JP2018007347A - Performance evaluation method of photovoltaic power generation - Google Patents

Performance evaluation method of photovoltaic power generation Download PDF

Info

Publication number
JP2018007347A
JP2018007347A JP2016128115A JP2016128115A JP2018007347A JP 2018007347 A JP2018007347 A JP 2018007347A JP 2016128115 A JP2016128115 A JP 2016128115A JP 2016128115 A JP2016128115 A JP 2016128115A JP 2018007347 A JP2018007347 A JP 2018007347A
Authority
JP
Japan
Prior art keywords
power generation
data
generation amount
estimated
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016128115A
Other languages
Japanese (ja)
Other versions
JP6813291B2 (en
Inventor
中島 栄一
Eiichi Nakajima
栄一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Original Assignee
Kandenko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd filed Critical Kandenko Co Ltd
Priority to JP2016128115A priority Critical patent/JP6813291B2/en
Publication of JP2018007347A publication Critical patent/JP2018007347A/en
Application granted granted Critical
Publication of JP6813291B2 publication Critical patent/JP6813291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method of photovoltaic power generation through the grasp of power generation performance by the slide of a learning period.SOLUTION: The performance of photovoltaic power generation is evaluated based on a difference between a first estimated power generation amount at maintained initial power generation performance, which is obtained through parameter learning from data obtained by measuring a meteorological condition and a power generation amount related to power generation per a content time in a constant period after the start of operation, and a second estimated power generation amount, which is obtained through parameter learning from similar data to the above, under the same condition of the meteorological condition related to the first estimated power generation amount data, in a most recent constant period after the lapse of the period after the start of operation.SELECTED DRAWING: Figure 1

Description

この発明は、太陽光発電所における長期間の発電性能の変化を定量的に把握して太陽光発電の性能を評価する方法に関するものである。 The present invention relates to a method for quantitatively grasping a long-term change in power generation performance in a solar power plant and evaluating the performance of solar power generation.

火力発電や原子力発電のように、原料の投入量を一定にして初期の発電量と現在の発電量をそれぞれ測定し、これらを比較して現在の発電設備の性能を評価することは容易であるが、太陽光発電に関しては、原料供給元である太陽の照射強度や外気温の変化により発電量が変化するため、単純に初期の発電量と現在の発電量との比較だけでは性能を評価することは難しい。 As with thermal power generation and nuclear power generation, it is easy to measure the initial power generation amount and the current power generation amount with a constant input of raw materials, and compare these to evaluate the performance of the current power generation equipment. However, with regard to solar power generation, the amount of power generation changes due to changes in the irradiation intensity of the sun, which is the raw material supplier, and the outside air temperature, so the performance is evaluated simply by comparing the initial power generation amount with the current power generation amount. It ’s difficult.

一方、大規模太陽光発電所の運用において、安全を確保し、事業収益を向上させるためには、発電所のモニタリングによって運転状況を把握することが必要であるが、発電所の発電量は日射や外気温といった周囲環境条件、及び発電所の広さや構成といった固有の条件に大きく左右されるため、単にモニタリングを行うだけでは運転状況を適切に把握することは困難である。 On the other hand, in order to ensure safety and improve business profits in the operation of large-scale solar power plants, it is necessary to grasp the operating status through power plant monitoring. Therefore, it is difficult to properly grasp the operating status by simply performing monitoring because it is greatly affected by the surrounding environmental conditions such as the ambient temperature and the specific conditions such as the size and configuration of the power plant.

そこで、日射量や外気温といった周囲環境データ、及び発電所の設備情報から発電量を推定する手法が多数考案されているが、十分な精度が得られない。あるいは精度を得るためにできるだけ多くの計測設備を設けて細かく計測することや専門家による分析が必要である、といった問題点があった。 Thus, many methods have been devised for estimating the amount of power generation from ambient environment data such as the amount of solar radiation and outside temperature, and facility information of the power plant, but sufficient accuracy cannot be obtained. Or, in order to obtain accuracy, there are problems such as providing as many measuring facilities as possible and performing detailed measurement and analysis by experts.

特許文献1の「発電量予測装置およびその方法」では、太陽光発電システムのそれぞれについて、システム係数と発電実験データから前記太陽光発電システムの設置されたサイトにおける気象状況を推定することにより、推定気象状況値を得る気象状況推定部と、前記推定気象状況値を、各前記太陽光発電システムの設置位置に応じて補正処理することにより補正気象状況値を得る気象状況空間補正部と、前記太陽光発電システム毎に、前記補正気象状況値と前記発電実績データに基づいて、前記システム係数を更新するパラメータ学習部と、前記太陽光発電システム毎に、前記参照気象データと前記システム係数に基づき、発電量予測を行う発電予測部とを備えるものである。 In the “power generation amount prediction device and method” of Patent Document 1, estimation is performed by estimating the weather condition at the site where the solar power generation system is installed from the system coefficient and the power generation experiment data for each of the solar power generation systems. A weather condition estimation unit for obtaining a weather condition value, a weather condition space correction unit for obtaining a corrected weather condition value by correcting the estimated weather condition value according to an installation position of each of the solar power generation systems, and the sun For each photovoltaic power generation system, based on the corrected weather condition value and the actual power generation data, a parameter learning unit that updates the system coefficient, and for each photovoltaic power generation system, based on the reference weather data and the system coefficient, A power generation prediction unit that performs power generation amount prediction.

特開2014−63372号公報JP 2014-63372 A

特許文献1のものでは、推定を行おうとする発電所の過去の実績データ(日射・外気温・発電量等)から所定の発電量推定モデルのパラメータを学習し、そのパラメータを用いて以降の発電量を推定することにより自律的に推定精度の向上を図るものである。また、太陽光発電における発電量推定学習の支援システムにおいて、学習の過程で生成される行列を保持しておくことで、学習に必要なデータを圧縮し、学習条件をフレキシブルに変更することが開発されている。 In Patent Document 1, the parameters of a predetermined power generation amount estimation model are learned from past performance data (sunlight, outside temperature, power generation amount, etc.) of a power plant to be estimated, and subsequent power generation is performed using the parameters. The estimation accuracy is autonomously improved by estimating the quantity. In addition, in the support system for power generation estimation learning in photovoltaic power generation, it is possible to compress the data necessary for learning and to change the learning conditions flexibly by maintaining the matrix generated during the learning process. Has been.

この様な背景において、太陽光発電システムでは、一般に0.5〜1%/年程度の劣化があると言われている。そこで、太陽光発電所の運転初期の計測データを用いて、上記特許文献1のような発電量推定モデルのパラメータを学習し、そのパラメータを用いることで、図10に示すように、「発電所が初期の発電性能を保持していた場合の発電量」を推定する。 In such a background, it is generally said that a photovoltaic power generation system has a deterioration of about 0.5 to 1% / year. Therefore, by using the measurement data at the initial stage of the operation of the solar power plant, learning the parameters of the power generation amount estimation model as described in Patent Document 1, and using the parameters, as shown in FIG. Estimate the power generation amount when the initial power generation performance is maintained.

図10は評価する太陽光発電所のアレイ容量やパワーコンディショナー(PCS)の容量を予め入力しておき、日射強度や外気温を測定し、さらにPCS発電量や連系点電力を測定し、所定の発電量推定モデルのパラメータを学習し、そのパラメータを用いて以降の発電量を推定する。この様に、「発電所が初期の発電性能を保持していた場合の発電量」を推定することはできるが、それだけでは運転開始から時間が経過した時の劣化も含めた発電量を推定することはできない。 In FIG. 10, the array capacity of the photovoltaic power plant to be evaluated and the capacity of the power conditioner (PCS) are input in advance, the solar radiation intensity and the outside air temperature are measured, the PCS power generation amount and the interconnection point power are measured, The parameters of the power generation amount estimation model are learned, and the subsequent power generation amounts are estimated using the parameters. In this way, it is possible to estimate “the amount of power generated when the power plant maintains the initial power generation performance”, but that alone estimates the amount of power generation including degradation when time has elapsed since the start of operation. It is not possible.

この問題への対策としては、図11に示すように、予め時間経過による劣化率を想定しておき、初期性能での推定発電量にその劣化率を掛けることで「劣化も含めた推定発電量」とする方法があるが、この場合、設定した劣化率が実際の劣化率と一致しているとは限らないため、推定精度の低下を招く恐れがある。 As a countermeasure to this problem, as shown in FIG. 11, a deterioration rate over time is assumed in advance, and the estimated power generation amount including the deterioration is calculated by multiplying the estimated power generation amount in the initial performance by the deterioration rate. However, in this case, since the set deterioration rate does not always coincide with the actual deterioration rate, the estimation accuracy may be reduced.

また、太陽光発電システムの発電量は日射や気温といった気象条件に左右されるため、例えば異なる年度における「1年間の総発電量」を比較しようとした場合、当然ながらそれぞれの年における気象条件が同一でないため、そのままでは比較することができない。 In addition, since the amount of power generated by the solar power generation system depends on weather conditions such as solar radiation and temperature, for example, when trying to compare “total power generation for one year” in different years, the weather conditions in each year are naturally Since they are not identical, they cannot be compared as they are.

図10に示す方法で初期性能における発電量を推定し、それぞれの推定発電量に対する実績発電量の比率を見ることで気象条件の違いの影響を排除することは可能であるが、点検や事故による発電所の停止など、運転状況が異なる場合の誤差までは取り除くことはできない。この運転状況の影響を排除するためには、発電所の運転履歴を踏まえた上で「発電所が十全に運転している時」のみのデータを抽出した上で比較を行う必要があるが、この作業は非常に煩雑であり、また、対象となるデータ数の減少を招くという問題がある。 Although it is possible to eliminate the influence of the difference in weather conditions by estimating the power generation amount in the initial performance by the method shown in FIG. 10 and looking at the ratio of the actual power generation amount to each estimated power generation amount, It is not possible to eliminate errors in case of different operating conditions, such as a power plant shutdown. In order to eliminate the influence of this operating situation, it is necessary to make a comparison after extracting data only when the power plant is fully operating based on the operating history of the power plant. This work is very complicated, and there is a problem that the number of target data is reduced.

そこで、この発明は、学習期間のスライドによる発電性能の変化を把握することにより太陽光発電の評価方法を提供することを目的としたものである。 In view of this, an object of the present invention is to provide a solar power generation evaluation method by grasping a change in power generation performance due to a slide in a learning period.

請求項1の発明は、運転開始後の一定期間の一定時間ごとの発電に関する気象条件値及び発電量を測定したデータからパラメータを学習して得た、初期の発電性能を保持していた場合の第1推定発電量と、前記期間経過後の直近一定期間の、前記第1推定発電量のデータの気象条件と同じ条件下での前記と同様のデータからパラメータを学習して得た第2推定発電量との差により当該太陽光発電の性能を評価する、太陽光発電の性能評価方法とした。 The invention of claim 1 is a case where initial power generation performance obtained by learning parameters from data obtained by measuring meteorological condition values and power generation amount for a certain period of time for a certain period after the start of operation is maintained. Second estimation obtained by learning parameters from the first estimated power generation amount and data similar to the above under the same weather conditions as the data of the first estimated power generation amount for the most recent fixed period after the passage of the period It was set as the performance evaluation method of the solar power generation which evaluates the performance of the said solar power generation by the difference with the electric power generation amount.

また、請求項2の発明は、前記第1推定発電量及び第2推定発電量は、太陽光発電システムにおける発電に関係する天候条件値及び発電量を一定時間ごとに一定期間にわたり計測してこれらをデータとして蓄積し、これらの中から、事前に定めた不適当な発電量データを除外し、残った発電量データを用いてこれを逐次更新して推定パラメータを学習し、これにより推定パラメータを決定し、当該推定パラメータから前記発電に関係する気象条件値を勘案して算出するものである、請求項1に記載の太陽光発電の性能評価方法とした。 According to a second aspect of the present invention, the first estimated power generation amount and the second estimated power generation amount are obtained by measuring a weather condition value and a power generation amount related to power generation in the solar power generation system over a certain period of time. Are stored as data, and inappropriate power generation data determined in advance are excluded from these, and the remaining power generation data is used to update this sequentially to learn the estimation parameters. The photovoltaic power generation performance evaluation method according to claim 1, which is determined and calculated from the estimated parameters in consideration of weather condition values related to the power generation.

また、請求項3の発明は、前記不適当な発電量データであると事前に定めた発電量データは、太陽高度の低い時刻の発電量データ、日射強度の閾値以下における発電量データ、ある一定期間の発電量の計測データを対象として上記太陽高度の低い時刻の発電量データ及び日射強度の閾値以下における発電量データを除外した残りのデータから算出した推定パラメータを用いて前記期間の発電量を推定し、推定した発電量と実測データの誤差が一定値以上乖離した時刻の発電量データ、及び構成的に類似した他の発電所の実績データから算出した推定モデル・パラメータを用いて発電量を推定し、推定した発電量と実測データとの誤差が一定値以上乖離した時刻の発電量データの一つ又は複数である、請求項2に記載の太陽光発電の性能評価方法とした。 Further, in the invention of claim 3, the power generation amount data determined in advance as the inappropriate power generation amount data includes power generation amount data at a time when the solar altitude is low, power generation amount data below a solar radiation intensity threshold value, Using the estimation parameters calculated from the remaining data excluding the power generation data at the time when the solar altitude is low and the power generation data below the solar radiation intensity threshold for the measurement data of the power generation during the period, Estimate the power generation amount using the estimated model parameters calculated from the power generation amount data at the time when the estimated power generation amount and the error of the measured data deviate more than a certain value, and the actual data of other structurally similar power plants 3. The method for evaluating the performance of photovoltaic power generation according to claim 2, wherein the estimation method is one or a plurality of power generation data at a time when an error between the estimated power generation and the measured data deviates by a predetermined value or more. And the.

請求項1〜3の発明によれば、太陽光発電の運転開始時の一定期間の発電に関係する天候条件値及び発電量を一定時間ごとに一定期間にわたり計測してこれらをデータとして蓄積し、これらのデータを逐次更新して推定パラメータを学習する重回帰分析を用い、これにより決定した推定パラメータによる第1推定発電量と、前記一定期間経過後の、同様に得た第2推定発電量とを比較することにより発電所全体の発電性能劣化状況を定量的に把握することができる。従って、気象条件や運転状況に左右されない、純粋な発電性能の変化を把握することができ、より正確な発電性能評価が可能である。また、長期間の運転データを適用することで、太陽光発電所全体の劣化(故障も含む)診断を行うことが可能である。また、発電所性能の一環として、計測範囲を細分化できれば、同様の手法で部分的な劣化を把握することができる。 According to the first to third aspects of the invention, the weather condition value and the power generation amount related to the power generation for a certain period at the start of the operation of the photovoltaic power generation are measured over a certain period of time and accumulated as data, Using multiple regression analysis that sequentially updates these data and learns the estimated parameters, the first estimated power generation amount based on the estimated parameters determined thereby, and the second estimated power generation amount obtained in the same manner after the predetermined period of time, By comparing these, the power generation performance deterioration status of the entire power plant can be quantitatively grasped. Therefore, it is possible to grasp a change in pure power generation performance that is not affected by weather conditions and operating conditions, and more accurate power generation performance evaluation is possible. Moreover, it is possible to diagnose deterioration (including failure) of the entire solar power plant by applying long-term operation data. If the measurement range can be subdivided as part of the power plant performance, partial degradation can be grasped by the same method.

また、請求項2及び3の発明によれば、当該太陽光発電システムにおける発電に関係する天候条件値及び発電量を一定時間ごとに一定期間にわたり計測してこれらをデータとして蓄積し、これらの中から、事前に定めた不適当な天候条件値データ及び発電量データを除外し、残った天候条件値データ及び発電量データを用いてこれを逐次更新して推定パラメータを学習し、これにより推定パラメータを決定するため、発電所が本来の性能を発揮している時の計測データのみを用いてパラメータの学習を行うことができる。また、不適当データの除外状況及び推定パラメータの学習状況の分析を行うことにより、パラメータ学習におけるデータ除外条件自体の最適化を図ることが可能である。これによって、より精度の高い推定発電量を得ることができる。従って、発電所全体の発電性能劣化状況をより精度よく把握することができる。 Further, according to the second and third aspects of the invention, the weather condition value and the power generation amount related to the power generation in the solar power generation system are measured over a certain period of time and accumulated as data. From this, the inappropriate weather condition value data and power generation amount data determined in advance are excluded, and the remaining weather condition value data and power generation amount data are sequentially updated using the remaining weather condition value data and power generation amount data, thereby learning the estimation parameter. Therefore, it is possible to perform parameter learning using only measurement data when the power plant exhibits its original performance. In addition, by analyzing the exclusion status of inappropriate data and the learning status of estimated parameters, it is possible to optimize the data exclusion condition itself in parameter learning. As a result, a more accurate estimated power generation amount can be obtained. Therefore, the power generation performance deterioration status of the entire power plant can be grasped more accurately.

この発明の実施の形態例1の発電性能評価方法の概略構成図である。It is a schematic block diagram of the power generation performance evaluation method of Embodiment 1 of this invention. この発明の実施の形態例1の発電性能評価方法のブロック構成図である。It is a block block diagram of the power generation performance evaluation method of Embodiment 1 of this invention. この発明の実施の形態例1の発電性能評価方法による発電性能変化を示すグラフ図である。It is a graph which shows the power generation performance change by the power generation performance evaluation method of Embodiment 1 of this invention. この発明の実施の形態例1の発電性能評価方法における推定発電量の計測概要を示すブロック図である。It is a block diagram which shows the measurement outline | summary of the estimation electric power generation amount in the electric power generation performance evaluation method of Embodiment 1 of this invention. この発明の実施の形態例1の発電性能評価方法における推定発電量の計測に用いるコンピュータシステムを示す構成図である。It is a block diagram which shows the computer system used for measurement of the estimated electric power generation amount in the electric power generation performance evaluation method of Example 1 of this invention. この発明の実施の形態例1の発電性能評価方法における推定発電量の計測に用いる、時刻による不適当データの除外範囲を示すグラフ図である。It is a graph which shows the exclusion range of the inappropriate data by time used for the measurement of the estimated electric power generation amount in the electric power generation performance evaluation method of Embodiment 1 of this invention. この発明の実施の形態例1の発電性能評価方法における推定発電量の計測に用いる、日射強度による不適当データの除外範囲を示すグラフ図である。It is a graph which shows the exclusion range of the inappropriate data by solar radiation intensity used for the measurement of the estimation electric power generation amount in the electric power generation performance evaluation method of Embodiment 1 of this invention. この発明の実施の形態例1の発電性能評価方法における推定発電量の計測に用いる、当日学習による不適当データの除外範囲を示すグラフ図である。It is a graph which shows the exclusion range of the improper data by the learning on the day used for the measurement of the estimated electric power generation amount in the electric power generation performance evaluation method of Embodiment 1 of this invention. この発明の実施の形態例1の発電性能評価方法における推定発電量の計測に用いる、他発電所パラメータによる不適当データの除外例を示すグラフ図である。It is a graph which shows the example of exclusion of the improper data by other power plant parameters used for measurement of the estimated power generation amount in the power generation performance evaluation method of Embodiment 1 of this invention. 発電量推定パラメータの学習例を示す概略図である。It is the schematic which shows the example of learning of an electric power generation amount estimation parameter. 劣化も含めた推定発電量の算出方法を示す概略図である。It is the schematic which shows the calculation method of the estimated electric power generation amount also including degradation.

(実施の形態例1)
以下、この発明の実施の形態例1の太陽光発電の性能評価方法を図に基づいて説明する。
(Embodiment 1)
Hereinafter, a method for evaluating the performance of photovoltaic power generation according to Embodiment 1 of the present invention will be described with reference to the drawings.

この発明は、図1及び図2に示すように、運転開始後の1年間の一定時間ごとの発電に関する気象条件値、例えば、日射強度、外気温、及び発電量を夫々測定し、推定パラメータ学習部3でこれらのデータから推定パラメータを学習し、発電量推定パラメータ4を得る。そして発電量推定部5を経て、初期の発電性能を保持していた場合の第1推定発電量1を得る。 As shown in FIG. 1 and FIG. 2, the present invention measures weather condition values relating to power generation at regular time intervals for one year after the start of operation, for example, solar radiation intensity, outside air temperature, and power generation amount, and learns estimated parameters. The unit 3 learns an estimation parameter from these data, and obtains a power generation amount estimation parameter 4. Then, the first estimated power generation amount 1 when the initial power generation performance is maintained is obtained through the power generation amount estimation unit 5.

また、前記期間経過後であって、直近1年間の一定時間ごとの発電に関する気象条件値、例えば、日射強度、外気温、及び発電量を夫々測定し、推定パラメータ学習部3´でこれらのデータから推定パラメータを学習し、発電量推定パラメータ4´を得る。そして発電量推定部5´を経て、直近の第2推定発電量2を得る。 In addition, after the above period has elapsed, weather condition values relating to power generation every fixed time in the most recent year, for example, solar radiation intensity, outside air temperature, and power generation amount are measured, and these data are estimated by the estimation parameter learning unit 3 ′. From this, the estimation parameter is learned, and the power generation amount estimation parameter 4 ′ is obtained. Then, the latest second estimated power generation amount 2 is obtained through the power generation amount estimation unit 5 ′.

これらの発電量推定部5及び5´では日射強度及び外気温等の同じ気象条件のデータを抽出して「発電所が初期の発電性能を保持していた場合の推定発電量」と「直近1年間の発電性能による推定発電量」を算出する。このため、この二つの発電量の差は、すなわち、初期1年間と直近1年間との発電性能の差を示すことになり、これを長期間にわたって適用することで、発電所全体の実態としての発電性能劣化状況を定量的に把握することが可能である。 In these power generation amount estimation units 5 and 5 ', data of the same weather conditions such as solar radiation intensity and outside temperature are extracted, and "estimated power generation amount when the power plant has maintained the initial power generation performance" and "most recent 1 "Estimated power generation based on annual power generation performance" is calculated. For this reason, the difference between the two power generation amounts indicates the difference in power generation performance between the initial year and the most recent one year. By applying this over a long period of time, It is possible to quantitatively grasp the power generation performance deterioration status.

図3は実際の太陽光発電所における、この発明の評価方法を用いた発電性能の変化を示す。これは、1日ごとに初期1年間のパラメータと直近1年間のパラメータで発電量を推定し、それぞれの推定発電量における1年間の移動累計を比較したものである。この発電所では運転開始から2年半で2%弱の発電性能低下が見られている。これは、一般に言われる劣化率「0.5〜1%」と合致しており、この発明の評価方法によって発電所の発電性能低下(劣化)を精度よく把握できることが確認された。 FIG. 3 shows changes in power generation performance using the evaluation method of the present invention in an actual solar power plant. This estimates the power generation amount for each day using the parameters for the initial one year and the parameters for the most recent one year, and compares the accumulated movement for one year for each estimated power generation amount. This power plant has seen a decline in power generation performance of less than 2% in two and a half years from the start of operation. This is consistent with the generally-known deterioration rate “0.5 to 1%”, and it was confirmed that the power generation performance degradation (deterioration) of the power plant can be accurately grasped by the evaluation method of the present invention.

また、このグラフ図では、初期の1年間は発電性能が低下しておらず、1年経過後に低下しているが、実際は、初期の1年間でも低下している。また、運転開始から2年以内は、初期の1年間のパラメータの影響が残っており、実際の劣化率を正しく判定しているとは言い難い。運転開始から2年経過後からは、より正確な劣化が判断できる。 In this graph, the power generation performance does not decrease during the initial year, but decreases after the lapse of one year, but actually decreases even during the initial year. Also, within two years from the start of operation, the effect of the initial one year parameters remains, and it is difficult to say that the actual deterioration rate is correctly determined. More accurate degradation can be determined after two years have elapsed since the start of operation.

また、上記実施の形態例1では、発電所の運転開始から1年間及び直近の1年間のデータに基づいているが、1年間に限らず、1年の中の同じ時期の3ヶ月等、適宜の一定期間のデータを用いてもよい。 In the first embodiment, the data is based on data for one year from the start of operation of the power plant and the most recent one year. However, the present invention is not limited to one year, such as three months at the same time in one year. Data for a certain period of time may be used.

次に、前記の太陽光発電の性能評価方法において使用する前記推定発電量の取得について説明する。 Next, acquisition of the estimated power generation amount used in the solar power generation performance evaluation method will be described.

図4は前記推定発電量の計装概要を示すブロック図であるが、当該図4に示すように、太陽光発電所の運転開始初期の1年間、当該発電所に設けた日射計や温度計、電流電圧計等により、日射強度、外気温等の発電に関係する天候条件値及び発電量を1分間ごとに一定時間にわたり計測する(ステップS−1)。そしてこれらの計測値をデータとしてコンピュータの記憶部に蓄積する。また、その際、設備情報として当該発電所の太陽光電池のアレイ容量やPCS容量も記憶部に入力する。 FIG. 4 is a block diagram showing an outline of instrumentation of the estimated power generation amount. As shown in FIG. 4, as shown in FIG. 4, a solar radiation meter and a thermometer provided at the power plant for the first year of the start of operation of the solar power plant. Then, a weather condition value related to power generation such as solar radiation intensity and outside temperature and a power generation amount are measured every minute for a certain period of time by using an ammeter or the like (step S-1). These measured values are stored as data in the storage unit of the computer. At that time, the array capacity and PCS capacity of the photovoltaic cells of the power plant are also input to the storage unit as the facility information.

次に、これらの蓄積データの内の発電量データのうち、後述のパラメータ学習に不適当なデータを除外する(ステップS−2)。これは予め定めた時刻や閾値等と比較して選別する。この処理により残ったデータを基にパラメータの学習を行う(ステップS−3)。これは上記の計測、当該計測によるデータ蓄積、データ除外等を1年間行い、その間にデータ等の更新を逐次行ってパラメータ学習を行う。 Next, data inappropriate for parameter learning to be described later is excluded from the power generation amount data in the accumulated data (step S-2). This is selected by comparison with a predetermined time, threshold value or the like. Parameter learning is performed based on the data remaining by this processing (step S-3). In this, the above-described measurement, data accumulation by the measurement, data exclusion, etc. are performed for one year, and during that time, data etc. are sequentially updated to perform parameter learning.

その後パラメータ学習に基づいて推定パラメータを決定し(ステップS−4)、当該推定パラメータと前記の日射強度や外気温等の発電に関係する天候条件値のデータを勘案して推定発電量を算定する(ステップS−5)。 Thereafter, an estimated parameter is determined based on parameter learning (step S-4), and an estimated power generation amount is calculated in consideration of the estimated parameter and data on weather condition values related to power generation such as solar radiation intensity and outside temperature. (Step S-5).

上記の各ステップは計測手段、当該各計測値をデータとして記憶する記憶手段、不適当なデータを除外するデータ除外手段、パラメータ学習手段、推定パラメータ決定手段、推定発電量算出手段とから成るコンピュータシステムを使用して実現できる。そして、これらの各構成手段による上記ステップ作用は、たとえばコンピュータプログラムモジュールとして実現することができ、各プログラムモジュールを含むプログラムをコンピュータシステムにおいて各機能を実現することができる。 Each of the above steps is a computer system comprising measuring means, storage means for storing each measured value as data, data excluding means for excluding inappropriate data, parameter learning means, estimated parameter determining means, and estimated power generation amount calculating means Can be realized using. And the said step effect | action by each of these structure means can be implement | achieved as a computer program module, for example, and each function can be implement | achieved in a computer system by the program containing each program module.

このコンピュータシステムには、図5に示すように、プログラム命令を実行するCPU11、メモリ等の主記憶装置12、ハードディスク、磁気ディスク装置又は光磁気ディスク装置等の外部記憶装置13、データ入力装置14、表示装置15及びこれらを相互に接続するバス16を具備している。プログラムは外部記憶装置13に保存されており、CPU11がこのプログラムを主記憶装置12に展開し、展開したプログラムを逐次読み出し実行する。 As shown in FIG. 5, the computer system includes a CPU 11 for executing program instructions, a main storage device 12 such as a memory, an external storage device 13 such as a hard disk, a magnetic disk device or a magneto-optical disk device, a data input device 14, A display device 15 and a bus 16 for connecting them to each other are provided. The program is stored in the external storage device 13, and the CPU 11 expands the program in the main storage device 12, and sequentially reads and executes the expanded program.

次に、前記不適当なデータを過不足なく除外するために、以下の処理を行う。これを図6〜図9に基づいて説明する。 Next, in order to exclude the inappropriate data without excess or deficiency, the following processing is performed. This will be described with reference to FIGS.

(1)太陽高度又は時刻による除外
太陽高度が低く、周辺構造物や隣接する太陽電池アレイが作る影によって発電量の低下が起こっている時刻の発電量データはパラメータ学習には不適当であるため、太陽高度が一定以下の時間帯のデータを除外する。太陽高度は日時情報から算出することも可能であるが、ここでは簡易的は方法として、太陽高度が低い早朝や夕方の時間帯の発電量データを除外することとした。
(1) Excluded by solar altitude or time The amount of generated power at the time when the solar altitude is low and the power generation is reduced due to shadows created by surrounding structures and adjacent solar cell arrays is not suitable for parameter learning. Excludes data for times when the solar altitude is below a certain level. The solar altitude can be calculated from the date and time information, but here, as a simple method, the power generation amount data in the early morning and evening hours when the solar altitude is low is excluded.

時刻による除外の例を図6に示す。図6のグラフの左の縦軸は日射強度(kW/m)を、右縦軸が発電量(kW)を表し、横軸は1日の時刻を示す。ここでは、0時から9時未満、15時以降から24までのデータを除外し、9時〜15時のデータのみを残し、パラメータ学習に使用する。 An example of exclusion by time is shown in FIG. The vertical axis on the left of the graph in FIG. 6 represents solar radiation intensity (kW / m 2 ), the vertical axis on the right represents the amount of power generation (kW), and the horizontal axis represents the time of the day. Here, the data from 0 o'clock to less than 9 o'clock and from 15 o'clock to 24 o'clock is excluded, and only the data from 9 o'clock to 15 o'clock is left and used for parameter learning.

(2)日射強度閾値による除外
上記(1)の場合に当てはまらない場合であっても、極端に日射強度が低いと、PCS(パワーコンディショナ)の変換効率が大きく下がる。PCSの空調システム負荷が軽くなるといった理由により、一定以上の日射強度がある場合と異なる条件下での運転となり、パラメータ学習には不適当である。そこで、日射強度閾値(例:0.2kW/m)を設け、計測した日射強度が閾値以下の時刻の発電量データを除外することとした。
(2) Exclusion by the solar radiation intensity threshold Even if the above case (1) does not apply, if the solar radiation intensity is extremely low, the conversion efficiency of the PCS (power conditioner) is greatly reduced. Because the load on the air conditioning system of the PCS is reduced, the operation is performed under conditions different from the case where the solar radiation intensity exceeds a certain level, which is inappropriate for parameter learning. Therefore, a solar radiation intensity threshold value (for example, 0.2 kW / m 2 ) is provided, and power generation amount data at a time when the measured solar radiation intensity is equal to or less than the threshold value is excluded.

日射強度による除外の例を図7に示す。図7のグラフの左の縦軸は日射強度(kW/m)を、右縦軸が発電量(kW)を表し、横軸は1日の時刻を示す。ここでは日射強度0.2kW/m以上の時のデータのみを残し、パラメータ学習に使用する。この日射強度閾値は、0.2kW/mに限らず、0.1kW/m又は0.05kW/m等任意の閾値で良い。 An example of exclusion by solar radiation intensity is shown in FIG. The vertical axis on the left of the graph of FIG. 7 represents the solar radiation intensity (kW / m 2 ), the right vertical axis represents the amount of power generation (kW), and the horizontal axis represents the time of the day. Here, only the data when the solar radiation intensity is 0.2 kW / m 2 or more is left and used for parameter learning. The solar radiation intensity threshold is not limited to 0.2 kW / m 2, it may be a 0.1 kW / m 2 or 0.05 kW / m 2, such as arbitrary threshold.

(3)該当日のみを対象とした学習後推定量との比較による除外
上記(1)、(2)の条件に当てはまらない場合であっても、電力系統事故や作業停止によって発電が停止することがあり、その時刻のデータはパラメータ学習には不適当である。
(3) Exclusion by comparison with estimated amount after learning only for the relevant day Even if the conditions of (1) and (2) above are not met, power generation stops due to power system accident or work stoppage The data at that time is inappropriate for parameter learning.

そこで、ある一定期間(例:1日)の計測データを対象として、(1)、(2)の条件によって不適当データを除外した上で重回帰分析を行い、算出した発電量推定パラメータを用いて該当期間の発電量を推定し、推定した発電量と実測データとの誤差が一定値(例:推定値の10%)以上乖離していた場合、発電所の運転状態に異常があったものとして該当時刻のデータを除外することとした。 Therefore, for the measurement data for a certain period (example: 1 day), multiple regression analysis is performed after removing inappropriate data under the conditions (1) and (2), and the calculated power generation amount estimation parameter is used. If the error between the estimated power generation amount and the measured data is more than a certain value (eg 10% of the estimated value), the operating condition of the power plant is abnormal. It was decided to exclude the data at the corresponding time.

当日学習による除外の例を図8に示す。図8のグラフの左の縦軸は日射強度(kW/m)を、右縦軸が発電量(kW)を表し、横軸は1日の時刻を示す(ただし、右のグラフでは発電量の目盛は省略)。ここでは、右のグラフ図に示すように、推定した発電量と実測した発電量との誤差が一定値以上乖離しているため、発電所の運転状態に異常があったものとして、14時から16時のデータを除外した。 An example of exclusion by learning on the day is shown in FIG. The vertical axis on the left of the graph in FIG. 8 represents the solar radiation intensity (kW / m 2 ), the vertical axis on the right represents the amount of power generation (kW), and the horizontal axis represents the time of the day (however, in the right graph, the amount of power generation) Is omitted). Here, as shown in the graph on the right, since the error between the estimated power generation amount and the actually measured power generation amount is more than a certain value, it is assumed that there was an abnormality in the operating state of the power plant. The data at 16:00 was excluded.

(4)類似の発電所の実績に基づく学習後の推定量との比較による除外
上記(3)の条件によって、一定の期間内において、一時的に発電所の運転に異常があった場合はその時間帯のデータを除外することが可能であるが、太陽電池パネルの初期不良や直流回路の投入忘れ、PCS停止等により、該当期間全体にわたって一様に発電量が低下している場合は、(3)の方法では適不適を判定することができない。
(4) Exclusion by comparison with estimated amount after learning based on the results of similar power plants If the operation of the power plant is temporarily abnormal within a certain period due to the condition of (3) above, It is possible to exclude the data of the time zone, but if the power generation amount decreases uniformly over the entire period due to the initial failure of the solar cell panel, forgetting to turn on the DC circuit, PCS stop, etc., ( The method 3) cannot determine suitability.

そこで、構成的に類似している他の発電所の実績データから算出した推定モデル・パラメータを用いて発電量を推定し、推定した発電量と実測データの誤差が一定値(例:推定値の10%)以上乖離していた場合、発電所の初期状態あるいは運転状態に異常があるものとして、該当データを除外することとした。 Therefore, the power generation amount is estimated using estimated model parameters calculated from the actual data of other power plants that are structurally similar, and the error between the estimated power generation amount and the measured data is a constant value (eg, the estimated value 10%) or more, it was decided to exclude the relevant data because there was an abnormality in the initial state or operation state of the power plant.

他の発電所のパラメータ使用による除外の例を図9に示す。図9の左のグラフは当該発電所の発電実績であり、PCS停止により、一日中発電量が低下した。
右縦軸が日射強度(kW/m)を、右縦軸が発電量(kW)を表し、横軸は1日の時刻を示す。日射量は実線で表し、矢印の上の箇所に頂点を置いた曲線が、日射量に相応して本来発電すべき発電量を示し、矢印の下の箇所に頂点を置いた曲線は実測の発電量を示す。また、図9の右のグラフは、一番大きい山の曲線が、他の発電所のパラメータを使用した推定発電量、下の重なった山の曲線が当該発電所の実測発電量及び当日学習の推定発電量を示す。
An example of exclusion by using parameters of other power plants is shown in FIG. The graph on the left in FIG. 9 shows the power generation performance of the power plant, and the power generation amount decreased all day due to the PCS stoppage.
The right vertical axis represents the solar radiation intensity (kW / m 2 ), the right vertical axis represents the power generation amount (kW), and the horizontal axis represents the time of the day. The amount of solar radiation is represented by a solid line, and the curve with the apex at the location above the arrow indicates the amount of power that should be generated according to the amount of solar radiation. The curve with the apex at the location below the arrow indicates the actual power generation Indicates the amount. The graph on the right side of FIG. 9 shows that the largest mountain curve is the estimated power generation using the parameters of other power plants, and the lower mountain curve is the actual power generation and learning on the day of the power plant. Indicates the estimated power generation amount.

以上の対策により、発電所が本来の性能を発揮している時の計測データのみを用い、パラメータ学習を行うことが可能となった。上記(3)及び(4)の除外条件は、良否判定の閾値を調整することによって、予備的な発電状況診断を行い、異常があった場合に警報を出力する機能として使用することも可能である。 With the above measures, it has become possible to perform parameter learning using only the measurement data when the power plant exhibits its original performance. The exclusion conditions (3) and (4) above can also be used as a function to perform preliminary power generation status diagnosis by adjusting the pass / fail judgment threshold and to output an alarm when there is an abnormality. is there.

また、ある発電所(又はその一部)において、「どの時刻のデータがどの条件によって不適当として除外されたか」、「除外条件を変更した時の発電量推定精度の変化」等に関してシステム上で分析を行うことにより、該当箇所におけるデータ除外方法それ自体を自律的に最適化することができる。 In addition, in a certain power plant (or part of it) on the system regarding “what time data was excluded as inappropriate due to which conditions”, “change in power generation estimation accuracy when the exclusion conditions were changed”, etc. By performing the analysis, it is possible to autonomously optimize the data exclusion method itself at the corresponding location.

これは、例えば、「どの時刻のデータが上記(3)又は(4)の条件によって除外されたか」を集計し、その結果に基づいて該当箇所における上記(1)の条件(除外対象となる時刻)を決定する。 This is, for example, totaling “which time data was excluded by the above condition (3) or (4)”, and based on the result, the above condition (1) (the time to be excluded) ).

また、上記(2)の条件(日射強度閾値)を変更した時の発電量推定精度を比較し、もっとも精度の高い結果が出た条件を採用する、等の最適化調整ができる。 In addition, optimization adjustments such as comparing the power generation amount estimation accuracy when the condition (2) (irradiance intensity threshold) is changed and adopting the condition with the highest accuracy result can be performed.

1 第1推定発電量 2 第2推定発電量
3、3´ 推定パラメータ学習部 4、4´ 発電量推定パラメータ
5、5´ 発電量推定部
11 CPU 12 主記憶装置
13 外部記憶装置 14 入力装置
15 表示装置 16 バス
S−1 データ計測 S−2 データ除外処理 S−3 パラメータ学習 S−4 推定パラメータ
S−5 推定発電量

DESCRIPTION OF SYMBOLS 1 1st estimated electric power generation amount 2 2nd estimated electric power generation amount 3, 3 'Estimation parameter learning part 4, 4' Electricity generation amount estimation parameter 5, 5 'Electricity generation amount estimation part
11 CPU 12 Main storage device 13 External storage device 14 Input device 15 Display device 16 Bus
S-1 Data measurement S-2 Data exclusion process S-3 Parameter learning S-4 Estimated parameters S-5 Estimated power generation

Claims (3)

運転開始後の一定期間の一定時間ごとの発電に関する気象条件値及び発電量を測定したデータからパラメータを学習して得た、初期の発電性能を保持していた場合の第1推定発電量と、前記期間経過後の直近一定期間の、前記第1推定発電量のデータの気象条件と同じ条件下での前記と同様のデータからパラメータを学習して得た第2推定発電量との差により当該太陽光発電の性能を評価することを特徴とする、太陽光発電の性能評価方法。   A first estimated power generation amount when the initial power generation performance is maintained, obtained by learning parameters from data obtained by measuring meteorological condition values and power generation amount for a certain period of time after the start of operation; Due to the difference from the second estimated power generation amount obtained by learning the parameters from the same data as the above under the same weather conditions as the data of the first estimated power generation amount during the most recent fixed period after the period has elapsed. A method for evaluating the performance of photovoltaic power generation, comprising evaluating the performance of photovoltaic power generation. 前記第1推定発電量及び第2推定発電量は、太陽光発電システムにおける発電に関係する天候条件値及び発電量を一定時間ごとに一定期間にわたり計測してこれらをデータとして蓄積し、これらの中から、事前に定めた不適当な発電量データを除外し、残った発電量データを用いてこれを逐次更新して推定パラメータを学習し、これにより推定パラメータを決定し、当該推定パラメータから前記発電に関係する気象条件値を勘案して算出するものであることを特徴とする、請求項1に記載の太陽光発電の性能評価方法。   The first estimated power generation amount and the second estimated power generation amount are obtained by measuring weather condition values and power generation amounts related to power generation in the photovoltaic power generation system over a certain period of time and accumulating them as data. From this, the inappropriate power generation amount data determined in advance is excluded, and the remaining power generation amount data is sequentially updated to learn the estimation parameter, thereby determining the estimation parameter, and the generation parameter is determined from the estimation parameter. The performance evaluation method for photovoltaic power generation according to claim 1, wherein the calculation is performed in consideration of a weather condition value related to. 前記不適当な発電量データであると事前に定めた発電量データは、太陽高度の低い時刻の発電量データ、日射強度の閾値以下における発電量データ、ある一定期間の発電量の計測データを対象として上記太陽高度の低い時刻の発電量データ及び日射強度の閾値以下における発電量データを除外した残りのデータから算出した推定パラメータを用いて前記期間の発電量を推定し、推定した発電量と実測データの誤差が一定値以上乖離した時刻の発電量データ、及び構成的に類似した他の発電所の実績データから算出した推定モデル・パラメータを用いて発電量を推定し、推定した発電量と実測データとの誤差が一定値以上乖離した時刻の発電量データの一つ又は複数であることを特徴とする、請求項2に記載の太陽光発電の性能評価方法。
The power generation data determined in advance to be inappropriate power generation data includes power generation data at times when the solar altitude is low, power generation data below a threshold of solar radiation intensity, and power generation measurement data for a certain period. As described above, the power generation amount for the period is estimated using the estimation parameters calculated from the remaining power generation data excluding the power generation amount data at a time when the solar altitude is low and the solar radiation intensity threshold value or less. Estimate the amount of power generation using the estimated model parameters calculated from the power generation amount data at the time when the data error deviates by more than a certain value and the actual data of other power plants that are structurally similar. The method for evaluating the performance of photovoltaic power generation according to claim 2, characterized in that it is one or a plurality of power generation amount data at a time when an error from the data deviates by a certain value or more.
JP2016128115A 2016-06-28 2016-06-28 Performance evaluation method for photovoltaic power generation Active JP6813291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016128115A JP6813291B2 (en) 2016-06-28 2016-06-28 Performance evaluation method for photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016128115A JP6813291B2 (en) 2016-06-28 2016-06-28 Performance evaluation method for photovoltaic power generation

Publications (2)

Publication Number Publication Date
JP2018007347A true JP2018007347A (en) 2018-01-11
JP6813291B2 JP6813291B2 (en) 2021-01-13

Family

ID=60950066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016128115A Active JP6813291B2 (en) 2016-06-28 2016-06-28 Performance evaluation method for photovoltaic power generation

Country Status (1)

Country Link
JP (1) JP6813291B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092860B1 (en) * 2019-01-22 2020-03-24 인천대학교 산학협력단 Machine learning based solar power generation prediction apparatus and method that does not use future meteorological forecast data
JP2020123200A (en) * 2019-01-31 2020-08-13 中国電力株式会社 Forecast system and forecast method
JP2020123199A (en) * 2019-01-31 2020-08-13 中国電力株式会社 Forecast system and forecast method
KR20200119371A (en) * 2019-03-22 2020-10-20 지앤비쏠라 주식회사 Sunlight generation integrated management system based on model and method thereof
JP2021022244A (en) * 2019-07-29 2021-02-18 大和ハウス工業株式会社 Photovoltaic power generation amount prediction system
KR20220083284A (en) * 2020-12-11 2022-06-20 한국과학기술연구원 Method for predecting power generation and remaining useful life per system and system for performing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090171597A1 (en) * 2008-01-01 2009-07-02 Sma Solar Technology Ag Evaluation method
JP2013073537A (en) * 2011-09-29 2013-04-22 Omron Corp Information processor, power generation amount calculating method, and program
JP2013191672A (en) * 2012-03-13 2013-09-26 Omron Corp Information processing apparatus, abnormality detecting method, program, and solar power generation system
JP2015153367A (en) * 2014-02-19 2015-08-24 シャープ株式会社 State detection device, state detection method, state detection program, and data processing system
JP2015226423A (en) * 2014-05-29 2015-12-14 住友電気工業株式会社 Abnormality determination device, abnormality determination method, and computer program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090171597A1 (en) * 2008-01-01 2009-07-02 Sma Solar Technology Ag Evaluation method
JP2013073537A (en) * 2011-09-29 2013-04-22 Omron Corp Information processor, power generation amount calculating method, and program
JP2013191672A (en) * 2012-03-13 2013-09-26 Omron Corp Information processing apparatus, abnormality detecting method, program, and solar power generation system
JP2015153367A (en) * 2014-02-19 2015-08-24 シャープ株式会社 State detection device, state detection method, state detection program, and data processing system
JP2015226423A (en) * 2014-05-29 2015-12-14 住友電気工業株式会社 Abnormality determination device, abnormality determination method, and computer program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092860B1 (en) * 2019-01-22 2020-03-24 인천대학교 산학협력단 Machine learning based solar power generation prediction apparatus and method that does not use future meteorological forecast data
JP2020123200A (en) * 2019-01-31 2020-08-13 中国電力株式会社 Forecast system and forecast method
JP2020123199A (en) * 2019-01-31 2020-08-13 中国電力株式会社 Forecast system and forecast method
KR20200119371A (en) * 2019-03-22 2020-10-20 지앤비쏠라 주식회사 Sunlight generation integrated management system based on model and method thereof
KR102194271B1 (en) * 2019-03-22 2020-12-22 지앤비쏠라 주식회사 Sunlight generation integrated management system based on model and method thereof
JP2021022244A (en) * 2019-07-29 2021-02-18 大和ハウス工業株式会社 Photovoltaic power generation amount prediction system
JP7376270B2 (en) 2019-07-29 2023-11-08 大和ハウス工業株式会社 Solar power generation prediction system
KR20220083284A (en) * 2020-12-11 2022-06-20 한국과학기술연구원 Method for predecting power generation and remaining useful life per system and system for performing the same
KR102518613B1 (en) * 2020-12-11 2023-04-10 한국과학기술연구원 Method for predecting power generation and remaining useful life per system and system for performing the same
US11967822B2 (en) 2020-12-11 2024-04-23 Korea Institute Of Science And Technology Method for predicting power generation and remaining useful life per system and system for performing the same

Also Published As

Publication number Publication date
JP6813291B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
JP6813291B2 (en) Performance evaluation method for photovoltaic power generation
CN108375715B (en) Power distribution network line fault risk day prediction method and system
Platon et al. Online fault detection in PV systems
TWI607328B (en) Operational auxiliary device and wind power generation system
JP6608619B2 (en) Method and apparatus for diagnosing power generation status of solar power generation system
US10691085B2 (en) Defect detection in power distribution system
JP2014216501A (en) Malfunction detection apparatus and malfunction detection method for photovoltaic power generation system, and photovoltaic power generation system
CN111695736A (en) Photovoltaic power generation short-term power prediction method based on multi-model fusion
CN117117819A (en) Photovoltaic power generation short-term power prediction method, system, equipment and medium
JP6548955B2 (en) Support system for power generation estimation learning in photovoltaic power generation
US20160146864A1 (en) Power System Monitoring and Control Apparatus, and Power System Monitoring and Control Method
Livera et al. Failure diagnosis of short-and open-circuit fault conditions in PV systems
TWI546762B (en) Wind power generation equipment of the stress estimation device and wind power equipment, the stress estimation method, wind power generation system
CN112926798A (en) Method, device, equipment and medium for predicting photovoltaic power generation loss caused by dust
Ribeiro et al. A statistical methodology to estimate soiling losses on photovoltaic solar plants
CN113746425B (en) Photovoltaic inverter parameter anomaly analysis method and system
JP2016144244A (en) Power generation situation diagnosis method for photovoltaic power generation system, and device therefor
CN112213681B (en) Electric energy meter service life prediction method and device
JP2015099858A (en) Abnormality detection device
TW201740296A (en) Method and system for predicting power generation capacity of renewable energy using a neural network to accurately calculate the power generation capacity of renewable energy
US20210305936A1 (en) Method, computer-implemented tool and power plant control device for detecting power production degradation of solar power plants and solar power plant system
Spataru et al. Development and implementation of a PV performance monitoring system based on inverter measurements
Hunt et al. Availability of utility-scale photovoltaic power plants
Benninger et al. Anomaly detection by comparing photovoltaic systems with machine learning methods
JP2021145509A (en) Abnormality detection device, abnormality detection method, and abnormality detection program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201217

R150 Certificate of patent or registration of utility model

Ref document number: 6813291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250