JP2017528727A - 2dカメラ画像からの3d画像の生成に当たり3d計量器と併用される拡張現実カメラ - Google Patents

2dカメラ画像からの3d画像の生成に当たり3d計量器と併用される拡張現実カメラ Download PDF

Info

Publication number
JP2017528727A
JP2017528727A JP2017516473A JP2017516473A JP2017528727A JP 2017528727 A JP2017528727 A JP 2017528727A JP 2017516473 A JP2017516473 A JP 2017516473A JP 2017516473 A JP2017516473 A JP 2017516473A JP 2017528727 A JP2017528727 A JP 2017528727A
Authority
JP
Japan
Prior art keywords
image
camera
reference point
point
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017516473A
Other languages
English (en)
Inventor
ロバート イー ブリッジズ
ロバート イー ブリッジズ
Original Assignee
ファロ テクノロジーズ インコーポレーテッド
ファロ テクノロジーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファロ テクノロジーズ インコーポレーテッド, ファロ テクノロジーズ インコーポレーテッド filed Critical ファロ テクノロジーズ インコーポレーテッド
Publication of JP2017528727A publication Critical patent/JP2017528727A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • G06T15/205Image-based rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/221Image signal generators using stereoscopic image cameras using a single 2D image sensor using the relative movement between cameras and objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/257Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/275Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/52Combining or merging partially overlapping images to an overall image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/28Indexing scheme for image data processing or generation, in general involving image processing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2215/00Indexing scheme for image rendering
    • G06T2215/16Using real world measurements to influence rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2008Assembling, disassembling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2012Colour editing, changing, or manipulating; Use of colour codes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2016Rotation, translation, scaling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本方法では、二次元(2D)カメラを二通りの位置で用いることで、3個の共通な基点を有する第1及び第2の2D画像を生成する。更に、三次元(3D)計測装置を用い2個の3D座標を計測する。第1及び第2の2D画像並びに当該2個の3D座標を組み合わせることで、既スケーリング3D画像を取得する。

Description

(関連出願の相互参照)
本願では、この参照を以て本願にその全容が繰り入れられる2014年9月25日付米国仮特許出願第62/055030号に基づく利益を主張する。
(発明の背景)
本件開示は拡張現実に関し、より具体的には、3D計量器により実行されるスケール計測を通じ三次元(3D)画像へと形態変形される二次元(2D)画像の生成に利用される、スタンドアロンな拡張現実カメラに関する。
拡張現実(AR)は仮想現実から芽生えてきた比較的新しい種類の技術である。拡張現実では、実際の実世界情報又はデータが、仮想情報又はデータに対し又はその中若しくは上に統合、重畳又は超越投射(トランスプロジェクト)される。即ち、実世界物体又は光景の拡張的な眺望又は認知をユーザに提供すべく、何らかの物体又は光景に係る実際の感知、計測、捕捉又はイメージング済実世界情報又はデータが、仮想情報又はデータによって“拡張”、補充又は補強される。拡張現実の適用範囲には、部品、部材又は装置の製造組立及び/又は保守修理、並びに施設、建屋又は構造物のレイアウト及び構築といった、技術的又は産業的分野が包含される。非特許文献1では複数通りの現代的ARアプリケーションが開示されている。
部品、部材又は装置や場所又は光景に関する実情報又はデータは、種々の装置を用い種々の手法で得ることができる。実情報又はデータを提供しうる装置の一種としては3D計量装置、例えばポータブル有関節腕座標計測機(AACMM)やレーザトラッカの態を採る座標計測装置がある。この種の計測装置によれば、部品、部材、装置、場所又は光景の実際の3D座標を、三通りの並進座標(例.x,y及びz即ちデカルト座標)及び三通りの回転座標(例.ピッチ、ロール及びヨー)の態で計測及び提供することができる。そのためこの計測装置は6自由度(即ち6DOF)を提供するものと認めうる。
また、カメラを使用することで、実際の部品、部材又は装置の静止画又は動画を撮影すること、望ましい場所又は光景自体の静止画又は動画を撮影すること、及び/又は、部品、部材若しくは装置を囲み又はそれに関連する望ましい場所又は光景の静止画又は動画を撮影することができる。
仮想情報又はデータの例は部品、部材、装置、場所又は光景に関する人工的な被格納情報である。その被格納仮想情報又はデータの例は部品、部材、装置、場所又は光景の設計に関するもの、例えば単純な文字列又は記号群から比較的複雑なグラフィカル3D−CAD設計データに亘るそれである。被格納仮想情報又はデータに可視情報のみならず可聴又は音響情報又はデータが含まれていてもよい。また、被格納仮想情報又はデータに、テキスト命令又は部品、部材若しくは装置の修理若しくは保守命令等の情報や、事務所若しくは製造及び/又は修理設備の設計(例.建屋又は設備のレイアウト)等で使用されうる部品、部材又は装置を表す可視情報が関わっていてもよい。
ARシステムにおける実・仮想間組合せ情報又はデータは、通常はディジタル的な性質を有しており、ユーザに対し表示画面上でリアルタイムに(即ち実情報が計測又は感知されつつあるときに)提供することができる;表示画面は多様な種類又は形態たり得、その例としてはデスクトップ又はラップトップコンピュータモニタ、タブレット、スマートフォンに係るそれ、更には例えば眼鏡、帽子又はヘルメットに係るヘッドマウントディスプレイがある。スピーカを通じ音声情報をもたらすこともできる。
言及した通り、3D計量又は座標計測装置の一種としてはポータブルAACMMがある。そうしたAACMMは部品の製造又は生産、特にその製造又は生産の諸段階(例.機械加工)でその部品の寸法を迅速且つ正確に確認する必要があるそれで広く用いられている。ポータブルAACMMは、特にやや複雑な部品の寸法計測を実行するのにかかる時間の点で、既知の静止又は固定型、コスト集約的且つやや使用困難な計測機器に対する改良に相当する。通常、ポータブルAACMMのユーザは、計測対象部品又は物体の表面に沿いプローブを導くだけでよい。そうすると計測データが記録されユーザに提供される。ある場合には、このデータがユーザに対し可視形態で、例えばコンピュータ画面上に3D形態で提供される。別の場合には、このデータがユーザに対し数値形態で、例えば孔直径計測時なら文字列“Diameter=1.0034”をコンピュータ画面上に表示させることで提供される。
この参照を以てその内容が本願に繰り入れられる特許文献1(発明者:Raab)では従来型ポータブルAACMMの一例が開示されている。特許文献1で開示されている3D計測システムは、その一端に支持ベース、他端に計測プローブが備わる手動操作型AACMMを備えている。また、この参照を以てその内容が本願に繰り入れられる特許文献2(発明者:Raab)でも類似するAACMMが開示されている。特許文献2のAACMMはプローブエンドに位置する付加的な回動軸を含め複数個の特徴を有しており、それにより2−2−2又は2−2−3軸構成を有するアーム(後者は7軸アームとなる)が提供されている。
他種の3D計量又は座標計測装置としては、レーザトラッカとして知られる計器分類に属し、レーザビームをその点に送ることで点の3D座標を計測するものがある。レーザビームはその点上に直に射突させてもよいし、その点に接触している再帰反射ターゲット上に射突させてもよい。いずれの場合でも、ターゲットまでの距離及びそのターゲットに対する二通りの角度を計測することにより、レーザトラッカ計器にてその点の座標が導出される。距離は距離計測装置、例えば絶対距離計又は干渉計により計測される。角度は角度計測装置例えば角度エンコーダにより計測される。レーザビームは、その計器内にあるジンバル式ビームステアリング機構によって注目点に差し向けられる。
レーザトラッカは、自分で輻射した1本又は複数本のレーザビームで再帰反射ターゲットを追尾(トラッキング)する独特な種類の座標計測装置である。その意味でレーザトラッカは“飛行時間”(TOF)型計測装置である。レーザトラッカに対し緊密な関係を有する座標計測装置としてはレーザスキャナ及びトータルステーションがある。レーザスキャナは、物体表面上の諸点に1本又は複数本のレーザビームを送りつける。レーザスキャナは、その面で散乱された光をピックアップし、その光に基づき各点までの距離及び二通りの角度を導出する。トータルステーションは監視用途で暫し用いられるものであり、拡散散乱ターゲットや再帰反射ターゲットの座標を計測するのに使用することができる。
通常、レーザトラッカはレーザビームを再帰反射ターゲットに送る。再帰反射ターゲットの中でも一般的な種類は、金属球内に埋め込まれたキューブコーナ型再帰反射器を備える球面実装型再帰反射器(SMR)である。キューブコーナ型再帰反射器は相直交する3個のミラーを備える。その頂点即ち当該3個のミラーにより共有される交点はその球の中心に位置する。キューブコーナのこのような球内配置が原因で、頂点から任意のSMR着座面までの鉛直距離は、SMRが回っても一定に保たれる。従って、表面に沿ってSMRを動かしつつそのSMRの位置を追跡することにより、レーザトラッカで物体表面の3D座標を計測することができる。このことを別の言い方でいえば、レーザトラッカでは、三通りの自由度のみ(一通りのラジアル距離及び二通りの角度)を計測するだけで表面の3D座標を全面的に特定することができる。
レーザトラッカの一種に、干渉計(IFM)入りで絶対距離計(ADM)抜きのものがある。この種のトラッカのうちいずれかに発するレーザビームの経路が何らかの物体によって遮蔽された場合、そのIFMが自身の距離基準を失うことになる。その場合、オペレータは、再帰反射器を既知部位まで運び基準距離をリセットしないと、計測を継続することができない。この制約を迂回する途の一つはトラッカ内にADMを持ち込むことである。ADMによれば、後に詳説する通り距離をポイントアンドシュート形態で計測することができる。レーザトラッカにはADM入りで干渉計抜きの種類がある。この参照を以てその内容が本願に繰り入れられる特許文献3(発明者:Bridges et al.)には、ADMのみを有していて(IFMを有しておらず)移動ターゲットを正確に走査可能なレーザトラッカが記載されている。特許文献3以前の絶対距離計は低速すぎて移動ターゲットの位置を正確に見いだすことができなかった。
レーザビームは、レーザトラッカ内のジンバル機構を使用しトラッカからSMRへと差し向けることができる。SMRでは光が再帰反射され、その光の一部がレーザトラッカに入射して位置検出器上に到達する。その位置検出器上での光の位置を利用することで、レーザトラッカ内の制御システムにより、自レーザトラッカに備わる機械軸の回動角を調節してレーザビームをSMR上に集中させ続けることができる。このような要領で、注目物体の表面上で移動するSMRをトラッカで追跡(追尾)することができる。
角度計測装置例えば角度エンコーダはトラッカの機械軸に取り付けられる。一通りの距離計測及び二通りの角度計測をレーザトラッカで実行することで、十分に、計測対象物体の表面上の任意点にあるSMRの三次元位置を全特定することができる。
従来のような3自由度ではなく6自由度に亘り計測するレーザトラッカが幾通りか開示されている。それら6自由度は、本願中で後に詳説する通り、三通りの並進自由度及び三通りの方向自由度を含むものである。いずれもこの参照を以てその内容が本願に繰り入れられる特許文献4(発明者:Bridges et al.)、特許文献5(発明者:Bridges et al.)及び特許文献6(発明者:Cramer et al.)には6自由度(6DOF又は6−DOF)レーザトラッカシステムの例が記載されている。
これら6DOFレーザトラッカは、自レーザトラッカによって6自由度計測される再帰反射器を有する別体型プローブを備える構成とすることができる。レーザトラッカによって計測されるプローブの6自由度には三通りの並進自由度及び三通りの方向自由度が含まれると考え得る。そのうち三通りの並進自由度はレーザトラッカ・再帰反射器間のラジアル距離計測、第1角度計測及び第2角度計測を含んでいる。ラジアル距離計測はレーザトラッカ内のADM又はIFMで実行することができる。第1角度計測はアジマス角計測装置例えばアジマス角エンコーダで実行することができ、第2角度計測はゼニス角計測装置例えばゼニス角エンコーダで実行することができる。或いは、第1角度計測装置をゼニス角計測装置とし第2角度計測装置をアジマス角計測装置としてもよい。これらラジアル距離、第1角度計測及び第2角度計測により、デカルト座標系その他の座標系に準拠した三通りの座標へと変換可能な三通りの球面座標系準拠座標が定まる。
プローブの三通りの方向自由度は、上掲の特許文献4に記載の如くパターン付キューブコーナを用い導出することができる。或いは、他の方法を用いプローブの三通りの方向自由度を導出してもよい。これら三通りの並進自由度及び三通りの方向自由度によって6DOFプローブの(ひいてはプローブ端の)空間内位置及び方向が全面的に画定される。注記すべきことに、6自由度が互いに独立でないため6自由度だけでは装置の空間内位置及び方向を全面的に画定できないシステムにすることも可能であるので、ここで述べたことが成り立つのはここで想定したシステムにおいてである。用語“並進セット”は、レーザトラッカ基準座標系における6DOFアクセサリ(例えば6DOFプローブ)の三通りの並進自由度の略記である。用語“方向セット”は、レーザトラッカ基準座標系における6DOFアクセサリ(例.プローブ)の三通りの方向自由度の略記である。用語“表面セット”は、レーザトラッカ基準座標系における物体表面上の点の三次元座標をプローブ端によって計測したものの略記である。
他の既知種3D計量装置としては上掲のTOF型レーザスキャナ、更には三角測量スキャナがある。
米国特許第5402582号明細書 米国特許第5611147号明細書 米国特許第7352446号明細書 米国特許第7800758号明細書 米国特許第8525983号明細書 米国特許第8467072号明細書 米国特許第8533967号明細書 米国特許出願公開第2014/0078519号明細書 米国特許第6711293号明細書
http://en.wikipedia.org/wiki/Augmented_reality "DLP-Based Structured Light 3D Imaging Technologies and Applications" by Jason Geng, published in the Proceedings of SPIE, Vol. 7932
拡張現実の分野では各種3D計量装置との併用に備え幾つかの技術革新が既になされているが、AACMM、レーザトラッカ、TOF型レーザスキャナ及び三角測量スキャナといった3D計量装置との併用に適した新規な拡張現実アプリケーションへの需要が存在している。
本発明の一実施形態に係る方法は、少なくとも2個の二次元(2D)画像を組み合わせて三次元(3D)画像にする方法であり、拡張現実(AR)カメラを準備するステップと、基準座標系を有し、そのARカメラから分離されていて、且つレーザトラッカ、飛行時間(TOF)型レーザスキャナ及び有関節腕座標計測機を含む集合から選ばれたものである3D計量器を準備するステップと、第1時点にて、第1個所にあるARカメラで第1の2D画像を生成するステップと、第2時点にて、第1個所とは異なる第2個所へとARカメラを動かしそのARカメラで第2の2D画像を生成するステップと、第1及び第2の2D画像の双方に共通な少なくとも3個の基点を発見するステップと、上記少なくとも3個の既発見基点に少なくとも部分的に依拠し、第1及び第2の2D画像の位置を合わせることで未スケーリングコンポジット3D画像を取得するステップと、上記少なくとも3個の既発見基点の中から第1被選択基点及び第2被選択基点を特定するステップと、第1の2D画像及び第2の2D画像の双方でカバーされる領域内にある第1参照点及び第2参照点の3D座標を上記3D計量器で計測するステップと、第1参照点及び第2参照点の3D座標計測結果に少なくとも部分的に依拠し第1及び第2被選択基点それぞれの3D座標を導出するステップと、第1及び第2被選択基点それぞれの3D座標導出結果並びに未スケーリングコンポジット3D画像から、既スケーリングコンポジット3D画像たる上記3D画像を生成するステップと、を有する。
上記の及びその他の長所及び特徴は、図面を参照しての後掲の説明により更に明瞭になろう。
本発明と認められる主題については、本明細書の末尾に付された特許請求の範囲内で具体的に指定され且つ画定的に宣誓されている。本発明の上記の及びその他の特徴及び長所については、以下の如き添付図面と併せ後掲の詳細な説明から明らかである。
本発明の一実施形態に係るポータブル有関節腕座標計測機(AACMM)の斜視図である。 本発明の一実施形態に係るレーザトラッカの斜視図である。 本発明の一実施形態に係る飛行時間(TOF)型レーザスキャナの斜視図である。 本発明の一実施形態に係る三角測量スキャナの斜視図である。 物体表面の2D画像を捉えそれら2D画像から3D画像を生成するのに使用される拡張現実カメラ及び3D計量装置の配列を示す図である。 本発明の諸実施形態に係り、物体表面の2D画像を捉えそれら2D画像から3D画像を生成するのに使用される方法の諸ステップのフローチャートである。
詳細な説明では、本発明の諸実施形態並びにその長所及び特徴に関し図面を参照して例示説明する。
図1〜図4に、本発明の諸実施形態に係る三次元(3D)計量装置又は計量器の例を示す。こうした装置、例えば有関節腕座標計測機(AACMM)100、レーザトラッカ200、飛行時間(TOF)型レーザスキャナ300及び三角測量スキャナ400のことを、本願では3D計器と総称している。ご承知頂くべきことに、本願記載の諸実施形態に関し特定の3D計器が参照されることがあるが、特許請求の範囲に記載の発明をそのように限定解釈すべきではない。また、諸実施形態を別の3D計器又は計量装置、例えばレーザラインプローブ、トータルステーション、経緯儀その他で使用することも可能である。
図1に、本発明の諸実施形態に係るAACMM100を示す。有関節腕は座標計測機の一種である。AACMM100はポータブルなものにすることができ、またこの参照を以てその全容が本願に繰り入れられる特許文献7(発明者:Bailey et al.)に記載のAACMMと同一又は類似のそれにすることができる。本例のAACMM100を以て、6又は7軸有関節座標計測装置、特に同AACMM100のアーム部104の一端に連結された計測プローブハウジング102が備わるプローブエンド401を有するそれを、構成することができる。
アーム部104に備わる第1アームセグメント106は、第1群のベアリングカートリッジ110(例.2個のベアリングカートリッジ)を有する回動連結部によって第2アームセグメント108に連結されている。その第2アームセグメント108は第2群のベアリングカートリッジ112(例.2個のベアリングカートリッジ)によって計測プローブハウジング102に連結されている。第1アームセグメント106は、第3群のベアリングカートリッジ114(例.3個のベアリングカートリッジ)によって、AACMM100のアーム部104の他端に位置するベース116に連結されている。各群のベアリングカートリッジ110,112,114により多軸有関節運動が可能とされている。また、プローブエンド401は、AACMM100の第7軸部分のシャフトを構成する計測プローブハウジング102(例.AACMM100の第7軸に沿った計測装置例えばコンタクトプローブ118の運動を判別するエンコーダシステムが組み込まれたカートリッジ)が備わる構成とすることができる。本実施形態では、計測プローブハウジング102の中心を通り延びる軸周りで、プローブエンド401を回動させることができる。使用時には、通常、ベース116が作業面に固定される。
各ベアリングカートリッジ群110,112,114に属する個々のベアリングカートリッジには、通常、エンコーダシステム(例.光学式角度エンコーダシステム)が組み込まれる。このエンコーダシステム(即ちトランスデューサ)によって、各アームセグメント106,108及び対応するベアリングカートリッジ群110,112,114の位置の指示(指摘)が得られる;それらが合わせ、ベース116に対するプローブ118の位置(ひいてはある種の基準座標系(リファレンスフレーム)例えば局所(ローカル)又は大域(グローバル)基準座標系に従いAACMM100によって計測される物体の位置)の指示子が得られる。
プローブ118は計測プローブハウジング102に可脱実装されており、その計測プローブハウジング102がベアリングカートリッジ群112に連結されている。この計測プローブハウジング102には、例えばクイックコネクトインタフェース等の手段で、ハンドルアクセサリ126を着脱することができる。ある種の実施形態ではこのプローブハウジング102内にリムーバブルプローブ118が収容される;これは計測対象物体に物理的に接触する接触式計測装置であり、そのチップ118は様々な構成とすることができる;例えば、これに限定されるものではないが、ボール型、タッチ感応型、湾曲型及び延伸型のプローブである。他種実施形態では、例えばレーザラインプローブ(LLP)といった非接触式装置により計測が実行される。ある実施形態では、クイックコネクトインタフェースを用いハンドル126がLLPに交換される。リムーバブルハンドル126を他種アクセサリ装置に交換して更なる機能性を提供することもできる。そうしたアクセサリ装置の例としては、これに限定されるものではないが、1個又は複数個の照明ライト、温度センサ、サーマルスキャナ、バーコードスキャナ、プロジェクタ、ペイントスプレイヤ、カメラ、ビデオカメラ、オーディオ記録システム、これらに類するもの等がある。
一実施形態に係るポータブルAACMM100のベース116内には電子データ処理システム128が組み込まれ又は収容されており、その電子データ処理システム130には、AACMM100内の各種エンコーダシステムから来るデータ及び他種アームパラメタを表すデータを処理して3D位置計算をサポートするベース処理システムと、AACMM100内でほぼ完全な計量機能を実現可能にする常駐アプリケーションソフトウェアとが組み込まれている。
後に詳論する通り、ベース116内電子データ処理システム130は、ベース116から離れた場所にあるエンコーダシステム、センサその他の周辺ハードウェア(例.AACMM100上のリムーバブルハンドル126又はその内部に実装可能なLLP)と通信することができる。これら周辺ハードウェア装置又は機能をサポートする電子回路は、ポータブルAACMM100内に位置する各ベアリングカートリッジ群110,112,114内に配置することができる。
図2に例示するレーザトラッカシステム200は、レーザトラッカ202、再帰反射ターゲット204、電子データ処理システム206及びオプションの補助コンピュータ208を備えている。レーザトラッカ200は、本願出願人に係りこの参照を以て本願にその全容が繰り入れられる2013年7月3日付米国仮特許出願第61/842572号に記載のそれと類似のものとすることができる。ご承知頂くべきことに、電子データ処理システム206がレーザトラッカ200外に描かれているけれども、これは例示のためであるので、電子データ処理システム206をレーザトラッカ200のハウジング内に配置してもかまわない。レーザトラッカ200のジンバル式ビームステアリング機構210は、例えば、アジマスベース214上に実装されていてアジマス軸216周りで回動するゼニスキャリッジ212を備える。ペイロード218はゼニスキャリッジ212上に実装されていてゼニス軸220周りで回動する。ゼニス軸220及びアジマス軸216はトラッカ200内のジンバル点222で直交しており、通常はこのジンバル点222が距離計測用局所基準座標系の原点とされる。
レーザビーム224はそのジンバル点222を仮想的に通過しており、またゼニス軸220に対し直交する方向に向けられている。言い換えれば、レーザビーム224は、ゼニス軸220に対しほぼ垂直でアジマス軸216を通っている面内に存している。出射レーザビーム224は、ペイロード218のゼニス軸220周り回動及びゼニスキャリッジ212のアジマス軸216周り回動によって所要方向に向けられる。トラッカ220内にはゼニス角エンコーダ226があり、ゼニス軸220に対し整列しているゼニス機械軸に取り付けられている。同トラッカ内にはアジマス角エンコーダ228があり、アジマス軸216に対し整列しているアジマス機械軸に取り付けられている。これらゼニス角、アジマス角エンコーダ226,228により、ゼニス回動角、アジマス回動角が比較的高精度で計測される。出射レーザビーム224は再帰反射ターゲット204、例えば球面実装型再帰反射器(SMR)に向かい伝搬する。
再帰反射ターゲット204までの距離は、絶対距離計(ADM)、干渉計等の計測装置からの信号に応じ電子データ処理システム206によって導出される。ジンバル点222・再帰反射器204間ラジアル距離、ゼニス軸220周り回動角及びアジマス軸216周り回動角を計測することで、トラッカの局所球面座標系における再帰反射器204の位置ひいては検査対象物体の3D座標が、電子データ処理システム206により求まる。
図3に、本発明の諸実施形態に係るレーザスキャナ300の例を示す。このレーザスキャナ300は計測ヘッド302及びベース304を有している。レーザスキャナ300は、この参照を以て本願にその内容が繰り入れられる特許文献8(発明者:Steffey et al.)に記載のそれと類似のものとすることができる。計測ヘッド302は、レーザスキャナ300が鉛直軸306周りで回動しうるようベース304上に実装されている。一実施形態に係る計測ヘッド302は、鉛直軸306及び水平軸310周り回動の中心たるジンバル点308を有している。一実施形態に係る計測ヘッド302は、水平軸310周りで回動させうるロータリミラー312を有している。鉛直軸306周り回動は例えばベース304の中央を中心とした回動である。一実施形態に係る鉛直(アジマス)軸306及び水平(ゼニス)軸310はジンバル点308で交差しており、そのジンバル点308を以て座標系の原点とすることができる。
計測ヘッド302には、更に、電磁波輻射器例えば輻射光ビーム316を輻射する発光器314が併設されている。一実施形態に係る輻射光ビーム316はコヒーレント光例えばレーザビームである。このレーザビームはその波長域が約300〜1600nmのもの、例えば790nm、905nm、1550nm又は400nm未満のものがよい。ご承知頂くべきことに、より長波長又は短波長の他種電磁波ビームも使用することができる。輻射光ビーム316が例えば正弦波又は方形波で振幅又は強度変調されていてもよい。輻射光ビーム316は発光器314によってロータリミラー312上に向け輻射され、そこで周囲環境へと方向転換される。反射光ビーム318は周囲環境にて物体320により反射されたものである。この反射又は散乱光はロータリミラー312で中途捕捉され受光器322に差し向けられる。輻射光ビーム316及び反射光ビーム318の方向は、ロータリミラー312、計測ヘッド302のそれぞれ軸306、軸310周りでの角度位置に由来する。翻って、それら角度位置は、ロータリミラー312、計測ヘッド302を対応する軸310、軸306周りで回動させるロータリドライブに依存している。各軸310,306は、角度計測用に少なくとも1個の角度トランスデューサ324,326を有している。その角度トランスデューサは角度エンコーダとすることができる。
発光器314及び受光器322には電子データ処理システム328が接続されている。電子データ処理システム328は、複数個の表面ポイントXに関し、レーザスキャナ300と物体320上の表面ポイントXとの間の距離“d”を相応個数導出する。個別の表面ポイントXまでの距離は、本装置からその表面ポイントXまで電磁波が伝搬する空気中での光速に少なくとも部分的に依拠して導出される。ある実施形態では、レーザスキャナ300・表面ポイントX間位相シフトの導出及び評価によって距離計測結果“d”が得られる。他の実施形態では、レーザパルス間経過時間(“飛行時間”即ちTOF)を直接計測することで距離計測結果“d”が導出される。
空気中での光速はその空気の特性、例えば気温、気圧、湿度及び二酸化炭素濃度に依存する。そうした空気特性はその空気の屈折率nに影響を及ぼす。空気中での光速は真空中での光速“c”を屈折率で除したものに等しい。言い換えればcair=c/nである。ここで論じている種類のレーザスキャナ300は、空気中での光の飛行時間(光が装置から物体まで伝搬しそこから同装置に戻ってくるまでの往復時間)に基づいている。光(或いは各種の電磁波)の飛行時間に基づく距離計測手法は空気中での光速に依存する。
ある実施形態では、レーザスキャナ300を取り巻く空間の走査が、計測ヘッド302を軸306周りで比較的ゆっくりと回動させつつロータリミラー312を軸310周りで比較的素早く回動させ、それにより同アセンブリを螺旋状に動かすことで実行される。そうしたスキャニングシステムにあっては、ジンバル点308によって局所静止基準座標系の原点が規定される。局所静止基準座標系はベース304が静止している座標系である。
図4に、一実施形態に係る三角測量スキャナ400として、光源402及び少なくとも1個のカメラ404と、物体408の表面410上にある諸点の3D座標を導出する電子データ処理システム420と、を備えるものを示す。この三角測量スキャナは、本願出願人に係りこの参照を以て本願にその内容が繰り入れられる2013年12月23日付米国特許仮出願第14/139021号に記載のそれと類似のものとすることができる。三角測量スキャナ400がレーザトラッカ200やTOF型レーザスキャナ300と相違する点は、空気中での光速ではなく、光源402・カメラ404間の固定的な幾何学的関係に関わる三角測量原理に基づき、物体表面の3D座標が導出される点である。
大略、三角測量スキャナ400にはよく知られている二つの種類がある。第1の種類はしばしばレーザラインプローブ又はレーザラインスキャナと呼ばれるものであり、光のライン又は被掃引点を物体408の表面410上に投射する。反射されたレーザ光がカメラ404によって捉えられるので、幾つかの時点で、表面410上の諸点の3D座標を導出することができる。第2の種類はしばしば構造化光スキャナと呼ばれるものであり、光の二次元パターン又は複数個の光パターンを物体408の表面410上に投射する。その面410の3Dプロファイルによって、カメラ404内の感光アレイで捉えたパターンの画像が左右される。そうしたパターン又はパターン群の画像又は画像群から収集した情報を用い、電子データ処理システム420にて、カメラ404内感光アレイを構成している諸画素と、光源402によって輻射された光のパターンと、の間の1対1対応関係を幾つかの時点で導出することができる。この1対1対応関係をカメラ・プロジェクタ間基線距離と併用し、電子データ処理システム420によって三角測量を適用することで、表面410上の諸点の3D座標を導出することができる。表面410に対し三角測量スキャナ400を動かすことで、物体408全体に亘る点クラウドを生成することができる。
更に、構造化光パターンには、大略、符号化光パターン及び非符号化光パターンの二種類がある。本願中の用語、符号化光パターンは、物体の被照明面の3D座標が単一の投射パターン及び単一の相応画像に依拠するパターンをさしている。符号化光パターン使用時には、パターンそれ自体に基づき投射パターン上の諸点と受光画像上の諸点との間の1対1対応関係を画定する途がある。こうした特性があるため、投射装置をその物体に対し動かしながら点クラウドデータを取得し位置合わせすることができる。符号化光パターンの一種としては、線状に配置された一組の要素(例.幾何学的図形)を有し、それら要素のうち少なくとも3個が非共線的なものがある。そうしたパターン構成要素はそれらの配置故に認識することができる。対するに、本願中の用語、非符号化構造化光は、単一パターンに基づき3D座標を決め得ないパターンをさしている。一連の非符号化光パターンを順次投射及びイメージングし、得られた一連の画像間の関係を利用することで、被投射点及び被イメージング点間の1対1対応関係を画定することができる。この実施形態では、1対1対応関係が画定されるまで、三角測量スキャナ400が物体408に対しある固定位置に配置される。
ご承知頂くべきことに、三角測量スキャナ400では符号化構造化光パターンも非符号化構造化光パターンも使用することができる。その構造化光パターンには、この参照を以てその内容が本願に繰り入れられる非特許文献2で開示されているパターンが含まれうる。
本願では、AACMM100、レーザトラッカ200、TOF型レーザスキャナ300及び三角測量スキャナ400等の3D計量器を3D計器と総称している。ご承知頂くべきことに、これらの3D計量器は一例であり、ある種の物体又は光景の3D座標を計測しうるよう構成されたどのような3D計量器をも本願記載のシステム及び方法と併用可能であるので、特許請求の範囲に記載の発明がそのような限定を受けるべきではない。
図5に拡張現実(AR)カメラ500を示す。更に3D計量器510、例えば上述した図1のAACMM100、図2のレーザトラッカ200、図3のTOF型レーザスキャナ300又は図4の三角測量スキャナ400も示す。図示していないが、本発明の諸実施形態では他の3D計量器も利用可能であり、そうした計量器の例としては、6DOFプローブや6DOFスキャナと併用される6自由度(6DOF)レーザトラッカや、ロボットに取り付けられていてそのポジションがカメラバーによってモニタされる三角測量スキャナがある。本発明の諸実施形態の最広義な技術的範囲に鑑みれば、3D計量又は計測装置を用い少なくとも2個の基点の3D座標を計測することが可能であるので、当該少なくとも2個の基点の3D座標の計測について、本発明の諸実施形態との関連で後により詳細に説明する。
図5には表面524を有する物体520も示されている;本発明の諸実施形態で望まれるのは、物体520の表面524のうちある部分又は全体の2D画像をARカメラ500で捉え、そしてそれら2D画像を処理して表面524の正確な即ち“真”の3D画像をもたらすことである。
ARカメラ500は、“全視野”画像を捕捉可能と見なせる2Dカメラである。即ち、ARカメラ500によって、通常は、割合と広い範囲に亘り画像を得ることができ、またその物体520から割合に大きな距離のところで諸物体の画像を得ることができる。また、その画像内にある物体表面524についての十分な情報がARカメラ500によりもたらされるので、カメラ画像データをその物体のCADモデルにマッピングすることができる。更に、ARカメラ500によって、物体表面524についての色情報を得ることができる。但し、ご理解頂くべきことに、本発明の諸実施形態では、物体表面524の2D画像を取得する際に、2D−ARカメラ500の位置及び/又は向き(即ち“姿勢”)が既知である必要はない。
ARカメラ500はカメラレンズ532及び感光アレイ534を有している。感光アレイ534は例えばCCD又はCMOSアレイとすることができる。即ち、ARカメラ500はその性質上ディジタル的なものとすることができ、且つそのカメラ500で静止画又は動画を捉えることができる。また、ARカメラ500は信号処理用電子回路540及びメモリ544を有する構成とすることができる。ARカメラ500の諸アプリケーションで必要とされるところに応じ、この信号処理用電子回路540にて、3D計量器510及び/又はその他の装置(図示せず)との無線又は有線通信を実行することができる。ARカメラ500は、更に、特定の基準座標系におけるARカメラ500の位置特定を支援しうる1個又は複数個の慣性センサ(図示せず)を有する構成とすることができる。
レンズ532(複数個のレンズ素子を有するレンズ系でもよい)内には同レンズの投射中心がある。レンズ532内を通る光線はその投射中心を通ってから感光アレイ534に到達するものと見なせる。細心な分析によれば、レンズ532の特性を調べることで、感光アレイ534上で僅かな光線交差位置ずれをもたらすレンズ収差を算入、勘案することができる。とはいえ、一般性を損ねることなく述べうる通り、光線は投射中心を通り、画像には画像処理の別ステップで収差補正が施される。
調査対象物体520の表面524はレンズ532により感光アレイ534上へと二次元的にイメージングされ、それにより感光アレイ534の一部分たる一群の画素上に2D画像全体が形成される。各画素に到来した光は、そのカメラの積分期間にて電荷からディジタル信号へと変換される。感光アレイ534内(CMOSアレイの場合)又はアレイ534外(CCDアレイの場合)にあるアナログディジタル変換器、例えば信号処理用電子回路540の一部分たるそれは、アナログからディジタル信号への変換を実行する。各画素に係る信号は、通常、8〜12ビットの二値表現で与えられる。それらのビットで表現される二進数1及び0は並列チャネル経由で送給されていく;これらは、バスライン経由での伝送に際し、シリアライザ/デシリアライザ機能を用いてシリアル形態に変換することができる。
本発明の諸実施形態では、ARカメラ500を“スタンドアロン”装置と見なせるよう、ARカメラ500が3D計量器510(又は他の計測装置)から物理的に分離される(即ち取付が行われない)。ARカメラは、固定マウント、スタンド又は据付具、例えば三脚上にそのARカメラを配置することで、静止状態に保つことができる。ARカメラ500をそのようなかたちで非計測装置上に実装しても、ARカメラ500の状態又は性質が本発明の諸実施形態における“スタンドアロン”装置のそれから変わりはしない。
本発明の諸実施形態では、ARカメラ500によって撮影された複数枚の二次元(2D)カメラ画像を本願中で後述する方法に従い互いに組み合わせること又は“その位置を合わせること”で、様々な実世界形状例えば物体表面の、或いはある種の実世界光景(例.建屋内、車両事故現場又は犯罪場面)の、“真”三次元(3D)画像表現を得るようにしている。本発明の諸実施形態によれば、ARカメラ500によって得られた2D画像内で基点を特定し、それら基点を照らし合わせるステップによって未スケーリング3D画像を取得する一方、複数個の2D画像内の都合少なくとも2個の点(例.一致する基点)間の距離計測を3D計量器510により実行し、その距離計測により生成したスケールを未スケーリング3D画像に対し導入することにより、3D物体表面524の比較的正確な即ち“真”の3D画像が結果として得られる。
そこで、本発明の諸実施形態に係る方法例について、フローチャートたる図6に示す方法600を参照して説明する。ステップ605では3D計量器510が準備される。ステップ605では2DスタンドアロンARカメラ500も準備される。言及した通り、本発明の諸実施形態における3D計量器510は、例えば上述した図1のAACMM100、図2のレーザトラッカ200、図3のTOF型レーザスキャナ300又は図4の三角測量スキャナ400のうちいずれかであり、これらについてはそれぞれ本願中で既に詳説してある。また、本願中で上述した通り、3D計量器又は計量装置510は、本発明の諸実施形態の最広義解釈から逸脱せず他の類種装置を以て構成することができる。
ステップ610では、第1時点にて、第1個所に配置されたスタンドアロンARカメラ500により(即ち第1の観測者視角から)3D物体表面524の第1の2D画像が生成される。ARカメラ500内の信号処理用電子回路540が第1ディジタル信号、即ちカメラレンズ532を介し感光アレイ534上に送られた物体表面524の第1の2D画像を示す信号を受け取り、当該第1の2D画像を生成するようにするとよい。或いは、信号処理用電子回路540が感光アレイ534からのデータを第1ディジタル信号の形態で3D計量器510に送り、その計量器510に第1の2D画像を生成させるようにしてもよい。更に或いは、信号処理用電子回路540が感光アレイ534からのデータを第1ディジタル信号の形態で他の何らかの信号処理装置(図示せず)に送り、そこで第1の2D画像を生成させるようにしてもよい。
ステップ615では、第2時点にて、スタンドアロンARカメラ500が別の第2個所(即ち第1の観測者視角と異なる第2の観測者視角)へと動かされ、そのARカメラ500により物体表面524の第2の2D画像が生成される。信号処理用電子回路540が第2ディジタル信号、即ちカメラレンズ532を介し感光アレイ534上に送られた物体表面524の第2の2D画像を示す信号を受け取り、第2の2D画像を生成するようにするとよい。或いは、信号処理用電子回路540が感光アレイ534からのデータを第2ディジタル信号の形態で3D計量器510に送り、その計量器510に第2の2D画像を生成させるようにしてもよい。更に或いは、信号処理用電子回路540が感光アレイ534からのデータを第2ディジタル信号の形態で他種信号処理装置(図示せず)に送り、そこで第2の2D画像を生成させるようにしてもよい。
本発明の諸実施形態によれば、第1及び第2の2D画像双方に共通な画像構成部分が幾ばくか存することとなるよう、第1及び第2の2D画像に幾ばくかの重なり合いが求められる。ARカメラ500がカラーカメラなら第1及び第2の2D画像はカラー画像となる。
ステップ620では、第1の2D画像及び第2の2D画像に共通な少なくとも3個の基点が探される。用語“基点”(カーディナルポイント)は、通常、2枚以上の2D画像内にあり同一点(即ち“一致する”点)と認められる点のことを指すのに使用される。次いで、それら基点を使用することで、画像同士を連結し又は位置合わせすることができる。また、基点は、通常、誰かがどこかにわざと置いたものではない。更に、上記共通な基点は、いずれも物体上又は光景内に位置することとなろう。
こうした基点を発見するのに使用しうる周知技術は複数あり、それらの技術では画像処理又は特徴検出と呼ばれる方法が一般に使用されている。常用に留まらず一般的でもある基点発見範疇には注目点検出と呼ばれるものがあり、それにより検知される点は注目点と呼ばれている。通常の定義によれば、注目点は、数学的に明定された境界線、明定された空間位置、局所情報コンテンツに富む注目点周り画像構造、並びに経時的に比較的安定な輝度レベル変動を呈する。注目点の具体例は隅点であり、これは例えば3個の平面の交差点に相当する点であることが多い。使用可能な信号処理の別例としては、本件技術分野で周知であり且つ特許文献9(発明者:Lowe)に記載されている手法たるスケール不変特徴変換(SIFT)がある。基点を発見しうる他の一般的な特徴検出方法としては、例えばエッジ検出、ブロッブ検出及びリッジ検出がある。
ステップ625では、第1及び第2の2D画像の位置を合わせることで未スケーリングコンポジット3D画像が取得される。この未スケーリング3D画像は“擬似3D”像とも呼ぶことができる。この2D画像2枚位置合わせステップは、ステップ620で発見された少なくとも3個の基点、即ち第1及び第2の2D画像双方に共通な少なくとも3個の基点に、少なくとも部分的に依拠するものとすることができる。
次に、ステップ630では、ステップ620にて発見された少なくとも3個の基点の中から第1基点及び第2基点が特定(又は選定)される。
ステップ635では、特定された第1及び第2基点それぞれの3D座標が直接計測される。本発明の諸実施形態では、このステップ635が3D計量器510を用いて実行され、またある基準座標系(例.3D計量器510のそれ)内で実行される。
別の実施形態によれば、このステップ635において、代わりに、3D計測計量器510により得られた幾通りかの3D座標に基づき、少なくとも2個の基点の3D座標を得るのに必要な情報を生成することができるので、基点の3D座標を直接計測する必要がない。例えば、ある物体520が有している2個の孔を、ARカメラ500により少なくとも二通りの2D画像内で特定することができる。次いで、二通りある2D画像それぞれについて、第1、第2円それぞれの中心を以てそれぞれ第1、第2基点を画定することができる。その上で、孔上に配置されているSMR204(図2)の中心の3D座標をレーザトラッカ200で計測することにより、それら孔の中心間の距離を、基点を直接計測すること無しに導出することができる。第1円の中心、第2円の中心(即ち孔の中心)はそれぞれ第1参照点、第2参照点と呼ぶことができ、その第1参照点は第1基点に関連又は一致し、第2参照点は第2基点に関連又は一致する。第1及び第2参照点は、第1の2D画像及び第2の2D画像双方によってカバーされる領域を伴っている。従って、第1及び第2参照点の3D座標を3D計量器510で計測することができる。
3D座標が3D計器510により直接計測されるのかそれとも他の何らかの要領で導出されるのかによらず、このステップ635の結果として、本願中で上述したステップ625にて第1及び第2の2D画像から生成された未スケーリング3D画像に対し、必要なスケーリングがそれら3D座標を用いもたらされることとなる。
そして、ステップ640では、第1基点(又は第1参照点)の3D座標、第2基点(又は第2参照点)の3D座標及び未スケーリングコンポジット即ち“擬似”3D画像に少なくとも部分的に依拠し、既スケーリングコンポジット3D画像が導出される。コンポジット3D画像は、3D座標情報を提供するのみならず、基点から得られたテキスチャ及び色情報や例えば既知の補間方法の使用を通じ基点間可視領域から得られたテキスチャ及び色情報をも搬送しうる。
ARカメラ500がカラーカメラである場合、導出される既スケーリングコンポジット3D画像が物体表面524の色を表すものとなりうるし、及び/又は、他の表面テキスチャ属性がそのコンポジット3D画像に内在することとなりうる。
本発明の諸実施形態に係る方法600によってコンポジット3D画像を生成した後、それらの画像上にデータをオーバレイ即ち重畳させてもよい。例えば、それら3D画像が建築予定又は建築済物体のそれである場合、それら3D画像上に重畳させるデータに、その物体のCAD設計データを含むデータを含めるとよい。このCADデータはレーザトラッカ200(図2)に係るメモリ内に格納可能である。他種データ、例えば諸組立動作(穿孔、取付等々)の実行対象個所を示すマークを、それら3D画像上に重畳させてもよい。
ソフトウェアを利用し、様々な視角及び様々な距離から物体及びその周囲を観測し、物体・周囲間の視差ずれを適正に表現させることが可能である。場合によっては背景情報が重要になろう。例えば、ARカメラ500によりその3D画像が得られている3D周囲空間内に十分な余地があることを確認しながらある構造物を計測対象物体に取り付ける、といった工程を含むプロジェクトがあろう。そうした構造物は、CADモデルとして、部品又はアセンブリの走査結果画像として、或いは複数個のカメラ画像の使用を通じ得られた既スケーリング3D表現として利用することができる。
場合によっては、ARカメラ500を用い、通常は視認が阻害されている領域の表現を取得することができる。例えば、ARカメラ500を用い物体の全側面を眺望し、さもなくば容易に計測できない諸領域の3D画像を得ることができる。物体の全方向からのこうした“全貌”捕捉は、諸画像を表示する際、例えばプレゼンテーション中、ウェブサイト上又は小冊子中でそうする際にひときわ役立つ。この例ではARカメラ500によってもたらされる色(テキスチャ)の追加にも価値がある。ARカメラ500から得られる3D表現を他の3D表現で補足することができる。場合によっては、部品、アセンブリ、調度等のモデルをファイル又はウェブサイトからダウンロードし、コンポジット3D表現に組み込むことができる。
ARカメラ500及び3D計量器510のもう一つの重要な用途は、周囲空間の適正なスケーリングを得ることである。例えば、壁には左側面、右側面、上側面及び下側面があろう。本願中で上述した基点照合方法によって既スケーリング3D画像がもたらされるとはいえ、一般には、カメラ画像単独ではなく3D計量器510で3D座標を計測した方が、寸法精度がかなり良好になろう。2D−ARカメラ画像をもとに得られるコンポジット3D画像を3D計量器510による数回の計測と組み合わせることで、多くの場合、そのコンポジット3D画像のスケーリング精度を大きく改善することができる。例えば、左、右、上及び下の各側面上にある一通り又は複数通りの位置を3D計量器510で計測することにより、より良好な建屋向けスケールを得ることができる。
ARカメラ500は、周囲のみの計測にも、物体のみの計測にも、或いは周囲及び物体双方の計測にも使用することができる。本願での用語法によれば、用語“物体”は、正確な寸法情報が望まれている器物を意味している。ARカメラ500での計測によって、描画(例えばCAD)その他の3Dグラフィカルモデル上に全貌3D画像を重畳させる能力が実現される。加えて、複数方向から物体の2D画像を得ることにより、その物体の全側面又は全方向から物体に対するオーバレイを提供することができる。
物体が配置される周囲空間の3D座標はARカメラ500の使用を通じ得ることができる。ARカメラ及び3D計量器510によりもたらされる情報があれば、その周囲に対し様々な視角からそれら物体を眺望すること、更には全方向から物体又はその周囲を眺望することができる。
ある実施形態では、純粋なグラフィカル要素(例えば写真的な要素、描画された要素又はレンダリングされた要素でありうる)がコンポジット画像内に配置又は重畳される。そうしたグラフィカル要素の第1の例は、建屋内空間内の工場床上にある工作機械への付加要素である。こうした付加要素は、コンポジットカラー画像がオーバレイされるCADモデル上に重畳させることができる。付加要素たりうるものとしては新規な機械加工部品がある。そうした一群の付加要素は、全要素が確かに適正フィットするよう工場環境のコンテキストに従い配置することができる。同グラフィカル要素の第2の例は、同様の工場環境中に配置された機械又は備品の新規品である。主題となるのはそうした要素が新規プランにフィットするかどうかであろう。場合によっては、ウェブサイトを利用することで、通常はサービスプロバイダを介しインターネット上に見いだされるネットワークであるクラウドから、それら3D画像をダウンロード可能にすることができる。ある種のユーザインタフェースでは、そうした3Dコンポーネントをコンピュータのマウスで適正な位置に動かし、次いで様々な位置及び方向からそのコンポーネントを眺望することができる。
本願では、本発明の諸態様について、本発明の諸実施形態に係る方法、装置(システム)及びコンピュータプログラム製品のフローチャート及び/又はブロック図を参照し説明している。ご理解頂ける通り、そのフローチャート及び/又はブロック図中の個々のブロック、並びに同フローチャート及び/又はブロック図中のブロック同士の組合せを、コンピュータ可読プログラム命令によって実現することができる。
それらコンピュータ可読プログラム命令を汎用コンピュータ、専用コンピュータその他のプログラマブルデータ処理装置のプロセッサに供給すると、当該コンピュータその他のプログラマブルデータ処理装置のプロセッサによりそれら命令が実行され、フローチャート及び/又はブロック図中のブロック又はブロック群にて特定される機能/動作の実現手段が生成されるよう、マシンを構成することができる。また、それらコンピュータ可読プログラム命令を、コンピュータ、プログラマブルデータ処理装置及び/又はその他の装置に指令して特定の要領で機能させることが可能なコンピュータ可読格納媒体内に格納することで、その中に命令群が格納されているコンピュータ可読格納媒体を以て、フローチャート及び/又はブロック図中のブロック又はブロック群にて特定される機能/動作の諸態様を実現する命令群が組み込まれた産品を構成することができる。
また、それらコンピュータ可読プログラム命令をコンピュータその他のプログラマブルデータ処理装置又は他の装置上にロードし、ひいてはそのコンピュータその他のプログラマブル装置又は他の装置上で一連の動作ステップを実行させることで、同コンピュータその他のプログラマブル装置又は他の装置により実行される命令群を以てフローチャート及び/又はブロック図中のブロック又はブロック群にて特定される機能/動作が実現されるよう、コンピュータ実現プロセスを提供することができる。
図面に含まれるフローチャート及びブロック図には、本発明の諸実施形態に係るシステム、方法及びコンピュータプログラム製品の潜在的実現形態に備わるアーキテクチャ、機能及び動作を描出してある。然るに、そのフローチャート又はブロック図中の個々のブロックによって、指定された論理機能(群)を実現するための1個又は複数個の可実行命令で構成される命令群のモジュール、セグメント又は一部分を表現することができる。他の実現形態にあっては、ブロック内に記されている諸機能が図面に記されている順番とは異なる順番で生起することとされうる。例えば、相次ぐように図示されている2個のブロックが実のところは実質同時に実行されることがありうるし、或いはそれらブロックが逆の順序で実行されることもありうるのであり、この点は関係している機能に依存している。これもまた注記すべきことに、ブロック図及び/又はフローチャート中の個々のブロック、並びにブロック図及び/又はフローチャート中のブロック同士の組合せは、指定された機能若しくは動作を実行する専用ハードウェア利用システムで実現することができ、また専用ハードウェア及びコンピュータ命令の組合せを稼働させることができる。
本発明について専ら有限個数の実施形態を参照し詳説してきたが、容易にご理解頂ける通り、本発明はそれら開示されている実施形態に限定されるものではない。寧ろ、本発明を変形し、上述されてはいないが本発明の神髄及び技術的範囲に相応している多様な変形、改変、置換又は等価配置を包含させることが可能である。加えて、本発明の諸実施形態について記述してきたが、ご理解頂けるように、本発明の諸態様がそれら記述済の実施形態のうち一部のみを含んでいてもよい。従って、本発明は上掲の説明により限定されるものとして理解されるべきではなく、添付されている特許請求の範囲の技術的範囲のみによって限定されるものである。更に、第1、第2等々の用語の使用は何らかの順序又は重要度を示すものではなく、寧ろ個々の要素を他の要素から区別する目的で第1、第2等々の用語が使用されている。更に、ある、その等々の用語の使用は量の限定を示すものではなく、寧ろ、参照されている器物が少なくとも1個存在していることを示すものである。

Claims (16)

  1. 少なくとも2個の二次元(2D)画像を組み合わせて三次元(3D)画像にする方法であって、
    拡張現実(AR)カメラを準備するステップと、
    基準座標系を有し、上記ARカメラから分離されていて、且つレーザトラッカ、飛行時間(TOF)型レーザスキャナ及び有関節腕座標計測機を含む集合から選ばれたものである3D計量器を準備するステップと、
    第1時点にて、第1個所にあるARカメラで第1の2D画像を生成(form)するステップと、
    第2時点にて、第1個所とは異なる第2個所へとARカメラを動かしそのARカメラで第2の2D画像を生成(form)するステップと、
    第1及び第2の2D画像の双方に共通な少なくとも3個の基点(cardinal point)を発見するステップと、
    上記少なくとも3個の既発見基点に少なくとも部分的に依拠し、第1及び第2の2D画像の位置を合わせることで未スケーリングコンポジット3D画像を取得するステップと、
    上記少なくとも3個の既発見基点の中から第1被選択基点及び第2被選択基点を特定するステップと、
    第1の2D画像及び第2の2D画像の双方でカバーされる領域内にある第1参照点(reference point)及び第2参照点の3D座標を上記3D計量器で計測するステップと、
    第1参照点及び第2参照点の3D座標計測結果に少なくとも部分的に依拠し第1及び第2被選択基点それぞれの3D座標を導出するステップと、
    第1及び第2被選択基点それぞれの3D座標導出結果並びに未スケーリングコンポジット3D画像から、既スケーリングコンポジット3D画像たる上記3D画像を生成(create)するステップと、
    を有する方法。
  2. 請求項1の方法であって、第1参照点及び第2参照点の3D座標を上記3D計量器で計測するステップでの第1参照点が第1被選択基点と関連し且つ第2参照点が第2被選択基点と関連する方法。
  3. 請求項2の方法であって、第1参照点及び第2参照点の3D座標を上記3D計量器で計測するステップでの第1参照点が第1被選択基点と一致し且つ第2参照点が第2被選択基点と一致する方法。
  4. 請求項2の方法であって、第1参照点及び第2参照点の3D座標を上記3D計量器で計測するステップでの第1参照点が孔の中心である方法。
  5. 請求項1の方法であって、更に、上記3D画像上にデータを重畳させるステップを有する方法。
  6. 請求項5の方法であって、上記3D画像上にデータを重畳させるステップにて重畳されるデータがコンピュータ支援設計(CAD)データを含む方法。
  7. 請求項5の方法であって、上記3D画像上にデータを重畳させるステップにて重畳されるデータが組立動作を示すマークを含む方法。
  8. 請求項5の方法であって、上記3D画像上にデータを重畳させるステップにて重畳されるデータが、写真的な要素、描画された要素及びレンダリングされた要素からなる集合から選ばれたグラフィカル要素である方法。
  9. 請求項1の方法であって、更に、上記3D画像の第1の2D表現であり第1の観測者視角から取得されているそれを提供するステップを有する方法。
  10. 請求項9の方法であって、更に、上記3D画像の第2の2D表現であり第1の観測者視角とは別の第2の観測者視角から取得されているそれを提供するステップを有する方法。
  11. 請求項1の方法であって、第1及び第2の2D画像の双方に共通な少なくとも3個の基点を発見するステップでの当該共通な基点が物体上に存する方法。
  12. 請求項11の方法であって、更に、全ての側から物体の画像を取得し、それらに応じ、その物体の全側面からなる3D画像たる全貌3D画像を導出するステップを有する方法。
  13. 請求項12の方法であって、更に、3Dグラフィカルモデル上に上記全貌3D画像を重畳させるステップを有する方法。
  14. 請求項13の方法であって、上記3Dグラフィカルモデルがコンピュータ支援設計(CAD)モデルである方法。
  15. 請求項13の方法であって、上記3Dグラフィカルモデルが建屋内空間の3Dモデルである方法。
  16. 請求項1の方法であって、
    拡張現実(AR)カメラを準備するステップで準備されるARカメラがカラーカメラであり、
    第1個所にあるARカメラで第1の2D画像を生成するステップで生成される第1の2D画像がカラー画像であり、
    第1個所とは異なる第2個所へとARカメラを動かしそのARカメラで第2の2D画像を生成するステップで生成される第2の2D画像がカラー画像であり、
    3D画像を生成するステップで生成される3D画像が第1の2D画像及び第2の2D画像に少なくとも部分的に依拠するカラー画像である方法。
JP2017516473A 2014-09-25 2015-09-25 2dカメラ画像からの3d画像の生成に当たり3d計量器と併用される拡張現実カメラ Pending JP2017528727A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462055030P 2014-09-25 2014-09-25
US62/055,030 2014-09-25
US14/863,725 2015-09-24
US14/863,725 US10176625B2 (en) 2014-09-25 2015-09-24 Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
PCT/US2015/052114 WO2016049402A1 (en) 2014-09-25 2015-09-25 Augmented reality camera for use with 3d metrology equipment in forming 3d images from 2d camera images

Publications (1)

Publication Number Publication Date
JP2017528727A true JP2017528727A (ja) 2017-09-28

Family

ID=54330861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017516473A Pending JP2017528727A (ja) 2014-09-25 2015-09-25 2dカメラ画像からの3d画像の生成に当たり3d計量器と併用される拡張現実カメラ

Country Status (5)

Country Link
US (2) US10176625B2 (ja)
JP (1) JP2017528727A (ja)
DE (1) DE112015004396T5 (ja)
GB (1) GB2545597A (ja)
WO (1) WO2016049402A1 (ja)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10021379B2 (en) 2014-06-12 2018-07-10 Faro Technologies, Inc. Six degree-of-freedom triangulation scanner and camera for augmented reality
US9402070B2 (en) 2014-06-12 2016-07-26 Faro Technologies, Inc. Coordinate measuring device with a six degree-of-freedom handheld probe and integrated camera for augmented reality
US10176625B2 (en) 2014-09-25 2019-01-08 Faro Technologies, Inc. Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US9506744B2 (en) 2014-12-16 2016-11-29 Faro Technologies, Inc. Triangulation scanner and camera for augmented reality
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
KR101656808B1 (ko) * 2015-03-20 2016-09-22 현대자동차주식회사 사고 정보 관리 장치, 이를 포함하는 차량 및 사고 정보 관리 방법
WO2017116585A1 (en) * 2015-12-30 2017-07-06 Faro Technologies, Inc. Registration of three-dimensional coordinates measured on interior and exterior portions of an object
US11064904B2 (en) 2016-02-29 2021-07-20 Extremity Development Company, Llc Smart drill, jig, and method of orthopedic surgery
US9928592B2 (en) * 2016-03-14 2018-03-27 Sensors Unlimited, Inc. Image-based signal detection for object metrology
BR112019000728B1 (pt) 2016-07-15 2023-03-28 Fastbrick Ip Pty Ltd Veículo que incorpora máquina de assentamento de tijolos
US10650552B2 (en) 2016-12-29 2020-05-12 Magic Leap, Inc. Systems and methods for augmented reality
EP4300160A3 (en) 2016-12-30 2024-05-29 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
WO2019006511A1 (en) * 2017-07-05 2019-01-10 Fastbrick Ip Pty Ltd REAL-TIME POSITION TRACKING AND ORIENTATION DEVICE
US10578870B2 (en) 2017-07-26 2020-03-03 Magic Leap, Inc. Exit pupil expander
CN111226090B (zh) 2017-08-17 2023-05-23 快砖知识产权私人有限公司 具有改进的横滚角测量的激光跟踪器
AU2018317937B2 (en) 2017-08-17 2023-11-23 Fastbrick Ip Pty Ltd Communication system for an interaction system
US10591276B2 (en) 2017-08-29 2020-03-17 Faro Technologies, Inc. Articulated arm coordinate measuring machine having a color laser line probe
US10699442B2 (en) 2017-08-29 2020-06-30 Faro Technologies, Inc. Articulated arm coordinate measuring machine having a color laser line probe
JP6419278B1 (ja) 2017-09-19 2018-11-07 キヤノン株式会社 制御装置、制御方法、及びプログラム
US11022434B2 (en) 2017-11-13 2021-06-01 Hexagon Metrology, Inc. Thermal management of an optical scanning device
US10417829B2 (en) * 2017-11-27 2019-09-17 Electronics And Telecommunications Research Institute Method and apparatus for providing realistic 2D/3D AR experience service based on video image
KR20230152180A (ko) 2017-12-10 2023-11-02 매직 립, 인코포레이티드 광학 도파관들 상의 반사―방지 코팅들
CA3086206A1 (en) 2017-12-20 2019-06-27 Magic Leap, Inc. Insert for augmented reality viewing device
EP3524926B1 (en) * 2018-02-08 2020-05-20 Leica Geosystems AG Augmented reality-based system with perimeter definition functionality and corresponding inspection method
US10755676B2 (en) 2018-03-15 2020-08-25 Magic Leap, Inc. Image correction due to deformation of components of a viewing device
US11194019B2 (en) 2018-04-30 2021-12-07 Faro Technologies, Inc. System and method of one touch registration of three-dimensional scans with an augmented reality enabled mobile computing device
EP3567341B1 (en) 2018-05-08 2023-11-29 Leica Geosystems AG Augmented reality-based system
US10477180B1 (en) 2018-05-22 2019-11-12 Faro Technologies, Inc. Photogrammetry system and method of operation
US11204491B2 (en) 2018-05-30 2021-12-21 Magic Leap, Inc. Compact variable focus configurations
US11885871B2 (en) 2018-05-31 2024-01-30 Magic Leap, Inc. Radar head pose localization
JP7369147B2 (ja) 2018-06-05 2023-10-25 マジック リープ, インコーポレイテッド 視認システムのホモグラフィ変換行列ベースの温度較正
WO2019237099A1 (en) 2018-06-08 2019-12-12 Magic Leap, Inc. Augmented reality viewer with automated surface selection placement and content orientation placement
US11579441B2 (en) 2018-07-02 2023-02-14 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
WO2020010226A1 (en) 2018-07-03 2020-01-09 Magic Leap, Inc. Systems and methods for virtual and augmented reality
US11598651B2 (en) 2018-07-24 2023-03-07 Magic Leap, Inc. Temperature dependent calibration of movement detection devices
WO2020023543A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Viewing device with dust seal integration
US11112862B2 (en) 2018-08-02 2021-09-07 Magic Leap, Inc. Viewing system with interpupillary distance compensation based on head motion
US10795458B2 (en) 2018-08-03 2020-10-06 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
JP7472127B2 (ja) 2018-11-16 2024-04-22 マジック リープ, インコーポレイテッド 画像鮮明度を維持するための画像サイズによってトリガされる明確化
EP4369151A2 (en) 2019-02-06 2024-05-15 Magic Leap, Inc. Target intent-based clock speed determination and adjustment to limit total heat generated by multiple processors
KR20200101213A (ko) 2019-02-19 2020-08-27 삼성전자주식회사 전자 장치 및 전자 장치의 오브젝트 측정 방법
US11293748B2 (en) 2019-03-07 2022-04-05 Faro Technologies, Inc. System and method for measuring three-dimensional coordinates
JP2022523852A (ja) 2019-03-12 2022-04-26 マジック リープ, インコーポレイテッド 第1および第2の拡張現実ビューア間でのローカルコンテンツの位置合わせ
US11551475B2 (en) * 2019-03-21 2023-01-10 Purdue Research Foundation System architecture and method of authenticating a 3-D object
EP3963565A4 (en) 2019-05-01 2022-10-12 Magic Leap, Inc. CONTENT DELIVERY SYSTEM AND PROCEDURES
WO2021021670A1 (en) 2019-07-26 2021-02-04 Magic Leap, Inc. Systems and methods for augmented reality
JP7365200B2 (ja) * 2019-11-08 2023-10-19 東京エレクトロン株式会社 監視システム
EP4058979A4 (en) 2019-11-15 2023-01-11 Magic Leap, Inc. VIEWING SYSTEM FOR USE IN A SURGICAL ENVIRONMENT
TWI809705B (zh) * 2022-02-09 2023-07-21 財團法人工業技術研究院 加工路徑產生方法及裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215917A (ja) * 2004-01-29 2005-08-11 Hitachi Plant Eng & Constr Co Ltd 施工図作成支援方法およびリプレースモデル作成方法
JP2006003132A (ja) * 2004-06-15 2006-01-05 Topcon Corp 3次元測量装置及び電子的記憶媒体
JP2012118948A (ja) * 2010-12-03 2012-06-21 Ns Solutions Corp 拡張現実感提示装置、拡張現実感提示方法及びプログラム
US20140225988A1 (en) * 2011-09-07 2014-08-14 Commonwealth Scientific And Industrial Research Organisation System and method for three-dimensional surface imaging

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402582A (en) 1993-02-23 1995-04-04 Faro Technologies Inc. Three dimensional coordinate measuring apparatus
US5611147A (en) 1993-02-23 1997-03-18 Faro Technologies, Inc. Three dimensional coordinate measuring apparatus
DE69430153T2 (de) 1993-06-21 2002-09-05 Nippon Telegraph & Telephone Verfahren und Vorrichtung zur dreidimensionalen Bilderzeugung von Objekten
IL113496A (en) 1995-04-25 1999-09-22 Cognitens Ltd Apparatus and method for recreating and manipulating a 3d object based on a 2d projection thereof
US6858826B2 (en) 1996-10-25 2005-02-22 Waveworx Inc. Method and apparatus for scanning three-dimensional objects
DE19721903C1 (de) 1997-05-26 1998-07-02 Aicon Industriephotogrammetrie Verfahren und Anlage zur meßtechnischen räumlichen 3D-Lageerfassung von Oberflächenpunkten
US6271855B1 (en) * 1998-06-18 2001-08-07 Microsoft Corporation Interactive construction of 3D models from panoramic images employing hard and soft constraint characterization and decomposing techniques
JP2000099738A (ja) 1998-09-28 2000-04-07 Sony Corp 情報記録装置および方法、計測装置および方法、画像処理装置および方法、画像処理システム、並びに提供媒体
US6711293B1 (en) 1999-03-08 2004-03-23 The University Of British Columbia Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image
US7800758B1 (en) 1999-07-23 2010-09-21 Faro Laser Trackers, Llc Laser-based coordinate measuring device and laser-based method for measuring coordinates
JP3417377B2 (ja) 1999-04-30 2003-06-16 日本電気株式会社 三次元形状計測方法及び装置並びに記録媒体
US20020094134A1 (en) 2001-01-12 2002-07-18 Nafis Christopher Allen Method and system for placing three-dimensional models
KR20060015557A (ko) 2003-04-28 2006-02-17 스티븐 제임스 크램톤 외골격을 구비한 cmm 암
US20050088435A1 (en) 2003-10-23 2005-04-28 Z. Jason Geng Novel 3D ear camera for making custom-fit hearing devices for hearing aids instruments and cell phones
US7693325B2 (en) * 2004-01-14 2010-04-06 Hexagon Metrology, Inc. Transprojection of geometry data
DE102004021892B4 (de) 2004-05-04 2010-02-04 Amatec Robotics Gmbh Robotergeführte optische Messanordnung sowie Verfahren und Hilfsvorrichtung zum Einmessen dieser Messanordnung
JP3779308B2 (ja) 2004-07-21 2006-05-24 独立行政法人科学技術振興機構 カメラ校正システム及び三次元計測システム
CN101031817B (zh) 2004-09-30 2011-02-09 Faro科技有限公司 测量移动后向反射器的绝对测距仪
US7974461B2 (en) * 2005-02-11 2011-07-05 Deltasphere, Inc. Method and apparatus for displaying a calculated geometric entity within one or more 3D rangefinder data sets
EP1893942B9 (en) 2005-06-23 2010-07-21 Faro Technologies Inc. Apparatus and method for relocating an articulating-arm coordinate measuring machine
US8625854B2 (en) * 2005-09-09 2014-01-07 Industrial Research Limited 3D scene scanner and a position and orientation system
US20070091174A1 (en) 2005-09-30 2007-04-26 Topcon Corporation Projection device for three-dimensional measurement, and three-dimensional measurement system
WO2008002630A2 (en) 2006-06-26 2008-01-03 University Of Southern California Seamless image integration into 3d models
CN101652628B (zh) 2007-01-26 2012-07-04 特里伯耶拿有限公司 用于获得距离和图像信息的光学仪器和方法
US8036452B2 (en) 2007-08-10 2011-10-11 Leica Geosystems Ag Method and measurement system for contactless coordinate measurement on an object surface
CN103398656B (zh) 2007-08-10 2016-08-10 莱卡地球系统公开股份有限公司 用于在物体表面上进行非接触坐标测量的方法和勘测系统
US9020240B2 (en) 2007-08-10 2015-04-28 Leica Geosystems Ag Method and surveying system for noncontact coordinate measurement on an object surface
JP5097480B2 (ja) 2007-08-29 2012-12-12 株式会社トプコン 画像測定装置
DE102007054906B4 (de) 2007-11-15 2011-07-28 Sirona Dental Systems GmbH, 64625 Verfahren zur optischen Vermessung der dreidimensionalen Geometrie von Objekten
RU2460187C2 (ru) 2008-02-01 2012-08-27 Рокстек Аб Переходная рама с встроенным прижимным устройством
CN102047651B (zh) 2008-06-02 2013-03-13 松下电器产业株式会社 生成法线信息的图像处理装置、方法及视点变换图像生成装置
CN103698769A (zh) 2008-11-17 2014-04-02 法罗技术股份有限公司 测量六个自由度的装置和方法
EP2438397B1 (en) 2009-06-01 2018-11-14 DENTSPLY SIRONA Inc. Method and device for three-dimensional surface detection with a dynamic reference frame
ES2353099B1 (es) 2009-07-30 2012-01-02 Fundacion Para Progreso Soft Computing Método y sistema de identificación forense por superposición craneofacial basado en soft computing.
JP2011085971A (ja) 2009-10-13 2011-04-28 Seiko Epson Corp 画像処理装置、画像処理方法、画像処理プログラム、記録媒体及び画像処理システム
US8237934B1 (en) 2009-11-18 2012-08-07 The Boeing Company Center marking nest for method of precision locating
US11699247B2 (en) 2009-12-24 2023-07-11 Cognex Corporation System and method for runtime determination of camera miscalibration
CN102947667A (zh) 2010-01-20 2013-02-27 法罗技术股份有限公司 具有可移除的附件装置的坐标测量机
US9607239B2 (en) * 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9163922B2 (en) * 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
ES2970406T3 (es) 2010-03-30 2024-05-28 3Shape As Escaneo de cavidades con accesibilidad restringida
WO2011134083A1 (en) 2010-04-28 2011-11-03 Ryerson University System and methods for intraoperative guidance feedback
US20120050478A1 (en) * 2010-08-27 2012-03-01 Jeyhan Karaoguz Method and System for Utilizing Multiple 3D Source Views for Generating 3D Image
US20120050477A1 (en) * 2010-08-27 2012-03-01 Jeyhan Karaoguz Method and System for Utilizing Depth Information for Providing Security Monitoring
US20130278727A1 (en) 2010-11-24 2013-10-24 Stergen High-Tech Ltd. Method and system for creating three-dimensional viewable video from a single video stream
JP5839971B2 (ja) 2010-12-14 2016-01-06 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
GB2518543A (en) 2011-03-03 2015-03-25 Faro Tech Inc Target apparatus and method
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
GB2504890A (en) 2011-04-15 2014-02-12 Faro Tech Inc Enhanced position detector in laser tracker
WO2012151173A1 (en) 2011-05-02 2012-11-08 Faro Technologies, Inc. Three-dimensional scanner for hand-held phones
US9064312B2 (en) 2011-09-23 2015-06-23 The Regents Of The University Of California Augmented reality using projector-camera enabled devices
US9222771B2 (en) 2011-10-17 2015-12-29 Kla-Tencor Corp. Acquisition of information for a construction site
US9324184B2 (en) 2011-12-14 2016-04-26 Microsoft Technology Licensing, Llc Image three-dimensional (3D) modeling
JP5977544B2 (ja) 2012-03-09 2016-08-24 キヤノン株式会社 情報処理装置、情報処理方法
GB201205563D0 (en) * 2012-03-29 2012-05-09 Sec Dep For Business Innovation & Skills The Coordinate measurement system and method
WO2013170260A1 (en) * 2012-05-11 2013-11-14 Proiam, Llc Hand held dimension capture apparatus, system, and method
US9311746B2 (en) 2012-05-23 2016-04-12 Glasses.Com Inc. Systems and methods for generating a 3-D model of a virtual try-on product
US8736817B2 (en) 2012-05-25 2014-05-27 Mitutoyo Corporation Interchangeable chromatic range sensor probe for a coordinate measuring machine
US9158875B2 (en) * 2012-07-31 2015-10-13 Xerox Corporation Package definition system
US9074878B2 (en) 2012-09-06 2015-07-07 Faro Technologies, Inc. Laser scanner
GB2522142A (en) 2012-09-14 2015-07-15 Faro Tech Inc Laser scanner with dynamical adjustment of angular scan velocity
US9332243B2 (en) * 2012-10-17 2016-05-03 DotProduct LLC Handheld portable optical scanner and method of using
US20140192187A1 (en) 2013-01-08 2014-07-10 Faro Technologies, Inc. Non-contact measurement device
US9083960B2 (en) 2013-01-30 2015-07-14 Qualcomm Incorporated Real-time 3D reconstruction with power efficient depth sensor usage
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9154773B2 (en) * 2013-03-15 2015-10-06 Seiko Epson Corporation 2D/3D localization and pose estimation of harness cables using a configurable structure representation for robot operations
US9772173B2 (en) * 2013-06-27 2017-09-26 Faro Technologies, Inc. Method for measuring 3D coordinates of a surface with a portable articulated arm coordinate measuring machine having a camera
US10311633B2 (en) * 2014-01-17 2019-06-04 Nokia Technologies Oy Method and apparatus for visualization of geo-located media contents in 3D rendering applications
US10021379B2 (en) * 2014-06-12 2018-07-10 Faro Technologies, Inc. Six degree-of-freedom triangulation scanner and camera for augmented reality
US9402070B2 (en) 2014-06-12 2016-07-26 Faro Technologies, Inc. Coordinate measuring device with a six degree-of-freedom handheld probe and integrated camera for augmented reality
US10176625B2 (en) 2014-09-25 2019-01-08 Faro Technologies, Inc. Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US9506744B2 (en) 2014-12-16 2016-11-29 Faro Technologies, Inc. Triangulation scanner and camera for augmented reality
US9989357B2 (en) * 2015-09-09 2018-06-05 Faro Technologies, Inc. Aerial device that cooperates with an external projector to measure three-dimensional coordinates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005215917A (ja) * 2004-01-29 2005-08-11 Hitachi Plant Eng & Constr Co Ltd 施工図作成支援方法およびリプレースモデル作成方法
JP2006003132A (ja) * 2004-06-15 2006-01-05 Topcon Corp 3次元測量装置及び電子的記憶媒体
JP2012118948A (ja) * 2010-12-03 2012-06-21 Ns Solutions Corp 拡張現実感提示装置、拡張現実感提示方法及びプログラム
US20140225988A1 (en) * 2011-09-07 2014-08-14 Commonwealth Scientific And Industrial Research Organisation System and method for three-dimensional surface imaging

Also Published As

Publication number Publication date
US20190130638A1 (en) 2019-05-02
DE112015004396T5 (de) 2017-06-14
GB2545597A (en) 2017-06-21
GB201704939D0 (en) 2017-05-10
US20160093099A1 (en) 2016-03-31
US10665012B2 (en) 2020-05-26
US10176625B2 (en) 2019-01-08
WO2016049402A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
US10665012B2 (en) Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US10574963B2 (en) Triangulation scanner and camera for augmented reality
US10021379B2 (en) Six degree-of-freedom triangulation scanner and camera for augmented reality
US9747662B2 (en) Collecting and viewing three-dimensional scanner data in a flexible video format
US9417317B2 (en) Three-dimensional measurement device having three-dimensional overview camera
CN103003713B (zh) 具有投影器的激光扫描器或激光跟踪器
US9188430B2 (en) Compensation of a structured light scanner that is tracked in six degrees-of-freedom
JP5123932B2 (ja) 回動鏡を備えるカメラ利用6自由度標的計測装置及び標的追尾装置
JP5695578B2 (ja) ロボットアーム用位置情報測定装置及び方法
US9746311B2 (en) Registering of a scene disintegrating into clusters with position tracking
Luna et al. Calibration of line-scan cameras
Beraldin et al. Metrological characterization of 3D imaging systems: progress report on standards developments
US10670390B2 (en) System and method for verifying projection accuracy
Wang et al. Modelling and calibration of the laser beam-scanning triangulation measurement system
JP2018146348A (ja) 三次元形状計測装置、三次元形状計測方法、及びコンピュータプログラム
US20230260223A1 (en) Augmented reality alignment and visualization of a point cloud
US20240176025A1 (en) Generating a parallax free two and a half (2.5) dimensional point cloud using a high resolution image
KR101746792B1 (ko) 회전 모듈과 거리 센서간의 위치 변환 관계 추정 방법 및 장치
WO2024118396A1 (en) Generating a parallax free two and a half (2.5) dimensional point cloud using a high resolution image
Galetto et al. Study and Characterization of a Camera-based Distributed System for Large-Volume Dimensional Metrology Applications
ITRM20090367A1 (it) Sensore per la ricostruzione ambientale tridimensionale ad alta precisione.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200218