JP2017527787A - 信号の検出及び特性評価のための方法、記憶媒体及びシステム - Google Patents

信号の検出及び特性評価のための方法、記憶媒体及びシステム Download PDF

Info

Publication number
JP2017527787A
JP2017527787A JP2017501696A JP2017501696A JP2017527787A JP 2017527787 A JP2017527787 A JP 2017527787A JP 2017501696 A JP2017501696 A JP 2017501696A JP 2017501696 A JP2017501696 A JP 2017501696A JP 2017527787 A JP2017527787 A JP 2017527787A
Authority
JP
Japan
Prior art keywords
signal
component
sample
constant product
processors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017501696A
Other languages
English (en)
Inventor
ブレント ウィルソン,デイヴィッド
ブレント ウィルソン,デイヴィッド
エム. サヴィジ,リー
エム. サヴィジ,リー
ジー. ディルゾ,ロイラ
ジー. ディルゾ,ロイラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2017527787A publication Critical patent/JP2017527787A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2886Coherent receivers using I/Q processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1018Means associated with receiver for limiting or suppressing noise or interference noise filters connected between the power supply and the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5678Traffic aspects, e.g. arbitration, load balancing, smoothing, buffer management
    • H04L2012/568Load balancing, smoothing or shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Noise Elimination (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Document Processing Apparatus (AREA)

Abstract

入力信号の検出及び特性評価のための方法及びシステムは、同相(I)成分及び直交位相(Q)成分を有する信号を受信することを含む。信号の第1のIQサンプルが第1時点で取得され、信号の第2のIQサンプルが第2時点で取得される。1つ以上のプロセッサを利用して、信号の第1のIQサンプル及び信号の第2のIQサンプルに遅延複素共役乗算(DCM)が適用され、同相(IC)成分及び直交位相(QC)成分を有する定数積を生成する。1つ以上のプロセッサを利用して、定数積のIC成分及び定数積のQC成分から、信号振幅及び信号周波数が決定される。

Description

本開示は一般に信号の検出及び特性評価の技術分野に関連する。特に、本願はディジタル受信機において電磁信号(パルス)の振幅及び周波数を検出及び測定するための技術に関連する。
レーダー検出及び測位などのような現在のアプリケーションでは、ディジタル受信機は、電磁信号(パルス)を検出して特性を評価するために(例えば、その周波数を判定するために)使用される。そのような受信機は、例えば、監視、脅威検出、及び/又は脅威測位などを含む様々な目的に有用である。ディジタル受信機は、潜在的な脅威信号(例えば、敵のレーダー)を検出して特性を評価するために、電磁エネルギを監視する。これらの信号はノイズにより妨げられ、そのノイズは、受信機で元々生成されてしまうものだけでなく、外部ソースからのノイズも含む。
SNRは、ノイズ(又は非所望信号)の電力に対する関心のある信号(signal of interest:SOI)の電力の比率である。SNRは一般にデシベル(dB)で測定される。SOIがノイズより大きく強い場合、SNRは正のデシベル数で記述される。ノイズがSOIより大きく強い場合、SNRは負のデシベル数で記述される。
SNRがディジタル受信機のパルス検出感度の限界より小さい場合、ディジタル受信機は非効果的になってしまい、その理由は、潜在的な脅威信号が見逃されてしまう可能性があり及び/又は誤った脅威が検出されてしまうおそれがある。更に、潜在的な脅威信号が検出される場合でさえ、SNRは、ディジタル受信機の特性評価感度の限界より小さくなり、脅威信号の正確な特性評価を妨げてしまうおそれがある。
従って、低いSNRの状態で信号を検出及び特性評価する方法及びシステムを求めるニーズが存在する。低いSNRの環境の中で脅威信号の誤検出の発生を最小化しつつ、高い割合の脅威信号の検出能力を有する方法及びシステムを提供することが望ましい。そのような方法及び技術は、低いSNRの環境の中で、検出した脅威信号を正確に特性評価する能力を有することが望ましい。そのような方法及びシステムは、処理前の信号データからノイズを非相関にすることにより(decorrelating)、ディジタル受信機における改善された感度限界を提供する。
一側面において、本願で説明される少なくとも1つの実施形態は、入力信号の検出及び特性評価するための方法を含む。本方法は、同相(I)成分及び直交位相(Q)成分を有する信号を受信することを含む。本方法は、信号の第1-IQサンプルを第1時点で取得することを含む。本方法は、信号の第2-IQサンプルを第2時点で取得することも含む。本方法は、1つ以上のプロセッサを利用して、信号の第1-IQサンプル及び信号の第2-IQサンプルに遅延複素共役乗算(delayed complex conjugate multiply:DCM)を適用し、同相(IC)成分及び直交位相(QC)成分を有する定数積(constant product)を生成することを含む。本方法は、1つ以上のプロセッサを利用して、定数積のIC成分及び定数積のQC成分から、信号振幅及び信号周波数を決定することを含む。
本願で説明される側面及び/又は実施形態の何れも、以下の実施形態のうちの1つ又はそれ以上を含むことが可能である。一実施形態において、本方法は、1つ以上のプロセッサを利用して、定数積のIC成分のシーケンス及び定数積のQC成分のシーケンスを生成することを含む。一実施形態において、本方法は、1つ以上のプロセッサを利用して、定数積のIC成分のシーケンスを1つ以上のフィルタにより平滑化することを含む。一実施形態において、本方法は、1つ以上のプロセッサを利用して、定数積のQC成分のシーケンスを1つ以上のフィルタにより平滑化することを含む。一実施形態において、本方法は、1つ以上のプロセッサを利用して、定数積の平滑化されたIC成分及び定数積の平滑化されたQC成分から、信号振幅及び信号周波数を決定することを含む。
一実施形態において、DCMは、Aexp(j2πf*Ts*n)*Aexp(-j2πf*Ts*(n-1))=A2cos(j2πf*Ts)+j*A2sin(j2πf*Ts)に従って決定され、Aexp(j2πf*Ts*n)は信号の現在のIQサンプルの複素数表現であり、Aexp(-j2πf*Ts*(n-1))は信号の以前のIQサンプルの複素数表現の複素共役である。A2cos(j2πf*Ts)=ICは現在及び以前サンプルの定数積の実数成分であり、j*A2sin(j2πf*Ts)=QCは現在及び以前サンプルの定数積の虚数成分であり、Aは信号振幅であり、fは信号周波数であり、Tsはサンプル時間であり、nはサンプル番号(ランニング変数)であり、jはSQRT(-1)である。一実施形態において、信号振幅はA2=L+S/2に従って近似され、ここで、Lは|IC|及び|QC|から成る群のうちの最大値であり、Sは|IC|及び|QC|から成る群のうちの最小値である。一実施形態において、信号周波数はf=Φ/2πTsに従って決定され、位相差Φは、ラジアンで表現され且つΦ=tan-1(QC/IC)に従って決定され、Tsはサンプル時間である。
一実施形態において、本方法は、信号の1つ以上の追加的なIQサンプルを、1つ以上の追加的なサンプル時点において取得することを含み、前記の適用することは、信号の1つ以上の追加的なIQサンプル遅延の各々にDCMを適用することを更に含む。一実施形態において、信号は、信号の大きさ(又は振幅)が検出閾値を超える場合には、関心のある信号である。一実施形態では、1つ以上のフィルタのうちの少なくとも何れかはスムージングフィルタである。一実施形態において、本方法は、1つ以上のプロセッサを利用して、信号周波数から、信号の到着時間差を決定することを含む。
一側面において、本願で説明される少なくとも1つの実施形態は、方法を実行するためのコンピュータ読み取り可能な命令を有する非一時的なコンピュータ読み取り可能な媒体を含む。非一時的なコンピュータ読み取り可能な媒体は、同相(I)成分及び直交位相(Q)成分を有する信号を受信することを含む。非一時的なコンピュータ読み取り可能な媒体は、信号の現在のIQサンプルを第1時点で取得することを含む。非一時的なコンピュータ読み取り可能な媒体は、信号の以前のIQサンプルを第2時点で取得することも含む。非一時的なコンピュータ読み取り可能な媒体は、信号の現在のIQサンプル及び信号の以前のIQサンプルに遅延複素共役乗算(DCM)を適用し、同相(IC)成分及び直交位相(QC)成分を有する定数積を生成することを含む。非一時的なコンピュータ読み取り可能な媒体は、定数積のIC成分及び定数積のQC成分から、信号振幅及び信号周波数を決定することを含む。
本願で説明される側面及び/又は実施形態の何れも、以下の実施形態のうちの1つ又はそれ以上を含むことが可能である。一実施形態において、非一時的なコンピュータ読み取り可能な媒体は、定数積のIC成分のシーケンス及び定数積のQC成分のシーケンスを生成するための命令を含む。一実施形態において、非一時的なコンピュータ読み取り可能な媒体は、定数積のIC成分のシーケンスを1つ以上のフィルタにより平滑化するための命令を含む。一実施形態において、非一時的なコンピュータ読み取り可能な媒体は、定数積のQC成分のシーケンスを1つ以上のフィルタにより平滑化するための命令を含む。一実施形態において、非一時的なコンピュータ読み取り可能な媒体は、1つ以上のプロセッサを利用して、定数積の平滑化されたIC成分及び定数積の平滑化されたQC成分から、信号振幅及び信号周波数を決定するための命令を含む。
一側面において、本源で説明される少なくとも1つの実施形態は、信号の検出及び特性評価するためのシステムを含む。システムは1つ以上のプロセッサを含む。システムはメモリを含み、メモリは命令を表現する実行可能なコードを含む。命令は、実行される場合に:同相(I)成分及び直交位相(Q)成分を有する信号を受信するステップ;信号の第1のIQサンプルを第1時点で取得するステップ;信号の第2のIQサンプルを第2時点で取得するステップ;1つ以上のプロセッサを利用して、信号の第1のIQサンプル及び信号の第2のIQサンプルに遅延複素共役乗算(DCM)を適用し、同相(IC)成分及び直交位相(QC)成分を有する定数積を生成するステップ;及び、1つ以上のプロセッサを利用して、定数積のIC成分及び定数積のQC成分から、信号振幅及び信号周波数を決定するステップを、システムに実行させる。
本願で説明される側面及び/又は実施形態の何れも、以下の実施形態のうちの1つ又はそれ以上を含むことが可能である。一実施形態において、実行可能なコードは、1つ以上のプロセッサを利用して、定数積のIC成分のシーケンス及び前記定数積のQC成分のシーケンスを生成するステップ;1つ以上のプロセッサを利用して、定数積のIC成分のシーケンスを1つ以上のフィルタにより平滑化するステップ;1つ以上のプロセッサを利用して、定数積のQC成分のシーケンスを1つ以上のフィルタにより平滑化するステップ;1つ以上のプロセッサを利用して、定数積の平滑化されたIC成分及び定数積の平滑化されたQC成分から、信号振幅及び信号周波数を決定するステップ;をシステムに実行させる命令を更に表現している。一実施形態において、システムは、信号を受信する受信機を含む。
本願で説明される低SNR状態で信号を検出及び特性評価する方法及びシステム(以下、「テクノロジ」と言及される場合がある)は、以下の利点のうちの1つ以上を提供することが可能である。本テクノロジの利点の1つは、遅延したサンプルが、遅延してないサンプルと乗算されるので、ノイズが処理前IQ信号から非相関化される(decorrelated)。本テクノロジのノイズ非相関化は、有利なことに、ディジタル受信機のパルス検出限界の改善を可能にする。本テクノロジのノイズ非相関化は、ディジタル受信機の特性評価感度の限界の改善も可能にする。
本開示は以下の詳細な説明で更に記述されており、本開示の非限定的な実施例により複数の図面に関連して説明され、複数の図面を通じて同様な参照番号は同様な部分を示す。
信号の検出及び特性評価のための従来技術によるシステムを示すブロック図。
様々な実施形態に従って信号中のノイズを非相関処理するシステムを示すブロック図。 様々な実施形態に従って信号中のノイズを非相関処理するシステムを示すブロック図。
様々な実施形態に従って信号の検出及び特性評価のための方法を示すフローチャート。
様々な実施形態に従って信号の検出及び特性評価のためのシステムを示すブロック図。
様々な実施形態に従って信号中のノイズを非相関処理する第2システムを示すブロック図。
様々な実施形態に従って信号の検出及び特性評価のための第2方法を示すフローチャート。
様々な実施形態に従って信号中のノイズを非相関処理するシステムを利用して振幅とパルス幅との関係をプロットした図。
従来の検出及び特性評価のためのシステムを利用して振幅とパルス幅との関係をプロットした図。
様々な実施形態に従って、唯1つの遅延サンプルを用いて信号中のノイズを非相関処理するシステムを利用して振幅とパルス幅との関係をプロットした図。
様々な実施形態に従って、複数の遅延サンプルを用いて信号中のノイズを非相関処理するシステムを利用して振幅とパルス幅との関係をプロットした図。
様々な実施形態によるDCM回路のACノイズ電力をプロットした図。
様々な実施形態によるDCM回路のDCノイズ電力をプロットした図。
説明される実施形態についての以下の詳細な説明では、本願の一部を為す添付図面が参照され、図面では対象とされる事項が実施される具体的な実施形態が例示的に示される。開示の目的から逸脱することなく、他の実施形態が使用されてもよいこと、及び、構造的な変形が為されてもよいことが、理解されるべきである。
本願に示される特定の事項は、具体例であり、実施形態の例示的な説明を意図して示されているに過ぎず、最も有用であると考えられるものを提供する際に提示され、本開示の概念的な側面及び原理の記述が容易に理解される。この場合において、本開示の基本的な理解に必要なもの以上に詳細な対象事項の構造的詳細を説明する意図はなく、図面とともに本説明は、本開示の様々な形式が実際にどのように具現化されるかを当業者にとって明らかにする。更に、様々な図面における同様な参照番号及び記号表示は、同様な要素を示す。
低いSNRの状態でも信号を検出して特性を評価するデバイス及び技術が本願で説明される。具体的に別意を示さない限り、本願で使用される「信号検出」は、関心のある信号(SOI)の同定又は識別を指す。これは、閾値信号振幅を設定することによりしばしば達成され、その閾値を上回る信号がSOIであると判定される。問題は、検出閾値を過剰に低く設定すると、望まれていないノイズを、SOIとして誤って識別してしまうことである(「誤検出」と言及される)。しかしながら、検出閾値が高ければ高いほど、本物のSOIが見逃されてしまうことも多くなる。従って、誤検出を最小化しつつ検出閾値を低く維持するために、ノイズを最小化し且つ信号対雑音比(SNR)を最大化することが望ましい。具体的に別意を示さない限り、本願で使用されるような信号の特性評価(signal characterization)は、検出されるSOIの周波数を決定することを指す。信号の特性評価は、一般に、既知の期間にわたって取得される2つ以上のサンプルの間で信号の位相変化(「位相差」又は「デルタ位相」とも言及される)を判定することにより達成される。低いSNRは、周波数判定精度に悪影響を及ぼす可能性がある。
図1には、信号の検出及び特性評価のためのシステム100が示されている。従来システム100は、電磁信号を受信するアンテナ101を含む。従来システム100はアナログ調整要素103を含む(例えば、弱い信号の振幅を増幅する電圧増幅器、及び/又は、所望の周波数バンド以外の信号を制限するパッシブ及び/又はアクティブフィルタを含む)。SOIを調整する間に、SOIを妨げるおそれがある内的に生成されたノイズも加わる。従来システム100は、アナログ信号の連続的な物理特性(通常は電圧)を、属性の振幅を表すディジタル番号(すなわち、ディジタル信号)に変換するアナログディジタルコンバータ(ADC)105を含む(例えば、ウィルキンソンADC、逐次近似ADC、フラッシュADCを含んでもよい)。チャネライザ又はヒルベルトフィルタ(Hilbert filter)107は、ディジタル信号をIQフォーマットに変換するためにそれに適用され、信号中の多種多様なデータストリームを個々の信号に分離する。
従来システム100は、IQ信号の同相(I)及び直交位相(Q)成分を、次の関係に従って振幅及び位相成分に変換するコンバータ109も含む(例えば、プロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、マイクロプロセッサ、及び、何らかの他の適切な処理装置を含んでよい):
A(t)=SQRT(I2+Q2) Eqn.1
及び
Figure 2017527787
ここで、tは時間であり、A(t)は振幅であって信号強度の観点から記述され、しばしばdBで表現され、ψ(t)は位相であり、例えば「度」又は「ラジアン」で測定され、サンプリング時点における特定の波形サイクルの原点に対して経過した信号波形サイクルの部分を表現する。
従来システム100は、大きさ成分をスムージング(又は平滑化)する1つ以上のフィルタ111を適用することが可能である。例えば移動平均フィルタを利用する大きさ成分のスムージングは、使われなくなったサンプルデータを除外し、データストリームにおける外れ値を重視しないようにし、きれいな信号を提供することにより、信号におけるノイズの影響を減らす。従来システム100は、スムージングされた大きさを、検出閾値113と比較するために、パルスディテクタ115を使用する(例えば、プロセッサ、フィールドプログラマブルゲートアレイ、及び/又は、コンピューティングデバイスを使用する)。スムージングされた大きさが検出閾値113を越える場合、パルスディテクタ115はSOIを識別する。逆に、スムージングされた大きさが検出閾値113未満である場合、パルスディテクタ115はSOIの存在に気付かない(すなわち、検出しない)。
従来システム100は、上述したような信号の位相差を決定するために差分器117を使用する(例えば、プロセッサ、フィールドプログラマブルゲートアレイ、及び/又は、コンピューティングデバイスを使用する)。サンプル間の所与の期間に対する位相差(すなわち、信号波形の角度位置の変化)は、信号の周波数119を算出するために使用される。周波数(Frequency)は、1秒当たりのサイクルの観点から表現され、例えば次式に従って算出される:
Figure 2017527787
ここで、ラジアンで表現されるΔφは、秒で表現される期間Δtのうちの位相差である。
不都合なことに、従来システム100は、しばしば、貧弱なSNRパフォーマンスによる影響を被る。一般に、チャネライザ/ヒルベルトフィルタ107は、例えば、高速フーリエ変換(FFT)を当てにして、ディジタル信号中の様々なデータストリームを識別し、それらを個々の信号に分離し、サンプルの自己相関をとる。
一般に、自己相関は、信号の自分自身との相互相関として定義される。同一サンプルの複素IQ信号値の(すなわち、時間遅延がゼロの)自己相関は信号電力を最大化し、その理由は、自己相関信号の場合、遅れ無しで信号電力が二乗されるので、信号が自明なゼロ信号でない限り、遅延ゼロの場所で常にピークが存在するからである。そのような場合、各サンプルの自己相関は、IQ信号とその複素共役との積として決定され、その複素共役は、複素共役乗算(complex conjugate multiply:CCM)と言及される。しかしながら、CCMは測定されるIQ信号と自身とを乗算しているので、雑音電力の寄与も二乗され、SNRを劣化させる可能性があり、特にSNRが負であるような低SNRの状況においてそうである。上述したように、SNRの劣化はシステムパフォーマンスに悪く影響し、受信信号の誤認識を引き起こしてしまう。
図2A-2Bは、改善された低SNRパフォーマンスをもたらすシステム200を示す。システム200は、遅延していないサンプル及び少なくとも1つの遅延したサンプルに、遅延複素共役乗算(DCM)を適用することにより、信号を検出し及び特性評価する。システム200はアナログ調整要素203を含む(例えば、弱い信号の振幅を増幅する電圧増幅器、及び/又は、ノイズを負荷する一方で所望の周波数バンド以外の信号を制限するパッシブ及び/又はアクティブフィルタを含む)。システム200は、アナログディジタルコンバータ205、及び、信号に適用される選択的なチャネライザ/ヒルベルトフィルタ207も含む。アナログディジタルコンバータ205及び選択的なチャネライザ又はヒルベルトフィルタ207は、信号の各サンプルを表す複素ディジタル値を出力する。様々な実施形態において、アンテナ201、アナログ調整要素203、アナログディジタルコンバータ205、及び、チャネライザ又はヒルベルトフィルタ207は、例えば、図1に関連して説明したアンテナ101、アナログ調整要素103、アナログディジタルコンバータ105、及び、チャネライザ又はヒルベルトフィルタ107の何れかであってもよいが、これらに限定されない。
図2A-2Bに関し、システム200は、信号の第1サンプル及び信号の第2サンプルの双方を利用して遅延複素共役乗算(DCM)209を適用し、同相成分(IC)及び直交位相成分(QC)を有する定数積を生成する。DCM209は、定数積を生成するために、次式に従って適用されてもよい:
Figure 2017527787
ここで、Aexp(j2πf・Ts・n)は信号の現在のIQサンプルの複素数表現であり、Aexp(-j2πf・Ts・(n-1))は信号の過去のIQサンプルの複素数表現の複素共役であり、Aは信号の大きさであり、fは信号の周波数であり、Tsはサンプル時間であり、nはサンプル番号(ランニング変数)であり(すなわち、nは現在のサンプルに対応し、n-1は過去のサンプルに対応する)、jはSQRT(-1)である。A2exp(j2πf・Ts)は、現在のIQサンプルの複素数表現と、過去のIQサンプルの複素数表現の複素共役との定数積である。定数積は、次式のように、実数成分及び虚数成分に分離できる:
Figure 2017527787
ここで、A2cos(j2πf・Ts)=ICは定数積の実数成分であり、j・A2sin(j2πf・Ts)=QCは定数積の虚数成分である。すなわち、信号は定数積の実数成分(IC)及び虚数成分(QC)に変換される。以下において詳細に説明されるように、現在のIQサンプル及び時間的にずれたIQサンプルにDCMを適用することは、コヒーレントSOIからインコヒーレントなノイズを無相関にする結果をもたらし、これにより低SNRパフォーマンスを改善する。
DCM209は、従来システム100を越える改善されたSNRパフォーマンスを提供し、その理由は、二乗された値を当てにするのではなく、DCMは、信号の現在のIQサンプルの複素数表現と、信号の過去のIQサンプルの複素数表現の複素共役とを乗算することにより自己相関をとるからである。一連のサンプルにわたって、関心のある信号(SOI)の電力は一定であり、IQ値の変動はノイズに起因する。すなわち、現在のサンプルと時間的にずれたサンプルとの間で、信号は一定のまま残り、その残りがDCMによって相関付けられるが、ノイズ成分は変動し、DCMによって無相関化される。
この効果は図9A及び図9Bに示されている。図9A及び図9Bは、それぞれ、図7Aないし8Bに示されるようなサンプルセットのランダム(AC)ノイズ特性及び平均(DC)ノイズ特性を示す。DCノイズ電力は、サンプルセットについて二乗されたノイズの平均値として定義される。ACノイズ電力は、Σ[(ノイズ)-(平均(ノイズ))]2/サンプル数として表現されるノイズ分散の平均として定義される。図9A-9Bに示されるように、ゼロシフトは標準の大きさ(すなわち、従来システム100)に対応する。シフト1,2及び3は、それぞれ、1サンプル遅延,2サンプル遅延及び3サンプル遅延に対応する。図9Aに示されるように、ACノイズ電力は、DCM回路の非相関処理に起因して、約10dBも減少している。図9Bに示されるように、DCノイズ電力は、DCM回路の非相関処理に起因して、約40dB以上も減少している。
システム200は、IC成分を平滑化する1つ以上のフィルタ211を選択的に適用し且つQC成分を平滑化する1つ以上のフィルタ213を選択的に適用することにより、ノイズ削減特性を更に改善する。スムージングが有益であるのは、それが、使用されないサンプルデータを除外し、データストリーム中の異常値(又は外れ値)を重視しないようにすることで、定数積の各成分におけるノイズの影響を減らすからである。システム200はコンバータ215(位相コンバータ215a及び振幅コンバータ215bを含む)を含み、コンバータ215は、IC成分及びQC成分、又は、様々な実施形態に従って、平滑化されたIC成分及び平滑化されたQC成分を、信号の振幅及び位相成分に変換する。様々な実施形態において、コンバータ215は、例えば、1つ以上のプロセッサ、フィールドプログラマブルゲートアレイ(FPGA)、マイクロプロセッサ、及び/又は、適切な他の何らかの処理デバイスを含んでもよく、その処理デバイスは、数式Eqn.6(例えば、振幅コンバータ215b)及び/又は数式Eqn.7-8(例えば、位相コンバータ215a)を、IC成分及びQC成分に適用する、或いは、様々な実施形態に従って、平滑化されたIC成分及び平滑化されたQC成分に適用するように構成されるものである。
図2A-2Bに示されるように、様々な実施形態において、信号の振幅(又は大きさ)は、次式に従って振幅コンバータ215bにより決定される:
Figure 2017527787
例えば図1に関連して上述したように、振幅は信号強度で記述され、しばしばdBで表現される。例えば図1に関連して上述したように、位相は例えば「度」又は「ラジアン」で測定され、信号の波形サイクルのうち、サンプリング時点において、特定の波形サイクルの原点に対して経過した部分を表現する。システム200は、振幅を検出閾値217と比較するためのパルスディテクタ219を含む(例えば、プロセッサ、フィールドプログラマブルゲートアレイ、及び/又はコンピューティングデバイスを含んでもよい)。振幅が検出閾値217を越える場合、パルスディテクタ219はSOIを同定する。逆に、振幅が検出閾値217より小さい場合、パルスディテクタ219はSOIの存在に気付かない。
図2A-2Bに更に示されるように、様々な実施形態において、ラジアンで表現される位相差Φは、次式に従って位相コンバータ215aにより決定される:
Figure 2017527787
サンプル間の所与の期間に対する位相差(すなわち、信号波形の角度位置の変化)は、信号の周波数を算出するために周波数コンバータ221により使用される。様々な実施形態において、周波数コンバータ221は、次式に従って信号の周波数を決定する:
f=Φ/2πTs Eqn.8
ここで、Tsは、現在のサンプル時点と過去のサンプル時点との間の時間差であり、「秒」で表現される。
図3に示されるように、改善される低SNRパフォーマンスは、信号を検出及び特性評価する方法300を利用して達成されることが可能である。方法300は、同相成分(I)及び直交位相成分(Q)を有する信号を受信することを含む(301)。方法300は、信号の第1-IQサンプルを第1時点で取得すること(303)、及び、信号の第2-IQサンプルを第2時点で取得することも含む(305)。例えば数式Eqn.4-5に関連して上述したように、方法300は、信号の第1-IQサンプル及び信号の第2-IQサンプルにDCMを適用し、同相成分(IC)及び直交位相成分(QC)を有する定数積を生成する(307)。例えば数式Eqn.6-8に関連して上述したように、方法300は、定数積のIC成分及び定数積のQC成分から、信号振幅及び信号周波数を決定する(309)。
様々な実施形態において、I成分及びQ成分を有する信号を受信するステップ301は、何らかの適切なデバイスを利用して信号を測定及び/又は受信することを含む。適切なデバイスは、例えば図1に関連して上述したような1つ以上のアンテナ、及び/又は、信号伝送ケーブル又はデバイス(同軸ケーブル、光ファイバーケーブル又はUSBストレージデバイス)に対する電気インターフェースを含む。
信号の第1-IQサンプルを第1時点で取得すること(303)、及び、信号の第2-IQサンプルを第2時点で取得すること(305)というステップは、それぞれ、受信機を利用して特定の時点で信号のサンプルを取得することを含む。様々な実施形態において、受信機は、例えばステップ301に関連して上述した何らかの適切なデバイスを含む。様々な実施形態において、受信機は、信号の品質を調整及び改善するために使用されることが可能な追加的な様々な要素を選択的に含む。例えば図2A-2Bに関連して上述したように、そのような追加的な要素は、限定ではないが、アナログ調整要素203、アナログディジタルコンバータ205、及び/又は、チャネライザ/ヒルベルトフィルタ207を含むことが可能である。
信号の第1-IQサンプル及び信号の第2-IQサンプルにDCMを適用し、同相成分(IC)及び直交位相成分(QC)を有する定数積を生成するステップ307は、例えば図2A-2Bに関連して上述したように、様々な実施形態に応じて、数式Eqn.4-5に従って実行される。DCMは、例えば、1つ以上のプロセッサにより適用される。プロセッサは、一例として、汎用及び専用のマイクロプロセッサの双方、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、及び/又は、任意の種類のディジタルコンピュータの1つ以上の任意のプロセッサを含んでよい。
定数積のIC成分及び定数積のQC成分から、信号振幅及び信号周波数を決定するステップ309は、限定ではないが、様々な実施形態において、例えば図2A-2Bに関して上述したように、Eqn.6-8に従って実行される。決定するステップ309は、例えば、プロセッサ、フィールドプログラマブルゲートアレイ及び/又はコンピューティングデバイスを利用して達成されることが可能である。
様々な実施形態において、本願で説明されるDCM技術のアプリケーションは、有利なことに、信号評価のための適切な周波数測定、及び、信号検出のための適切な振幅測定を行うために必要とされるSNRを改善する(又は減らす)。DCMを適用することは、有利なことに、コヒーレントSOIから、インコヒーレントノイズを無相関にするので、改善されたパフォーマンスが達成される。様々な実施形態において、適切な周波数測定を行うために必要なSNRは、従来の方法を8ないし10dBも上回るように改善される。様々な実施形態において、適切な振幅測定を行うために必要なSNRは、図7A及び7Bに示されるように、従来の方法を1ないし3dBも上回るように改善される。
図4は信号を検出及び特性評価するシステム400を示す。システム400は、信号のサンプルにDCMを適用する1つ以上のプロセッサ401と、プロセッサ401により実行可能なDCM命令を保存するメモリとを含む。様々な実施形態において、システム400は信号をサンプリングする及び/又は事前処理する受信機405を含む(例えば、図2A-2Bの要素203,205,207に関して上述したように、アナログ調整を実行する、アナログからディジタルに信号を変換する、チャネライジングを行う、及び/又は、ヒルベルトフィルタを適用する)。様々な実施形態において、システム400は信号を測定するアンテナ407を選択的に含む。
1つ以上のプロセッサ401は、一例として、汎用及び専用のマイクロプロセッサの双方、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、及び/又は、任意の種類のディジタルコンピュータの1つ以上の任意のプロセッサを含んでよい。メモリは、一例として、半導体メモリデバイス、EPROM、EEPROM、フラッシュメモリデバイス、磁気ディスク、内部ハードディスク、リムーバブルディスク、磁気-光ディスク、CD-ROM及び/又はDVD-ROMディスク等を含む不揮発性メモリの何れか又は何らかの組み合わせを含んでよい。
様々な実施形態において、1つ以上のプロセッサ401は、メモリ403に保存される信号を検出して特性評価するための命令を実行するように構成される。様々な実施形態によれば、命令は、信号の現在のIQサンプルと、信号の少なくとも1つの遅延したIQサンプルとを取得することを、プロセッサに行わせる。様々な実施形態において、システム400は、信号を測定するためのアンテナ407、及び/又は、信号をサンプリング及び/又は事前処理するための受信機405を選択的に含む。様々な実施形態において、システム400は、(例えば、システム400と通信するアンテナ/受信機アレイのような)外部ソースからIQサンプルを受信する。
命令は、実行されると、信号の現在のIQサンプル(例えば、サンプルn)及び信号の過去のIQサンプル(例えば、サンプル(n-1))に遅延複素共役乗算(DCM)を適用し、同相成分(IC)及び直交位相成分(QC)を有する定数積を生成することを、(例えば図2A-2Bに関して上述したように数式Eqn.4-5に従って)プロセッサ401に実行させる。様々な実施形態において、命令は、信号の現在のIQサンプル(例えば、サンプルn)及び信号の1つ以上の追加的なIQサンプル(例えば、サンプルn-2,n-3,...n-i)に、(例えば図5に関して以下に説明されるように、数式Eqn.9及び5に従って)DCMを適用することを、プロセッサ401に実行させてもよい。DCMを適用することは、限定ではないが、例えば図2-3に関して上述した、又は、例えば図5-6に関して以下に説明される任意のDCMの適用を含んでよい。様々な実施形態において、命令は、定数積のIC成分のシーケンス及び定数積のQC成分のシーケンスを平滑化することを、プロセッサ401に選択的に実行させる。平滑化は、使用されなくなったサンプルデータを除外し、データストリーム中の異常値を重視しないようにすることで、定数積の各成分におけるノイズの影響を減らす。そのような平滑化は、限定ではないが、例えば図2-3に関して上述した、又は、例えば図5-6に関して以下に説明される任意の技術に従って実行されてよい。
命令は、実行されると、IC成分及びQC成分から、信号振幅及び信号周波数を決定することを、プロセッサ401に実行させる。様々な実施形態において、平滑化された振幅が、メモリに保存された検出閾値を超える場合、システム400はSOIを同定するように構成される。逆に、平滑化された振幅が検出閾値より少ない場合、システム400はSOIの存在に気付かない。様々な実施形態では、例えば図5-6に関連して詳細に説明されるように、複数のIC成分及びQC成分がシステム400により生成されてよい。そのような実施形態では、信号の振幅はそれぞれのIC-QCのペアに関して選択的に決定され、改善された振幅を生成するように複数の振幅が平均化されてもよい(すなわち、例えば図5-6に関して以下に説明されるように、平均化に起因して、追加的なノイズは無相関化される。)。
図5に示されるように、信号の検出及び特性評価のためのシステム500は、例えば図2A-2Bに関して説明したように、アンテナ201、調整要素203、及びアナログディジタルコンバータ205を含む。システム500は、非遅延サンプル(現在のサンプル)及び遅延サンプル507aの複素共役508aに、遅延複素共役乗算(DCM)509aを適用することにより、低SNRパフォーマンスを改善する。システム500は、現在のサンプルと、少なくとも1つの追加的な遅延サンプル507b-507eについての少なくとも1つの追加的な複素共役508b-508eとに、追加的なDCM509b-509eを適用することにより、低SNRパフォーマンスを更に改善する。図5に示されるように、例えば、第1のDCM509aは、現在のサンプル(例えばEqn.4に関して上述したようなサンプルn)と、第1の遅延サンプル507a(例えばEqn.4に関して上述したようなサンプルn-1)の複素共役508aとに適用される。第2のDCM509bは、現在のサンプルと、第2の遅延サンプル507bの(例えばEqn.9に関して以下で説明されるようなサンプルn-2)の複素共役508bとに適用される。図5に示される様々な実施形態では、第3のDCM509c、第4のDCM509d及び第5のDCM509eが、それぞれ、第3ないし第5の遅延サンプル507c-507e(例えば、サンプルn-3,n-4,n-5)の第3ないし第5の複素共役508c-508eに適用される。より一般的には、任意の数のDCMが、任意の数の遅延サンプルに適用されることが可能であり(例えば、(n-1に至るまでの)1遅延サンプル、(n-2に至るまでの)2遅延サンプル、(n-5に至るまでの)5遅延サンプル、(n-10に至るまでの)10遅延サンプル、(n-100に至るまでの)100遅延サンプル、... (n-iに至るまで)任意数-遅延サンプルが使用されてよい)、これは、利用可能な処理リソースのみによって制限される。
信号の現在のサンプル、及び、信号の第1遅延サンプル507aの複素共役508aに、第1のDCM509aを適用することは、同相(IC1)成分及び直交位相(QC1)成分を有する第1定数積を生成し、例えば図2A-2Bに関して上述されるように数式Eqn.4-5に従って適用される。更なる遅延IQサンプル(例えば、507b-507e)については、DCM(例えば、509b-509e)は、それぞれの遅延IQサンプルの定数積を生成するために、次式に従って適用される:
Figure 2017527787
ここで、Aexp(j2πf・Ts・n)は信号の現在のIQサンプルの複素数表現であり、Aexp(-j2πf・Ts・(n-i))は、信号の関連する遅延IQサンプル(例えば、507a-507e)の複素数表現の複素共役であり、Aは信号の振幅であり、fは信号周波数であり、Tsはサンプル時間であり、nはサンプル番号(ランニング変数)(すなわち、nは現在のサンプルに関連し、n-iは遅延したサンプル507に関連する)であり、iは関連する遅延IQサンプルが遅延させられるサンプルサイクル数(例えば、図5に示される1,2,3,4,5)であり、jはSQRT(-1)である。A2exp(j2πf・Ts)は、現在のIQサンプルの複素数表現と、過去のIQサンプルの複素数表現の複素共役との定数積である。この定数積は、上述したEqn.5に従って実数成分ICi及び虚数成分QCiに分離されることが可能である。
システム500は、選択的に、各々のICi及びQCiを平滑化するために、1つ以上のフィルタ511a-511eを適用する。平滑化は有益であり、その理由は、もはや使用されないサンプルデータを除外し、データストリーム中の異常値を重視しないようにすることにより、定数積の各成分に対するノイズの影響を減らすからである。ICi成分及びQCi成分の各々を平滑化することは、有利なことに、例えば従来システム100(これは、信号の1つの要素(振幅成分)しかフィルタリングしない)と比較した場合に、更なるノイズ低減をもたらす。それぞれを平滑化することは、例えば図2A-2Bに関連して説明された任意のフィルタ211,213を独立に使用することで実行されることが可能であるが、そのような仕方に限定されない。しかしながら、フィルタ511a-511eにより実行される平滑化は、過去のICi及びQCiデータの平均化を使用するので、過去の1つの信号IC及びQCデータしか利用しないフィルタ(例えば、フィルタ211,213)よりも、優れたスムージングパフォーマンスが達成される。従って、様々な実施形態において、複数のDCMを適用することは、有利なことに、振幅及び周波数の決定の双方にとって低SNRパフォーマンスにおける追加的な改善をもたらす。
システム500は、ICi成分及びQCi成分を、或いは、様々な実施形態における平滑化されたICi成分及び平滑化されたQCi成分を、信号の振幅及び位相成分に変換するための1つ以上のコンバータ515を含む。図5は、適用されるDCM各々に対して1つのコンバータ515を図示しているが、本開示の観点からは、任意の数のICi成分及びQCi成分を、振幅及び位相成分に変換するために1つのコンバータが使用されてもよいことは、明らかである。本開示の観点からは、各々のICi成分及びQCi成分を、振幅及び位相成分に変換するために、1つより多い数のコンバータ515が使用されてもよいことは、明らかである。
図5に示されるように、様々な実施形態において、それぞれ適用されるDCM509a-509eについて、数式Eqn.6に従って信号の振幅516a-516eが決定されてもよい。そして、振幅516a-516eは、加算器517(例えば、ハーフアダー、フルアダー、ルックアヘッドキャリーユニット等)に入力され、改善された振幅を生成するためにゲインデバイス519(例えば、増幅器)を利用して平均化される。様々な実施形態において、ゲインデバイス519は、(1/i)に等しいゲインを有し、iはシステム500により適用されるDCMの数である。システム500は、振幅を検出閾値と比較するパルスディテクタ523を含む(例えば、プロセッサ、フィールドプログラマブルゲートアレイ、及び/又はコンピューティングデバイスを含む)。振幅が検出閾値を超える場合、パルスディテクタ523はSOIを同定する。逆に、振幅が検出閾値未満である場合、パルスディテクタ523はSOIの存在に気付かない。
図5に更に示されるように、様々な実施形態において、信号の周波数521は、例えば図2A-2B及びEqn.7-8に関して上述した位相差Φから、信号の現在のIQサンプルと信号の第1の遅延サンプル507とについて算出される。様々な実施形態において、信号の周波数を決定することは、有利なことに、例えばダウンストリームジオロケーションシステム(又は下りストリーム測位システム)が、アンテナ101と1つ以上の追加的なアンテナとにおける信号の到着時間差(TDOA)を算出することを許容することが可能である。これにより、ジオロケーションシステムは、有利なことに、信号源の位置を三角測量することが可能である。
様々な実施形態において、本願で説明されるDCM技術の適用は、有利なことに、信号特性評価のための適切な周波数測定、及び、信号検出のための適切な振幅測定を行うために必要とされるSNRを改善する(又は減らす)。例えば図2に関して上述したように、DCMを適用することは、有利なことに、コヒーレントなSOIから、インコヒーレントなノイズを無相関化するので、改善されたパフォーマンスが達成される。様々な実施形態では、平均化されたコンポーネントは、コヒーレントSOIからインコヒーレントなノイズを無相関化する結果をもたらすので、複数の遅延サンプルにDCMを適用することにより、更なる改善が達成される。
例えば図5に示されるように複数の遅延サンプルにDCMを適用することは、有利なことに、適切な周波数測定をもたらすために必要とされるSNRを減らし、単独の遅延サンプルにDCMを適用する場合よりも、約2dBも改善される。様々な実施形態において、図8A及び8Bに示されるような適切な振幅測定を行うために必要とされるSNRは、単独の遅延サンプルにDCMを適用する場合よりも、約2dBも改善される。
図6に示されるように、改善される低SNRパフォーマンスは、信号を検出して特性評価する方法300を利用して達成されることが可能である。方法600は、例えば図3に関連して上述したステップ301,303,305及び307を含む。図6に示されるように、方法600は、信号の第3-IQサンプルを第3の時点で取得することを含む(611)。信号の第3-IQサンプルを第3の時点で取得すること(611)は、限定ではないが、第1-IQサンプル303及び第2-IQサンプルを取得することに関して説明したように実行されてもよい。本方法は、第1-IQサンプル及び第3-IQサンプルにDCMを適用することも含む(612)。第1-IQサンプル及び第3-IQサンプルにDCMを適用すること(612)は、限定ではないが、例えば図5及びEqn.9に関して説明したようにDCMを適用することで実行されてもよい。
方法600は、選択的に、信号の第4-IQサンプル(613)及び/又は信号の任意数の追加的なIQサンプル(615)を取得することを含み、それら各々は、例えば限定ではないが、第1-IQサンプル(303)、第2-IQサンプル(305)及び/又は第3-IQサンプル(611)を取得することに関して説明されたように、実行される。方法は、選択的に、第1-IQサンプル及び第4-IQサンプル614にDCMを適用することを含む。第1-IQサンプル及び第4-IQサンプルにDCMを適用すること(614)は、限定ではないが、例えば図5及びEqn.9に関して説明したようにDCMを適用することで実行されてもよい。方法は、選択的に、第1-IQサンプル及び任意の追加的なIQサンプルにDCMを適用することを含む(616)。第1-IQサンプル及び任意の追加的なIQサンプルにDCMを適用すること(616)は、限定ではないが、例えば図5及びEqn.9に関して説明したようにDCMを適用することで実行されてもよい。
定数積のIc成分及び定数積のQc成分から、信号振幅及び信号周波数を決定するステップ(609)は、限定ではないが、例えば図5に関して説明したように、Eqn.6-8に従って実行されてもよい。決定するステップは、例えば、プロセッサ、フィールドプログラマブルゲートアレイ、及び/又はコンピューティングデバイスを利用して実行されることが可能である。
図7Aは、(x軸に沿って示される)マイクロ秒(μs)単位のパルス幅と(y軸に沿って示される)dB単位の振幅とのプロットを示す。プロットは1遅延システムを用いて生成されており、1遅延システムでは、様々な実施形態に関して例えば図2A-2B及びEqn.4-8に関して説明されたような単独のDCMが適用される。(SOIというラベルに関する)実線は、システムにより出力される振幅信号の値を追跡している(又はトラッキングしている)。破線は検出閾値を示し、検出閾値より上側では、システムにより脅威が検出される。
図7Bは(x軸に沿って示される)マイクロ秒(μs)単位のパルス幅と(y軸に沿って示される)dB単位の振幅とのプロットを示す。プロットは例えば図1及びEqn.1-3に関して説明されたような従来システムを用いて生成されている。(SOIというラベルに関する)実線は、システムの振幅出力値をトラッキングしている。
図7Aと図7Bを比較すると、図7Aに示されるDCMシステムのSNRは、図7Bに示される従来システムのSNRよりも有益に改善されていることが、示されている。改善されたSNRが示されていることの理由は、図7AのDCMシステムのノイズ電力(非所望信号の電力)(例えば、図7Aにおいて検出閾値未満のピーク)に対する関心信号(SOI)電力(又は振幅)(すなわち、図7Aにおいて検出閾値を上回る振幅ピーク)の比率が、図7B の従来システムの場合より大きいからである。例えば、ピーク振幅708に対するピーク振幅704の比率は約1.7/1.0=1.7であるが、ピーク振幅716に対するピーク振幅712の比率は約3.5/3.2=1.09でしかない。従って、図7AのDCMシステムの出力は、図7Bの従来システムの出力よりも、ノイズが少ない。
図8Aは、(x軸に沿って示される)マイクロ秒(μs)単位のパルス幅と(y軸に沿って示される)dB単位の振幅とのプロットを示す。プロットは1遅延システムを用いて生成されており、1遅延システムでは、様々な実施形態に関して例えば図2A-2B及びEqn.4-8に関して説明されたような単独のDCMが適用される。実線は、システムの振幅出力値をトラッキングしている。
図8Bは、(x軸に沿って示される)マイクロ秒(μs)単位のパルス幅と(y軸に沿って示される)dB単位の振幅とのプロットを示す。プロットは5遅延システムを用いて生成されており、5遅延システムでは、様々な実施形態に関して例えば図5及びEqn.4-9に関して説明されたような5つの遅延信号の複素共役にDCMが適用される。実線は、システムの振幅出力値を追跡している。
図8Aと図8Bを比較すると、図8Bに示される5遅延DCMシステムのSNRは、図8Aに示される1遅延DCMシステムのSNRよりも有益に改善されていることが、示されている。改善されたSNRが示されていることの理由は、図8Bの5遅延DCMシステムのノイズ電力(又は非所望信号の電力)(例えば、図8Bにおいて1dB未満のピーク)に対する関心信号(SOI)電力(又は振幅)(例えば、図8Bにおいて1dBを上回る振幅ピーク)の比率が、図8A 1遅延DCMシステムの場合より大きいからである。例えば、ピーク振幅808に対するピーク振幅804の比率は約1.7/1.0=1.7であるが、ピーク振幅816に対するピーク振幅812の比率は約1.6/0.8=2.0に及ぶ。従って、図8Bの5遅延DCMシステムの出力は、図8Aの1遅延DCMシステムの出力よりも、ノイズが少ない。
上記のシステム及び方法の様々な実施形態は、ディジタル電子回路、コンピュータハードウェア、ファームウェア及び/又はソフトウェアで実現されてよい。実現は、コンピュータプログラムプロダクト(すなわち、情報キャリアに具体的に組み込まれるコンピュータプログラム)としてなされることが可能である。実現は、例えば、データ処理装置により実行される或いはデータ処理装置の動作を制御するための、マシン読み取り可能なストレージデバイス及び/又は伝送される信号におけるものとすることが可能である。実現は、例えば、プログラム可能なプロセッサ、コンピュータ及び/又は複数のコンピュータであるとすることが可能である。
コンパイルされる及び/又はインタープリットされる言語を含むコンピュータプログラムは、任意の形式のプログラミング言語で書かれることが可能であり、そして、スタンドアローンプログラムとして、サブルーチンとして、エレメントとして、及び/又は、コンピューティング環境での使用に適した他のユニットとしての形態を含む任意の形式で、コンピュータプログラムは装備されることが可能である。コンピュータプログラムは、1つのコンピュータ又は一箇所にある複数のコンピュータで実行されるように配備されることが可能である。
方法ステップは、入力データに関して処理を施して出力を生成する本発明の機能を実行するように、コンピュータプログラムを実行する1つ以上のプログラム可能なプロセッサにより実行されることが可能である。方法ステップは装置により実行されることが可能であり、その装置は専用論理回路として実現されることが可能である。回路は、例えば、FPGA(フィールドプログラマブルゲートアレイ)及び/又はASIC(特定用途向け集積回路)であるとすることが可能である。モジュール、サブルーチン及びソフトウェアエージェントは、コンピュータプログラム、プロセッサ、専用回路、ソフトウェア、及び/又は、機能を実現するハードウェアの一部を指すことが可能である。
コンピュータプログラムの実行に適したプロセッサは、一例として、汎用及び専用の双方のマイクロプロセッサ、及び、任意の種類のディジタルコンピュータの任意の1つ以上のプロセッサを含んでよい。一般に、プロセッサは、リードオンリメモリ、ランダムアクセスメモリ、又はそれら双方から命令及びデータを受信する。コンピュータの本質的な要素は、命令を実行するプロセッサ、及び、命令とデータを保存する1つ以上のメモリデバイスである。一般に、コンピュータは、データを保存する1つ以上の大容量ストレージデバイス(例えば、磁気ディスク、磁気光ディスク、又は、光ディスク等)を包含すること、そこからデータを受信するように動作可能に結合されること、及び/又は、そこへデータを転送することが可能である。
データ伝送及び命令は、通信ネットワークを介して行うことも可能である。コンピュータプログラム命令及びデータを組み込むことに適した情報キャリアは、例えば半導体メモリデバイスを含む全ての形態の不揮発性メモリを含む。情報キャリアは、例えば、EPROM、EEPROM、フラッシュメモリデバイス、磁気ディスク、内部ハードディスク、リムーバブルディスク、磁気光ディスク、CD-ROM、及び/又は、DVD-ROMディスクであるとすることが可能である。プロセッサ及びメモリは、専用論理回路により補強される及び/又はそこに組み込まれることが可能である。
本開示の多くの代替例及び修正例は、上記の説明を理解した当業者にとって確実に明らかになるであろうが、例示により示され記述された特定の実施形態は、如何なる方法によっても限定であるように解釈されるべきではないことが、理解される。更に、対象とする事項は特定の実施形態に関連して説明されてきたが、本開示の精神及び範囲に属する変形例も当業者に思い浮かぶであろう。上記の具体例は、単に説明の便宜上示されているに過ぎず、如何なる方法によっても本開示の限定として解釈されるべきでないことに留意を要する。
本開示は特定の手段、材料及び実施形態に関して説明されてきたが、本開示はここで開示された特定の事項に限定されるようには意図されておらず;むしろ、本開示は、添付の特許請求の範囲に属するように、機能的に等価な構造、方法及び使用の全てに及ぶ。

Claims (12)

  1. 入力信号の検出及び特性評価のための方法であって:
    同相(I)成分及び直交位相(Q)成分を有する信号を受信するステップ;
    前記信号の第1のIQサンプルを第1時点で取得するステップ;
    前記信号の第2のIQサンプルを第2時点で取得するステップ;
    1つ以上のプロセッサを利用して、前記信号の第1のIQサンプル及び前記信号の第2のIQサンプルに遅延複素共役乗算(DCM)を適用し、同相(IC)成分及び直交位相(QC)成分を有する定数積を生成するステップ;及び
    前記1つ以上のプロセッサを利用して、前記定数積のIC成分及び前記定数積のQC成分から、信号振幅及び信号周波数を決定するステップ;
    を有する方法。
  2. 前記1つ以上のプロセッサを利用して、前記定数積のIC成分のシーケンス及び前記定数積のQC成分のシーケンスを生成するステップ;
    前記1つ以上のプロセッサを利用して、前記定数積のIC成分のシーケンスを1つ以上のフィルタにより平滑化するステップ;
    前記1つ以上のプロセッサを利用して、前記定数積のQC成分のシーケンスを1つ以上のフィルタにより平滑化するステップ;
    前記1つ以上のプロセッサを利用して、前記定数積の平滑化されたIC成分及び前記定数積の平滑化されたQC成分から、信号振幅及び信号周波数を決定するステップ;
    を更に有する請求項1に記載の方法。
  3. 前記DCMは、Aexp(j2πf*Ts*n)*Aexp(-j2πf*Ts*(n-1))=A2cos(j2πf*Ts)+j*A2sin(j2πf*Ts)に従って決定され、
    Aexp(j2πf*Ts*n)は前記信号の現在のIQサンプルの複素数表現であり、
    Aexp(-j2πf*Ts*(n-1))は前記信号の以前のIQサンプルの複素数表現の複素共役であり、
    A2cos(j2πf*Ts)=ICは現在及び以前サンプルの定数積の実数成分であり、
    j*A2sin(j2πf*Ts)=QCは現在及び以前サンプルの定数積の虚数成分であり、
    Aは信号振幅であり、fは信号周波数であり、Tsはサンプル時間であり、nはサンプル番号であるランニング変数であり、jはSQRT(-1)である、請求項1に記載の方法。
  4. 前記信号振幅は、A2=M=√(I2+Q2)に従って決定される、請求項3に記載の方法。
  5. 前記信号周波数はf=Φ/2πTsに従って決定され、位相差Φは、ラジアンで表現され且つΦ=tan-1(QC/IC)に従って決定され、Tsはサンプル時間である、請求項3に記載の方法。
  6. 前記方法は、前記信号の1つ以上の追加的なIQサンプルを、1つ以上の追加的なサンプル時点において取得するステップを更に有し、前記の適用することは、前記信号の1つ以上の追加的なIQサンプル遅延の各々に前記DCMを適用することを含む、請求項1に記載の方法。
  7. 前記1つ以上のフィルタのうち少なくとも何れかはスムージングフィルタである、請求項2に記載の方法。
  8. 方法を実行するためのコンピュータ実行可能な命令を有する非一時的なコンピュータ読み取り可能な記憶媒体であって、前記方法は:
    同相(I)成分及び直交位相(Q)成分を有する信号を受信するステップ;
    前記信号の現在のIQサンプルを第1時点で取得するステップ;
    前記信号の以前のIQサンプルを第2時点で取得するステップ;
    前記信号の現在のIQサンプル及び前記信号の以前のIQサンプルに遅延複素共役乗算(DCM)を適用し、同相(IC)成分及び直交位相(QC)成分を有する定数積を生成するステップ;
    前記定数積のIC成分及び前記定数積のQC成分から、信号振幅及び信号周波数を決定するステップ;
    を有する、非一時的なコンピュータ読み取り可能な記憶媒体。
  9. 前記方法は:
    前記定数積のIC成分のシーケンス及び前記定数積のQC成分のシーケンスを生成するステップ;
    前記定数積のIC成分のシーケンスを1つ以上のフィルタを利用して平滑化するステップ;
    前記定数積のQC成分のシーケンスを1つ以上のフィルタを利用して平滑化するステップ;
    前記1つ以上のプロセッサを利用して、前記定数積の平滑化されたIC成分及び前記定数積の平滑化されたQC成分から、信号振幅及び信号周波数を決定するステップ;
    を更に有する、請求項8に記載の非一時的なコンピュータ読み取り可能な記憶媒体。
  10. 信号の検出及び特性評価のためのシステムであって:
    1つ以上のプロセッサ;及び
    命令を表現する実行可能な命令コードを含むメモリ;
    を有し、前記命令は、前記システムに:
    同相(I)成分及び直交位相(Q)成分を有する信号を受信するステップ;
    前記信号の現在のIQサンプルを第1時点で取得するステップ;
    前記信号の以前のIQサンプルを第2時点で取得するステップ;
    1つ以上のプロセッサを利用して、前記信号の現在のIQサンプル及び前記信号の以前のIQサンプルに遅延複素共役乗算(DCM)を適用し、同相(IC)成分及び直交位相(QC)成分を有する定数積を生成するステップ;及び
    前記1つ以上のプロセッサを利用して、前記定数積のIC成分及び前記定数積のQC成分から、信号振幅及び信号周波数を決定するステップ;
    を実行させる、システム。
  11. 前記実行可能なコードは、
    前記1つ以上のプロセッサを利用して、前記定数積のIC成分のシーケンス及び前記定数積のQC成分のシーケンスを生成するステップ;
    前記1つ以上のプロセッサを利用して、前記定数積のIC成分のシーケンスを1つ以上のフィルタにより平滑化するステップ;
    前記1つ以上のプロセッサを利用して、前記定数積のQC成分のシーケンスを1つ以上のフィルタにより平滑化するステップ;
    前記1つ以上のプロセッサを利用して、前記定数積の平滑化されたIC成分及び前記定数積の平滑化されたQC成分から、信号振幅及び信号周波数を決定するステップ;
    を前記システムに実行させる命令を更に表現している、請求項10に記載のシステム。
  12. 前記信号を受信する受信機を更に有する請求項10に記載のシステム。

JP2017501696A 2014-07-16 2015-05-12 信号の検出及び特性評価のための方法、記憶媒体及びシステム Pending JP2017527787A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/332,920 2014-07-16
US14/332,920 US9553620B2 (en) 2014-07-16 2014-07-16 Signal detection and characterization
PCT/US2015/030334 WO2016010615A1 (en) 2014-07-16 2015-05-12 Improved signal detection and characterization

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018150792A Division JP6710729B2 (ja) 2014-07-16 2018-08-09 信号検出方法、信号検出システム、コンピュータプログラム及び記憶媒体

Publications (1)

Publication Number Publication Date
JP2017527787A true JP2017527787A (ja) 2017-09-21

Family

ID=53284523

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017501696A Pending JP2017527787A (ja) 2014-07-16 2015-05-12 信号の検出及び特性評価のための方法、記憶媒体及びシステム
JP2018150792A Active JP6710729B2 (ja) 2014-07-16 2018-08-09 信号検出方法、信号検出システム、コンピュータプログラム及び記憶媒体

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018150792A Active JP6710729B2 (ja) 2014-07-16 2018-08-09 信号検出方法、信号検出システム、コンピュータプログラム及び記憶媒体

Country Status (8)

Country Link
US (1) US9553620B2 (ja)
EP (1) EP3170017B1 (ja)
JP (2) JP2017527787A (ja)
AU (1) AU2015290213B2 (ja)
CA (1) CA2954635C (ja)
DK (1) DK3170017T3 (ja)
IL (1) IL249990B (ja)
WO (1) WO2016010615A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302741B2 (en) * 2015-04-02 2019-05-28 Texas Instruments Incorporated Method and apparatus for live-object detection
RU2629015C1 (ru) * 2016-04-28 2017-08-24 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Способ и устройство выделения квадратурных компонент отраженной электромагнитной волны при возвратно-поступательном движении или вибрации цели
JP6892271B2 (ja) * 2017-01-31 2021-06-23 株式会社東海理化電機製作所 伝搬距離推定装置
US10411744B1 (en) 2018-10-11 2019-09-10 Ratheon Company Waveform transformation and reconstruction
CN110596457B (zh) * 2019-09-26 2022-04-29 中国科学院微电子研究所 数字扫频系统及方法
CN117054737B (zh) * 2023-08-15 2024-03-29 嘉兴市科讯电子有限公司 一种自相关滤波计算电力供电频率的方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307408A (ja) * 1995-04-19 1996-11-22 Motorola Inc タイミング回復と周波数推定のための受信機およびその方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713662A (en) * 1986-10-17 1987-12-15 Westinghouse Electric Corp. Modulated digital radio frequency memory
US5546497A (en) * 1994-05-02 1996-08-13 United Microelectronics Corp. Method of and an apparatus for eliminating background noise in digital sound recording
US5812737A (en) 1995-01-09 1998-09-22 The Board Of Trustees Of The Leland Stanford Junior University Harmonic and frequency-locked loop pitch tracker and sound separation system
CA2260336A1 (en) * 1999-02-15 2000-08-15 Robert Inkol Modulation recognition system
US20030043947A1 (en) * 2001-05-17 2003-03-06 Ephi Zehavi GFSK receiver
US7480234B1 (en) * 2003-10-31 2009-01-20 Cisco Technology, Inc. Initial timing estimation in a wireless network receiver
CA2459428A1 (en) * 2004-03-03 2005-09-03 Spotwave Wireless Inc. Signal recognition in an on-frequency repeater
US8009775B2 (en) * 2005-03-11 2011-08-30 Qualcomm Incorporated Automatic frequency control for a wireless communication system with multiple subcarriers
US8077820B2 (en) * 2008-03-05 2011-12-13 Agere Systems Inc. Detection of frequency correction bursts and the like
US8451917B2 (en) * 2008-06-30 2013-05-28 Motorola Solutions, Inc. Method and apparatus for detection of orthogonal frequency division multiplexing (OFDM) signals by cognitive radios
JP5158958B2 (ja) * 2008-07-31 2013-03-06 パナソニック株式会社 Ofdmシンボル検出方法、ofdm受信装置、集積回路および回路モジュール
US8135094B2 (en) * 2008-08-27 2012-03-13 Freescale Semiconductor, Inc. Receiver I/Q group delay mismatch correction
US8761233B2 (en) 2012-06-08 2014-06-24 Raytheon Company Wideband low latency repeater and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08307408A (ja) * 1995-04-19 1996-11-22 Motorola Inc タイミング回復と周波数推定のための受信機およびその方法

Also Published As

Publication number Publication date
IL249990B (en) 2018-06-28
AU2015290213B2 (en) 2019-03-28
CA2954635A1 (en) 2016-01-21
DK3170017T3 (da) 2020-09-14
JP6710729B2 (ja) 2020-06-17
AU2015290213A1 (en) 2016-10-27
US20160020792A1 (en) 2016-01-21
US9553620B2 (en) 2017-01-24
JP2018194558A (ja) 2018-12-06
EP3170017A1 (en) 2017-05-24
EP3170017B1 (en) 2020-08-12
WO2016010615A1 (en) 2016-01-21
IL249990A0 (en) 2017-03-30
CA2954635C (en) 2021-08-17

Similar Documents

Publication Publication Date Title
JP6710729B2 (ja) 信号検出方法、信号検出システム、コンピュータプログラム及び記憶媒体
US20170343646A1 (en) Method and device for operating a radar system of a motor vehicle
Bechter et al. Digital beamforming to mitigate automotive radar interference
US11303485B2 (en) Signal acquisition method and device
WO2007078282A2 (en) Wideband interference cancellation using dsp algorithms
JP2011520392A (ja) 周波数スプリアスの検出および抑制
US20190228790A1 (en) Sound source localization method and sound source localization apparatus based coherence-to-diffuseness ratio mask
US10061014B2 (en) Radar signal processing method and apparatus for compensating for in-phase/quadrature-phase (I/Q) imbalance
Zhou et al. Modified phase-only correlator with kurtosis-based amplified-noise suppression
JP2006329981A (ja) 二重スペクトル・アナライザ測定システム
KR101534027B1 (ko) 표적 속도를 알지 못하는 환경에서 정밀한 표적 탐지를 수행하기 위한 소나 시스템 및 그의 표적 탐지방법
JP5018643B2 (ja) 方位探知装置
CN107843885B (zh) 多径时延估计的方法、装置、计算机设备和可读存储介质
US10761176B1 (en) Systems and methods for distance independent differential signature detection
RU2572219C1 (ru) Способ обработки сигнала шумоизлучения объекта
RU2776442C1 (ru) Способ обработки сигнала шумоизлучения цели
Nguyen et al. Correlation bias analysis-A novel method of sinus cardinal model for least squares estimation in cross-correlation
KR101602352B1 (ko) 위상 변이 분석 장치
Li et al. Dual-Channel Monopulse Angle Estimation Method for Weak Target Based on Reference Signal
JPWO2019238789A5 (ja) リレーアタックを判定する方法、リレーアタック検出装置およびコンピュータプログラム
Xu et al. Angular resolving of two closely spaced jammers based on average AOA
KR20140021450A (ko) 실시간 잡음 저감 전파 수신장치
JP6223229B2 (ja) 到来波数推定装置
JP4925424B2 (ja) 遅延プロファイル測定装置
Sosnytskiy et al. Pipeline Signal Processing with High Resolution in both Time and Frequency Domains

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410