JP2018012064A - Atomization device with back pressure function capable of stationary cleaning/sterilization - Google Patents
Atomization device with back pressure function capable of stationary cleaning/sterilization Download PDFInfo
- Publication number
- JP2018012064A JP2018012064A JP2016143082A JP2016143082A JP2018012064A JP 2018012064 A JP2018012064 A JP 2018012064A JP 2016143082 A JP2016143082 A JP 2016143082A JP 2016143082 A JP2016143082 A JP 2016143082A JP 2018012064 A JP2018012064 A JP 2018012064A
- Authority
- JP
- Japan
- Prior art keywords
- back pressure
- atomization
- nozzle
- supply
- cleaning liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000889 atomisation Methods 0.000 title claims abstract description 195
- 238000004140 cleaning Methods 0.000 title claims abstract description 115
- 230000001954 sterilising effect Effects 0.000 title claims abstract description 53
- 238000004659 sterilization and disinfection Methods 0.000 title claims abstract description 51
- 239000007788 liquid Substances 0.000 claims abstract description 72
- 239000002994 raw material Substances 0.000 claims abstract description 57
- 238000000605 extraction Methods 0.000 claims abstract description 40
- 238000002347 injection Methods 0.000 claims description 20
- 239000007924 injection Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 16
- 238000007599 discharging Methods 0.000 claims description 7
- 238000011065 in-situ storage Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 16
- 239000000919 ceramic Substances 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
Images
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
- Disintegrating Or Milling (AREA)
Abstract
Description
本発明は、流路内の定置洗浄又は定置滅菌を行うことが可能な背圧機能付き微粒化装置に関するものである。 The present invention relates to an atomization device with a back pressure function capable of performing stationary cleaning or stationary sterilization in a flow path.
本出願人は、滅菌状態の管理を行うことができる蒸気滅菌手段を備えた湿式微粒化装置(特許文献1参照)を提案している。この蒸気滅菌手段を備えた湿式微粒化装置では、流路内部空間における蒸気の凝結および滞留を抑制することによって、滅菌を効果的に行うことができる。それに加えて、定期的に滅菌条件を測定することによって、滅菌状態の管理を効果的に行うことができるものであったが、手動で蒸気を投入し、回路を蒸気滅菌できることも開示されている。 The present applicant has proposed a wet atomization apparatus (see Patent Document 1) equipped with steam sterilization means capable of managing the sterilization state. In the wet atomization apparatus equipped with this steam sterilization means, sterilization can be effectively performed by suppressing the condensation and retention of steam in the internal space of the flow path. In addition, the sterilization condition can be effectively managed by periodically measuring the sterilization conditions, but it is also disclosed that the circuit can be steam-sterilized by manually supplying steam. .
一方、高圧噴射して微粒化する湿式微粒化装置には、微粒化の促進として、高圧噴射したオリフィスの直後に背圧をかけることが有効とされている。即ち、高圧噴射したオリフィス(チャンバーノズル)の直後に2段目、または3段目、更には、4段目の背圧をかけることで微粒化がより促進される。これは、微粒化要素の一つであるキャビテーション衝撃によって微粒化が促進されるためである。 On the other hand, in a wet atomization apparatus that atomizes by high-pressure injection, it is effective to apply a back pressure immediately after the orifice subjected to high-pressure injection as an acceleration of atomization. That is, atomization is further promoted by applying a back pressure of the second stage, the third stage, or the fourth stage immediately after the orifice (chamber nozzle) subjected to high pressure injection. This is because atomization is promoted by cavitation impact which is one of atomization elements.
加えて、圧力、流量から導かれる適切な背圧をかけることで、キャビテーション気泡の破裂・崩壊を促進し、衝撃力を上げることができる利点も奏する。また、背圧の程度によって、キャビテーションを抑制(気泡を発生させない)することもでき、微粒化に疎外となる気泡を混入させない効果を得ることもできる。 In addition, by applying an appropriate back pressure derived from the pressure and flow rate, the cavitation bubbles can be ruptured / collapsed and the impact force can be increased. Further, cavitation can be suppressed (bubbles are not generated) depending on the degree of back pressure, and an effect of preventing bubbles that are alienated for atomization can be obtained.
一般的に背圧をかける方式としては、バルブ方式の弁と弁シートからなる狭い隙間を作って圧力をかける方式がある。この方式だと、消耗の激しい弁と弁シートに対して、材料の選定が硬質体であってもセラミック、超硬合金しかなく、それらにおいても、硬質粒子(金属、セラミック粒子)の微粒化では弁と弁シートの摩耗が甚大となっていた。このため、背圧をかける対象は液滴状のエマルションに限られていた。即ち、背圧機構はエマルションの乳化促進(高圧ホモジナイザー)用途に限られていた。 In general, as a method of applying back pressure, there is a method of applying pressure by creating a narrow gap formed by a valve type valve and a valve seat. With this method, even for hard-wearing valves and valve seats, there are only ceramics and cemented carbides even if the material is selected as a hard body. Even in these cases, atomization of hard particles (metal, ceramic particles) The wear of the valve and valve seat was extensive. For this reason, the object to which the back pressure is applied has been limited to the droplet emulsion. That is, the back pressure mechanism has been limited to the purpose of promoting emulsion emulsification (high pressure homogenizer).
また、粒子の微粒化および乳化を促進させる2段目、3段目の背圧であっても5〜100MPaの高圧回路となり、このため、高圧回路を維持しつつ、背圧をかける機器自体を自動で洗浄、滅菌する機構そのものがなかった。 Moreover, even if the back pressure of the second stage and the third stage that promotes the atomization and emulsification of the particles, a high pressure circuit of 5 to 100 MPa is obtained. Therefore, the device itself that applies the back pressure is maintained while maintaining the high pressure circuit. There was no automatic cleaning and sterilization mechanism.
本発明は、蒸気滅菌を行うことができ硬質粒子(金属、セラミック粒子)の微粒化に耐えうる定置洗浄・滅菌可能な背圧機能付き微粒化装置を得ることを目的とする。 An object of this invention is to obtain the atomization apparatus with a back pressure function which can be sterilized and can be sterilized and can be sterilized by steam and can withstand atomization of hard particles (metal, ceramic particles).
請求項1に記載された発明に係る定置洗浄・滅菌可能な背圧機能付き微粒化装置は、原料を加圧する増圧機と、該増圧機で加圧された原料の高圧噴流を微粒化ノズルから100〜245MPaの噴射圧で噴射して微粒化する微粒化チャンバーと、該微粒化チャンバーの排出口から排出される原料の背圧で背圧ノズルから内部に支承された硬質体に高圧噴射させて衝突させる少なくとも一つの背圧ユニットと、原料を投入するための原料供給口から前記増圧機の供給口へ原料を供給する増圧機供給流路と、前記増圧機のハウジング内部から前記微粒化ノズルまで加圧された原料を供給する微粒化ノズル供給流路と、前記微粒化チャンバーの噴射後の原料の背圧状態を維持させて前記背圧ノズルまで原料を供給する背圧ノズル供給流路と、前記背圧ユニットの硬質体に衝突された原料の背圧状態を維持させて下流に供給する背圧ユニット後続流路とを備えた微粒化装置であって、
前記原料供給口は、滅菌時には蒸気供給手段から蒸気が供給され、洗浄時には洗浄液供給手段から洗浄液が供給されるものであり、
前記微粒化チャンバー内の微粒化ノズル直前に設けられた、蒸気又は洗浄液の一部を微粒化ノズル供給流路外へ排出する微粒化チャンバー用一部抜出手段と、
前記微粒化チャンバー内の微粒化ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ノズル供給流路内に供給する微粒化チャンバー用副供給手段と、
前記背圧ユニット内の背圧ノズル直前に設けられた、蒸気又は洗浄液の一部を背圧ノズル供給流路外へ排出する背圧ユニット用一部抜出手段と、
前記背圧ユニット内の背圧ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ユニット後続流路内に供給する背圧ユニット用副供給手段とを備えたことを特徴とするものである。
The atomization apparatus with back pressure function capable of stationary cleaning and sterilization according to the invention described in claim 1 includes a pressure intensifier that pressurizes the raw material, and a high-pressure jet of the material pressurized by the pressure intensifier from the atomization nozzle A fine atomizing chamber that is atomized by an injection pressure of 100 to 245 MPa, and a high pressure jet from the back pressure nozzle to the hard body supported inside by the back pressure of the raw material discharged from the discharge port of the atomizing chamber. At least one back pressure unit to be collided, a pressure booster supply flow path for supplying the raw material from a raw material supply port for charging the raw material to the supply port of the pressure booster, and from the inside of the housing of the pressure booster to the atomization nozzle A atomization nozzle supply flow path for supplying a pressurized raw material, a back pressure nozzle supply flow path for supplying the raw material to the back pressure nozzle while maintaining the back pressure state of the raw material after injection of the atomization chamber, The back By maintaining a back pressure condition of the material struck hard body of the unit to a atomizer that includes a back-pressure unit subsequent flow path for supplying the downstream,
The raw material supply port is supplied with steam from the steam supply means during sterilization, and supplied with cleaning liquid from the cleaning liquid supply means during cleaning,
A partial extraction means for atomization chamber provided immediately before the atomization nozzle in the atomization chamber, for discharging a part of the vapor or the cleaning liquid to the outside of the atomization nozzle supply flow path;
A sub-feeding means for the atomization chamber, which is provided immediately after the atomization nozzle in the atomization chamber, and which supplies steam or a cleaning liquid into the back pressure nozzle supply channel,
A part extracting means for the back pressure unit provided immediately before the back pressure nozzle in the back pressure unit, for discharging a part of the steam or the cleaning liquid to the outside of the back pressure nozzle supply flow path;
A back pressure unit sub-supply means that is provided immediately after the back pressure nozzle in the back pressure unit and supplies steam or cleaning liquid to the back pressure unit subsequent flow path is provided. is there.
請求項2に記載された発明に係る定置洗浄・滅菌可能な背圧機能付き微粒化装置は、請求項1に記載の背圧ユニット用一部抜出手段が、配管直径の6倍以内の長さの止り穴通路に接続され、蒸気又は洗浄液の流出をオンオフするものであることを特徴とするものである。 The atomizing device with back pressure function according to the invention described in claim 2 can be used for stationary cleaning and sterilization, wherein the partial extraction means for the back pressure unit according to claim 1 has a length within 6 times the pipe diameter. It is connected to the blind hole passage and is characterized by turning on / off the outflow of steam or cleaning liquid.
請求項3に記載された発明に係る定置洗浄・滅菌可能な背圧機能付き微粒化装置は、請求項1又は2に記載の背圧ユニットが、前記微粒化チャンバーの排出口に連通され尚且つ微粒化ノズルのノズル直径より大きいノズル直径を有する背圧ノズルからの高圧噴流を内部に支承された硬質体に衝突させるものであることを特徴とするものである。 According to a third aspect of the present invention, there is provided a back-pressure function atomization device capable of stationary cleaning and sterilization, wherein the back-pressure unit according to claim 1 or 2 is communicated with an outlet of the atomization chamber, and A high-pressure jet from a back-pressure nozzle having a nozzle diameter larger than the nozzle diameter of the atomizing nozzle is made to collide with a hard body supported inside.
請求項4に記載された発明に係る定置洗浄・滅菌可能な背圧機能付き微粒化装置は、請求項3に記載の背圧ノズル直径(d2)が、微粒化ノズル直径(d1)より大きく、背圧ノズル直径(d2)/微粒化ノズル直径(d1)=1.6〜2.4であることを特徴とするものである。 The atomization apparatus with back pressure function capable of stationary cleaning and sterilization according to the invention described in claim 4 has a back pressure nozzle diameter (d2) according to claim 3 larger than the atomization nozzle diameter (d1), Back pressure nozzle diameter (d2) / atomization nozzle diameter (d1) = 1.6 to 2.4.
請求項5に記載された発明に係る定置洗浄・滅菌可能な背圧機能付き微粒化装置は、請求項1〜4の何れか1項に記載の背圧ユニット用副供給手段が、配管直径の6倍以内の長さの止り穴通路に接続され、蒸気又は洗浄液の流入をオンオフするものであることを特徴とするものである。 The atomization device with back pressure function capable of stationary cleaning and sterilization according to the invention described in claim 5 is the back pressure unit auxiliary supply means according to any one of claims 1 to 4, wherein It is connected to a blind hole passage having a length of 6 times or less, and turns on or off the inflow of steam or cleaning liquid.
請求項6に記載された発明に係る定置洗浄・滅菌可能な背圧機能付き微粒化装置は、請求項5に記載の背圧ユニット用副供給手段の止り穴流路が、前記硬質体が支承されている衝突室に流通されていることを特徴とするものである。 The atomization apparatus with back pressure function capable of stationary cleaning and sterilization according to the invention described in claim 6 is characterized in that the blind hole flow path of the sub pressure supply means for the back pressure unit according to claim 5 is supported by the hard body. It is characterized by being distributed to the collision chamber.
請求項7に記載された発明に係る定置洗浄・滅菌可能な背圧機能付き微粒化装置は、請求項1〜6の何れか1項に記載の背圧ユニットが、1つ以上連設して設けられたことを特徴とするものである。 The atomization apparatus with back pressure function capable of stationary cleaning and sterilization according to the invention described in claim 7 has one or more back pressure units according to any one of claims 1 to 6 connected in series. It is provided.
本発明は、蒸気滅菌を行うことができ硬質粒子(金属、セラミック粒子)の微粒化に耐えうる定置洗浄・滅菌可能な背圧機能付き微粒化装置を得ることができるという効果がある。より具体的には、微粒化装置自体を分解せずに、洗浄液による洗浄および蒸気による滅菌を行うことができ、作業時間を大幅に短縮することができる。 INDUSTRIAL APPLICABILITY The present invention has an effect that it is possible to obtain a atomizing device with a back pressure function that can be sterilized by steam and can withstand the atomization of hard particles (metal, ceramic particles) and can be cleaned in place and sterilized. More specifically, cleaning with a cleaning liquid and sterilization with steam can be performed without disassembling the atomization apparatus itself, and the working time can be greatly shortened.
本発明においては、原料を加圧する増圧機と、この増圧機で加圧された原料の高圧噴流を微粒化ノズルから100〜245MPaの噴射圧で噴射して微粒化する微粒化チャンバーと、この微粒化チャンバーの排出口から排出される原料の背圧で背圧ノズルから内部に支承された硬質体に高圧噴射させて衝突させる少なくとも一つの背圧ユニットと、原料を投入するための原料供給口から前記増圧機の供給口へ原料を供給する増圧機供給流路と、前記増圧機のハウジング内部から前記微粒化ノズルまで加圧された原料を供給する微粒化ノズル供給流路と、前記微粒化チャンバーの噴射後の原料の背圧状態を維持させて前記背圧ノズルまで原料を供給する背圧ノズル供給流路と、前記背圧ユニットの硬質体に衝突された原料の背圧状態を維持させて下流に供給する背圧ユニット後続流路とを備えた微粒化装置である。 In the present invention, a pressure intensifier that pressurizes the raw material, a fine atomization chamber that atomizes the high pressure jet of the raw material pressurized by the pressure intensifier from the atomization nozzle at an injection pressure of 100 to 245 MPa, and the fine particles From at least one back pressure unit that causes high pressure jetting to collide with the hard body supported inside from the back pressure nozzle by the back pressure of the material discharged from the discharge port of the gasification chamber, and from the material supply port for charging the material A pressure intensifier supply channel for supplying a raw material to a supply port of the pressure intensifier, a atomization nozzle supply channel for supplying a pressurized material from the inside of the housing of the pressure intensifier to the atomization nozzle, and the atomization chamber A back pressure nozzle supply channel for supplying the raw material to the back pressure nozzle while maintaining the back pressure state of the raw material after the injection of the material, and maintaining the back pressure state of the raw material collided with the hard body of the back pressure unit An atomizing device that includes a back-pressure unit subsequent flow path for supplying the downstream.
即ち、原料供給口から増圧機供給流路を介して増圧機に原料が供給され、増圧機で加圧された原料が微粒化ノズル供給流路を介して微粒化チャンバーに供給されて原料の高圧噴流を微粒化ノズルから100〜245MPaの噴射圧で噴射することにより微粒化される。このような微粒化チャンバーでは、微粒化を効率的に行うために、内部に硬質体を支承し、この硬質体に衝突させて微粒化を促進してもよい。微粒化チャンバーの排出口から背圧ノズル供給流路及び背圧ユニット後続流路を介して排出される原料の背圧状態を維持しつつ1段以上の背圧ユニットで更に原料の微粒化を促進する。 That is, the raw material is supplied from the raw material supply port to the pressure intensifier via the pressure intensifier supply flow path, and the raw material pressurized by the pressure intensifier is supplied to the atomization chamber via the atomization nozzle supply flow path. It atomizes by injecting a jet from the atomizing nozzle at an injection pressure of 100 to 245 MPa. In such a atomization chamber, in order to perform atomization efficiently, a hard body may be supported inside and may be collided with the hard body to promote atomization. Promoting further atomization of the raw material with one or more back pressure units while maintaining the back pressure state of the raw material discharged from the discharge port of the atomization chamber through the back pressure nozzle supply flow path and the back pressure unit subsequent flow path. To do.
本発明では、この微粒化装置において、原料供給口は、滅菌時には蒸気供給手段から蒸気が供給され、洗浄時には洗浄液供給手段から洗浄液が供給されるものであり、微粒化チャンバー内の微粒化ノズル直前に設けられた、蒸気又は洗浄液の一部を微粒化ノズル供給流路外へ排出する微粒化チャンバー用一部抜出手段と、微粒化チャンバー内の微粒化ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ノズル供給流路内に供給する微粒化チャンバー用副供給手段と、背圧ユニット内の背圧ノズル直前に設けられた、蒸気又は洗浄液の一部を背圧ノズル供給流路外へ排出する背圧ユニット用一部抜出手段と、背圧ユニット内の背圧ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ユニット後続流路内に供給する背圧ユニット用副供給手段とを備える。これにより、蒸気滅菌を行うことができ硬質粒子(金属、セラミック粒子)の微粒化に耐えうる定置洗浄・滅菌可能な背圧機能付き微粒化装置を得ることができるという効果を奏する。 According to the present invention, in this atomization apparatus, the raw material supply port is supplied with steam from the vapor supply means during sterilization, and supplied with cleaning liquid from the cleaning liquid supply means during cleaning, immediately before the atomization nozzle in the atomization chamber. A part of the atomization chamber for discharging the vapor or the cleaning liquid to the outside of the atomization nozzle supply flow path, and the vapor or the cleaning liquid provided immediately after the atomization nozzle in the atomization chamber A sub-supply means for the atomization chamber that supplies the back pressure nozzle supply flow path to the back pressure nozzle supply flow path, and a part of the steam or cleaning liquid provided immediately before the back pressure nozzle in the back pressure unit. For the back pressure unit, which is provided immediately after the back pressure nozzle in the back pressure unit and supplies steam or cleaning liquid to the back pressure unit subsequent flow path. Vice And a feeding means. As a result, there is an effect that it is possible to obtain a atomizing device with a back pressure function capable of performing steam sterilization and capable of withstanding and sterilizing that can withstand the atomization of hard particles (metal, ceramic particles).
即ち、本発明の微粒化装置では、増圧機で加圧された原料の高圧噴流を微粒化ノズルから100〜245MPaの噴射圧で内部に支承された微粒化硬質体に衝突させる微粒化チャンバーによって、原料の微粒化を行う。この際、微粒化チャンバーの排出口から排出される原料の背圧で背圧ノズルから内部に支承された硬質体に高圧噴射させて衝突させる少なくとも一つの背圧ユニットを備えるため、原料の微粒化がより促進される。 That is, in the atomization apparatus of the present invention, by the atomization chamber that collides the high-pressure jet of the raw material pressurized by the pressure intensifier with the atomization hard body supported inside with an injection pressure of 100 to 245 MPa from the atomization nozzle, The raw material is atomized. At this time, the raw material is atomized because it includes at least one back pressure unit that causes the back pressure nozzle to collide with the hard body supported inside by the back pressure of the raw material discharged from the discharge port of the atomization chamber. Is more promoted.
本発明の微粒化装置では、原料供給口に蒸気を供給する蒸気供給手段及び原料供給口に洗浄液を供給する洗浄液供給手段によって、定置洗浄CIP(Cleaning-in-Place))及び蒸気滅菌し(定置滅菌SIP(Sterilization-in-Place)を行うものである。即ち、原料供給口から洗浄液を流路内に流して洗浄し、原料供給口から蒸気を流路内に流して滅菌する。 In the atomization apparatus of the present invention, stationary cleaning CIP (Cleaning-in-Place) and steam sterilization (stationary) are performed by a steam supply means for supplying steam to the raw material supply port and a cleaning liquid supply means for supplying cleaning liquid to the raw material supply port. Sterilization SIP (Sterilization-in-Place) is performed, that is, cleaning is performed by flowing a cleaning liquid from the raw material supply port into the flow path, and sterilization is performed by flowing steam from the raw material supply port into the flow path.
即ち、微粒化チャンバー用一部抜出手段で微粒化チャンバーの微粒化ノズルの直前で洗浄液の一部を微粒化ノズル供給流路の外部へ排出し、微粒化チャンバー用副供給手段で微粒化ノズル直後で洗浄液を追加して背圧ノズル供給流路内に供給することにより、微粒化チャンバー内の洗浄を確実にする。更に、背圧ユニット用一部抜出手段で背圧ユニットの背圧ノズルの直前で洗浄液の一部を背圧ノズル供給流路の外部へ排出し、背圧ユニット用副供給手段で背圧ノズル直後で洗浄液を追加して背圧ユニット後続流路内に供給することにより、背圧ユニット内の洗浄を確実にする。 That is, a part of the cleaning liquid is discharged to the outside of the atomization nozzle supply channel immediately before the atomization nozzle of the atomization chamber by the partial extraction means for the atomization chamber, and the atomization nozzle is supplied by the auxiliary supply means for the atomization chamber. Immediately after that, the cleaning liquid is added and supplied into the back pressure nozzle supply flow path to ensure cleaning of the atomization chamber. Furthermore, a part of the cleaning liquid is discharged to the outside of the back pressure nozzle supply flow path immediately before the back pressure nozzle of the back pressure unit by the partial extraction means for the back pressure unit, and the back pressure nozzle is supplied by the back pressure unit auxiliary supply means. Immediately after that, the cleaning liquid is added and supplied into the back pressure unit subsequent flow path to ensure the cleaning of the back pressure unit.
また、微粒化チャンバー用一部抜出手段で微粒化チャンバーの微粒化ノズルの直前で蒸気の一部を微粒化ノズル供給流路の外部へ排出し、微粒化チャンバー用副供給手段で微粒化ノズル直後で蒸気を追加して背圧ノズル供給流路内に供給することにより、微粒化チャンバー内の滅菌を確実にする。更に、背圧ユニット用一部抜出手段で背圧ユニットの背圧ノズルの直前で蒸気の一部を背圧ノズル供給流路の外部へ排出し、背圧ユニット用副供給手段で背圧ノズル直後で蒸気を追加して背圧ユニット後続流路内に供給することにより、背圧ユニット内の滅菌を確実にする。 Further, a part of the vapor is discharged to the outside of the atomization nozzle supply flow path just before the atomization nozzle of the atomization chamber by the partial extraction means for the atomization chamber, and the atomization nozzle is supplied by the auxiliary supply means for the atomization chamber. Immediately after that, steam is added and supplied into the back pressure nozzle supply flow path to ensure sterilization in the atomization chamber. Further, a part of the vapor for the back pressure unit is discharged from the back pressure nozzle supply channel immediately before the back pressure nozzle of the back pressure unit by the partial extraction means for the back pressure unit, and the back pressure nozzle is discharged by the sub supply means for the back pressure unit. Immediately after that, steam is added and supplied into the back pressure unit subsequent flow path to ensure sterilization in the back pressure unit.
本発明の背圧ユニットは、微粒化チャンバーの排出口から排出される原料の背圧で背圧ノズルから内部に支承された硬質体に高圧噴射させて衝突させるものであり、少なくとも一つ以上連設して設けられればよく、より好ましくは、微粒化チャンバーの排出口に連通され尚且つ微粒化ノズルのノズル直径より大きいノズル直径を有する背圧ノズルからの高圧噴流を内部に支承された硬質体に衝突させるものである。 The back pressure unit of the present invention is a unit that causes high pressure jetting to collide with a hard body supported inside from the back pressure nozzle by the back pressure of the raw material discharged from the discharge port of the atomization chamber. More preferably, it is a hard body that is connected to the discharge port of the atomization chamber and supports a high-pressure jet from a back pressure nozzle having a nozzle diameter larger than the nozzle diameter of the atomization nozzle. It is a thing to collide with.
本発明の背圧ユニット用一部抜出手段は、背圧ユニット内の背圧ノズル直前に設けられた、蒸気又は洗浄液の一部を背圧ノズル供給流路外へ排出するものであればよく、より好ましくは、配管直径の6倍以内の長さの止り穴通路に接続され、蒸気又は洗浄液の流出をオンオフするものである。これにより、滅菌、洗浄を行う医薬装置回路における液だまりを規制する止り穴の規定である所謂「6D法則(即ち、止り穴長さは配管直径の6倍以内)」を満たすことができる利点があり、医薬であっても同様に微粒化を行うことができる。 The partial extraction means for the back pressure unit of the present invention may be any means provided in front of the back pressure nozzle in the back pressure unit and discharging a part of the steam or the cleaning liquid to the outside of the back pressure nozzle supply channel. More preferably, it is connected to a blind hole passage having a length within 6 times the diameter of the pipe to turn on or off the outflow of steam or cleaning liquid. Accordingly, there is an advantage that the so-called “6D law (that is, the length of the blind hole is within 6 times the diameter of the pipe)” that is a regulation of the blind hole that regulates the liquid pool in the circuit of the sterilization and cleaning is provided. Yes, even pharmaceuticals can be atomized in the same way.
本発明の背圧ユニット用副供給手段は、背圧ユニット内の背圧ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ユニット後続流路内に供給するものであればよく、より好ましくは、配管直径の6倍以内の長さの止り穴通路に接続され、蒸気又は洗浄液の流入をオンオフするものである。これにより、背圧ユニット用一部抜出手段と同様に、滅菌、洗浄を行う医薬装置回路における液だまりを規制する止り穴の規定である所謂「6D法則(即ち、止り穴長さは配管直径の6倍以内)」を満たすことができる利点があり、医薬であっても同様に微粒化を行うことができる。 The sub-supply unit for the back pressure unit according to the present invention may be any means provided immediately after the back pressure nozzle in the back pressure unit and supplying steam or cleaning liquid into the back pressure unit subsequent flow path. Preferably, it is connected to a blind hole passage having a length within six times the diameter of the pipe to turn on or off the inflow of steam or cleaning liquid. Thus, as with the partial extraction means for the back pressure unit, the so-called “6D law” (that is, the length of the blind hole is the pipe diameter), which is a regulation of a blind hole that regulates a liquid pool in a sterilizing and cleaning pharmaceutical device circuit. Within 6 times as much as the above) ”, and even pharmaceuticals can be similarly atomized.
尚、微粒化チャンバー用一部抜出手段と背圧ユニット用一部抜出手段と、更には、微粒化チャンバー用副供給手段と背圧ユニット用副供給手段とは、蒸気又は洗浄液を経路外又は経路内に供給するため、同じ自動オンオフバルブを用いてもよい。即ち、各チャンバーの微粒化ノズル又は背圧ノズルは、流路直径に比べて小径となっているため、蒸気又は洗浄液が通り難い。そのため、各ノズル手前に蒸気/洗浄液ドレンのための自動オンオフ弁をつける、ノズル以降の滅菌/洗浄のために、別の自動オンオフ弁を介して、蒸気/洗浄液を流入させる。 The atomization chamber partial extraction means, the back pressure unit partial extraction means, and the atomization chamber auxiliary supply means and the back pressure unit auxiliary supply means remove vapor or cleaning liquid from the path. Alternatively, the same automatic on / off valve may be used to feed into the path. That is, since the atomization nozzle or the back pressure nozzle of each chamber has a smaller diameter than the flow path diameter, it is difficult for vapor or cleaning liquid to pass through. Therefore, an automatic on / off valve for the steam / cleaning liquid drain is provided in front of each nozzle, and the steam / cleaning liquid is allowed to flow through another automatic on / off valve for sterilization / cleaning after the nozzle.
それぞれの自動オンオフ弁は、高圧微粒化のときは両方とも閉じ、滅菌又は洗浄のときは両バルブとも開け蒸気又は洗浄液を流す。このため、ノズル内の極細通路への蒸気滅菌は、6Dの規定内とすることで、内部に蒸気/洗浄液が行き渡り、定置滅菌及び定置洗浄が可能となった。 The automatic on / off valves are both closed during high-pressure atomization, and both valves are opened during sterilization or cleaning to flow steam or cleaning liquid. For this reason, the steam sterilization to the ultrafine passage in the nozzle is within the regulation of 6D, so that the steam / cleaning liquid is spread inside, and the stationary sterilization and the stationary cleaning are possible.
この背圧ユニット用副供給手段の止り穴流路としては、好ましくは硬質体が支承されている衝突室に流通されている。これにより、洗浄液及び蒸気が硬質体に良好に触れることができ、洗浄及び滅菌が良好に行われる。 The blind hole flow path of the sub pressure supply unit for the back pressure unit is preferably distributed in a collision chamber in which a hard body is supported. Thereby, a washing | cleaning liquid and vapor | steam can touch a hard body favorably, and washing | cleaning and sterilization are performed favorably.
更に、背圧ユニットの硬質体としては、背圧ユニットの内部に支承され、背圧ノズルからの高圧噴流が衝突されるものであり、より好ましくは、背圧ユニット本体内で背圧ノズルの噴射流体の軸線から偏心し、前記衝突室内で回転可能に支承される球状硬質体である。これにより、高速噴流の衝突によって常に回転するため、集中的な損傷が軽減され、耐久性が向上する利点が得られる。 Furthermore, the hard body of the back pressure unit is supported inside the back pressure unit and is collided with a high pressure jet from the back pressure nozzle. More preferably, the back pressure unit is injected in the back pressure unit body. It is a spherical hard body that is eccentric from the fluid axis and is rotatably supported in the collision chamber. Thereby, since it always rotates by the collision of a high-speed jet, the intensive damage is reduced and the advantage that durability is improved is obtained.
本発明の背圧ユニットは、微粒化ノズルに対して、更に背圧をかけることによって微粒化を促進する。このため、背圧ノズルの直径は微粒化ノズルの直径よりも大きくすることにより、背圧を有効に利用することができる。より具体的には、0.16〜1.2mmの背圧ノズル直径(d2)に対して、0.1〜0.5mmの微粒化ノズル直径(d1)よりも大きく、背圧ノズル直径(d2)/微粒化ノズル直径(d1)=1.6〜2.4である。これにより、100〜245MPaの噴射圧で内部に支承された微粒化硬質体に衝突させる微粒化ノズルに対して、背圧ノズルでは、8〜20MPaの噴射圧となる。 The back pressure unit of the present invention promotes atomization by further applying back pressure to the atomization nozzle. For this reason, the back pressure can be effectively utilized by making the diameter of the back pressure nozzle larger than the diameter of the atomizing nozzle. More specifically, the back pressure nozzle diameter (d2) is larger than the atomization nozzle diameter (d1) of 0.1 to 0.5 mm with respect to the back pressure nozzle diameter (d2) of 0.16 to 1.2 mm. ) / Atomization nozzle diameter (d1) = 1.6 to 2.4. Thereby, with respect to the atomization nozzle collided with the atomization hard body supported inside with the injection pressure of 100 to 245 MPa, the back pressure nozzle has an injection pressure of 8 to 20 MPa.
本発明の背圧ユニットは1つ以上接続して複数段としてもよい。即ち、本発明の背圧ユニットは1つ以上、2段、3段と連設されることにより、微粒化がより促進される。具体的には、後続の背圧ユニットにも、背圧ユニット内の背圧ノズル直前に設けられた、蒸気又は洗浄液の一部を背圧ノズル供給流路外へ排出する背圧ユニット用一部抜出手段と、背圧ユニット内の背圧ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ユニット後続流路内に供給する背圧ユニット用副供給手段とを備える。 One or more back pressure units of the present invention may be connected to form a plurality of stages. That is, atomization is further promoted by connecting one or more back pressure units of the present invention in two or three stages. Specifically, a part for the back pressure unit that is provided immediately before the back pressure nozzle in the back pressure unit in the subsequent back pressure unit and discharges a part of the steam or the cleaning liquid to the outside of the back pressure nozzle supply channel. Extraction means, and back pressure unit sub supply means that is provided immediately after the back pressure nozzle in the back pressure unit and supplies steam or cleaning liquid to the back pressure unit subsequent flow path.
本発明の微粒化チャンバーについても、背圧ユニットと同様に、オンオフ弁や副供給手段について、配管直径の6倍以内の長さの止り穴通路に接続され、蒸気又は洗浄液の流出をオンオフするものとしたり、高圧噴流を内部に支承された硬質体に衝突させるものであったり、止り穴流路は、前記硬質体が支承されている衝突室に流通されていたりしてもよい。 Also in the atomization chamber of the present invention, as with the back pressure unit, the on / off valve and the auxiliary supply means are connected to a blind hole passage having a length within 6 times the diameter of the pipe to turn on or off the outflow of steam or cleaning liquid. Alternatively, the high pressure jet may collide with a hard body supported inside, or the blind hole flow channel may be circulated to a collision chamber where the hard body is supported.
本発明の微粒化チャンバーと背圧ユニットとの違いとしては、(1) 背圧ノズルの直径が微粒化ノズルの直径よりも大きいことが挙げられる。微粒化ノズルの噴射圧P1、背圧ノズルの噴射圧P2、微粒化ノズル直径d1、背圧ノズル直径d2とすると、次式が成り立つ。
(d2/d1)4=P1/P2
P2の実情は、おおよそ、P2=8〜20MPa、P1はSBS(スターバースト)の場合、150〜245MPaなので、P1/P2=7〜30、現実的には10〜24となる。つまり、d2/d1=1.6〜2.4、現実的には1.7〜2.2となり、例えば、d1=0.17、d2=0.3より、d2/d1=1.76となる。
The difference between the atomization chamber of the present invention and the back pressure unit is that (1) the diameter of the back pressure nozzle is larger than the diameter of the atomization nozzle. When the atomization nozzle injection pressure P1, the back pressure nozzle injection pressure P2, the atomization nozzle diameter d1, and the back pressure nozzle diameter d2, the following equation holds.
(D2 / d1) 4 = P1 / P2
The actual situation of P2 is approximately P2 = 8 to 20 MPa, and P1 is 150 to 245 MPa in the case of SBS (starburst), so P1 / P2 = 7 to 30, and practically 10 to 24. That is, d2 / d1 = 1.6 to 2.4, and practically 1.7 to 2.2. For example, from d1 = 0.17 and d2 = 0.3, d2 / d1 = 1.76. Become.
他の相違点としては、(2) ノズルと硬質体との距離の相違が挙げられる。微粒化チャンバーでは、微粒化衝撃力を期待してのボールヘの衝突を考える。つまり、距離が近ければ近いほど有効となる。一方、背圧ユニットでは、単なる噴流のキャッチャーなので、摩耗しない程度の距離を保つことが優先となる。 Other differences include (2) the difference in the distance between the nozzle and the hard body. In the atomization chamber, consider collision with the ball in anticipation of atomization impact force. In other words, the closer the distance, the more effective. On the other hand, since the back pressure unit is a simple jet catcher, it is a priority to keep a distance that does not wear.
更に他の相違点としては、(3) オリフィスの形状の相違である。基本的に同じ形状のものを使用してもよいが、違いを出すとすれば、微粒化ノズルは、微粒化衝撃力が必要なため、なるべく噴流速度が落ちないように噴流をストレートに噴射する形状となる。一方、背圧ノズルは、噴流流れ形状は関係ないので、どのような形状でも可。むしろボールに衝撃を与えないよう、噴流が散るオリフィス形状が良い。 Still another difference is (3) the difference in the shape of the orifice. Basically the same shape may be used, but if it makes a difference, the atomization nozzle needs an atomization impact force, so the jet flow is jetted straight so as not to reduce the jet velocity as much as possible It becomes a shape. On the other hand, the back pressure nozzle is not related to the shape of the jet flow, so any shape is possible. Rather, an orifice shape in which the jet is scattered is good so as not to give an impact to the ball.
他の相違点としては、(4) 硬質体の選択がある。背圧ユニットの硬質体は、微粒化チャンバーよりも衝撃力が小さいので、小さくすることができ、材質も衝撃に弱い者を選択することもできるし、微粒化チャンバーと同じ材質としてもよい。また、(5) 背圧ユニットは、P1/P2=7〜30、現実に近くは10〜24と低いので、耐圧・摩耗対策構造を単純化することができる。 Other differences include (4) selection of hard bodies. Since the hard body of the back pressure unit has a smaller impact force than the atomization chamber, it can be made smaller, and the material of the back pressure unit can be selected from those who are vulnerable to impact, or the same material as the atomization chamber may be used. Further, (5) the back pressure unit is as low as P1 / P2 = 7 to 30 and close to 10 to 24 in reality, so that the pressure resistance / wear countermeasure structure can be simplified.
図1は本発明の微粒化装置の一実施例の回路図であり、微粒化状態の回路図を示す説明図である。図2は図1に示した微粒化状態の微粒化チャンバーと背圧ユニットの構成を示す説明図である。図3は図1に示した微粒化状態の増圧機の説明図である。図4は図1に示した背圧ユニットの構成を示す簡略説明図である。図5は図1に示した背圧ユニットの構成を示す説明図である。図6は別の背圧ユニットの構成を示す説明図である。図7は図1の洗浄状態の回路図を示す説明図である。図8は図7に示した洗浄状態の微粒化チャンバーと背圧ユニットの構成を示す説明図である。図9は図7に示した洗浄状態の増圧機の構成を示す説明図である。図10は図1の滅菌状態の回路図を示す説明図である。図11は図10に示した滅菌状態の増圧機の構成を示す説明図である。 FIG. 1 is a circuit diagram of an embodiment of the atomization apparatus of the present invention, and is an explanatory diagram showing a circuit diagram in the atomization state. FIG. 2 is an explanatory diagram showing the configuration of the atomization chamber and the back pressure unit in the atomization state shown in FIG. FIG. 3 is an explanatory diagram of the pressure booster in the atomized state shown in FIG. FIG. 4 is a simplified explanatory diagram showing the configuration of the back pressure unit shown in FIG. FIG. 5 is an explanatory view showing the configuration of the back pressure unit shown in FIG. FIG. 6 is an explanatory view showing the configuration of another back pressure unit. FIG. 7 is an explanatory diagram showing a circuit diagram of the cleaning state of FIG. FIG. 8 is an explanatory view showing the structure of the atomization chamber and back pressure unit in the cleaning state shown in FIG. FIG. 9 is an explanatory diagram showing the configuration of the pressure booster in the cleaning state shown in FIG. FIG. 10 is an explanatory diagram showing a circuit diagram of the sterilized state of FIG. FIG. 11 is an explanatory diagram showing the configuration of the sterilized pressure booster shown in FIG.
図1に示す通り、本実施例の微粒化装置10は、主な機器として、原料を加圧する2基の増圧機20と、この増圧機20で加圧された原料の高圧噴流を100〜245MPaの噴射圧で噴射させて微粒化する微粒化チャンバー30と、この微粒化チャンバー30の排出口から排出される原料の背圧で背圧ノズルから内部に支承された硬質体に高圧噴流を衝突させる少なくとも一つの背圧ユニット40と、背圧ユニット40を経た原料の熱を回収する熱交換器50とを備える。
As shown in FIG. 1, the
個々の機器は、流路で連通されている。具体的には、原料を投入するための原料供給口11から増圧機20の供給口へ原料を供給する増圧機供給流路12と、増圧機20のハウジング内部から微粒化チャンバー30内部の微粒化ノズルまで加圧された原料を供給する微粒化ノズル供給流路13と、微粒化チャンバー30の微粒化ノズルから噴射された原料の背圧状態を維持させて前記背圧ユニット40の背圧ノズルまで原料を供給する背圧ノズル供給流路14と、背圧ユニット40内部の硬質体に衝突された原料の背圧状態を維持させて下流に供給する背圧ユニット後続流路15とを備える。
Individual devices communicate with each other through a flow path. Specifically, the pressure booster
図2及び図8に示す通り、微粒化チャンバー30と背圧ユニット40とが配設されている。微粒化チャンバー30は、内部の衝突室31内に微粒化硬質体(図示せず)が支承され、この硬質体に図3に示された増圧機20で加圧された原料を微粒化ノズル32で高圧の噴射圧で噴射させて衝突させる。具体的には、微粒化ノズル32のノズル直径は0.1〜0.5mmであり、100〜245MPaの噴射圧で噴射させる。尚、増圧機20は2基の増圧機20のシリンダ21内を摺動するプランジャ24を半周期ずらして駆動することにより、2組のチェック弁22,23によって、常に微粒化ノズル供給流路13に高圧力で原料が加圧される。また、微粒化チャンバー30の直前の微粒化ノズル供給流路13には高圧用の圧力センサー38が装着され、背圧ユニット40の直前の背圧ノズル供給流路14には背圧用の圧力センサー48が装着されている。
As shown in FIGS. 2 and 8, the
この微粒化チャンバー30には、微粒化ノズル32の直前には微粒化装置10の洗浄中又は滅菌中に微粒化ノズル供給流路13内を流れる蒸気又は洗浄液の一部を微粒化ノズル供給流路13外へ排出する微粒化チャンバー用一部抜出手段としての抜出オンオフ弁33が設けられている。更に、微粒化ノズル32の直後には微粒化装置10の洗浄中又は滅菌中に抜出オンオフ弁33で排出された蒸気又は洗浄液を補うように追加して背圧ノズル供給流路14内に供給する微粒化チャンバー用副供給手段としての副供給オンオフ弁34が設けられている。
In the
本実施例の微粒化装置10では、原料を微粒化する場合には、微粒化チャンバー30の抜出オンオフ弁33及び副供給オンオフ弁34と、背圧ユニット40の抜出オンオフ弁43及び副供給オンオフ弁34とを閉塞し、供給バルブ16も閉塞する。加えて、増圧機20のプランジャ24をシリンダ21内を摺動可能に設置する。増圧機20のシリンダ21内を摺動するプランジャ24を半周期ずらして駆動することにより、チェック弁22,23の開閉によって、原料が原料供給口11から供給され、増圧機にてMAX245MPaに加圧され、微粒化チャンバー30にて微粒化される。その後、背圧ユニット40にて微粒化が促進され、熱交換器50を通りより排出される。
In the
具体的には、微粒化ノズル32の直前の微粒化ノズル供給流路13から止り穴通路35が分岐され、その通路の端部に抜出オンオフ弁33が設けられている。この止り穴通路35は、止り穴通路35の直径の6倍以内の分岐長さである。また、微粒化ノズル32の直後の背圧ノズル供給流路14から別の止り穴通路36が分岐され、その通路の端部に微粒化チャンバー用副供給手段の副供給オンオフ弁34が設けられている。この止り穴通路36も止り穴通路35の直径の6倍以内の分岐長さである。これにより、定置洗浄及び定置滅菌であっても、滅菌、洗浄を行う医薬装置回路における液だまりを規制する止り穴の規定である所謂「6D法則(即ち、止り穴長さは配管直径の6倍以内)」を満たすことができる利点があり、医薬であっても同様に微粒化を行うことができる。
Specifically, a
図4及び図5に示す通り、背圧ユニット40は、微粒化チャンバー30と同様に、内部の衝突室41内にセラミックボール製の背圧硬質体47が支承され、この硬質体47に微粒化チャンバー30の排出口から排出される原料の背圧で背圧ノズル42から噴射させて衝突させる。具体的には、背圧ノズル42のノズル直径は0.16〜1.2mmであり、おおよそ8〜20MPaの噴射圧で噴射させる。
As shown in FIGS. 4 and 5, in the
この背圧ユニット40には、微粒化チャンバー30と同様に、背圧ノズル42の直前には微粒化装置10の洗浄中又は滅菌中に背圧ノズル供給流路14内を流れる蒸気又は洗浄液の一部を背圧ノズル供給流路14外へ排出する背圧ユニット用一部抜出手段としての抜出オンオフ弁43が設けられている。更に、背圧ノズル42の直後には微粒化装置10の洗浄中又は滅菌中に抜出オンオフ弁43で排出された蒸気又は洗浄液を補うように追加して背圧ノズル後続流路15内に供給する背圧ユニット用副供給手段としての副供給オンオフ弁44が設けられている。
Similar to the
具体的には、背圧ノズル42の直前の背圧ノズル供給流路14から止り穴通路45が分岐され、その通路の端部に抜出オンオフ弁43が設けられている。この止り穴通路45は、止り穴通路45の直径の6倍以内の分岐長さである。また、背圧ノズル42の直後の背圧ノズル後続流路15から止り穴通路46が分岐され、その通路の端部に背圧ユニット用副供給手段の副供給オンオフ弁44が設けられている。この止り穴通路46も止り穴通路45の直径の6倍以内の分岐長さである。これにより、定置洗浄及び定置滅菌であっても、滅菌、洗浄を行う医薬装置回路における液だまりを規制する止り穴の規定である所謂「6D法則(即ち、止り穴長さは配管直径の6倍以内)」を満たすことができる利点があり、医薬であっても同様に微粒化を行うことができる。
Specifically, a
これらの抜出オンオフ弁43及び副供給オンオフ弁44は、MAX100MPaのシールが可能であり、Oリングシールを用いる必要がないため、医薬品対応装置に使用し易く、121℃の蒸気滅菌対応も可能となる。更に、背圧ノズルによるオリフィスの抵抗と衝突用セラミックボールの組み合わせを複数段(3段など)連設させることで、噴射圧から最終出口圧まで徐々に減圧し、気泡の発生の抑制と耐摩耗を得ることができる。背圧ユニットを2段、3段と複数組み合わせる場合は、背圧ユニットの下流に、同様の抜出オンオフ弁43及び副供給オンオフ弁44を備えた別の背圧ユニットを追加すればよい。
The extraction on / off
尚、背圧ユニット40の副供給オンオフ弁44が設けられる止り穴通路46については、背圧ノズル直後に設けられればよいが、好ましくは、図6に示す背圧ユニット60では、背圧硬質体67が支承されている衝突室61に流通されてもよい。即ち、背圧ノズル62の直前には蒸気又は洗浄液の一部を背圧ノズル供給流路14外へ排出する抜出オンオフ弁63が設けられ、背圧硬質体67が支承されている衝突室61に蒸気又は洗浄液を補うように追加して背圧ノズル後続流路15内に供給する副供給オンオフ弁64の供給口が設けられている。
The
本実施例の微粒化装置10においては、定置洗浄及び定置滅菌を行うことが可能となっている。図7及び図8に示す通り、定置洗浄時には、微粒化チャンバー30の抜出オンオフ弁33及び副供給オンオフ弁34と、背圧ユニット40の抜出オンオフ弁43及び副供給オンオフ弁44とを開放し、副供給オンオフ弁34,44とに洗浄液を供給する供給バルブ16を開放する。加えて、図9に示す通り、増圧機20のプランジャ24を超高圧シール部から外れるまで後退させ、プランジャ24が外れたシリンダサポート25に連通する排出路18へ至るスチームドレンE、Fを通過させる。
In the
洗浄液は、原料供給口11より供給され、増圧機20へ流れる。洗浄液は、増圧機へ流れる途中、供給バルブ16より分岐され、副供給オンオフ弁34,44へ流れる。増圧機20へ流れた洗浄液は、増圧機20の供給口側チェック弁22を通り、プランジャ側へ分岐しつつ流れ、吐出口側チェック弁23から下流に流れる。プランジャ側へ流れた洗浄液は、シリンダサポート25を通過して個々の増圧機20のスチームドレンE又はスチームドレンFを通過しても排出される。この流れにより、増圧機20が洗浄される。
The cleaning liquid is supplied from the raw
増圧機20を経て微粒化ノズル供給流路13を流れる洗浄液は、微粒化チャンバー30へ入り、一部は止り穴通路35を経て抜出オンオフ弁33を通り、スチームドレンDを通過し、排出路18で排出される。他の一部は微粒化ノズル32を介して、下流側の衝突室31に流れる。供給バルブ16より分岐され、副供給オンオフ弁34へ流れた洗浄液は止り穴通路36を経て、微粒化ノズル下流で下流側の衝突室31を通った洗浄液と合流して背圧ノズル供給流路14を経て下流側の背圧ユニット40ヘ流れる。
The cleaning liquid flowing through the atomization nozzle
背圧ユニット40では洗浄液の一部が止り穴通路45を経て抜出オンオフ弁43を通り、スチームドレンCを通過し、排出路18で排出される。他の一部は背圧ノズル42を介して、下流側の衝突室41に流れる。供給バルブ16より分岐され、副供給オンオフ弁44へ流れた洗浄液は止り穴通路46を経て、微粒化ノズル下流で下流側の衝突室41を通った洗浄液と合流して背圧ユニット後続流路15を流れ、熱交換器50を通過して排出される。これらの洗浄液によって本実施例の微粒化装置10は良好に洗浄される。
In the
図10に示す通り、定置滅菌時には定置洗浄と同じように、微粒化チャンバー30の抜出オンオフ弁33及び副供給オンオフ弁34と、背圧ユニット40の抜出オンオフ弁43及び副供給オンオフ弁44とを開放し、副供給オンオフ弁34,44とに蒸気を供給する供給バルブ16を開放する。加えて、図11に示す通り、増圧機20のプランジャ24を超高圧シール部から外れるまで後退させる。
As shown in FIG. 10, the extraction on / off
蒸気は、原料供給口11より供給され、増圧機20へ流れる。蒸気は、増圧機20へ流れる途中、供給バルブ16より分岐され、副供給オンオフ弁34,44へ流れる。増圧機20へ流れた蒸気は、増圧機20の供給口側チェック弁22を通り、プランジャ側へ分岐しつつ流れ、吐出口側チェック弁23から下流に流れる。プランジャ側へ流れた蒸気は、シリンダサポートに到達する。シリンダサポートの下流には、高温(121℃以上)のスチームのみを通さず、低温の空気や低温の蒸気および蒸気が冷えることにより発生した凝縮水を通すスチームドレンE,Fが設置されていおり、低温の空気や低温の蒸気および蒸気が冷えることにより発生した凝縮水は、スチームドレンE,Fを通過し、排出路18から排出される。
The steam is supplied from the raw
増圧機20を経て微粒化ノズル供給流路13を流れる蒸気は、微粒化チャンバー30へ入り、一部は止り穴通路35を経て抜出オンオフ弁33を通り、スチームドレンDを通過し、排出路18で排出される。他の一部は微粒化ノズル32を介して、下流側の衝突室31に流れる。供給バルブ16より分岐され、副供給オンオフ弁34へ流れた蒸気は止り穴通路36を経て、微粒化ノズル下流で下流側の衝突室31を通った蒸気と合流して背圧ノズル供給流路14を経て下流側の背圧ユニット40ヘ流れる。
Vapor flowing through the atomization nozzle
背圧ユニット40では蒸気の一部が止り穴通路45を経て抜出オンオフ弁43を通り、スチームドレンCを通過し、排出路18で排出される。他の一部は背圧ノズル42を介して、下流側の衝突室41に流れる。供給バルブ16より分岐され、副供給オンオフ弁44へ流れた蒸気は止り穴通路46を経て、微粒化ノズル下流で下流側の衝突室41を通った蒸気と合流して背圧ユニット後続流路15を流れ、熱交換器50を通過して排出される。これらの蒸気の流れによって本実施例の微粒化装置10は良好に滅菌される。
In the
10…微粒化装置、
11…原料供給口、
12…増圧機供給流路、
13…微粒化ノズル供給流路、
14…背圧ノズル供給流路、
15…背圧ユニット後続流路、
16…供給バルブ、
18…排出路、
20…増圧機、
21…シリンダ、
22…チェック弁、
23…チェック弁、
24…プランジャ、
25…シリンダサポート、
30…微粒化チャンバー、
31…衝突室、
32…微粒化ノズル、
33…抜出オンオフ弁(微粒化チャンバー用一部抜出手段)、
34…副供給オンオフ弁(微粒化チャンバー用副供給手段)、
35…止り穴通路、
36…止り穴通路、
38…高圧用の圧力センサー、
40…背圧ユニット、
50…熱交換器、
41…衝突室、
42…背圧ノズル、
43…抜出オンオフ弁(背圧ユニット用一部抜出手段)、
44…副供給オンオフ弁(背圧ユニット用副供給手段)、
45…止り穴通路、
46…止り穴通路、
47…背圧硬質体、
48…背圧用の圧力センサー、
10 ... atomization device,
11 ... Raw material supply port,
12 ... pressure booster supply flow path,
13 ... atomization nozzle supply flow path,
14: Back pressure nozzle supply flow path,
15: Back pressure unit subsequent flow path,
16 ... Supply valve,
18 ... discharge path,
20 ... Intensifier,
21 ... Cylinder,
22 ... Check valve,
23 ... Check valve,
24 ... Plunger,
25 ... Cylinder support,
30 ... Atomization chamber,
31 ... Collision chamber,
32 ... atomizing nozzle,
33 ... Extraction on / off valve (partial extraction means for atomization chamber),
34 ... Sub supply on / off valve (sub supply means for atomization chamber),
35 ... blind hole passage,
36 ... blind hole passage,
38 ... Pressure sensor for high pressure,
40 ... Back pressure unit,
50 ... heat exchanger,
41 ... Collision chamber,
42 ... back pressure nozzle,
43 ... Extraction on / off valve (partial extraction means for back pressure unit),
44 ... Sub supply on / off valve (sub supply means for back pressure unit),
45 ... blind hole passage,
46 ... blind hole passage,
47. Back pressure hard body,
48 ... Pressure sensor for back pressure,
Claims (7)
前記原料供給口は、滅菌時には蒸気供給手段から蒸気が供給され、洗浄時には洗浄液供給手段から洗浄液が供給されるものであり、
前記微粒化チャンバー内の微粒化ノズル直前に設けられた、蒸気又は洗浄液の一部を微粒化ノズル供給流路外へ排出する微粒化チャンバー用一部抜出手段と、
前記微粒化チャンバー内の微粒化ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ノズル供給流路内に供給する微粒化チャンバー用副供給手段と、
前記背圧ユニット内の背圧ノズル直前に設けられた、蒸気又は洗浄液の一部を背圧ノズル供給流路外へ排出する背圧ユニット用一部抜出手段と、
前記背圧ユニット内の背圧ノズル直後に設けられた、蒸気又は洗浄液を追加して背圧ユニット後続流路内に供給する背圧ユニット用副供給手段とを備えたことを特徴とする定置洗浄・滅菌可能な背圧機能付き微粒化装置。 A pressure intensifier for pressurizing the raw material, a atomization chamber for atomizing the high pressure jet of the material pressurized by the pressure intensifier from the atomization nozzle at an injection pressure of 100 to 245 MPa, and an outlet of the atomization chamber Supply of the pressure intensifier from the raw material supply port for charging the raw material with at least one back pressure unit that causes the back pressure nozzle to collide with the hard body supported inside from the back pressure nozzle with the back pressure discharged from the raw material A pressure intensifier supply channel for supplying the raw material to the mouth, a atomization nozzle supply channel for supplying a pressurized material from the inside of the housing of the pressure intensifier to the atomization nozzle, and a material after injection of the atomization chamber A back pressure nozzle supply channel that supplies the raw material to the back pressure nozzle while maintaining the back pressure state of the back pressure, and a back pressure that maintains the back pressure state of the raw material that has collided with the hard body of the back pressure unit and supplies it downstream. Pressure A atomizer that includes a Tsu preparative subsequent passage,
The raw material supply port is supplied with steam from the steam supply means during sterilization, and supplied with cleaning liquid from the cleaning liquid supply means during cleaning,
A partial extraction means for atomization chamber provided immediately before the atomization nozzle in the atomization chamber, for discharging a part of the vapor or the cleaning liquid to the outside of the atomization nozzle supply flow path;
A sub-feeding means for the atomization chamber, which is provided immediately after the atomization nozzle in the atomization chamber, and which supplies steam or a cleaning liquid into the back pressure nozzle supply channel,
A part extracting means for the back pressure unit provided immediately before the back pressure nozzle in the back pressure unit, for discharging a part of the steam or the cleaning liquid to the outside of the back pressure nozzle supply flow path;
In-situ cleaning comprising back pressure unit sub-supply means that is provided immediately after the back pressure nozzle in the back pressure unit and supplies steam or cleaning liquid to the back pressure unit subsequent flow path.・ Sterilization device with back pressure function that can be sterilized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143082A JP6494041B2 (en) | 2016-07-21 | 2016-07-21 | Atomizer with back pressure function that can be cleaned and sterilized |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016143082A JP6494041B2 (en) | 2016-07-21 | 2016-07-21 | Atomizer with back pressure function that can be cleaned and sterilized |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018012064A true JP2018012064A (en) | 2018-01-25 |
JP6494041B2 JP6494041B2 (en) | 2019-04-03 |
Family
ID=61019756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016143082A Active JP6494041B2 (en) | 2016-07-21 | 2016-07-21 | Atomizer with back pressure function that can be cleaned and sterilized |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6494041B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3110431A1 (en) * | 2020-05-20 | 2021-11-26 | Sas Ags | Disinfection facility |
US20220234011A1 (en) * | 2021-01-25 | 2022-07-28 | Sugino Machine Limited | Intensifier and atomizer using intensifier |
CN117380620A (en) * | 2023-11-09 | 2024-01-12 | 诺泽流体科技(上海)有限公司 | On-line cleaning control method for high-toxicity and high-activity drug residues in jet mill |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04341305A (en) * | 1991-05-17 | 1992-11-27 | Kobe Steel Ltd | Pressure crystallization device |
JP2000000448A (en) * | 1998-06-18 | 2000-01-07 | Sugino Mach Ltd | Fluid collision apparatus |
JP2004313978A (en) * | 2003-04-17 | 2004-11-11 | Noritake Co Ltd | Apparatus for mixing powder and liquid |
JP2007083133A (en) * | 2005-09-21 | 2007-04-05 | Sugino Mach Ltd | Filter |
JP2011056456A (en) * | 2009-09-14 | 2011-03-24 | National Institute Of Advanced Industrial Science & Technology | Method for producing bio-nanofiber |
JP2013042814A (en) * | 2011-08-22 | 2013-03-04 | Sugino Machine Ltd | Wet type atomizing device including steam sterilization means |
WO2014134115A1 (en) * | 2013-02-26 | 2014-09-04 | Cavitronix Corporation | Variable velocity apparatus and method for blending and emulsifying |
JP2016117048A (en) * | 2014-12-24 | 2016-06-30 | 株式会社ナノスケール | Production method and production apparatus of hypochlorite solution |
-
2016
- 2016-07-21 JP JP2016143082A patent/JP6494041B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04341305A (en) * | 1991-05-17 | 1992-11-27 | Kobe Steel Ltd | Pressure crystallization device |
JP2000000448A (en) * | 1998-06-18 | 2000-01-07 | Sugino Mach Ltd | Fluid collision apparatus |
JP2004313978A (en) * | 2003-04-17 | 2004-11-11 | Noritake Co Ltd | Apparatus for mixing powder and liquid |
JP2007083133A (en) * | 2005-09-21 | 2007-04-05 | Sugino Mach Ltd | Filter |
JP2011056456A (en) * | 2009-09-14 | 2011-03-24 | National Institute Of Advanced Industrial Science & Technology | Method for producing bio-nanofiber |
JP2013042814A (en) * | 2011-08-22 | 2013-03-04 | Sugino Machine Ltd | Wet type atomizing device including steam sterilization means |
WO2014134115A1 (en) * | 2013-02-26 | 2014-09-04 | Cavitronix Corporation | Variable velocity apparatus and method for blending and emulsifying |
JP2016117048A (en) * | 2014-12-24 | 2016-06-30 | 株式会社ナノスケール | Production method and production apparatus of hypochlorite solution |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3110431A1 (en) * | 2020-05-20 | 2021-11-26 | Sas Ags | Disinfection facility |
US20220234011A1 (en) * | 2021-01-25 | 2022-07-28 | Sugino Machine Limited | Intensifier and atomizer using intensifier |
CN117380620A (en) * | 2023-11-09 | 2024-01-12 | 诺泽流体科技(上海)有限公司 | On-line cleaning control method for high-toxicity and high-activity drug residues in jet mill |
Also Published As
Publication number | Publication date |
---|---|
JP6494041B2 (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6494041B2 (en) | Atomizer with back pressure function that can be cleaned and sterilized | |
JP2018505709A5 (en) | ||
JP2010531729A5 (en) | ||
JP5588582B2 (en) | Cleaning device | |
JP2019006081A5 (en) | ||
JP2008114214A (en) | Cleaning device | |
JP6479563B2 (en) | Cleaning device and scale adhesion preventing device | |
KR20170107512A (en) | Spray nozzles and deaerators | |
KR101802172B1 (en) | Pipe cleaning apparatus using nitrogen | |
JP2011161844A5 (en) | ||
JP2009006217A (en) | Liquid spray system and spray method | |
CN110167682A (en) | Equipment for being atomized flushing liquor | |
JP2009148677A (en) | System and method for atomizing liquid | |
JP4748247B2 (en) | Cleaning device and cleaning method | |
FR2983106B1 (en) | DEVICE FOR DISPENSING CRYOGENIC FLUID JETS WITH A TRANQUILIZING CHAMBER | |
JP6596392B2 (en) | Atomizer | |
KR20160066382A (en) | Ultrasonic cleaning system | |
JP4379520B2 (en) | Cleaning device and cleaning method | |
JP2010110769A (en) | Method of atomizing release agent for die and atomizer | |
JP2014050771A (en) | Cleaning method, and cleaning apparatus for use in the same | |
JP6980190B2 (en) | Dry ice sprayer | |
JP6191825B2 (en) | Constant pressure automatic open / close valve | |
JP2016087745A (en) | Washing device | |
CN104415936B (en) | Heavy oil fouling removing cleaning device and method | |
JP4788800B2 (en) | Cleaning method and cleaning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190301 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6494041 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |