coil 20. Therefore, a water temperature sensor and a flow rate sensor may be provided also in the warm water return water pipe 38, and the opening setting flow in FIG. 6 may be executed for the control valve 40 of the return water pipe 38.

10 空気調和機、12 コントローラ(制御装置)、14 冷水コイル、16 ダンパ、18 ダンパモータ、20 温水コイル、22 送気ファン、24 外気ダクト、26 冷水の送水配管、28 冷水の還水配管、30 制御弁、32 水温センサ、34 流量センサ、42 送気ダクト、52 送気温度センサ、54 温度ベース開度算出部、56 温度ベース流量算出部、58 流量ベース開度算出部、60 開度設定部。   10 air conditioner, 12 controller (control device), 14 cold water coil, 16 damper, 18 damper motor, 20 hot water coil, 22 air supply fan, 24 outside air duct, 26 cold water supply pipe, 28 cold water return pipe, 30 control Valve, 32 Water temperature sensor, 34 Flow rate sensor, 42 Air supply duct, 52 Air supply temperature sensor, 54 Temperature base opening calculation unit, 56 Temperature base flow rate calculation unit, 58 Flow rate base opening calculation unit, 60 Opening setting unit

Claims (2)

送水配管から冷水が供給され、自身を通過する空気との熱交換が行われる、冷水コイルと、
前記冷水コイルからの戻り冷水が送られる還水配管に設けられ、戻り冷水の流量を調整する制御弁と、
前記還水配管に設けられた水温センサと、
前記水温センサから取得した冷水温度に基づいて、前記制御弁の開度指令を生成する制御装置と、
を備える、空気調和機用凍結防止システムであって、
前記制御装置は、前記冷水温度が所定の凍結防止閾値温度未満であるときに、
冷水温度と前記制御弁の開度とが関連付けられた温度−開度マップから、前記水温センサから取得した冷水温度に対応する第1の開度を求め、
冷水温度と冷水流量とが関連付けられた温度−流量マップから、前記水温センサから取得した冷水温度に対応する第1の冷水流量を求め、
冷水流量と前記制御弁の開度とが関連付けられた流量−開度マップから、前記第1の冷水流量に対応する第2の開度を求め、
前記第1及び第2の開度のうち、より大きい開度を前記制御弁の開度指令に設定する、
ことを特徴とする、空気調和機用凍結防止システム。
A cold water coil in which cold water is supplied from a water supply pipe and heat exchange is performed with air passing through the pipe;
A control valve that is provided in a return water pipe through which the return cold water from the cold water coil is sent, and adjusts the flow rate of the return cold water;
A water temperature sensor provided in the return water pipe;
Based on the cold water temperature acquired from the water temperature sensor, a control device that generates an opening degree command of the control valve;
An anti-freezing system for an air conditioner comprising:
The control device, when the cold water temperature is less than a predetermined freezing prevention threshold temperature,
From a temperature-opening map in which the cold water temperature and the opening degree of the control valve are associated, a first opening degree corresponding to the cold water temperature acquired from the water temperature sensor is obtained,
From the temperature-flow rate map in which the chilled water temperature and the chilled water flow rate are associated, a first chilled water flow rate corresponding to the chilled water temperature acquired from the water temperature sensor is obtained,
A second opening degree corresponding to the first cold water flow rate is obtained from a flow rate-opening degree map in which the cold water flow rate and the opening degree of the control valve are associated with each other.
Of the first and second openings, a larger opening is set in the opening instruction of the control valve.
An antifreezing system for an air conditioner characterized by the above.
送水配管から冷水が供給され、自身を通過する空気との熱交換が行われる、冷水コイルと、
前記冷水コイルからの戻り冷水が送られる還水配管に設けられ、戻り冷水の流量を調整する制御弁と、
前記還水配管に設けられた水温センサと、
を備える空気調和機に設けられ、前記水温センサから取得した冷水温度に基づいて、前記制御弁の開度指令を生成する、空気調和機用の制御装置であって、
前記冷水温度が所定の凍結防止閾値温度未満であるときに、冷水温度と前記制御弁の開度とが関連付けられた温度−開度マップから、前記水温センサから取得した冷水温度に対応する第1の開度を求める、温度ベース開度算出部と、
前記水温センサが取得した冷水温度が所定の凍結防止閾値温度未満であるときに、冷水温度と冷水流量とが関連付けられた温度−流量マップから、前記水温センサから取得した冷水温度に対応する第1の冷水流量を求める、温度ベース流量算出部と、
冷水流量と前記制御弁の開度とが関連付けられた流量−開度マップから、前記第1の冷水流量に対応する第2の開度を求める、流量ベース開度算出部と、
前記第1及び第2の開度のうち、より大きい開度を前記制御弁の開度指令に設定する開度設定部と、
を備えることを特徴とする、空気調和機用の制御装置。



A cold water coil in which cold water is supplied from a water supply pipe and heat exchange is performed with air passing through the pipe;
A control valve that is provided in a return water pipe through which the return cold water from the cold water coil is sent, and adjusts the flow rate of the return cold water;
A water temperature sensor provided in the return water pipe;
A control device for an air conditioner that generates an opening degree command of the control valve based on a cold water temperature acquired from the water temperature sensor,
When the cold water temperature is lower than a predetermined freeze prevention threshold temperature, the first corresponding to the cold water temperature acquired from the water temperature sensor from the temperature-opening map in which the cold water temperature and the opening degree of the control valve are associated with each other. A temperature-based opening calculation unit for calculating the opening of
When the chilled water temperature acquired by the water temperature sensor is less than a predetermined freezing prevention threshold temperature, the first corresponding to the chilled water temperature acquired from the water temperature sensor from the temperature-flow rate map in which the chilled water temperature and the chilled water flow rate are associated with each other. A temperature-based flow rate calculation unit for obtaining the cold water flow rate of
A flow rate-based opening degree calculation unit for obtaining a second opening degree corresponding to the first cold water flow rate from a flow rate-opening degree map in which the cold water flow rate and the opening degree of the control valve are associated;
An opening setting unit for setting a larger opening of the first and second opening to the opening command of the control valve;
A control device for an air conditioner, comprising:



JP2016148089A 2016-07-28 2016-07-28 Freezing prevention system for air conditioner and control device for air conditioner Pending JP2018017458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016148089A JP2018017458A (en) 2016-07-28 2016-07-28 Freezing prevention system for air conditioner and control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016148089A JP2018017458A (en) 2016-07-28 2016-07-28 Freezing prevention system for air conditioner and control device for air conditioner

Publications (1)

Publication Number Publication Date
JP2018017458A true JP2018017458A (en) 2018-02-01

Family

ID=61075788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016148089A Pending JP2018017458A (en) 2016-07-28 2016-07-28 Freezing prevention system for air conditioner and control device for air conditioner

Country Status (1)

Country Link
JP (1) JP2018017458A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282417A (en) * 2018-09-12 2019-01-29 珠海格力电器股份有限公司 Heat pump unit antifreeze control method and system
CN115930367A (en) * 2023-01-10 2023-04-07 宁波奥克斯电气股份有限公司 Anti-freezing control method and device for air conditioner indoor unit and air conditioner
WO2023058084A1 (en) * 2021-10-04 2023-04-13 三菱電機ビルソリューションズ株式会社 Air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216321A (en) * 2008-03-11 2009-09-24 Yamatake Corp Freezing prevention control system and freezing prevention control method
JP2012154543A (en) * 2011-01-25 2012-08-16 Taikisha Ltd Operation method of heat exchanger for cooling, and outside air adjustment system used in implementing the same
JP2015227750A (en) * 2014-05-30 2015-12-17 株式会社竹中工務店 Air conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216321A (en) * 2008-03-11 2009-09-24 Yamatake Corp Freezing prevention control system and freezing prevention control method
JP2012154543A (en) * 2011-01-25 2012-08-16 Taikisha Ltd Operation method of heat exchanger for cooling, and outside air adjustment system used in implementing the same
JP2015227750A (en) * 2014-05-30 2015-12-17 株式会社竹中工務店 Air conditioning system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109282417A (en) * 2018-09-12 2019-01-29 珠海格力电器股份有限公司 Heat pump unit antifreeze control method and system
WO2023058084A1 (en) * 2021-10-04 2023-04-13 三菱電機ビルソリューションズ株式会社 Air conditioning system
CN115930367A (en) * 2023-01-10 2023-04-07 宁波奥克斯电气股份有限公司 Anti-freezing control method and device for air conditioner indoor unit and air conditioner

Similar Documents

Publication Publication Date Title
KR101629864B1 (en) The remote control air-conditioner by central controll type with fine dust removal device
WO2008126428A1 (en) Air conditioning system controller
KR102080857B1 (en) Air conditioner and controlling method of the same
JP2014163594A (en) Flow control device and fluid circuit system
JP2009031866A (en) Flow control valve and flow control method
JP2018017458A (en) Freezing prevention system for air conditioner and control device for air conditioner
EP3910256B1 (en) Air conditioning and ventilation system
JP2009030820A (en) Air-conditioning control device and its method
JP2016008788A (en) Air conditioning system
JPWO2016067567A1 (en) Air conditioning control device, vehicle air conditioning device, and electromagnetic valve failure determination method for air conditioning control device
CN105020862A (en) Intelligent air conditioner control method with memory function, control device and intelligent air conditioner
JP2011202833A (en) Air conditioner
CN106524361A (en) Air-conditioner and starting method thereof
CN113251499A (en) Air conditioner outdoor unit, air conditioner control method, air conditioner control device, air conditioner control equipment and medium
JP6415709B2 (en) Air conditioner and indoor unit
JP2015206570A (en) Ventilation device and ventilation air conditioning system
JP6342150B2 (en) Air conditioning system
JP6250589B2 (en) Air conditioning system
WO2020136806A1 (en) Heating system
JP2018169130A (en) Air conditioning system
JP6906865B2 (en) Air conditioning system
JP2011226739A (en) Indoor air conditioning device and indoor air conditioning method
JP6710312B2 (en) Air conditioner
CN109520096A (en) Equipment and its condensation-preventing device, method
JP7199529B2 (en) Control device, air environment adjustment system, air environment adjustment method, program, and recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200616