JP2018003584A - High drainage goods - Google Patents

High drainage goods Download PDF

Info

Publication number
JP2018003584A
JP2018003584A JP2017073080A JP2017073080A JP2018003584A JP 2018003584 A JP2018003584 A JP 2018003584A JP 2017073080 A JP2017073080 A JP 2017073080A JP 2017073080 A JP2017073080 A JP 2017073080A JP 2018003584 A JP2018003584 A JP 2018003584A
Authority
JP
Japan
Prior art keywords
water
region
hydrophilic
hydrophobic
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017073080A
Other languages
Japanese (ja)
Inventor
達志 長江
Tatsushi Nagae
達志 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Publication of JP2018003584A publication Critical patent/JP2018003584A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sink And Installation For Waste Water (AREA)
  • Finishing Walls (AREA)
  • Floor Finish (AREA)
  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide goods which enable water to autonomously move with force different from gravity as propulsion force.SOLUTION: High drainage goods comprise a surface with a plurality of water conveyance units. Each water conveyance unit has a plurality of hydrophilic regions and a plurality of hydrophobic regions. The water conveyance unit has nature which increases a hydrophilic character in the hydrophilic regions along a certain direction on the surface, decreases a hydrophobic character in the hydrophobic regions along the certain direction, or concurrently increases the hydrophilic character in the hydrophilic regions and decreases the hydrophobic character in the hydrophobic regions, to thereby causes water to apparently conduct autonomous move in the certain direction. The plurality of water conveyance units are arranged in tandem along the certain direction on the surfaces of the high drainage goods and thereby efficiently drain off the water therefrom.SELECTED DRAWING: Figure 5

Description

本発明は、水が見かけ上自律的に移動し、その表面から排除される物品に関し、詳しくは、表面に付着した水が水平面でも重力や動力等の利用無しに特定の方向へ移動し、その表面から排除される物品に関する。   The present invention relates to an article in which water apparently moves autonomously and is removed from the surface thereof. Specifically, the water attached to the surface moves in a specific direction without using gravity or power even on a horizontal plane, It relates to articles that are excluded from the surface.

水と接触する物品、例えば水まわり部材や、ユニットバスの床、天井板の表面に付着した水は、量が多い場合、重力により排水溝まで導かれ排除されるが、残った水は、ふき取るか、自然乾燥により除かれる。ふき取りには手間を用意し、自然乾燥には時間がかかる、あるいはウォータスポット、水垢の原因になるなど、場合により望ましくない水排除の方法である。したがって、水と接触する物品の表面から水を、好ましくは速やかに、排除する技術について種々の提案がなされている。   Articles that come into contact with water, such as water-related members, water on the surface of unit bath floors, and ceiling boards, are removed to the drainage channel by gravity when the amount is large, but the remaining water is wiped off. Or it is removed by natural drying. It is a method of removing water that is undesirable in some cases, such as wiping off the wiping and taking time for natural drying, or causing water spots and scales. Therefore, various proposals have been made on techniques for removing water from the surface of an article in contact with water, preferably promptly.

例えば、特開2003−39013号公報(特許文献1)には、その表面に凹凸を形成し、凸部には撥水塗料層を形成し、凹部には親水塗料層を形成した水まわり部材が開示されている。このような構造においては、撥水塗料層により水がはじかれるため、水は溝状の凹部内に流れ込み、この凹部に形成されている親水塗料層4により水が広がって、表面張力で玉状となる水が発生せず、良好に凹部に沿って流され排水される。   For example, Japanese Patent Application Laid-Open No. 2003-39013 (Patent Document 1) includes a water-surrounding member in which irregularities are formed on a surface thereof, a water repellent paint layer is formed on a convex portion, and a hydrophilic paint layer is formed on a concave portion. It is disclosed. In such a structure, water is repelled by the water-repellent paint layer, so that the water flows into the groove-shaped recess, and the water is spread by the hydrophilic paint layer 4 formed in the recess, so that the surface tension causes a ball shape. No water is generated, and the water is drained by well flowing along the recesses.

また、特開2008−31665号公報(特許文献2)には、オンデマンド方式により塗装した塗装層の各部における水に対する性質を異ならせ、ある部分においては相対的に水をはじき、且つ、他の部分においては、水を薄く膜状に広げるようにし、両者の組み合わせにより、水を素早く排水することが可能となる水まわり部材が開示されている。   Japanese Patent Application Laid-Open No. 2008-31665 (Patent Document 2) has different properties with respect to water in each part of a coating layer coated by an on-demand system, and relatively repels water in certain parts, and other In the portion, a water-circulating member is disclosed in which water is spread thinly in a film shape and water can be quickly drained by a combination of both.

上記特許文献に開示された技術はいずれも、撥水性の領域にかかった水が弾かれて親水性領域に移動し、この親水性領域において水が濡れ広がる作用を利用する。そして最終的な部材表面からの排水のためには、基材に傾斜があることが前提であり、重力の作用により水は親水性領域を移動する。   In any of the techniques disclosed in the above-mentioned patent documents, water applied to the water-repellent region is repelled and moved to the hydrophilic region, and the action of water spreading in the hydrophilic region is utilized. And for drainage from the final member surface, it is premised that the substrate has an inclination, and water moves in the hydrophilic region by the action of gravity.

また、特開2005−744号公報(特許文献3)には、トンネル形状の流路の一面を親水面と疎水面とで構成し、親水面に対して疎水面を除した値を上流から下流に向け連続的に増加させ液滴を輸送するマイクロ液滴輸送デバイスが開示されている。このデバイスによれば、液滴を一方向に輸送することができるとされているが、親水面と疎水面を三角形のパターンで形成するとき、底辺が1μmから200μm、高さが10μmから200μmの三角形とするとの記載があり、また輸送される液滴は血液などの生体由来のものである。また、特開2005−331410号公報(特許文献4)には、上流側に第1の疎水面が、下流側に第1の疎水面より接触角が小さい第2の疎水面が、そして上流側と下流側の中間部に第1の疎水面および第2の疎水面が混在した面が形成され、上流から下流に向け第2の疎水面の面積を連続的に増加させた流路により、液滴を輸送する微量液滴輸送デバイスが開示されている。このデバイスによれば、異なる疎水領域によって流路に構築される表面張力勾配により、疎水性の官能基を有するタンパク質などの生体分子を含む微量液滴を輸送することができるとされているが、中間部の形状を第1の疎水面と第2の疎水面とが交互にくさび形状で並べたものとするとき、このくさび形状の寸法は、底辺が10μmから1mm、長さが10μmから30mmであると記載されている。従って、これらの特許文献に開示された技術はいずれも、極めて微量の血液等をわずかな距離、移送させる技術に止まり、建材などの大きな表面において水を移送する技術を開示するとは言い難いものである。   Japanese Patent Laid-Open No. 2005-744 (Patent Document 3) discloses that one surface of a tunnel-shaped flow path is composed of a hydrophilic surface and a hydrophobic surface, and a value obtained by dividing the hydrophilic surface by the hydrophobic surface is from upstream to downstream. A microdroplet transport device is disclosed that transports droplets in incremental increments toward the surface. According to this device, droplets can be transported in one direction, but when the hydrophilic and hydrophobic surfaces are formed in a triangular pattern, the base is 1 μm to 200 μm and the height is 10 μm to 200 μm. There is a description that it is a triangle, and the droplets to be transported are derived from a living body such as blood. Japanese Patent Laying-Open No. 2005-331410 (Patent Document 4) discloses a first hydrophobic surface on the upstream side, a second hydrophobic surface having a smaller contact angle than the first hydrophobic surface on the downstream side, and the upstream side. And a flow path in which the area of the second hydrophobic surface is continuously increased from upstream to downstream by forming a surface in which the first hydrophobic surface and the second hydrophobic surface are mixed in the intermediate portion on the downstream side. A microdroplet transport device for transporting drops is disclosed. According to this device, it is said that a minute droplet containing a biomolecule such as a protein having a hydrophobic functional group can be transported by a surface tension gradient built in a flow path by different hydrophobic regions. When the first hydrophobic surface and the second hydrophobic surface are alternately arranged in a wedge shape in the intermediate portion, the dimensions of the wedge shape are 10 μm to 1 mm at the bottom and 10 μm to 30 mm in length. It is described that there is. Therefore, all of the techniques disclosed in these patent documents are limited to a technique for transferring a very small amount of blood or the like for a short distance, and it is difficult to say that a technique for transferring water on a large surface of a building material or the like is disclosed. is there.

また、本発明者を含む者らは、建材表面の親水領域の疎水領域に対する面積比率を一定方向に向けて増加するよう制御することで、水を見かけ上自律的に移動させる技術を提案している(2016年3月29日出願、PCT/JP2016/60238号出願(特許文献5))。   In addition, the inventors, including the present inventors, proposed a technique for apparently autonomously moving water by controlling the area ratio of the hydrophilic region on the building material surface to the hydrophobic region to increase in a certain direction. (Application on March 29, 2016, PCT / JP2016 / 60238 application (Patent Document 5)).

特開2003−39013号公報JP 2003-39013 A 特開2008−31665号公報JP 2008-31665 A 特開2005−744号公報JP-A-2005-744 特開2005−331410号公報JP 2005-331410 A PCT/JP2016/60238号出願PCT / JP2016 / 60238 application

本発明者らは、今般、重力とは異なる力を推進力として、水を見かけ上自律的に移動させる、先に提案した物品を改変・改良し、表面から水をより効率よく排除できる本発明を完成させた。   Inventors of the present invention can now remove water from the surface more efficiently by modifying / improving the previously proposed article that uses water different from gravity as a driving force to make it appear to move autonomously. Was completed.

従って、本発明は、表面に付着した水を水平面でも重力や動力等の利用無しに特定の方向へより効率よく移動させ、その表面から排除される物品の提供を目的としている。   Therefore, an object of the present invention is to provide an article that can move water adhering to a surface more efficiently in a specific direction without using gravity, power, or the like even on a horizontal plane and removed from the surface.

そして、本発明による物品は、
水と接触する表面を有する物品であって、
前記表面が、複数の導水単位を備えてなり、
前記導水単位が、親水領域と疎水領域とを、それぞれ複数備えてなり、
前記親水領域における親水性が前記表面の一定方向に向けて増加するか、もしくは
前記疎水領域における疎水性が、前記一定方向に向けて減少するか、または
前記親水領域における親水性の増加と、前記疎水性領域における疎水性の減少をともに生じさせ、
もって当該方向に水が見かけ上自律的に移動する(以下、この方向を「水移動方向」という)性質を有し、
前記複数の導水単位が、前記水移動方向に縦列配列されてなり、
前記導水単位の水移動方向の上流端および下流端に、親水性の領域をさらに備えることを特徴とするものである。
And the article by this invention is
An article having a surface in contact with water,
The surface comprises a plurality of water conducting units;
The water conveyance unit comprises a plurality of hydrophilic regions and hydrophobic regions, respectively.
The hydrophilicity in the hydrophilic region increases in a certain direction of the surface, or the hydrophobicity in the hydrophobic region decreases in the certain direction, or the hydrophilicity in the hydrophilic region increases, and Cause both a decrease in hydrophobicity in the hydrophobic region,
Therefore, it has the property that the water moves autonomously in this direction (hereinafter, this direction is referred to as “water movement direction”),
The plurality of water guiding units are arranged in tandem in the water movement direction,
A hydrophilic region is further provided at an upstream end and a downstream end in the water movement direction of the water guide unit.

本発明による物品の表面の一態様を示す図である。図中、物品の表面100a上に、親水領域11が逆三角形の形状で形成され、疎水領域12が三角形の形状で複数形成されている。It is a figure which shows the one aspect | mode of the surface of the articles | goods by this invention. In the figure, on the surface 100a of the article, a hydrophilic region 11 is formed in an inverted triangular shape, and a plurality of hydrophobic regions 12 are formed in a triangular shape. 図1の物品の表面に置かれた水の見かけ上の自律的移動を説明する図である。It is a figure explaining the apparent autonomous movement of the water placed on the surface of the article | item of FIG. 高疎水領域121の隣の疎水領域122はその幅が、高疎水領域に比して狭く構成された態様の図である。The hydrophobic region 122 adjacent to the highly hydrophobic region 121 is a diagram in which the width is narrower than that of the highly hydrophobic region. 物品の表面における複数の親水領域および複数の疎水領域が略同じ形状であるが、領域121の疎水性の程度を近隣の他の疎水領域122よりも高くした態様を説明する図である。It is a figure explaining the aspect which made the hydrophobicity degree of the area | region 121 higher than the other adjacent hydrophobic area | region 122 although the some hydrophilic region and the some hydrophobic area | region in the surface of an article | item are substantially the same shape. 複数の導水単位101、102、103が、親水性の領域30を間において水移動方向(図中、矢印方向)に並ぶ態様の図である。It is a figure of the aspect in which the some water conveyance unit 101,102,103 is located in a water movement direction (arrow direction in a figure) in the middle of the hydrophilic area | region 30. 導水単位が親水領域11と、水移動方向とは異なる方向において複数が連結された疎水領域12とからなり、疎水領域12が水移動方向(図中上方向)に面積が小さくなる形状を取り、さらに、水移動方向において上流と下流において縦列に隣り合う導水単位の間に親水性の領域30が設けられた態様の図である。The water conveyance unit is composed of a hydrophilic region 11 and a plurality of hydrophobic regions 12 connected in a direction different from the water movement direction, and the hydrophobic region 12 takes a shape with a small area in the water movement direction (upward direction in the figure), Furthermore, it is a figure of the aspect in which the hydrophilic area | region 30 was provided between the water conveyance units adjacent in a column in upstream and downstream in a water movement direction. 導水単位を複数並べた態様の図である。列1〜5にある導水単位のそれぞれの水移動方向は非平行であるが、図中の領域Aを目指す方向を向いている。It is a figure of the aspect which arranged two or more water guide units. Although the water movement directions of the water guiding units in the columns 1 to 5 are non-parallel, they are directed toward the region A in the figure. 実施例でシミュレーションの対象とした物品の模式図である。It is a schematic diagram of the articles | goods made into the object of simulation in an Example.

上記したように、本発明は、先に提案したPCT/JP2016/60238号出願に記載の発明を改変・改良したものであり、本発明と矛盾しない限り、上記先の出願の明細書に開示は本明細書の開示に一部として本発明の説明とする。すなわち、上記先の出願の明細書の開示は引用することにより、本明細書の開示の一部とされる。
定義
本発明において、「水と接触する表面を有する物品」とは、降雨により、または人による水を使った所定の作業・動作時またはその後に、その表面に水が残る可能性がある物品を意味する。本発明の一つの態様によれば、この物品により建材を構成することができ、例えば、外壁材;浴室やシャワールームの内壁、天井および床材;浴槽;洗面器や手洗器(例えば、ボウル面や縁);シンク;便器;水栓;テーブル、ドラフト、カウンターなどに用いられる天板;鏡、窓などのガラス部材;内壁材などが挙げられる。カウンターの例としては、手洗い場、洗面所および浴室で用いられるカウンター、キッチンカウンター、実験室で用いられるカウンター、ドラフトチャンバーのカウンター等が挙げられる。とりわけ、本発明による建材は、浴室やシャワールームの内壁、天井および床材;浴槽;洗面器や手洗器(例えば、ボウル面や縁);シンク;便器;水栓;テーブル、ドラフト、カウンターなどに用いられる天板;鏡、窓などのガラス部材;手洗い場、洗面所および浴室で用いられるカウンター、キッチンカウンター、実験室で用いられるカウンター、ドラフトチャンバーのカウンターなど、いわゆる「水まわり部材」と呼ばれる建材として好ましく用いられる。
As described above, the present invention is a modification / improvement of the invention described in the previously proposed PCT / JP2016 / 60238 application. As long as the present invention does not contradict the present disclosure, The present disclosure is hereby incorporated by reference into the present disclosure. That is, the disclosure of the specification of the above-mentioned application is incorporated by reference into the disclosure of this specification.
Definitions In the present invention, “an article having a surface in contact with water” means an article in which water may remain on the surface due to rainfall or during or after a predetermined work / operation using water by a person. means. According to one aspect of the present invention, a building material can be constituted by this article, for example, an outer wall material; an inner wall of a bathroom or a shower room, a ceiling and a floor material; a bathtub; a basin or a hand basin (for example, a bowl surface) And sinks); sinks; toilet bowls; faucets; tabletops used for tables, drafts, counters, etc .; glass members such as mirrors and windows; Examples of the counter include a counter used in a hand washing place, a washroom and a bathroom, a kitchen counter, a counter used in a laboratory, a counter of a draft chamber, and the like. In particular, the building material according to the present invention can be used for interior walls, ceilings and floors of bathrooms and shower rooms; bathtubs; Top materials used; Glass members such as mirrors and windows; Counters used in hand-washing places, washrooms and bathrooms, kitchen counters, counters used in laboratories, counters in draft chambers, etc. Are preferably used.

本発明において物品の材質・材料は特に限定されないが、例えば、ガラス、プラスチック、タイル、石、金属、木材、セラミック等が挙げられる。さらに、これら材料に塗装が施されたもの、プラスチックが積層されたもの(例えば、積層鋼板、塗装鋼板等の複合材)なども利用可能である。   In the present invention, the material / material of the article is not particularly limited, and examples thereof include glass, plastic, tile, stone, metal, wood, and ceramic. Furthermore, those in which these materials are coated, those in which plastics are laminated (for example, composite materials such as laminated steel plates and coated steel plates), and the like can be used.

物品の表面および水移動
本発明による物品の表面は、複数の導水単位を備えてなり、かつこの複数の導水単位が、後記する「水移動方向」に縦列配列されてなることを特徴とする。そしてこの導水単位は、親水領域と疎水領域とを、複数備えてなり、親水領域における親水性が物品の表面の一定方向に向けて増加するか、もしくは疎水領域における疎水性が、物品の表面の一定方向に向けて減少するか、またはこの親水領域における親水性の増加と疎水性領域における疎水性の減少をともに生じさせるよう構成され、さらに導水単位の水移動方向の上流端および下流端に親水性の領域を備えてなる。
Surface of article and water movement The surface of the article according to the present invention is provided with a plurality of water guiding units, and the plurality of water guiding units are arranged in tandem in the “water moving direction” described later. The water guiding unit includes a plurality of hydrophilic regions and hydrophobic regions, and the hydrophilicity in the hydrophilic region increases in a certain direction on the surface of the article, or the hydrophobicity in the hydrophobic region is increased on the surface of the article. It is configured to decrease toward a certain direction, or to cause both an increase in hydrophilicity in this hydrophilic region and a decrease in hydrophobicity in the hydrophobic region. Comprised of sex areas.

本発明において、導水単位が水移動方向に縦列配列されてなるとは、上流にある導水単位の水移動方向の延長線上に下流の導水単位の少なくとも一部が存在していることを意味する。従って、縦列配列とは典型的には水移動方向を同じくして上流と下流に並ぶことを意味するが、水移動方向が平行ではあるが同一直線上にない場合、さらに水移動方向が平行でない場合、すなわち水移動方向を異にする場合も包含される。   In the present invention, the fact that the water conveyance units are arranged in tandem in the water movement direction means that at least a part of the downstream water conveyance units exists on an extension line of the water conveyance direction of the upstream water conveyance unit. Thus, a tandem arrangement typically means that the water movement direction is the same and the upstream and downstream lines are aligned. However, if the water movement direction is parallel but not on the same straight line, the water movement direction is not parallel. In other words, the case where the water moving directions are different is also included.

ここで、親水性の増加または前記疎水性領域における疎水性の減少は、本発明に好ましい態様によれば、親水領域の疎水領域に対する面積比率(以下、「親水疎水面積比」という)を物品の表面の前記一定方向に向けて増加するよう構成することによって生じさせる。このような表面において、水が見かけ上自律的に移動する機序は、以下のように考えられるが、この理論は仮定であって、本発明はかかる理論に限定されるものではない。   Here, according to a preferred aspect of the present invention, the increase in hydrophilicity or the decrease in hydrophobicity in the hydrophobic region is obtained by changing the area ratio of the hydrophilic region to the hydrophobic region (hereinafter referred to as “hydrophilic-hydrophobic area ratio”) of the article. It is generated by configuring the surface to increase in the certain direction. The mechanism by which water apparently moves autonomously on such a surface is considered as follows, but this theory is assumed and the present invention is not limited to such a theory.

本発明による物品の表面は親水領域と疎水領域を含み、この親水領域と疎水領域の双方に接するように水が置かれたとき、水には疎水領域からの押される力と、親水領域からの引かれる力とが作用する。上記その1の態様にあっては、この親水領域の疎水領域に対する面積比が一定方向に変化し、水は親水領域の面積比の大きな側に引かれる。また、上記その2の態様にあっては、この親水領域または疎水領域の水に対する親和性が一定方向に変化し、水は、水への親和性が相対的に増加する方向に引かれる。これらの力を推進力とし、その表面において水が見かけ上自律的に移動するものと考えられる。本発明にあっては、この水の見かけ上の自律的移動方向を「水移動方向」とよぶ。この推進力は重力とは異なるものであり、表面が水平であって水に対して重力がなんら水平方向への力を作用させない環境下にあっても、水が移動する。本発明にあっては、この水が見かけ上自律的に移動する方向を、「水移動方向」と呼ぶ。また、表面に傾斜があり、あるいは垂直である場合には、水の自律的移動方向と重力との双方の力によって、より効率よく水を移動させることも可能である。本発明の一つの態様によれば、水平面において5mL以上の比較的大きな水滴あるいは水のまとまりを、少なくとも数cm〜5cm以上移動させることが可能である。   The surface of the article according to the present invention includes a hydrophilic region and a hydrophobic region, and when water is placed in contact with both the hydrophilic region and the hydrophobic region, the water is pushed by the hydrophobic region and from the hydrophilic region. The pulling force acts. In the first aspect, the area ratio of the hydrophilic region to the hydrophobic region changes in a certain direction, and water is drawn to the larger area ratio of the hydrophilic region. Moreover, in the said 2nd aspect, the affinity with respect to water of this hydrophilic region or a hydrophobic region changes to a fixed direction, and water is pulled in the direction where the affinity with respect to water increases relatively. These forces are considered to be propulsive forces, and the water appears to move autonomously on the surface. In the present invention, this apparent autonomous movement direction of water is referred to as “water movement direction”. This propulsive force is different from gravity, and water moves even in an environment where the surface is horizontal and gravity does not apply any horizontal force to the water. In the present invention, the direction in which this water apparently moves autonomously is referred to as the “water movement direction”. Further, when the surface is inclined or vertical, it is possible to move water more efficiently by both the autonomous movement direction of water and the force of gravity. According to one aspect of the present invention, it is possible to move a relatively large water droplet of 5 mL or more or a cluster of water on a horizontal plane by at least several cm to 5 cm or more.

導水単位
本発明が複数備える導水単位について、まず説明する。
本発明における「親水疎水面積比」の概念、およびそれを変える手法について、以下説明する。本発明において、親水領域および疎水領域は、複数の疎水領域が水移動方向を長手方向に向けて、並列し、好適には水移動方向と平行に並び、当該複数の疎水領域の間に親水領域が配置され、言い換えれば複数の親水領域が水移動方向を長手方向に向けて、並列し、好適には水移動方向と平行に並び、当該複数の親水領域の間に疎水領域が配置されて形成される。その具体的態様を、図1を参照しながら説明する。
Water Transfer Unit First, the water transfer unit provided by the present invention will be described.
The concept of “hydrophobic / hydrophobic area ratio” in the present invention and a method for changing it will be described below. In the present invention, the hydrophilic region and the hydrophobic region include a plurality of hydrophobic regions arranged in parallel with the water movement direction in the longitudinal direction, preferably parallel to the water movement direction, and the hydrophilic region between the plurality of hydrophobic regions. In other words, a plurality of hydrophilic regions are formed in parallel with the water movement direction in the longitudinal direction, preferably in parallel with the water movement direction, and a hydrophobic region is arranged between the plurality of hydrophilic regions. Is done. A specific embodiment thereof will be described with reference to FIG.

図1は、本発明による物品の表面における、複数の親水領域および複数の疎水領域が形成された状態を表す模式図である。図1において、物品の表面100a上に、親水領域11が逆三角形の形状で複数形成され、さらに疎水領域12が三角形の形状で形成されている。この態様において、物品表面100aはそれ自体親水性の性質を有する表面とし、疎水領域12を形成し、親水領域11が結果として設けられるよう構成されてもよい。   FIG. 1 is a schematic diagram showing a state in which a plurality of hydrophilic regions and a plurality of hydrophobic regions are formed on the surface of an article according to the present invention. In FIG. 1, a plurality of hydrophilic regions 11 are formed in an inverted triangular shape on the surface 100a of the article, and a hydrophobic region 12 is further formed in a triangular shape. In this embodiment, the article surface 100a may itself be a surface having hydrophilic properties, forming the hydrophobic region 12, and the hydrophilic region 11 being provided as a result.

次に図2は、図1の物品の表面に置かれた水の見かけ上の自律的移動を説明する図である。図中の領域Aにおいて、親水疎水面積比は図の上の方向に向けて増加し、さらにこの領域Aと領域Bとを比較すると、親水疎水面積比は領域AからBに向けて増加する。このような表面に水20が置かれると、この水に対して疎水領域12側から押し出される力31が働き、親水領域11側からは引かれる力32が働く。これら双方の力を推進力として、水20は図の下から上方向に移動する。本発明において、親水疎水面積比が増加するこの方向、すなわち水20が移動する方向を「水移動方向」と定義する。また本明細書において、親水疎水面積比が小さい領域またはその側を上流と、また親水疎水面積比が大きな領域またはその側を下流と表現することがある。また、本発明において、疎水および親水とは、上記の水20に対する推進力を生じさせる限りにおいて相対的な意味で用いられ、例えば水との接触角として絶対的な値で表現させる性質を意味するものではないが、本発明の好ましい態様によれば、親水領域は水との静的接触角として0°以上120°以下とされ、疎水領域は水との静的接触角として40°以上180°以下の範囲に置かれる。   Next, FIG. 2 is a diagram for explaining the apparent autonomous movement of water placed on the surface of the article of FIG. In the region A in the figure, the hydrophilic / hydrophobic area ratio increases in the upper direction of the figure, and when comparing the region A and the region B, the hydrophilic / hydrophobic area ratio increases from the region A to the region B. When the water 20 is placed on such a surface, a force 31 pushed out from the hydrophobic region 12 side acts on the water, and a force 32 drawn from the hydrophilic region 11 side acts. The water 20 moves upward from the bottom of the figure using these two forces as driving forces. In the present invention, this direction in which the hydrophilic / hydrophobic area ratio increases, that is, the direction in which the water 20 moves is defined as the “water moving direction”. In the present specification, a region having a small hydrophilic / hydrophobic area ratio or its side may be expressed as upstream, and a region having a large hydrophilic / hydrophobic area ratio or its side may be expressed as downstream. In the present invention, hydrophobicity and hydrophilicity are used in a relative meaning as long as the driving force for the water 20 is generated, and means, for example, a property expressed as an absolute value as a contact angle with water. However, according to a preferred embodiment of the present invention, the hydrophilic region has a static contact angle with water of 0 ° or more and 120 ° or less, and the hydrophobic region has a static contact angle with water of 40 ° or more and 180 °. Located in the following range.

本発明において、親水領域および疎水領域の形成は次のように行うことができる。例えば、図1の態様において、物品表面100aはそれ自体親水性の性質を有する表面とし、疎水領域12を塗装により形成した塗装層とする。また、別の態様によれば、疎水領域のみならず、親水領域を塗装層として形成してもよい。また、物品表面100aが疎水性表面である場合、親水領域11を塗装層として形成してもよい。   In the present invention, the hydrophilic region and the hydrophobic region can be formed as follows. For example, in the embodiment of FIG. 1, the article surface 100a is a surface having a hydrophilic property in itself, and the hydrophobic region 12 is a coating layer formed by painting. Moreover, according to another aspect, you may form not only a hydrophobic area | region but a hydrophilic area | region as a coating layer. When the article surface 100a is a hydrophobic surface, the hydrophilic region 11 may be formed as a coating layer.

疎水領域を塗装層とする場合、この塗装層は、疎水性樹脂塗料(例えば、シリコーン樹脂、フッ素樹脂、アクリル樹脂、メラミン樹脂、複合樹脂)、無機系塗料(例えば、シリコーン塗料)、疎水性光触媒塗料などで形成してよい。また、親水領域を塗装層とする場合、この塗装層は、親水性樹脂塗料、無機塗料、親水性光触媒塗料などで形成してよい。塗装層の形成方法は特に限定されないが、インクジェット、スクリーン印刷、ロト印刷、グラビア印刷等の手法により形成されてよい。   When a hydrophobic region is used as a coating layer, this coating layer is composed of a hydrophobic resin paint (for example, silicone resin, fluorine resin, acrylic resin, melamine resin, composite resin), an inorganic paint (for example, silicone paint), a hydrophobic photocatalyst. You may form with a paint. When the hydrophilic region is a coating layer, the coating layer may be formed of a hydrophilic resin paint, an inorganic paint, a hydrophilic photocatalyst paint, or the like. Although the formation method of a coating layer is not specifically limited, You may form by methods, such as an inkjet, screen printing, loto printing, and gravure printing.

本発明の好ましい態様によれば、塗装層としての親水領域、疎水領域を、ドットの集合体として形成する。例えば、インクジェット方法により親水性または疎水性の物質を適用して、ドットを形成してもよい。特断らない限り、本態様に止まらず、本発明において親水領域または疎水領域をドットで形成した場合、親水領域および疎水領域の面積とは、その領域を形成するドットの面積の和として表現され、そのドットの面積の和を比較することにより、親水疎水面積比が定義される。   According to a preferred aspect of the present invention, the hydrophilic region and the hydrophobic region as the coating layer are formed as an aggregate of dots. For example, dots may be formed by applying a hydrophilic or hydrophobic substance by an inkjet method. Unless otherwise specified, this embodiment does not stop, and in the present invention, when the hydrophilic region or the hydrophobic region is formed by dots, the area of the hydrophilic region and the hydrophobic region is expressed as the sum of the areas of the dots forming the region, By comparing the sum of the areas of the dots, the hydrophilic / hydrophobic area ratio is defined.

また、本発明の一つの好ましい態様によれば、この塗装層は可視光に対して透明であることが、物品の意匠に影響を与えない、あるいはそれを損ねないとの観点から好ましい。   Moreover, according to one preferable aspect of this invention, it is preferable from a viewpoint that this coating layer is transparent with respect to visible light, does not affect the design of an article | item, or impairs it.

本発明のこの態様において、親水領域および疎水領域は一つの水滴に接するように構成されていることが好ましく、例えば、浴室におけるシャワー使用による水滴付着を想定した場合、その水滴の付着サイズが5mm〜100mmとすれば、親水領域または疎水領域の最大幅は、すなわち水移動方向と直交する方向のサイズが最大となる箇所では、2mm〜50mmとすることが好ましい。言い換えれば、各領域の最大幅は、液滴のサイズの半分よりも小さいものとされることが好ましい。   In this aspect of the present invention, it is preferable that the hydrophilic region and the hydrophobic region are configured to be in contact with one water droplet. For example, when water droplet adhesion due to shower use in a bathroom is assumed, the adhesion size of the water droplet is 5 mm to If it is set to 100 mm, it is preferable that the maximum width of the hydrophilic region or the hydrophobic region is 2 mm to 50 mm in a portion where the size in the direction orthogonal to the water movement direction is maximum. In other words, the maximum width of each region is preferably smaller than half of the size of the droplet.

高親水領域または高疎水領域を備える態様
本発明において、上記したその1の態様およびその2の態様において、親水領域の少なくとも一つが、近隣の他の親水領域よりも、幅が広いかまたは親水性が高い領域(以下、この領域を「高親水領域」という)、または疎水領域の少なくとも一つが、近隣の他の疎水領域よりも、幅が広いかまたは親水性が低い領域(以下、この領域を「高疎水領域」という)を備えていてもよい。
Embodiment with Highly Hydrophilic Region or Highly Hydrophobic Region In the present invention, in the first embodiment and the second embodiment, at least one of the hydrophilic regions is wider or more hydrophilic than other neighboring hydrophilic regions. Region (hereinafter referred to as `` highly hydrophilic region ''), or at least one of the hydrophobic regions is wider or less hydrophilic than other neighboring hydrophobic regions (hereinafter referred to as this region). (Referred to as “highly hydrophobic region”).

このような高親水領域または高疎水領域の存在により、上記した水の見かけ上の自律的移動をより効率よく行わせることができる。このような領域があることで、水にその周囲から加わる力は等しいものとはならず、局所的に強くまたは弱くなる。このような加わる力の偏在により、水(液滴)を変形し、移動の契機が与えられる。水(水滴)には、上記した本発明の水の見かけ上の自律的移動を促す力の他に、水滴の表面張力による液滴形成の力、物品の表面からの引っ張り力または反発力が加われるが、これら力が時に均衡して、水の量が少量のときにとりわけ水の動きが止まってしまうことがあり得る。これに対し、高親水領域または高疎水領域を設けることで、親水領域または疎水領域間でも親水性の勾配が生じ、その均衡を崩す力とすることができ、その結果、水は、例えば少ない水量であっても効率よく移動可能になると考えられる。また、親水領域に水を誘導することで、水の移動方向を制御することも可能になると考えられる。   Due to the existence of such a highly hydrophilic region or highly hydrophobic region, the above-described apparent autonomous movement of water can be performed more efficiently. Due to the presence of such a region, the force applied to the water from its surroundings is not equal, and locally becomes stronger or weaker. Due to the uneven distribution of the applied force, the water (droplet) is deformed and an opportunity for movement is given. In addition to the force that promotes the apparent autonomous movement of the water of the present invention described above, water (water droplets) is subjected to the force of droplet formation due to the surface tension of the water droplet, the pulling force or the repulsive force from the surface of the article. However, these forces can sometimes be balanced and the movement of water can stop, especially when the amount of water is small. On the other hand, by providing a highly hydrophilic region or a highly hydrophobic region, a hydrophilic gradient can be generated between the hydrophilic region or the hydrophobic region, and the balance can be reduced. Even so, it will be possible to move efficiently. It is also considered that the direction of water movement can be controlled by guiding water to the hydrophilic region.

図3は、本発明による物品の表面における、複数の親水領域および複数の疎水領域が形成された状態を表す模式図である。物品の表面100a上に、疎水領域が三角形の形状で複数形成され、さらに親水領域11が逆三角形の形状で形成されている。ここで、複数の疎水領域のうち、領域121の幅が、近隣の他の疎水領域122よりも広く構成され、すなわち「高疎水領域」とされる。この図の態様にあって、親水疎水面積比は、上下方向に変化すると同時に、疎水領域121と122とのその面積の相違から、図の左右方向においても親水疎水面積比は変化する。その結果、他の疎水領域よりも親水性が低くなる高疎水領域に水はよりはじかれる。このような高疎水領域を設けることで、疎水領域間でも親水性の勾配が生じ、例えば少ない水量であっても効率よく移動可能になると考えられる。また、高疎水領域から親水領域に水を誘導することで、水の移動方向を制御することも可能になる。また、この高疎水領域から親水領域の方向に水を誘導することも可能になる。   FIG. 3 is a schematic diagram showing a state in which a plurality of hydrophilic regions and a plurality of hydrophobic regions are formed on the surface of the article according to the present invention. A plurality of hydrophobic regions are formed in a triangular shape on the surface 100a of the article, and the hydrophilic region 11 is formed in an inverted triangular shape. Here, among the plurality of hydrophobic regions, the width of the region 121 is configured to be wider than other neighboring hydrophobic regions 122, that is, a “highly hydrophobic region”. In the embodiment of this figure, the hydrophilic / hydrophobic area ratio changes in the vertical direction, and at the same time, the hydrophilic / hydrophobic area ratio also changes in the horizontal direction of the figure due to the difference in area between the hydrophobic regions 121 and 122. As a result, water is repelled more in highly hydrophobic regions that are less hydrophilic than other hydrophobic regions. By providing such a highly hydrophobic region, it is considered that a hydrophilic gradient is generated between the hydrophobic regions, and for example, even a small amount of water can be efficiently moved. In addition, by guiding water from the highly hydrophobic region to the hydrophilic region, it is possible to control the direction of water movement. It is also possible to guide water from this highly hydrophobic region to the hydrophilic region.

図4は、形状が略同じ複数の疎水領域のうち、領域121の疎水性の性質の程度を、近隣の他の疎水領域122よりも高くする。図4(B)は、図4(A)のA−A箇所における疎水性の程度を高さ方向に模式的に表したものである。領域121の疎水性が最も高く構成され、すなわち「高疎水領域」とされる。   In FIG. 4, among the plurality of hydrophobic regions having substantially the same shape, the degree of the hydrophobic property of the region 121 is made higher than that of other neighboring hydrophobic regions 122. FIG. 4B schematically shows the degree of hydrophobicity in the height direction at the position AA in FIG. The region 121 is configured to have the highest hydrophobicity, that is, a “highly hydrophobic region”.

図4の態様において、高疎水領域は、それを形成する材料の種類または量を他の疎水領域のものとは変えて形成することにより、高疎水領域の疎水性の程度が他の疎水領域の疎水性とは異なるものとすることができる。本態様についても、塗装層を形成する塗料および塗装層の形成方法は上記したものと同様のものが挙げられる。本発明の好ましい態様によれば、疎水領域および高疎水領域を、ドットの集合体として形成する。例えば、インクジェット方法により疎水性の物質を適用して、ドットを形成してもよい。疎水性を、ドットの粗密により、あるいはドットの径および/または間隔を変えることで容易に変化させることができるからである。   In the embodiment of FIG. 4, the highly hydrophobic region is formed by changing the type or amount of the material forming it from that of the other hydrophobic region, so that the degree of hydrophobicity of the highly hydrophobic region is different from that of the other hydrophobic region. It can be different from hydrophobicity. Also about this aspect, the coating material which forms a coating layer, and the formation method of a coating layer can mention the thing similar to what was mentioned above. According to a preferred aspect of the present invention, the hydrophobic region and the highly hydrophobic region are formed as an aggregate of dots. For example, a dot may be formed by applying a hydrophobic substance by an inkjet method. This is because the hydrophobicity can be easily changed by the density of the dots or by changing the diameter and / or interval of the dots.

複数の導水単位の組み合わせ
本発明は、導水単位を複数、水移動方向に縦列配列されてなる。これにより、より長い距離にわたり水を見かけ上自律的に移動させることができる。図5は、導水単位を複数繋ぎ合わせた態様の説明図である。図において、導水単位101、102、103が、水移動方向(図中、矢印方向)に並ぶ。これら導水単位は、親水性の表面11の上に、三角形の疎水領域12が複数設けられた構成を有する。本発明においては、導水単位の水移動方向の上流端および下流端に親水性の領域を備える。具体的には、図中の領域30が親水性の領域とされる。さらに本発明の一つの態様によれば、この領域30を親水性の表面11の親水性よりも、さらに高い親水性とすることが好ましい。
Combination of a plurality of water conveyance units The present invention comprises a plurality of water conveyance units arranged in tandem in the direction of water movement. Thereby, water can be apparently moved over a longer distance. FIG. 5 is an explanatory diagram of a mode in which a plurality of water conveyance units are connected. In the figure, the water guiding units 101, 102, 103 are arranged in the water movement direction (in the direction of the arrow in the figure). These water guiding units have a configuration in which a plurality of triangular hydrophobic regions 12 are provided on a hydrophilic surface 11. In this invention, a hydrophilic area | region is provided in the upstream end and downstream end of the water transfer direction of a water guide unit. Specifically, the region 30 in the figure is a hydrophilic region. Furthermore, according to one aspect of the present invention, it is preferable that the region 30 has a higher hydrophilicity than the hydrophilicity of the hydrophilic surface 11.

一つ目の導水単位101に置かれた水20は、見かけ上自律的に移動して導水単位101の下流付近に到達する。そして、水は導水単位101と102の間の領域30を前に至る。図5において、導水単位101の水移動方向の下流端の特定面積の領域31における親水疎水面積比は、下流側に隣接する導水単位102の上流端の領域31と同じ面積の領域32における親水疎水面積比よりも大である。本発明にあっては、導水単位101の水移動方向の下流端に、領域30が設けられ、さらに好ましくは親水性の表面11の親水性よりも、さらに高い親水性とされてなる。その結果、導水単位101と102の親水疎水面積比が上記の関係にあっても、水は一旦領域30に引き寄せられ、その後、導水単位102に水を至らしめる契機となる。導水単位102に至った水は、導水単位102の上で、再び見かけ上の自律的な移動を開始する。さらに導水単位102と103との間にあっても同様の理由から導水単位を越えて、水が長い距離にわたり移動することとなる。本発明の好ましい態様によれば、この領域30の幅、すなわち導水単位と導水単位との間は1〜50mm程度とすることが好ましい。   The water 20 placed in the first water guide unit 101 apparently moves autonomously and reaches the vicinity of the downstream of the water guide unit 101. And water reaches the area | region 30 between the water guide units 101 and 102 ahead. In FIG. 5, the hydrophilic / hydrophobic area ratio in the region 31 having a specific area at the downstream end in the water movement direction of the water guiding unit 101 is the hydrophilicity / hydrophobicity in the region 32 having the same area as the region 31 at the upstream end of the water guiding unit 102 adjacent to the downstream side. It is larger than the area ratio. In this invention, the area | region 30 is provided in the downstream end of the water transfer direction of the water guide unit 101, More preferably, it is made more hydrophilic than the hydrophilic property of the hydrophilic surface 11. FIG. As a result, even if the hydrophilic / hydrophobic area ratio between the water guiding units 101 and 102 is in the above relationship, the water is once attracted to the region 30 and then triggers the water to reach the water guiding unit 102. The water that has reached the water conveyance unit 102 starts apparently autonomous movement again on the water conveyance unit 102. Furthermore, even if it exists between the water conveyance units 102 and 103, water will move over a long distance exceeding a water conveyance unit for the same reason. According to a preferred aspect of the present invention, the width of the region 30, that is, the distance between the water guiding unit and the water guiding unit is preferably about 1 to 50 mm.

図6は、本発明の別の態様による、複数の導水単位が配置された態様の図である。この態様において、導水単位は、親水領域11と、疎水領域12とからなり、疎水領域12が水移動方向(図中上方向)に面積が小さくなる三角形の形状を取る。また、水移動方向とは異なる方向において隣り合う導水単位の疎水領域が連結されてなる。その結果、導水単位の上流端は、親水疎水面積比が極めて大きくなり、当該導水単位の上流側の導水単位から移動した水が、ここでせき止められる。しかし、親水疎水面積比が上記の関係にあっても、実際の表面には、微小な領域で親水疎水面積比の揺らぎが生じ、この不均一な微小の領域に水が引き寄せられ、または反発して、水移動方向において隣り合う、下流側の導水単位に水を至らしめる。さらに、図中の領域30が、導水単位の上流にそれぞれ設けられてなる。図中の下部の導水単位に置かれた水は、上記した機序により自律的に移動し、移動した水は、導水単位の下流端に至り、親水性の領域30に引き寄せられ、さらにその下流の導水単位に効率よく導かれる。   FIG. 6 is a diagram of an embodiment in which a plurality of water guiding units are arranged according to another embodiment of the present invention. In this embodiment, the water guiding unit is composed of a hydrophilic region 11 and a hydrophobic region 12, and the hydrophobic region 12 takes a triangular shape with a small area in the water movement direction (upward direction in the figure). In addition, the hydrophobic regions of adjacent water guiding units are connected in a direction different from the water movement direction. As a result, the hydrophilic / hydrophobic area ratio becomes extremely large at the upstream end of the water conveyance unit, and water moved from the water conveyance unit upstream of the water conveyance unit is blocked here. However, even if the hydrophilic / hydrophobic area ratio is in the above relationship, the hydrophilic / hydrophobic area ratio fluctuates in a minute area on the actual surface, and water is attracted or repelled in this non-uniform minute area. Thus, the water is brought to the downstream water conveyance unit adjacent in the water movement direction. Furthermore, the area | region 30 in a figure is each provided in the upstream of a water guide unit. The water placed in the lower water guide unit in the figure moves autonomously by the mechanism described above, and the moved water reaches the downstream end of the water guide unit and is drawn to the hydrophilic region 30 and further downstream thereof. Efficiently led to water conveyance

なお、この図の態様において、一つの疎水領域12とその周囲にある親水領域11とが一つに導水単位を構成するが、図中、連続した疎水領域12とその周囲にある親水領域11とが形成する一つのまとまりある単位(図中、100a)を、本発明にあっては導水単位と呼ぶことができる。また、本発明にあっては、縦列のみならず、横に隣り合う導水単位の間に、親水性の領域を備えることも好ましい。   In the embodiment of this figure, one hydrophobic region 12 and the surrounding hydrophilic region 11 constitute one water guiding unit. In the drawing, the continuous hydrophobic region 12 and the surrounding hydrophilic region 11 One unit (100a in the figure) formed by can be called a water-conducting unit in the present invention. Moreover, in this invention, it is also preferable to provide a hydrophilic area | region between the water conveyance units adjacent not only in a column but horizontally.

図6にあっては、水移動方向とは異なる方向、好ましくは交差する方向において隣り合う導水単位同士は、その水移動方向は平行である。本発明の別の態様によれば、水移動方向とは異なる方向において隣り合う導水単位が有する水移動方向が非平行であり、かつそれらの導水単位の水移動方向が特定領域に収束するよう、前記複数の導水単位を配置することができる。   In FIG. 6, the water transfer units adjacent to each other in the direction different from the water transfer direction, preferably in the intersecting direction, are parallel to each other. According to another aspect of the present invention, the water movement directions of adjacent water conveyance units in a direction different from the water movement direction are non-parallel, and the water movement directions of those water conveyance units converge to a specific region. The plurality of water guiding units can be arranged.

例えば、図7は、導水単位をさらに複数並べた態様の図である。図において、これら導水単位は、親水性の表面11の上に、三角形の疎水領域12が複数設けられた構成を有する。そして、それぞれの導水単位の水移動方向は非平行とされる。他方、それぞれの導水単位を移動した水は、図中のAで示される領域に向かい集束する。すなわち、列1の行1〜3にある導水単位のそれぞれの水移動方向はほぼ平行であり、かつ図中の領域Aを目指す方向を向いている。列1、行1の導水単位に置かれた水は、列1の行2、そして行3の導水単位へと自律的に移動する。移動した水は、それぞれの行から行に至る際に、親水性の領域30に引き寄せられ、さらに行2のそれぞれの列に至る。列2の行1〜3の導水単位のそれぞれの移動方向はほぼ平行であり、列2、行1の導水単位に置かれた水は、列2の行2、そして行3の導水単位へと自律的に移動する。つまり、まず、列1、行1〜3は、親水領域における親水性の増加の方向または疎水性領域における疎水性の減少の方向が平行である第一群の複数の導水単位であり、列2、行1〜3が、親水領域における親水性の増加の方向または疎水性領域における疎水性の減少の方向が平行であり、かつ前記の第一群の上記方向とは非平行である第二群の複数の導水単位となる。そして、これら導水単位に置かれた水は、特定領域Aに集束するよう、見かけ上自律的に移動することとなる。   For example, FIG. 7 is a diagram of an aspect in which a plurality of water guiding units are further arranged. In the figure, these water conducting units have a configuration in which a plurality of triangular hydrophobic regions 12 are provided on a hydrophilic surface 11. And the water movement direction of each water guide unit is made non-parallel. On the other hand, the water that has moved through each water conveyance unit converges toward the area indicated by A in the figure. That is, the water movement directions of the water conveyance units in the rows 1 to 3 of the column 1 are substantially parallel to each other and are directed toward the region A in the figure. Water placed in column 1, row 1 heading units autonomously moves to column 1, row 2, and row 3 heading units. The moved water is attracted to the hydrophilic region 30 when reaching each row, and further reaches each column of row 2. The direction of movement of the water conveyance units in rows 1 to 3 in column 2 is substantially parallel, and the water placed in the water conveyance units in column 2 and row 1 is transferred to the water conveyance units in column 2, row 2, and row 3. Move autonomously. That is, first, column 1 and rows 1 to 3 are a first group of water guiding units in which the direction of increasing hydrophilicity in the hydrophilic region or the direction of decreasing hydrophobicity in the hydrophobic region is parallel, and column 2 Rows 1 to 3 are a second group in which the direction of increasing hydrophilicity in the hydrophilic region or the direction of decreasing hydrophobicity in the hydrophobic region is parallel and non-parallel to the direction of the first group. It becomes a plurality of water conveyance units. And the water placed in these water guide units will apparently move autonomously so as to converge on the specific area A.

図7の態様にあっては、さらに、列3〜5のそれぞれ行1〜3の導水単位を備える。第一群、第二群と同様に、第三群〜第5群の複数の導水単位となる。これら第一群〜第5群の複数の導水単位は、親水領域における親水性の増加の方向または前記疎水性領域における疎水性の減少の方向が、それぞれ非平行であり、それぞれの群の親水領域における親水性の増加の方向または疎水性領域における疎水性の減少の方向が、特定領域に至るものとされてなる。これらさらなる複数の導水単位に置かれた水は、特定領域Aに集束するよう、見かけ上自律的に移動することとなる。   In the embodiment of FIG. 7, the water guiding units in rows 1 to 3 in columns 3 to 5 are further provided. Similar to the first group and the second group, they are a plurality of water guiding units of the third group to the fifth group. The plurality of water guiding units of the first group to the fifth group are such that the direction of increase in hydrophilicity in the hydrophilic region or the direction of decrease in hydrophobicity in the hydrophobic region is non-parallel, and the hydrophilic regions of the respective groups The direction of increasing hydrophilicity or the direction of decreasing hydrophobicity in the hydrophobic region reaches the specific region. The water placed in these further plurality of water guiding units will apparently move autonomously so as to converge on the specific area A.

本発明の好ましい態様によれば、図5の領域30のように、複数の導水単位の間に親水領域を設ける。図6は、導水単位が水移動方向に縦列配列されてなることに加え、「横方向」にも隣り合わせにさらに並んで配置されてなる表面を表す模式図である。図において示された導水単位100aが複数、領域30をそれぞれの間およびその周囲において繋ぎ合わされてなる。ここで領域30は親水性の領域であり、導水単位の水移動方向の上流端および下流端、さらにこの図の態様にあっては、導水単位の水移動方向と平行する側端に設けられる。この領域30は、導水単位100a上で移動してきた水が一旦この領域に留まり、さらに次の、すなわち下流の導水単位100aに水を供給する領域となる。導水単位100aを移動し、領域30に留まり、さらに次の導水単位100aを移動することで、水を長い距離にわたり移送することができる。   According to a preferred embodiment of the present invention, a hydrophilic region is provided between a plurality of water guiding units as in the region 30 of FIG. FIG. 6 is a schematic diagram showing a surface in which the water guiding units are arranged in tandem in the water movement direction and are further arranged side by side in the “lateral direction”. A plurality of water guiding units 100a shown in the figure are connected to each other between and around the regions 30. Here, the region 30 is a hydrophilic region, and is provided at the upstream end and the downstream end of the water transfer unit in the direction of water movement, and further, at the side end parallel to the water transfer direction of the water transfer unit in the embodiment of this figure. This region 30 is a region in which water that has moved on the water conveyance unit 100a once stays in this region, and further supplies water to the next, that is, downstream water conveyance unit 100a. Water can be transported over a long distance by moving the water guiding unit 100a, staying in the region 30, and further moving the next water guiding unit 100a.

図6に示された例の変形例として、図6に示された複数の導水単位100aが互いに横方向または上下方向にずれて並んでもよい。単位がずれて並ぶことにより、水が引き寄せられる方向が一定でなくなるため、複雑な力が水に加わり、とりわけ水の量が少量のときに水の動きが止まってしまうことを有効に防止でき、水を長い距離にわたり移送することができる。   As a modification of the example shown in FIG. 6, the plurality of water guiding units 100 a shown in FIG. 6 may be arranged side by side in the horizontal direction or the vertical direction. By arranging the units out of alignment, the direction in which the water is drawn is not constant, so a complicated force is applied to the water, and it can effectively prevent the movement of the water from stopping especially when the amount of water is small, Water can be transported over long distances.

本発明を以下の実施例によって更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例
図8に示されるような、3つの導水単位を縦列配置した物品における水の自律的移動の解析を次のように行った。条件は以下の通りとした。
シミュレーションするためのフリーウエア
H. Matsui, Y. Noda, and T. Hasegawa, "Hybrid Energy-Minimization Simulation of Equilibrium Droplet Shapes on Hydrophilic/Hydrophobic Patterned Surfaces", Langmuir, 2012, 28 (44), pp 15450-15453)
被験物品
領域101〜103の親水領域の表面性状を水接触角25°で均一に設定し、全ての疎水領域を取り囲み、かつ接する形状とした。その詳細は下記のとおりとした。
領域101
親水領域:水接触角25°
疎水領域:底辺幅6mm先端幅1mm高さ100mmの略二等辺三角形の複数を、底辺を揃えて、隣り合う底角が接するように並列。水接触角85°
領域102
親水領域:水接触角25°
疎水領域:底辺幅2mm先端幅1mm高さ60mmの略二等辺三角形の複数を、底辺を揃えて並列。
水接触角80°
領域103
親水領域:水接触角25°
疎水領域:底辺幅1.2mm先端幅0.4mm高さ30mmの略二等辺三角形の複数を、底辺を揃えて並列。
水接触角70°
結果
シミュレーションの結果、水は、領域103の最下流端まで至った。
EXAMPLE An analysis of the autonomous movement of water in an article in which three water guiding units are arranged in tandem as shown in FIG. 8 was performed as follows. The conditions were as follows.
Freeware for simulation
H. Matsui, Y. Noda, and T. Hasegawa, "Hybrid Energy-Minimization Simulation of Equilibrium Droplet Shapes on Hydrophilic / Hydrophobic Patterned Surfaces", Langmuir, 2012, 28 (44), pp 15450-15453)
The surface properties of the hydrophilic regions of the test article regions 101 to 103 were set uniformly at a water contact angle of 25 ° to surround and touch all the hydrophobic regions. The details are as follows.
Region 101
Hydrophilic region: water contact angle 25 °
Hydrophobic region: A plurality of approximately isosceles triangles with a base width of 6 mm, a tip width of 1 mm, and a height of 100 mm are aligned so that the bases are aligned and adjacent base angles are in contact. Water contact angle 85 °
Region 102
Hydrophilic region: water contact angle 25 °
Hydrophobic region: Multiple isosceles triangles with a base width of 2 mm, a tip width of 1 mm, and a height of 60 mm are aligned and aligned at the base.
Water contact angle 80 °
Region 103
Hydrophilic region: water contact angle 25 °
Hydrophobic region: A series of approximately isosceles triangles with a bottom width of 1.2 mm, a tip width of 0.4 mm, and a height of 30 mm, with the bottoms aligned.
Water contact angle 70 °
As a result of the result simulation, water reached the most downstream end of the region 103.

Claims (9)

水と接触する表面を有する物品であって、
前記表面が、複数の導水単位を備えてなり、
前記導水単位が、親水領域と疎水領域とを、それぞれ複数備えてなり、
前記親水領域における親水性が前記表面の一定方向に向けて増加するか、もしくは
前記疎水領域における疎水性が、前記一定方向に向けて減少するか、または
前記親水領域における親水性の増加と、前記疎水性領域における疎水性の減少をともに生じさせ、
もって当該方向に水が見かけ上自律的に移動する(以下、この方向を「水移動方向」という)性質を有し、
前記複数の導水単位が、前記水移動方向に縦列配列されてなり、
前記導水単位の水移動方向の上流端および下流端に、親水性の領域をさらに備えることを特徴とする、物品。
An article having a surface in contact with water,
The surface comprises a plurality of water conducting units;
The water conveyance unit comprises a plurality of hydrophilic regions and hydrophobic regions, respectively.
The hydrophilicity in the hydrophilic region increases in a certain direction of the surface, or the hydrophobicity in the hydrophobic region decreases in the certain direction, or the hydrophilicity in the hydrophilic region increases, and Cause both a decrease in hydrophobicity in the hydrophobic region,
Therefore, it has the property that the water moves autonomously in this direction (hereinafter, this direction is referred to as “water movement direction”),
The plurality of water guiding units are arranged in tandem in the water movement direction,
The article further comprising hydrophilic regions at an upstream end and a downstream end in the water movement direction of the water guide unit.
前記水移動方向とは異なる方向において隣り合う、二以上の導水単位の疎水領域が連結されてなる、請求項1に記載の物品。   The article according to claim 1, wherein hydrophobic regions of two or more water guide units adjacent to each other in a direction different from the water movement direction are connected. 前記導水単位の水移動方向の上流端および下流端に備えらえた親水性の領域の幅が、前記連結された複数の疎水領域の幅と同じか、それより大とされた、請求項2に記載の物品。   The width of the hydrophilic region provided in the upstream end and the downstream end in the water movement direction of the water transfer unit is the same as or larger than the width of the plurality of connected hydrophobic regions. The article described. 前記疎水領域が前記水移動方向に向かって面積が小さくなる形状を取る、請求項1〜3のいずれか一項に記載の物品。   The article according to any one of claims 1 to 3, wherein the hydrophobic region has a shape in which an area decreases in the water movement direction. 前記導水単位の水移動方向の上流端および下流端に備えらえた親水性の領域の親水性が、前記導水単位の親水領域の親水性よりも高い、請求項1〜4のいずれか一項に記載の物品。   The hydrophilicity of the hydrophilic area | region prepared in the upstream end and downstream end of the water transfer direction of the said water conveyance unit is higher than the hydrophilic property of the hydrophilic area | region of the said water conveyance unit. The article described. 前記水移動方向とは異なる方向において隣り合う導水単位が有する水移動方向が平行である、請求項1〜5のいずれか一項に記載の物品。   The article according to any one of claims 1 to 5, wherein water transfer directions of adjacent water guide units in a direction different from the water transfer direction are parallel. 前記水移動方向とは異なる方向において隣り合う導水単位が有する水移動方向が非平行であり、かつそれらの導水単位の水移動方向が特定領域に集束するよう、前記複数の導水単位が配置されてなる、請求項1または2に記載の物品。   The plurality of water guiding units are arranged so that the water moving directions of adjacent water guiding units in a direction different from the water moving direction are non-parallel, and the water moving directions of those water guiding units converge on a specific region. The article according to claim 1 or 2. 前記導水単位の水移動方向と平行する側端に、親水性の領域をさらに備えてなる、請求項1〜7のいずれか一項に記載の物品。   The article according to any one of claims 1 to 7, further comprising a hydrophilic region at a side end parallel to the water movement direction of the water guide unit. 水まわり部材である、請求項1〜8のいずれか一項に記載の物品。   The article according to any one of claims 1 to 8, which is a water-surrounding member.
JP2017073080A 2016-06-24 2017-03-31 High drainage goods Pending JP2018003584A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016125773 2016-06-24
JP2016125773 2016-06-24

Publications (1)

Publication Number Publication Date
JP2018003584A true JP2018003584A (en) 2018-01-11

Family

ID=60944852

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017073081A Pending JP2018003585A (en) 2016-06-24 2017-03-31 High drainage goods
JP2017073080A Pending JP2018003584A (en) 2016-06-24 2017-03-31 High drainage goods
JP2017073079A Pending JP2018003583A (en) 2016-06-24 2017-03-31 Article with high drainage property

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017073081A Pending JP2018003585A (en) 2016-06-24 2017-03-31 High drainage goods

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017073079A Pending JP2018003583A (en) 2016-06-24 2017-03-31 Article with high drainage property

Country Status (1)

Country Link
JP (3) JP2018003585A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360772B2 (en) * 2019-12-25 2023-10-13 株式会社長谷工コーポレーション Earthquake reinforcement structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589565U (en) * 1992-05-11 1993-12-07 積水化学工業株式会社 Washroom waterproof pan
JP2004060304A (en) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd Washing place in bathroom, and method of manufacturing the same
JP2004068346A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd Washing place for bathroom, and method of manufacturing the same
JP2007291745A (en) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd Water section member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220680A (en) * 2014-05-20 2015-12-07 三菱電機株式会社 High efficiency amplifier
JP6548121B2 (en) * 2015-11-10 2019-07-24 パナソニックIpマネジメント株式会社 Watering member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589565U (en) * 1992-05-11 1993-12-07 積水化学工業株式会社 Washroom waterproof pan
JP2004060304A (en) * 2002-07-30 2004-02-26 Matsushita Electric Ind Co Ltd Washing place in bathroom, and method of manufacturing the same
JP2004068346A (en) * 2002-08-05 2004-03-04 Matsushita Electric Ind Co Ltd Washing place for bathroom, and method of manufacturing the same
JP2007291745A (en) * 2006-04-25 2007-11-08 Matsushita Electric Works Ltd Water section member

Also Published As

Publication number Publication date
JP2018003583A (en) 2018-01-11
JP2018003585A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
Si et al. Wetting and spreading: Fundamental theories to cutting-edge applications
Xu et al. Capturing wetting states in nanopatterned silicon
Extrand et al. Superwetting of structured surfaces
Zhang et al. Effects of the hierarchical structure of rough solid surfaces on the wetting of microdroplets
Nakajima et al. Sliding of water droplets on smooth hydrophobic silane coatings with regular triangle hydrophilic regions
Dong et al. Manipulating overflow separation directions by wettability boundary positions
AR032424A1 (en) COATING COMPOSITIONS TO MODIFY SURFACES.
JP2018003584A (en) High drainage goods
US20190274484A1 (en) Base member for a shower door assembly
Nasto et al. Air entrainment in hairy surfaces
WO2016159005A1 (en) Highly drainable building material
JP2017227088A (en) High drainage ability product
JP2018172945A (en) High drainage goods
Roy et al. Re-entrant cavities enhance resilience to the Cassie-to-Wenzel state transition on superhydrophobic surfaces during electrowetting
JP2017225957A (en) High drainable article
JP2017227087A (en) High drainage ability product
JP2017227090A (en) High drainage ability product
Feng et al. Spontaneous transport of air bubbles on bioinspired superhydrophilic triangular patterns
Parsa et al. Effect of substrate temperature on pattern formation of bidispersed particles from volatile drops
Almeida et al. Virtual walls based on oil-repellent surfaces for low-surface-tension liquids
JP2017227089A (en) High drainage ability product
JP5371337B2 (en) Washing place
JP4844273B2 (en) Water-related parts
JP6984812B2 (en) Liquid isolation device
JP2007291745A (en) Water section member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622