JP2018007634A - Cultivation support system - Google Patents

Cultivation support system Download PDF

Info

Publication number
JP2018007634A
JP2018007634A JP2016139997A JP2016139997A JP2018007634A JP 2018007634 A JP2018007634 A JP 2018007634A JP 2016139997 A JP2016139997 A JP 2016139997A JP 2016139997 A JP2016139997 A JP 2016139997A JP 2018007634 A JP2018007634 A JP 2018007634A
Authority
JP
Japan
Prior art keywords
cultivation room
cultivation
heat load
plant
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016139997A
Other languages
Japanese (ja)
Inventor
稲田 良造
Ryozo Inada
良造 稲田
伊能 利郎
Toshiro Ino
利郎 伊能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2016139997A priority Critical patent/JP2018007634A/en
Publication of JP2018007634A publication Critical patent/JP2018007634A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hydroponics (AREA)
  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a culture space having a humidity suitable for plants without being affected by the fact that the calorific value to a given photon flux density differs depending on the type of lighting equipment.SOLUTION: An air-conditioning apparatus (20) performs air-conditioning in a plant cultivation room (S). At least two kinds of lighting equipment (40, 50) are arranged at the cultivation room (S), and the calorific value to a given photon flux density differs from each other. A determination part (61) determines the installation ratio of at least two kinds of lighting equipment (40, 50) so that the load ratio indicating the ratio of the sensible heat load in the cultivation room (S) to the total heat load in the cultivation room (S) is about the same as the sensible heat ratio of the air conditioning apparatus (20).SELECTED DRAWING: Figure 1

Description

本発明は、栽培室内の植物の栽培を支援するためのシステムに関するものである。   The present invention relates to a system for supporting cultivation of plants in a cultivation room.

完全閉鎖型の植物工場では、太陽光の代わりに人工照明としての照明機器が植物に光を照射し、且つ空気調和装置が栽培室内の空調を行うことで、植物の栽培に適した環境が提供されている。   In a fully-closed plant factory, lighting equipment as artificial lighting irradiates light instead of sunlight, and an air conditioner performs air conditioning in the cultivation room, providing an environment suitable for plant cultivation Has been.

上記照明機器としては、特許文献1に示すように蛍光灯が利用されたり、特許文献2に示すようにLEDが利用されたりする。   As the lighting device, a fluorescent lamp is used as shown in Patent Document 1, or an LED is used as shown in Patent Document 2.

特開平11−000066号公報JP-A-11-000066 特開2016−081684号公報Japanese Patent Laid-Open No. 2006-081684

蛍光灯が用いられる場合、蛍光灯が動作することに起因する顕熱負荷により、空気調和装置は空調能力を上昇させて冷房を行う。すると、栽培室内は、過度に除湿された状態となり、植物の適正湿度よりも低くなる傾向となる。   When a fluorescent lamp is used, the air conditioner increases the air-conditioning capability and performs cooling by a sensible heat load resulting from the operation of the fluorescent lamp. Then, the cultivation room will be in an excessively dehumidified state and will tend to be lower than the appropriate humidity of the plant.

他方、LEDは、同程度の光量で比較した場合、蛍光灯よりも発熱量が小さいために、栽培室内の顕熱負荷は、蛍光灯利用時よりも小さくなる。そのため、蛍光灯利用時よりも、空気調和装置の冷房負荷は小さく、除湿量も少なくなる。すると、栽培室内の湿度は、植物の適正湿度よりも高くなる傾向となる。   On the other hand, when comparing LEDs with the same amount of light, the amount of heat generated is smaller than that of fluorescent lamps, so the sensible heat load in the cultivation room is smaller than when using fluorescent lamps. Therefore, the cooling load of the air conditioner is smaller and the dehumidification amount is smaller than when using a fluorescent lamp. Then, the humidity in the cultivation room tends to be higher than the appropriate humidity of the plant.

本発明は、かかる点に鑑みてなされたものであり、その目的は、所定の光量子束密度に対する発熱量が照明機器の種類によって異なるといった影響を受けることなく、植物にとって適正な湿度の栽培空間を提供することである。   The present invention has been made in view of such a point, and its purpose is to provide a cultivation space having a humidity suitable for plants without being affected by the amount of heat generated with respect to a predetermined photon flux density depending on the type of lighting equipment. Is to provide.

第1の発明は、植物の栽培室(S)内の空調を行う空気調和装置(20)と、上記栽培室(S)に配置され、所定の光量子束密度に対する発熱量が互いに異なる少なくとも2種類の照明機器(40,50)と、上記栽培室(S)内の全熱負荷に対する上記栽培室(S)内の顕熱負荷の割合を示す負荷比率が、上記空気調和装置(20)の顕熱比と同程度となるように、少なくとも2種類の上記照明機器(40,50)の設置割合を決定する決定部(61)とを備えることを特徴とする栽培支援システムである。   The first invention is an air conditioner (20) that performs air conditioning in a plant cultivation room (S) and at least two types that are arranged in the cultivation room (S) and have different calorific values for a predetermined photon flux density. The load ratio indicating the ratio of the sensible heat load in the cultivation room (S) to the total heat load in the cultivation room (S) and the lighting equipment (40, 50) of the air conditioner (20) A cultivation support system comprising: a determining unit (61) that determines an installation ratio of at least two types of the lighting devices (40, 50) so as to be approximately equal to a heat ratio.

栽培室(S)内の全熱負荷は、主に照明機器(40,50)全ての発熱量の合計値に基づき決定される。栽培室(S)内の顕熱負荷は、栽培室(S)内の全熱負荷と栽培室(S)内の潜熱負荷との差で決定される。そこで、栽培支援システム(10)は、所定の光量子束密度に対する発熱量が互いに異なる少なくとも2種類の照明機器(40,50)をあえて同一の栽培室(S)内に設置するにあたり、栽培室(S)内の全熱負荷と顕熱負荷との負荷比率が空気調和装置(20)の顕熱比と同程度となるように、各照明機器(40,50)をどの程度の割合設置するかを決定する。これにより、各照明機器(40,50)をどの程度配置すべきかが、栽培室(S)の環境に応じて適切に決定される。従って、所定の光量子束密度に対する発熱量が照明機器(40,50)の種類によって異なるといった影響を受けることなく、栽培室(S)内の植物(16)にとって適正な湿度の栽培空間を提供することができる。   The total heat load in the cultivation room (S) is mainly determined based on the total calorific value of all the lighting devices (40, 50). The sensible heat load in the cultivation room (S) is determined by the difference between the total heat load in the cultivation room (S) and the latent heat load in the cultivation room (S). Therefore, when the cultivation support system (10) dares to install in the same cultivation room (S) at least two types of lighting devices (40, 50) having different calorific values for a given photon flux density, the cultivation room ( S) How much of each lighting device (40, 50) should be installed so that the load ratio between the total heat load and the sensible heat load in S) is the same as the sensible heat ratio of the air conditioner (20) To decide. Thereby, how much each lighting apparatus (40,50) should be arrange | positioned is appropriately determined according to the environment of a cultivation room (S). Therefore, it provides a cultivation space with appropriate humidity for the plant (16) in the cultivation room (S) without being affected by the amount of heat generated for a given photon flux density depending on the type of lighting device (40, 50). be able to.

第2の発明は、第1の発明において、少なくとも2種類の上記照明機器(40,50)には、蛍光灯(40)とLED(50)とが含まれる。   In a second aspect based on the first aspect, the at least two types of lighting devices (40, 50) include a fluorescent lamp (40) and an LED (50).

第3の発明は、第1の発明または第2の発明において、上記栽培室(S)内の全熱負荷は、該栽培室(S)に設置される上記照明機器(40,50)全ての発熱量の合計値、に基づき求められる機器熱負荷であって、上記栽培室(S)内の顕熱負荷は、上記機器熱負荷と、上記栽培室(S)内の植物(16)の蒸散による潜熱負荷との差である。   3rd invention is 1st invention or 2nd invention, The total heat load in the said cultivation room (S) is all the said illuminating devices (40,50) installed in this cultivation room (S). It is an equipment heat load calculated | required based on the total value of calorific value, Comprising: The sensible heat load in the said cultivation room (S) is the transpiration of the said equipment heat load and the plant (16) in the said cultivation room (S) It is the difference from the latent heat load due to.

ここでは、どの照明機器(40,50)をどの程度配置すべきかが、栽培室(S)内の植物(16)の蒸散による潜熱負荷により決定される。従って、栽培室(S)内の植物(16)にとってより適正な湿度の栽培空間を提供することができる。   Here, how much lighting equipment (40, 50) should be arranged is determined by the latent heat load caused by the transpiration of the plant (16) in the cultivation room (S). Therefore, it is possible to provide a cultivation space with more appropriate humidity for the plant (16) in the cultivation room (S).

第4の発明は、第1の発明から第3の発明のいずれか1つにおいて、上記設置割合に応じて上記照明機器(40,50)が設置されている上記栽培室(S)内にて上記植物(16)が栽培されている際、上記栽培室(S)内が目標温度となるように上記空気調和装置(20)の空調運転を制御する制御部(65)、を更に備え、上記制御部(65)は、目標湿度と上記栽培室(S)内の湿度との大小に応じて、上記照明機器(40,50)の光量を調節する。   4th invention WHEREIN: In any one of 3rd invention from 1st invention, in the said cultivation room (S) in which the said lighting equipment (40,50) is installed according to the said installation ratio When the plant (16) is cultivated, it further comprises a control unit (65) for controlling the air conditioning operation of the air conditioner (20) so that the inside of the cultivation room (S) becomes a target temperature, A control part (65) adjusts the light quantity of the said illuminating device (40,50) according to the magnitude of the target humidity and the humidity in the said cultivation room (S).

上記第1の発明によって決定された配置割合に応じて照明機器(40,50)が配置された栽培室(S)にて植物(16)が実際に栽培されている間、例えば明期及び暗期の違いや植物の生長過程による蒸散量の変化等に起因して、栽培室(S)内の湿度環境が変動する場合がある。ここでは、そのような栽培室(S)における潜熱負荷変動にあわせて、照明機器(40,50)の光量が調節される。照明機器(40,50)の光量が調節されると、照明機器(40,50)の発熱量も変化する。空気調和装置(20)の空調能力は、変化した照明機器(40,50)の発熱量に応じて変化する。その結果、栽培室(S)内は、植物(16)にとって適切な湿度に保たれる。   While the plant (16) is actually cultivated in the cultivation room (S) in which the lighting devices (40, 50) are arranged according to the arrangement ratio determined by the first invention, for example, light period and dark period The humidity environment in the cultivation room (S) may fluctuate due to differences in seasons and changes in transpiration due to the growth process of plants. Here, the light quantity of lighting equipment (40,50) is adjusted according to the latent heat load fluctuation | variation in such a cultivation room (S). When the amount of light of the lighting device (40, 50) is adjusted, the amount of heat generated by the lighting device (40, 50) also changes. The air conditioning capability of the air conditioner (20) changes according to the amount of heat generated by the changed lighting device (40, 50). As a result, the inside of the cultivation room (S) is kept at an appropriate humidity for the plant (16).

本発明によれば、所定の光量子束密度に対する発熱量が照明機器(40,50)の種類によって異なるといった影響を受けることなく、栽培室(S)内は、植物(16)にとって適正な湿度となる。   According to the present invention, the cultivation room (S) has an appropriate humidity for the plant (16) without being affected by the amount of heat generated for a given photon flux density depending on the type of lighting device (40, 50). Become.

図1は、植物工場の栽培室内部を表すと共に、本実施形態に係る栽培支援システムの構成を示す図である。Drawing 1 is a figure showing the composition of the cultivation support system concerning this embodiment while showing the cultivation room interior of a plant factory. 図2は、照明機器が設置された栽培室で植物が栽培されている間に、空調制御部が行う制御の流れを示す図である。FIG. 2 is a diagram illustrating a flow of control performed by the air conditioning control unit while a plant is cultivated in the cultivation room in which the lighting device is installed.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

≪実施形態≫
<栽培支援システムの概要>
本実施形態に係る栽培支援システム(10)は、野菜や果物等の植物(16)を栽培する植物工場等に構築される。栽培支援システム(10)は、植物工場の栽培室(S)内の植物(16)の生長を支援するためのシステムである。
<Embodiment>
<Outline of cultivation support system>
The cultivation support system (10) according to the present embodiment is constructed in a plant factory or the like that grows plants (16) such as vegetables and fruits. The cultivation support system (10) is a system for supporting the growth of the plant (16) in the cultivation room (S) of the plant factory.

栽培室(S)内には、栽培棚(12)が設置され、栽培棚(12)には、栽培ベッド(14)が複数載置されている。栽培ベッド(14)は、植物(16)を育成するためのものであって、図示していないが、植物(16)が植え付けられる栽培パネルと、栽培パネルの下方に位置し植物(16)を育成するための養液を貯留した養液槽とで構成される。図1に示すように、栽培ベッド(14)には、栽培対象である植物(16)が複数植えられている。   A cultivation shelf (12) is installed in the cultivation room (S), and a plurality of cultivation beds (14) are placed on the cultivation shelf (12). The cultivation bed (14) is for cultivating the plant (16), and although not shown, the cultivation panel on which the plant (16) is planted and the plant (16) located below the cultivation panel It is comprised with the nutrient solution tank which stored the nutrient solution for raising. As shown in FIG. 1, a plurality of plants (16) to be cultivated are planted in the cultivation bed (14).

<構成>
図1に示すように、栽培支援システム(10)は、空気調和装置(20)と、複数の照明機器(40,50)と、統括コントローラ(60)とを備える。
<Configuration>
As shown in FIG. 1, the cultivation support system (10) includes an air conditioner (20), a plurality of lighting devices (40, 50), and a general controller (60).

−空気調和装置−
空気調和装置(20)は、栽培室(S)内の空調を行うためのものであって、室外機(21)と室内機(25)とを有する。
-Air conditioner-
The air conditioner (20) is for air conditioning in the cultivation room (S), and has an outdoor unit (21) and an indoor unit (25).

室外機(21)は、屋外等である栽培室(S)の外に設置されており、図示していないが、圧縮機、室外熱交換器、室外ファン等を有する。室内機(25)は、栽培室(S)内に設置されており、室内熱交換器(26)及び室内ファン(27)等を有する。   The outdoor unit (21) is installed outside the cultivation room (S), such as outdoors, and has a compressor, an outdoor heat exchanger, an outdoor fan, and the like (not shown). The indoor unit (25) is installed in the cultivation room (S) and includes an indoor heat exchanger (26), an indoor fan (27), and the like.

室外機(21)と室内機(25)とは、冷媒配管を介して接続されており、これにより冷媒回路が形成されている。空調運転時、冷媒回路内を冷媒が循環することにより、室内機(25)から栽培室(S)内には調和された空気が送られる。具体的に、空気調和装置(20)は、栽培室(S)内の温度が設定された目標温度となるように、冷房運転時は冷却された空気を栽培室(S)内に供給し、暖房運転時は加熱された空気を栽培室(S)内に供給する。   The outdoor unit (21) and the indoor unit (25) are connected via a refrigerant pipe, thereby forming a refrigerant circuit. During the air conditioning operation, the refrigerant circulates in the refrigerant circuit, so that conditioned air is sent from the indoor unit (25) into the cultivation room (S). Specifically, the air conditioner (20) supplies cooled air into the cultivation room (S) during the cooling operation so that the temperature in the cultivation room (S) becomes the set target temperature, During the heating operation, heated air is supplied into the cultivation room (S).

−照明機器−
照明機器(40,50)は、栽培室(S)に配置され、栽培室(S)内の人工照明として利用される。照明機器(40,50)は、栽培棚(12)における各段の上面付近において、下方を照射可能に設置されている。照明機器(40,50)は、栽培棚(12)の各段に載置された植物(16)に光を照射する。
-Lighting equipment-
The lighting devices (40, 50) are arranged in the cultivation room (S) and used as artificial lighting in the cultivation room (S). The illumination device (40, 50) is installed so that the lower part can be irradiated near the upper surface of each stage in the cultivation shelf (12). The lighting device (40, 50) irradiates light to the plant (16) placed on each stage of the cultivation shelf (12).

本実施形態に係る照明機器(40,50)には、所定の光量子束密度に対する発熱量が互いに異なる少なくとも2種類の照明機器が採用される。光量子束密度とは、単位時間に単位面積を通過する光量子の数であって、光強度の指標として使用される。つまり、照明機器(40,50)として採用される少なくとも2種類の照明機器は、単位時間且つ単位面積あたりの光量子が同程度であれば、互いに発熱量が異なるものであると言える。このような照明機器(40,50)の組合せには、蛍光灯(40)及びLED(50)が挙げられる。   As the lighting devices (40, 50) according to the present embodiment, at least two types of lighting devices having different amounts of heat generation with respect to a predetermined photon flux density are employed. The photon flux density is the number of photons passing through a unit area per unit time, and is used as an index of light intensity. That is, it can be said that at least two types of lighting devices employed as the lighting devices (40, 50) have different amounts of heat generation as long as the photons per unit time and unit area are the same. Such a combination of lighting devices (40, 50) includes a fluorescent lamp (40) and an LED (50).

同じ光量の蛍光灯(40)とLED(50)とを比較した場合、発熱量は、LED(50)よりも蛍光灯(40)の方が大きい。   When comparing the fluorescent lamp (40) and the LED (50) having the same light amount, the fluorescent lamp (40) has a larger amount of heat generation than the LED (50).

−統括コントローラ−
統括コントローラ(60)は、メモリ及びCPUで構成されるマイクロコンピュータであって、空気調和装置(20)及び各照明機器(40,50)と電気的に接続されている。メモリ内に格納されているプログラムをCPUが読み出して実行することで、統括コントローラ(60)は、空気調和装置(20)及び各照明機器(40,50)の運転動作を制御する。
-General controller-
The general controller (60) is a microcomputer composed of a memory and a CPU, and is electrically connected to the air conditioner (20) and the lighting devices (40, 50). When the CPU reads and executes the program stored in the memory, the overall controller (60) controls the operation of the air conditioner (20) and each lighting device (40, 50).

特に、統括コントローラ(60)は、決定部(61)及び空調制御部(65)として機能する。   In particular, the overall controller (60) functions as a determination unit (61) and an air conditioning control unit (65).

<設置割合の決定動作>
決定部(61)は、植物(16)の栽培前且つ照明機器(40,50)の設置作業が開始される前に、照明機器(40,50)である蛍光灯(40)及びLED(50)の設置割合を、予測される栽培室(S)内の環境(温度及び湿度)に応じて決定する動作を行う。即ち、本実施形態では、所定の光量子束密度に対する発熱量が互いに異なる蛍光灯(40)及びLED(50)をあえて同じ栽培室(S)内に配置するが、蛍光灯(40)とLED(50)との設置数は、任意なのではなく、栽培室(S)内の環境に応じた適切な割合に決定されるのである。
<Determination of installation ratio>
The determination unit (61) includes the fluorescent lamp (40) and the LED (50) that are the lighting device (40, 50) before the plant (16) is grown and before the installation of the lighting device (40, 50) is started. ) Is determined according to the predicted environment (temperature and humidity) in the cultivation room (S). That is, in this embodiment, the fluorescent lamp (40) and the LED (50) having different calorific values for a predetermined photon flux density are arranged in the same cultivation room (S), but the fluorescent lamp (40) and the LED ( The number of installations with 50) is not arbitrary, but is determined at an appropriate ratio according to the environment in the cultivation room (S).

ここで、決定部(61)が、蛍光灯(40)及びLED(50)の設置割合の決定動作を何故行うかについて説明する。   Here, the reason why the determination unit (61) performs the operation of determining the installation ratio of the fluorescent lamp (40) and the LED (50) will be described.

仮に、栽培室(S)内に蛍光灯(40)のみが設置された場合を考える。蛍光灯(40)は、所定の光量子束密度に対する発熱量がLED(50)よりも大きい。そのため、植物(16)の明期において栽培室(S)内の温度が目標温度となるように冷房を行う際、空気調和装置(20)の冷房能力はLED(50)のみが設置される場合よりも上昇せざるを得ず、よって空気調和装置(20)の除湿量も増加する。すると、栽培室(S)内の湿度が植物(16)の適正な湿度を下回る可能性が生じる。   Suppose that only the fluorescent lamp (40) is installed in the cultivation room (S). The fluorescent lamp (40) has a larger amount of heat generation than the LED (50) with respect to a predetermined photon flux density. Therefore, when performing cooling so that the temperature in the cultivation room (S) becomes the target temperature in the light period of the plant (16), the cooling capacity of the air conditioner (20) is when only the LED (50) is installed Therefore, the amount of dehumidification of the air conditioner (20) also increases. Then, there is a possibility that the humidity in the cultivation room (S) is lower than the appropriate humidity of the plant (16).

これに対し、蛍光灯(40)のみが設置された場合、空気調和装置(20)における冷媒の蒸発温度を上げたり、室内器(25)が栽培室(S)に供給する風量を上げたりして、除湿能力の上昇を抑える制御を行うことが考えられる。しかし、この制御だと、空気調和装置(20)が栽培室(S)の顕熱に対する能力(即ち栽培室(S)内の温度を下げる能力)さえもが低下するため、例えば室内機(25)の台数の増加及び室内熱交換器(26)のサイズの増大等の、コストが増加する対策を講じる必要がある。   On the other hand, when only the fluorescent lamp (40) is installed, the evaporating temperature of the refrigerant in the air conditioner (20) is increased, or the air volume supplied to the cultivation room (S) by the indoor unit (25) is increased. Therefore, it is conceivable to perform control to suppress an increase in the dehumidifying capacity. However, with this control, the air conditioner (20) even reduces the ability of the cultivation room (S) to sensible heat (that is, the ability to lower the temperature in the cultivation room (S)). ) And increase the size of the indoor heat exchanger (26), it is necessary to take measures to increase the cost.

逆に、栽培室(S)内にLED(50)のみが設置された場合を考える。LED(50)は、所定の光量子束密度に対する発熱量が蛍光灯(40)よりも小さい。そのため、植物(16)の明期において栽培室(S)内の温度が目標温度となるように冷房を行う際、空気調和装置(20)の冷房能力は蛍光灯(40)のみが設置される場合よりも減少せざるを得ず、よって空気調和装置(20)の除湿量も減少する。すると、栽培室(S)内の湿度が植物(16)の適正な湿度を上回る可能性が生じる。   Conversely, consider the case where only the LED (50) is installed in the cultivation room (S). The LED (50) has a smaller calorific value for a given photon flux density than the fluorescent lamp (40). Therefore, when performing cooling so that the temperature in the cultivation room (S) becomes the target temperature during the light period of the plant (16), only the fluorescent lamp (40) is installed as the cooling capacity of the air conditioner (20). Therefore, the amount of dehumidification of the air conditioner (20) is also reduced. Then, there is a possibility that the humidity in the cultivation room (S) exceeds the appropriate humidity of the plant (16).

これに対し、LED(50)のみが設置された場合、例えば冷媒の蒸発温度を下げる等により空気調和装置(20)の除湿能力を高める対策を講じる必要がある。しかし、一般的に、空気調和装置(20)が有する顕熱比は、栽培室(S)における顕熱と、栽培室(S)における顕熱及び潜熱の合計である全熱との比“顕熱/全熱”よりも大きい。何故ならば、栽培室(S)では、植物(16)が蒸散するため、顕熱よりも潜熱の方が大きいからである。このような条件下でたとえ除湿能力を高める策を講じたとしても、空気調和装置(20)が冷房運転を行うことにより栽培室(S)の温度が目標温度に達した場合、未だ栽培室(S)内の除湿は不十分のまま空気調和装置(20)は冷房運転を停止し、それ以上栽培室(S)内の除湿は進まなくなる。即ち、単に除湿能力を高める対策では不十分と言える。そのため、強制的に栽培室(S)内の除湿を行うためには、除湿後の空気を再熱してから栽培室(S)に供給する機構を別途追加する必要が代替策として考えられるものの、この代替策では、初期コスト及びランニングコストがかえって増加してしまう。   On the other hand, when only the LED (50) is installed, it is necessary to take measures to increase the dehumidifying capacity of the air conditioner (20), for example, by lowering the evaporation temperature of the refrigerant. However, in general, the sensible heat ratio of the air conditioner (20) is the ratio of the sensible heat in the cultivation room (S) to the total heat that is the sum of the sensible heat and latent heat in the cultivation room (S). Greater than "heat / total heat". This is because in the cultivation room (S), the latent heat is larger than the sensible heat because the plant (16) is evaporated. Even if measures are taken to increase the dehumidifying capacity under such conditions, if the temperature of the cultivation room (S) reaches the target temperature by performing the cooling operation of the air conditioner (20), the cultivation room ( The air conditioner (20) stops the cooling operation while the dehumidification in S) is insufficient, and the dehumidification in the cultivation room (S) no longer proceeds. That is, it can be said that a measure for simply increasing the dehumidifying capacity is insufficient. Therefore, in order to forcibly dehumidify the cultivation room (S), it may be necessary to add a separate mechanism to reheat the air after dehumidification and then supply it to the cultivation room (S). This alternative would increase initial costs and running costs.

そこで、本実施形態に係る決定部(61)は、栽培室(S)内の温度が植物(16)にとって適正な温度となると共に、栽培室(S)内の湿度も植物(S)にとって適切な湿度となるようにするべく、各照明機器(40,50)の所定の光量子束密度に対する発熱量を考慮して、蛍光灯(40)及びLED(50)それぞれの設置台数を決定する。具体的には、決定部(61)は、空気調和装置(20)が仮に冷房運転を行ったと過程した際に、栽培室(S)内の全熱負荷に対する栽培室(S)内の顕熱負荷の割合を示す負荷比率が、空気調和装置(20)の顕熱比と同程度となるように、少なくとも2種類の照明機器(40,50)の設置割合を決定する。   Therefore, the determination unit (61) according to the present embodiment is configured so that the temperature in the cultivation room (S) is appropriate for the plant (16), and the humidity in the cultivation room (S) is also appropriate for the plant (S). In order to achieve a proper humidity, the number of fluorescent lamps (40) and LEDs (50) to be installed is determined in consideration of the amount of heat generated with respect to a predetermined photon flux density of each lighting device (40, 50). Specifically, when the determination unit (61) processes that the air conditioner (20) performs the cooling operation, the sensible heat in the cultivation room (S) with respect to the total heat load in the cultivation room (S). The installation ratio of at least two types of lighting devices (40, 50) is determined so that the load ratio indicating the ratio of the load is approximately the same as the sensible heat ratio of the air conditioner (20).

栽培室(S)内の全熱負荷は、厳密には、栽培室(S)内に設置される照明機器(40,50)全ての発熱量の合計値に基づき求められる機器熱負荷(照明機器(40,50)の合計熱負荷)と、その他の熱負荷との合計に等しい。しかし、その他の熱負荷は、機器熱負荷に比べると非常に小さいため、栽培室(S)内の全熱負荷は、上記機器熱負荷によって支配的に定められる。   Strictly speaking, the total heat load in the cultivation room (S) is the equipment heat load (lighting equipment) calculated based on the total calorific value of all lighting equipment (40, 50) installed in the cultivation room (S). (Total heat load of (40, 50)) and the other heat load. However, since the other heat load is very small compared to the equipment heat load, the total heat load in the cultivation room (S) is dominantly determined by the equipment heat load.

栽培室(S)内の顕熱負荷は、栽培室(S)内の全熱負荷と、栽培室(S)内の植物(16)の蒸散による潜熱負荷との差である。既に述べたように、栽培室(S)内の全熱負荷が機器熱負荷によって支配的に定められることから、栽培室(S)内の顕熱負荷は、概ね、機器熱負荷と植物(16)の蒸散による潜熱負荷との差で求められる。   The sensible heat load in the cultivation room (S) is the difference between the total heat load in the cultivation room (S) and the latent heat load due to the transpiration of the plant (16) in the cultivation room (S). As already mentioned, since the total heat load in the cultivation room (S) is determined predominantly by the equipment heat load, the sensible heat load in the cultivation room (S) generally consists of the equipment heat load and the plant (16 ) And the latent heat load due to transpiration.

なお、植物(16)の蒸散による潜熱負荷は、空気調和装置(20)及び照明機器(40,50)が定格で動作するとし、且つ、栽培対象となる植物(16)の種類及び栽培量(栽培規模)を想定した上で、机上計算により算出されるか、または、実際の植物(16)の蒸散量を実験より求められることが好ましい。また、機器熱負荷は、照明機器(40,50)が定格で動作する場合を想定した値に決定されることが好ましい。   It should be noted that the latent heat load caused by the transpiration of the plant (16) is that the air conditioner (20) and the lighting device (40, 50) operate at the rated value, and the type and amount of plant (16) to be cultivated ( It is preferable that the amount of transpiration of the actual plant (16) is obtained from an experiment by calculating on the basis of the assumption of (cultivation scale). Moreover, it is preferable that an apparatus heat load is determined to the value which assumed the case where a lighting apparatus (40,50) operate | moves by rating.

空気調和装置(20)が有する顕熱比とは、空気調和装置(20)が冷房運転した際の、全冷房能力(顕熱冷房能力と潜熱冷房能力との合計値)に対する顕熱冷房能力の割合であって、予め決定された値である。   The sensible heat ratio of the air conditioner (20) is the sensible heat cooling capacity with respect to the total cooling capacity (total value of sensible heat cooling capacity and latent heat cooling capacity) when the air conditioner (20) is in cooling operation. It is a ratio and is a predetermined value.

以上をまとめると、決定部(61)は、次式が成立するようにして、照明機器(40,50)の設置割合を決定する。   In summary, the determination unit (61) determines the installation ratio of the lighting devices (40, 50) so that the following equation is established.

Figure 2018007634
Figure 2018007634

なお、照明機器(40,50)の合計熱負荷である機器熱負荷は、空気調和装置(20)の最大冷房能力よりも十分に小さいことは、云うまでもない。   Needless to say, the equipment heat load, which is the total heat load of the lighting equipment (40, 50), is sufficiently smaller than the maximum cooling capacity of the air conditioner (20).

そして、設置割合とは、上記式を成立させるに際し、栽培室(S)内に設置する照明機器(40,50)の種類と数等である。一例としては、栽培室(S)内において、同じ光量の蛍光灯(40)とLED(50)とを設置するとした際、蛍光灯(40)及びLED(50)それぞれの設置本数が決定される。   The installation ratio is the type and number of lighting devices (40, 50) installed in the cultivation room (S) when the above formula is established. As an example, when the fluorescent lamp (40) and the LED (50) having the same light quantity are installed in the cultivation room (S), the number of the fluorescent lamp (40) and the LED (50) installed is determined. .

<照明機器設置後の環境制御>
空調制御部(65)は、上記設置割合に従って蛍光灯(40)及びLED(50)が設置された栽培室(S)において、実際に植物(16)の栽培が行われている間、栽培室(S)内の温度及び湿度制御を行う。
<Environmental control after installation of lighting equipment>
In the cultivation room (S) in which the fluorescent lamp (40) and the LED (50) are installed according to the installation ratio, the air conditioning control unit (65) is in the cultivation room while the plant (16) is actually grown. Perform temperature and humidity control in (S).

特に、植物(16)の栽培中は、例えば明期及び暗期の違いや植物(16)の生長過程による蒸散量の変化等に起因して、栽培室(S)内の湿度環境が変動する場合がある。そこで、空調制御部(65)は、栽培室(S)内の潜熱負荷変動のみまたは潜熱負荷変動及び顕熱負荷変動にあわせて、空気調和装置(20)及び各照明機器(40,50)の少なくとも1つの動作を調節する。この制御の動作フローを、図2に示す。以下、図2に従って、空調制御部(65)の動作を詳述する。   In particular, during cultivation of the plant (16), the humidity environment in the cultivation room (S) varies due to, for example, the difference between the light and dark periods and the change in transpiration due to the growth process of the plant (16). There is a case. Therefore, the air-conditioning control unit (65) can adjust only the latent heat load fluctuation in the cultivation room (S) or the latent heat load fluctuation and the sensible heat load fluctuation of the air conditioner (20) and each lighting device (40, 50). Adjust at least one action. The operation flow of this control is shown in FIG. Hereinafter, the operation of the air conditioning controller (65) will be described in detail with reference to FIG.

先ず、空調制御部(65)は、上記設置割合に従って蛍光灯(40)及びLED(50)が設置された栽培室(S)において、植物(16)の栽培が行われている間に、栽培室(S)内の温度が目標温度となるように、例えば室外機(21)の圧縮機の回転速度を制御する等の、空調運転(冷房運転)の制御を行う(ステップS1)。   First, the air conditioning control unit (65) is cultivated while the plant (16) is being cultivated in the cultivation room (S) in which the fluorescent lamp (40) and the LED (50) are installed according to the installation ratio. Control of the air-conditioning operation (cooling operation), such as controlling the rotational speed of the compressor of the outdoor unit (21), is performed so that the temperature in the room (S) becomes the target temperature (step S1).

図示しないリモートコントローラを介して、潜熱負荷変動に応じた制御対象機器を“照明機器”と設定されている場合(ステップS2のYes)、空調制御部(65)は、栽培室(S)内の湿度を目標湿度と比較して、栽培室(S)内において潜熱負荷変動が生じているか否かを判断する(ステップS3)。栽培室(S)内の湿度が目標湿度と異なることにより、栽培室(S)内にて潜熱負荷変動が生じていると判断できる。なお、栽培室(S)内の湿度は、湿度センサ等により検知される。   When the control target device corresponding to the latent heat load fluctuation is set as “lighting device” via a remote controller (not shown) (Yes in step S2), the air conditioning control unit (65) is located in the cultivation room (S). By comparing the humidity with the target humidity, it is determined whether or not there is a latent heat load fluctuation in the cultivation room (S) (step S3). Since the humidity in the cultivation room (S) is different from the target humidity, it can be determined that the latent heat load fluctuation has occurred in the cultivation room (S). The humidity in the cultivation room (S) is detected by a humidity sensor or the like.

栽培室(S)内の湿度が目標湿度よりも低い場合(ステップS3のYes)、空調制御部(65)は、栽培室(S)内にて光を植物(16)に照射している照明機器(40,50)の光量(照明能力)を下げる制御を行う(ステップS4)。照明機器(40,50)の光量が下がることにより、照明機器(40,50)の発熱量は減少するため、これに伴って空気調和装置(20)の冷房能力は小さくなり、除湿能力も弱まる。これにより、栽培室(S)内の温度は目標温度に近づくだけではなく、湿度も目標湿度に近づく。   When the humidity in the cultivation room (S) is lower than the target humidity (Yes in step S3), the air conditioning control unit (65) illuminates the plant (16) with light in the cultivation room (S). Control is performed to reduce the amount of light (illumination capability) of the device (40, 50) (step S4). Since the amount of heat generated by the lighting device (40, 50) decreases as the light intensity of the lighting device (40, 50) decreases, the cooling capacity of the air conditioner (20) decreases accordingly, and the dehumidification capability also weakens. . Thereby, not only the temperature in the cultivation room (S) approaches the target temperature, but also the humidity approaches the target humidity.

ステップS3において、栽培室(S)内の湿度が目標湿度よりも高い場合(ステップS3のNo)、空調制御部(65)は、栽培室(S)内にて光を植物(16)に照射している照明機器(40,50)の光量(照明能力)を上げる制御を行う(ステップS5)。照明機器(40,50)の光量が上がることにより、照明機器(40,50)の発熱量は増加するため、これに伴って空気調和装置(20)の冷房能力は大きくなり、除湿能力も強まる。これにより、栽培室(S)内の温度は目標温度に近づくだけではなく、湿度も目標湿度に近づく。   In step S3, when the humidity in the cultivation room (S) is higher than the target humidity (No in step S3), the air conditioning control unit (65) irradiates the plant (16) with light in the cultivation room (S). Control which raises the light quantity (illumination capability) of the lighting apparatus (40,50) currently performed is performed (step S5). As the amount of light from the lighting device (40, 50) increases, the amount of heat generated by the lighting device (40, 50) increases. As a result, the cooling capacity of the air conditioner (20) increases and the dehumidification capacity also increases. . Thereby, not only the temperature in the cultivation room (S) approaches the target temperature, but also the humidity approaches the target humidity.

図2では図示していないが、栽培室(S)内の湿度が目標湿度と同程度である場合、空調制御部(65)は、照明機器(40,50)が現在照射している光の光量を、変化させることなく維持させる。栽培室(S)内の湿度が目標湿度と同程度であることから、潜熱負荷変動が生じていないためである。   Although not shown in FIG. 2, when the humidity in the cultivation room (S) is about the same as the target humidity, the air conditioning control unit (65) uses the illumination device (40, 50) Maintain the light intensity without changing it. This is because the latent heat load fluctuation does not occur because the humidity in the cultivation room (S) is about the same as the target humidity.

即ち、上記ステップS3〜S5では、栽培室(S)内の湿度と目標湿度との大小に応じて、空気調和装置(20)の空調運転(冷房運転)の制御を積極的に行うことはせずに、照明機器(40,50)の光量(照明能力)を積極的に変更させていると言える。   That is, in the above steps S3 to S5, the air conditioning operation (cooling operation) of the air conditioner (20) is positively controlled according to the humidity in the cultivation room (S) and the target humidity. In other words, it can be said that the light intensity (illumination capability) of the lighting device (40, 50) is actively changed.

一方、ステップS2において、潜熱負荷変動に応じた制御対象機器を“空気調和装置”と設定されている場合(ステップS2のNo)、空調制御部(65)は、顕熱負荷変動及び潜熱負荷変動にあわせて、照明機器(40,50)の光量(照明能力)は維持させたまま空気調和装置(20)の空調運転(冷房運転)の制御を積極的に行う(ステップS6〜S8)。   On the other hand, in step S2, when the control target device corresponding to the latent heat load fluctuation is set as “air conditioner” (No in step S2), the air conditioning control unit (65) performs the sensible heat load fluctuation and the latent heat load fluctuation. Accordingly, the air-conditioning operation (cooling operation) of the air conditioner (20) is actively controlled while maintaining the light amount (illumination capability) of the illumination device (40, 50) (steps S6 to S8).

具体的に、空調制御部(65)は、栽培室(S)内の湿度を目標湿度と比較する(ステップS6)。栽培室(S)内の湿度が目標湿度よりも低い場合(ステップS6のYes)、空調制御部(65)は、運転中の空気調和装置(20)の冷媒の蒸発温度を上げるか、及び/または、室内機(25)が栽培室(S)に供給する風量を上げる制御を行う(ステップS7)。栽培室(S)内で光を植物(16)に照射している照明機器(40,50)の光量を維持した状態にて冷媒の蒸発温度を上げることにより、栽培室(S)内の発熱量は維持された状態にて室内機(25)の冷房能力が弱められ、これに伴い除湿能力も弱められる。また、照明機器(40,50)の光量を維持した状態にて、室内ファン(27)の回転速度を上げて風量を上げることによっても、栽培室(S)内の発熱量は維持された状態にて室内機(25)の冷房能力及び除湿能力は弱められる。室内機(25)から吹き出される空気の風量が増加すると、室内熱交換器(26)を通る風速が上がり、その結果空気が室内熱交換器(26)と接している時間が短くなることで空気の温度が下がらなくなるため、露点との差が小さくなり除湿能力が低下する。このようなステップS7により、栽培室(S)内の温度は目標温度に近づき、湿度も目標湿度に近づく。   Specifically, an air-conditioning control part (65) compares the humidity in a cultivation room (S) with target humidity (step S6). When the humidity in the cultivation room (S) is lower than the target humidity (Yes in step S6), the air conditioning control unit (65) increases the evaporation temperature of the refrigerant in the operating air conditioner (20), and / or Or control which raises the air volume which an indoor unit (25) supplies to a cultivation room (S) is performed (step S7). Heat generation in the cultivation room (S) by raising the evaporation temperature of the refrigerant while maintaining the light intensity of the lighting equipment (40, 50) that irradiates the plant (16) with light in the cultivation room (S) While the amount is maintained, the cooling capacity of the indoor unit (25) is weakened, and the dehumidifying capacity is also weakened accordingly. In addition, the amount of heat generated in the cultivation room (S) is maintained by increasing the air volume by increasing the rotation speed of the indoor fan (27) while maintaining the light intensity of the lighting equipment (40, 50). The cooling capacity and dehumidification capacity of the indoor unit (25) are weakened. As the air volume blown out of the indoor unit (25) increases, the wind speed passing through the indoor heat exchanger (26) increases, and as a result, the time that the air is in contact with the indoor heat exchanger (26) is shortened. Since the temperature of the air does not decrease, the difference from the dew point is reduced, and the dehumidifying capacity is reduced. By such step S7, the temperature in the cultivation room (S) approaches the target temperature, and the humidity approaches the target humidity.

ステップS6において、栽培室(S)内の湿度が目標湿度よりも高い場合(ステップS6のNo)、空調制御部(65)は、運転中の空気調和装置(20)の冷媒の蒸発温度を下げるか、及び/または、室内機(25)が栽培室(S)に供給する風量を下げる制御を行う(ステップS8)。栽培室(S)内にて光を植物(16)に照射している照明機器(40,50)の光量を維持した状態にて冷媒の蒸発温度を下げることにより、栽培室(S)内の発熱量は維持された状態にて室内機(25)の冷房能力が高められ、これに伴い除湿能力も高められる。また、照明機器(40,50)の光量を維持した状態にて、室内ファン(27)の回転数を下げて風量を下げることによっても、栽培室(S)内の発熱量は維持された状態にて室内機(25)の冷房能力及び除湿能力は強められる。室内機(25)から吹き出される空気の風量が減少すると、室内熱交換器(26)を通る風速が下がり、その結果空気が室内熱交換器(26)と接している時間が長くなることで空気の温度が下がるため、露点との差が大きくなり除湿能力が上昇する。このようなステップS8により、栽培室(S)内の温度は目標温度に近づき、湿度も目標湿度に近づく。   In Step S6, when the humidity in the cultivation room (S) is higher than the target humidity (No in Step S6), the air conditioning control unit (65) lowers the evaporation temperature of the refrigerant in the operating air conditioner (20). Or and / or control which reduces the air volume which an indoor unit (25) supplies to a cultivation room (S) is performed (step S8). In the cultivation room (S), by reducing the evaporation temperature of the refrigerant while maintaining the light intensity of the lighting equipment (40, 50) that irradiates the plant (16) with light in the cultivation room (S), While the calorific value is maintained, the cooling capacity of the indoor unit (25) is increased, and the dehumidifying capacity is also increased accordingly. In addition, the amount of heat generated in the cultivation room (S) is maintained by reducing the air volume by reducing the number of revolutions of the indoor fan (27) while maintaining the light intensity of the lighting equipment (40, 50). The cooling capacity and dehumidification capacity of the indoor unit (25) can be increased. When the air volume blown out from the indoor unit (25) decreases, the wind speed passing through the indoor heat exchanger (26) decreases, and as a result, the time that the air is in contact with the indoor heat exchanger (26) increases. Since the temperature of the air decreases, the difference from the dew point increases and the dehumidifying capacity increases. By such step S8, the temperature in the cultivation room (S) approaches the target temperature, and the humidity approaches the target humidity.

図2では図示していないが、ステップS6において栽培室(S)内の湿度が目標湿度と同程度である場合、空調制御部(65)は、冷媒の蒸発温度及び風量を変化させることなく維持させる。   Although not shown in FIG. 2, when the humidity in the cultivation room (S) is about the same as the target humidity in step S6, the air conditioning control unit (65) maintains the refrigerant without changing the evaporation temperature and the air volume. Let

ステップS2からステップS8の動作は、空調運転(冷房運転)が終了するまで繰り返される(ステップS9のNo)。空調運転(冷房運転)が終了する場合(ステップS9のYes)、図2に係る一連の制御動作は終了する。   The operations from step S2 to step S8 are repeated until the air conditioning operation (cooling operation) is completed (No in step S9). When the air conditioning operation (cooling operation) ends (Yes in step S9), the series of control operations according to FIG. 2 ends.

<本実施形態の効果>
本実施形態では、所定の光量子束密度に対する発熱量が互いに異なる少なくとも2種類の照明機器(40,50)をあえて同一の栽培室(S)内に設置するにあたり、栽培室(S)内の全熱負荷と顕熱負荷との負荷比率が空気調和装置(20)の顕熱比と同程度となるように、各照明機器(40,50)をどの程度の割合設置するかを決定する。これにより、各照明機器(40,50)をどの程度配置すべきかが、栽培室(S)の環境に応じて適切に決定される。従って、所定の光量子束密度に対する発熱量が照明機器(40,50)の種類によって異なるといった影響を受けることなく、栽培室(S)内の植物(16)にとって適正な湿度の栽培空間を提供することができる。
<Effect of this embodiment>
In the present embodiment, when at least two types of lighting devices (40, 50) having different calorific values with respect to a predetermined photon flux density are installed in the same cultivation room (S), the entire cultivation room (S) The ratio of each lighting device (40, 50) to be installed is determined so that the load ratio between the heat load and the sensible heat load is approximately the same as the sensible heat ratio of the air conditioner (20). Thereby, how much each lighting apparatus (40,50) should be arrange | positioned is appropriately determined according to the environment of a cultivation room (S). Therefore, it provides a cultivation space with appropriate humidity for the plant (16) in the cultivation room (S) without being affected by the amount of heat generated for a given photon flux density depending on the type of lighting device (40, 50). be able to.

特に、栽培支援システム(10)によれば、再熱除湿機が不要のため、コストがかからずに済む。   In particular, according to the cultivation support system (10), since a reheat dehumidifier is not required, the cost can be reduced.

なお、本実施形態に係る照明機器(40,50)には、蛍光灯(40)とLED(50)とが含まれる。   Note that the lighting device (40, 50) according to the present embodiment includes a fluorescent lamp (40) and an LED (50).

また、本実施形態において、栽培室(S)内の全熱負荷は、該栽培室(S)に設置される上記照明機器(40,50)全ての発熱量の合計値、に基づき求められる機器熱負荷である。栽培室(S)内の顕熱負荷は、当該機器熱負荷と、栽培室(S)内の植物(16)の蒸散による潜熱負荷との差である。つまり、本実施形態では、どの照明機器(40,50)をどの程度配置すべきかが、栽培室(S)内の植物(16)の蒸散による潜熱負荷により決定される。従って、栽培室(S)内の植物(16)にとってより適正な湿度の栽培空間を提供することができる。   Moreover, in this embodiment, the total heat load in the cultivation room (S) is determined based on the total value of the calorific values of all the lighting devices (40, 50) installed in the cultivation room (S). It is a heat load. The sensible heat load in the cultivation room (S) is the difference between the equipment heat load and the latent heat load due to the transpiration of the plant (16) in the cultivation room (S). That is, in this embodiment, which lighting device (40, 50) should be arranged and how much is determined by the latent heat load due to the transpiration of the plant (16) in the cultivation room (S). Therefore, it is possible to provide a cultivation space with more appropriate humidity for the plant (16) in the cultivation room (S).

上述のようにして決定された配置割合に応じて照明機器(40,50)が栽培室(S)に設置されたとする。この栽培室(S)にて植物(16)が実際に栽培されている間、例えば明期及び暗期の違いや植物の生長過程による蒸散量の変化等に起因して、栽培室(S)内の湿度環境が変動する場合がある。本実施形態では、そのような栽培室(S)における潜熱負荷変動にあわせて、照明機器(40,50)の光量が調節される。照明機器(40,50)の光量が調節されると、照明機器(40,50)の発熱量も変化する。空気調和装置(20)の空調能力は、変化した照明機器(40,50)の発熱量に変化に応じて変化する。その結果、栽培室(S)内は、植物(16)にとって適切な湿度に保たれる。   It is assumed that the lighting device (40, 50) is installed in the cultivation room (S) according to the arrangement ratio determined as described above. While the plant (16) is actually cultivated in this cultivation room (S), the cultivation room (S), for example, due to the difference between the light period and the dark period and the change in transpiration due to the growth process of the plant, etc. The humidity environment inside may vary. In the present embodiment, the light quantity of the lighting device (40, 50) is adjusted in accordance with the latent heat load fluctuation in the cultivation room (S). When the amount of light of the lighting device (40, 50) is adjusted, the amount of heat generated by the lighting device (40, 50) also changes. The air conditioning capacity of the air conditioner (20) changes according to the change in the heat generation amount of the changed lighting device (40, 50). As a result, the inside of the cultivation room (S) is kept at an appropriate humidity for the plant (16).

<その他の実施形態>
照明機器(40,50)の種類には、蛍光灯及びLED以外が含まれても良い。また、照明機器(40,50)の組合せは、所定の光量子束密度に対する発熱量が互いに異なる照明機器の組合せであれば良いため、蛍光灯及びLEDの組合せに限定されない。
<Other embodiments>
The types of lighting devices (40, 50) may include other than fluorescent lamps and LEDs. Further, the combination of the lighting devices (40, 50) is not limited to the combination of the fluorescent lamp and the LED, as long as it is a combination of lighting devices having different heat generation amounts with respect to a predetermined photon flux density.

照明機器(40,50)の設置位置や、蛍光灯(40)及びLED(50)の配置の仕方は、図1に限定されない。   The installation position of the illumination devices (40, 50) and the manner of arrangement of the fluorescent lamp (40) and the LED (50) are not limited to FIG.

栽培室(S)内の全熱負荷及び顕熱負荷は、該栽培室(S)に設置される上記照明機器(40,50)全ての発熱量に基づく機器熱負荷や、当該機器熱負荷と栽培室(S)内の植物(16)の蒸散による潜熱負荷との差による算出方法に限定されない。   The total heat load and sensible heat load in the cultivation room (S) are the equipment heat load based on the calorific value of all the lighting devices (40, 50) installed in the cultivation room (S), and the equipment heat load. It is not limited to the calculation method by the difference with the latent heat load by the transpiration of the plant (16) in the cultivation room (S).

決定された設置割合に応じて照明機器(40,50)が設置された栽培室(S)内での図2の動作は、必須ではない。図2とは別の動作が行われても良い。   The operation of FIG. 2 in the cultivation room (S) in which the lighting device (40, 50) is installed according to the determined installation ratio is not essential. An operation different from that shown in FIG. 2 may be performed.

以上説明したように、本発明は、栽培室(S)内は、植物(16)にとって適正な湿度となる栽培支援システムについて有用である。   As described above, the present invention is useful for the cultivation support system in which the humidity in the cultivation room (S) is appropriate for the plant (16).

10 栽培支援システム
20 空気調和装置
40 蛍光灯(照明機器)
50 LED(照明機器)
61 決定部
65 空調制御部(制御部)
10 Cultivation support system
20 Air conditioner
40 Fluorescent lamp (lighting equipment)
50 LED (lighting equipment)
61 Decision part
65 Air conditioning control unit (control unit)

Claims (4)

植物の栽培室(S)内の空調を行う空気調和装置(20)と、
上記栽培室(S)に配置され、所定の光量子束密度に対する発熱量が互いに異なる少なくとも2種類の照明機器(40,50)と、
上記栽培室(S)内の全熱負荷に対する上記栽培室(S)内の顕熱負荷の割合を示す負荷比率が、上記空気調和装置(20)の顕熱比と同程度となるように、少なくとも2種類の上記照明機器(40,50)の設置割合を決定する決定部(61)と
を備えることを特徴とする栽培支援システム。
An air conditioner (20) for air conditioning in the plant cultivation room (S);
At least two types of lighting devices (40, 50) arranged in the cultivation room (S) and having different calorific values for a given photon flux density;
The load ratio indicating the ratio of the sensible heat load in the cultivation room (S) to the total heat load in the cultivation room (S) is the same as the sensible heat ratio of the air conditioner (20). A cultivation support system comprising: a determination unit (61) that determines an installation ratio of at least two types of the lighting devices (40, 50).
請求項1において、
少なくとも2種類の上記照明機器(40,50)には、蛍光灯(40)とLED(50)とが含まれる
ことを特徴とする栽培支援システム。
In claim 1,
The cultivation support system, wherein the at least two types of lighting devices (40, 50) include a fluorescent lamp (40) and an LED (50).
請求項1または請求項2において、
上記栽培室(S)内の全熱負荷は、該栽培室(S)に設置される上記照明機器(40,50)全ての発熱量の合計値、に基づき求められる機器熱負荷であって、
上記栽培室(S)内の顕熱負荷は、上記機器熱負荷と、上記栽培室(S)内の植物(16)の蒸散による潜熱負荷との差である
ことを特徴とする栽培支援システム。
In claim 1 or claim 2,
The total heat load in the cultivation room (S) is the equipment heat load determined based on the total calorific value of all the lighting devices (40, 50) installed in the cultivation room (S),
The cultivation support system, wherein the sensible heat load in the cultivation room (S) is a difference between the equipment heat load and a latent heat load due to transpiration of the plant (16) in the cultivation room (S).
請求項1から請求項3のいずれか1項において、
上記設置割合に応じて上記照明機器(40,50)が設置されている上記栽培室(S)内にて上記植物(16)が栽培されている際、上記栽培室(S)内が目標温度となるように上記空気調和装置(20)の空調運転を制御する制御部(65)、
を更に備え、
上記制御部(65)は、目標湿度と上記栽培室(S)内の湿度との大小に応じて、上記照明機器(40,50)の光量を調節する
ことを特徴とする栽培支援システム。
In any one of Claims 1-3,
When the plant (16) is cultivated in the cultivation room (S) where the lighting device (40, 50) is installed according to the installation ratio, the inside of the cultivation room (S) is the target temperature. A control unit (65) for controlling the air conditioning operation of the air conditioner (20) so that
Further comprising
The said support part (65) adjusts the light quantity of the said illuminating device (40,50) according to the magnitude of the target humidity and the humidity in the said cultivation room (S), The cultivation assistance system characterized by the above-mentioned.
JP2016139997A 2016-07-15 2016-07-15 Cultivation support system Pending JP2018007634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139997A JP2018007634A (en) 2016-07-15 2016-07-15 Cultivation support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139997A JP2018007634A (en) 2016-07-15 2016-07-15 Cultivation support system

Publications (1)

Publication Number Publication Date
JP2018007634A true JP2018007634A (en) 2018-01-18

Family

ID=60993335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139997A Pending JP2018007634A (en) 2016-07-15 2016-07-15 Cultivation support system

Country Status (1)

Country Link
JP (1) JP2018007634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200066002A (en) * 2018-11-30 2020-06-09 주식회사 대산정밀 Hydroponic bed
KR20200066001A (en) * 2018-11-30 2020-06-09 주식회사 대산정밀 Hydroponic grower and its control method
WO2020202660A1 (en) * 2019-04-01 2020-10-08 パナソニック株式会社 Cultivation control system, cultivation control device, cultivation control method, and cultivation control program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200066002A (en) * 2018-11-30 2020-06-09 주식회사 대산정밀 Hydroponic bed
KR20200066001A (en) * 2018-11-30 2020-06-09 주식회사 대산정밀 Hydroponic grower and its control method
KR102141571B1 (en) * 2018-11-30 2020-08-05 주식회사 대산정밀 Hydroponic grower and its control method
KR102141572B1 (en) * 2018-11-30 2020-08-05 주식회사 대산정밀 Hydroponic bed
WO2020202660A1 (en) * 2019-04-01 2020-10-08 パナソニック株式会社 Cultivation control system, cultivation control device, cultivation control method, and cultivation control program
JPWO2020202660A1 (en) * 2019-04-01 2020-10-08
CN113645835B (en) * 2019-04-01 2022-07-08 松下电器产业株式会社 Cultivation control system, cultivation control device, cultivation control method, and cultivation control program
TWI816957B (en) * 2019-04-01 2023-10-01 日商松下控股股份有限公司 Cultivation control system, cultivation control device, cultivation control method and cultivation control program
JP7454554B2 (en) 2019-04-01 2024-03-22 パナソニックホールディングス株式会社 Cultivation control system, cultivation control device, cultivation control method, and cultivation control program

Similar Documents

Publication Publication Date Title
JP6012264B2 (en) Air conditioning system for cultivation room
JP6079802B2 (en) Air conditioning system for cultivation room
JP6610244B2 (en) Control device and agricultural house
JP2018007634A (en) Cultivation support system
US11096337B1 (en) Method and apparatus for a heating, ventilating, and air conditioning system for indoor farming
JP7421064B2 (en) air conditioner
JP4858239B2 (en) Air conditioning method for multi-stage plant cultivation equipment
WO2007105168A2 (en) Mist greenhouse
US20140182313A1 (en) Process control of temperature and humidity for electrical appliances
KR101075863B1 (en) Control method for energy saving sensible heat cooling and dehumidifying cooling in thermo-hygrostat
JP4314412B2 (en) Large volume enclosed space temperature control system
JP7081124B2 (en) Control device and agricultural house
JP6517013B2 (en) Air conditioning system and plant factory
JP6686492B2 (en) Controls and farmhouses
JP2011188785A (en) Heat pump type air conditioning machine for protected horticulture greenhouse
JP2016003805A (en) Air conditioning system
JP6474573B2 (en) Plant cultivation device and air conditioner for plant cultivation device
JP2018009753A (en) Air conditioning system
JP4529164B2 (en) Windless environment type plant growth chamber and temperature adjustment method
JP3562840B2 (en) Greenhouse environmental control method
JP7295168B2 (en) Cultivation equipment and cultivation method
KR20140012765A (en) The control system of livestock barn by heat quantity index
JP3202306U (en) Plant cultivation equipment
JP2018093797A (en) Cultivation environment-providing system
KR102659473B1 (en) Thermo-hygrostat control method for energy-saving dehumidification control of a low-load thermo-hygrostat facility and its thermo-hygrostat