JP2017524290A - クラウドベースのサービス交換 - Google Patents

クラウドベースのサービス交換 Download PDF

Info

Publication number
JP2017524290A
JP2017524290A JP2016573978A JP2016573978A JP2017524290A JP 2017524290 A JP2017524290 A JP 2017524290A JP 2016573978 A JP2016573978 A JP 2016573978A JP 2016573978 A JP2016573978 A JP 2016573978A JP 2017524290 A JP2017524290 A JP 2017524290A
Authority
JP
Japan
Prior art keywords
cloud
cloud service
network
customer
autonomous system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016573978A
Other languages
English (en)
Other versions
JP6491241B2 (ja
Inventor
トゥオン ジュイシアーン
トゥオン ジュイシアーン
タラジ イハブ
タラジ イハブ
Original Assignee
エクイニクス,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクイニクス,インコーポレイティド filed Critical エクイニクス,インコーポレイティド
Publication of JP2017524290A publication Critical patent/JP2017524290A/ja
Application granted granted Critical
Publication of JP6491241B2 publication Critical patent/JP6491241B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5061Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the interaction between service providers and their network customers, e.g. customer relationship management
    • H04L41/5064Customer relationship management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/508Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement
    • H04L41/5096Network service management, e.g. ensuring proper service fulfilment according to agreements based on type of value added network service under agreement wherein the managed service relates to distributed or central networked applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/256NAT traversal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources

Abstract

概して、複数のクラウドサービスプロバイダを複数のクラウドサービス顧客と相互接続するためのクラウドベースのサービス交換(すなわち「クラウドエクスチェンジ」)について記載する。クラウドエクスチェンジにより、クラウドの顧客は、結果として性能を向上させ、費用を削減し、接続のセキュリティ及びプライバシーを高め、クラウドコンピューティングをさらなる用途に利用できるように、公衆インターネットをバイパスしてクラウドサービスプロバイダに直接接続することが可能になる。このようにして、例えば企業、ネットワーク回線事業者、及びSaaS顧客は、クラウドサービスを、当該サービスが自身のデータセンターネットワークの一部であるか、あるいは自身のデータセンターネットワークに直接連結しているかのように、自身の内部アプリケーションと統合できる。

Description

関連出願の相互参照
本出願は、2015年4月17日出願の米国特許仮出願番号第62/149,374号の利益を主張するものであり、その内容は参照により全て本発明に援用される。
本発明は、コンピュータネットワークに関し、より具体的には、クラウドサービスの顧客とクラウドサービスプロバイダを相互接続するためのクラウドベースのサービス交換に関する。
クラウドコンピューティングとは、インターネットなどのネットワークを介してアクセス可能な、動的に拡張可能なコンピューティングリソースの使用を指す。よく「クラウド」と呼ばれるコンピューティングリソースは、一つ以上のサービスをユーザに提供する。これらのサービスは、サービスタイプに従って分類されてもよく、例えば、アプリケーション/ソフトウェア、プラットフォーム、インフラ、仮想化、並びにサーバ及びデータ記憶部を含んでもよい。サービスタイプ名は、「as‐a‐Service」という語句の前に追加されることが多く、例として、アプリケーション/ソフトウェア及びインフラのデリバリは、それぞれSoftware‐as‐a‐Service(SaaS)及びInfrastructure‐as‐a‐Service(IaaS)と呼んでもよい。
用語「クラウドベースのサービス」又はより簡単に「クラウドサービス」は、クラウドによって提供されるサービスだけでなく、クラウドの顧客が、クラウドにより提供されるサービスのオンラインデリバリのために、クラウドサービスプロバイダと契約するサービスプロビジョニングの形態も指す。クラウドサービスプロバイダは、パブリッククラウド、プライベートクラウド、又はハイブリッドクラウドを管理し、一つ以上のクラウドの顧客へのクラウドサービスのオンラインデリバリを促進する。
概して、複数のクラウドサービスプロバイダを複数のクラウドサービスの顧客と相互接続するためのクラウドベースのサービス交換(すなわち「クラウドエクスチェンジ」)について記載する。クラウドエクスチェンジにより、クラウドの顧客は、結果として性能を向上させ、費用を削減し、接続のセキュリティ及びプライバシーを高め、クラウドコンピューティングをさらなる用途に利用できるように、公衆インターネットをバイパスしてクラウドサービスプロバイダに直接接続することが可能になる。このようにして、例えば企業、ネットワーク回線事業者、及びSaaS顧客は、クラウドサービスを、当該サービスが自身のデータセンターネットワークの一部であるか、あるいは自身のデータセンターネットワークに直接連結しているかのように、自身の内部アプリケーションと統合できる。
いくつかの実施例では、クラウドエクスチェンジは高度な相互接続ソリューションを提供し、このソリューションにより、全世界にフットプリントを有する複数のクラウド及び複数のネットワークに対する、IPベース(すなわちレイヤ3)、ローカライズ済み、シームレス、オンデマンド、且つダイレクトなアクセスが可能になる。このクラウドエクスチェンジにより、顧客(企業、ネットワークサービスプロバイダ等)にクラウドサービスプロバイダとのプライベート且つ高性能な接続が提供され、サービスに直接アクセスすることが容易になり、顧客は、このサービスを用いて、データセンターでローカライズされたクラウドエクスチェンジ内で高度なプライベート及び/又はハイブリッドのクラウドソリューションを構築できる。
例えば、データセンター内に実装されたクラウドエクスチェンジポイントは、複数のクラウドサービスプロバイダとクラウドサービスの顧客とを相互接続するコラプスト型(collapsed)且つ大都市をベースとするネットワークインフラを提供できる。クラウドエクスチェンジポイントは、クラウドエクスチェンジポイント内でパブリック、プライベート、及び/又はハイブリッドのクラウドサービスへのアクセスを取得し構成した顧客に対して(例えば、ローカルのデータセンターテナントのみに対して)、専用のクラウドアクセスを提供できる。さらに、クラウドエクスチェンジポイントは、物理的リンクを集約することにより、且つ/又は、IP、サービス、及び/若しくは仮想プライベートネットワーク(VPN)ルーティング及び転送インスタンス(VRF)(「VPNルーティング及び転送テーブル」ともいう)に基づき、複数のクラウドサービスへの接続を集約できる。
クラウドエクスチェンジポイントは、一意の自律システム番号を有し大都市をベースとするIPネットワークを含んでよく、クラウドエクスチェンジポイントを介して相互接続するクラウドの顧客とクラウドプロバイダは、この自律システム番号を用いて仮想プライベートネットワーク用のルートを交換してよい。クラウドエクスチェンジポイントは、トランジットネットワークを回避するため、大都市をベースとするIPネットワーク内のサービストラフィックをルーティングする。このサービストラフィックのルーティングは、例えば単一のデータセンター内で行われる。いくつかのインスタンスでは、クラウドエクスチェンジポイントは、一つ以上の広域ネットワークリンク、並びに同時インターネットアクセス及びトランジットポリシーを有するトランジットネットワークでないにもかかわらず、一つ以上のクラウドサービスプロバイダから顧客へのサービストラフィックを交換し、集約し、ルーティングするために、外部BGP(eBGP)又はその他の外部ゲートウェイルーティングプロトコルを介して、複数の異なる自律システムとピアリングしてよい。言い換えれば、クラウドエクスチェンジポイントは、本来はクラウドサービスプロバイダと顧客が対になって維持するeBGPピアリング関係を内在化できる。その代わりに、顧客は、クラウドエクスチェンジポイントとの間で単一のeBGPピアリング関係を構成し、このクラウドエクスチェンジポイントを介して、一つ以上のクラウドサービスプロバイダから複数のクラウドサービスを受け取ることができる。
このように、本明細書に記載のクラウドエクスチェンジは、複数の顧客に複数の異なるクラウドサービスへのアクセスを提供するクラウドエクスチェンジプロバイダとして動作できる。この技術は、様々なインスタンスにおいてIP経路の伝送コストを低減でき、具体的には、広域ネットワーク(WAN)リンクを避けることにより十分なスイッチング帯域幅を有するクラウドエクスチェンジポイント内での大都市をベースとする接続性、クラウドサービスプロバイダから顧客、及び顧客からクラウドサービスプロバイダへのクラウドエクスチェンジポイント内での集約されたクラウドアクセス、クラウドサービスに対する、インターネットに基づく接続性と比べて信頼性が高いプライベート接続、並びに、改良されたIPエンドツーエンド経路を提供することにより、伝送コストを低減する。インターネットに基づく伝送に依存しない上記の専用クラウドアクセスにより、サービス拒否(Dos)攻撃など、テナント(例えば、顧客、ネットワークサービスプロバイダ、クラウドサービスプロバイダ等)のネットワークに対するインターネットに基づく侵入その他の攻撃を防止できる。さらに、複数のクラウドプロバイダとクラウドの顧客間の接続をクラウドエクスチェンジポイント内で統合することにより、本明細書に記載のクラウドエクスチェンジは、自動化されたサービスの(相互)接続性の生態系を推進し、クラウドサービスコミュニティ内の新規マーケットサービスを促進し、これにより、クラウドエクスチェンジのテナント間の相乗作用を提供できる。
一実施例では、クラウドベースのサービス交換ポイントは、データセンター内に設置されるレイヤ3(L3)自律システムを備え、このL3自律システムは、複数のクラウドサービスプロバイダネットワークの各々から、少なくとも一つのクラウドサービスのための、及び一つ以上の顧客ネットワークへの配信のためのクラウドサービストラフィックを受信するように構成される。クラウドベースのサービス交換ポイントは、複数の連結回路も備え、この複数の連結回路は、データセンター内において、複数のクラウドサービスプロバイダネットワークそれぞれをL3自律システムに接続するように構成される。クラウドベースのサービス交換ポイントは、一つ以上の連結回路も備え、この一つ以上の連結回路は、データセンター内において、一つ以上の顧客ネットワークそれぞれをL3自律システムに接続するように構成され、L3自律システムは、複数のクラウドサービスプロバイダネットワークと一つ以上の顧客ネットワークとの間に、エンドツーエンドL3経路を確立することによって、複数のクラウドサービスプロバイダネットワークと一つ以上の顧客ネットワークとを相互接続するように構成され、各エンドツーエンドL3経路は、複数のクラウドサービスプロバイダネットワークそれぞれをL3自律システムに接続する複数の連結回路のうちの一つを含み、また一つ以上の顧客ネットワークそれぞれをL3自律システムに接続する一つ以上の連結回路のうちの一つも含み、L3自律システムは、複数のクラウドサービスプロバイダネットワークそれぞれをエンドツーエンドL3経路に沿って接続する複数の連結回路上で受信されるクラウドサービストラフィックを、一つ以上の顧客ネットワークそれぞれをL3自律システムに接続する一つ以上の連結回路に転送するように構成される。
別の実施例における方法は、データセンター内に設置される、クラウドベースのサービス交換ポイントのレイヤ3(L3)自律システムにより、複数のクラウドサービスプロバイダネットワークの各々から、少なくとも一つのクラウドサービスのための、及び一つ以上の顧客ネットワークへの配信のためのクラウドサービストラフィックを受信することを含み、複数の連結回路が、データセンター内で、それぞれの複数のクラウドサービスプロバイダネットワークをL3自律システムに接続するように構成され、一つ以上の連結回路が、データセンター内で、一つ以上の顧客ネットワークそれぞれをL3自律システムに接続するように構成される。上記方法は、複数のクラウドサービスプロバイダネットワークと一つ以上の顧客ネットワークとの間にエンドツーエンドL3経路を確立することによって、複数のクラウドサービスプロバイダネットワークと一つ以上の顧客ネットワークとをL3自律システムにより相互接続することも含み、各エンドツーエンドL3経路は、複数のクラウドサービスプロバイダネットワークそれぞれをL3自律システムに接続する複数の連結回路のうちの一つを含み、また一つ以上の顧客ネットワークそれぞれをL3自律システムに接続する一つ以上の連結回路のうちの一つも含む。上記方法は、複数のクラウドサービスプロバイダネットワークそれぞれをエンドツーエンドL3経路に沿って接続する複数の連結回路上で受信されるクラウドサービストラフィックを、一つ以上の顧客ネットワークそれぞれをL3自律システムに接続する一つ以上の連結回路にL3自律システムにより転送することも含む。
別の実施例では、クラウドベースのサービス交換ポイントは、相互接続プラットフォームを含む。クラウドベースのサービス交換ポイントは、データセンター内に設置されるレイヤ3(L3)自律システムを備え、このL3自律システムは、複数のクラウドサービスプロバイダネットワークの各々から、少なくとも一つのクラウドサービスのための、及び一つ以上の顧客ネットワークへの配信のためのクラウドサービストラフィックを受信するように構成される。クラウドベースのサービス交換ポイントは、複数の連結回路も備え、この複数の連結回路は、データセンター内において、複数のクラウドサービスプロバイダネットワークそれぞれをL3自律システムに接続するように構成される。クラウドベースのサービス交換ポイントは、一つ以上の連結回路も備え、この一つ以上の連結回路は、データセンター内において、一つ以上の顧客ネットワークそれぞれをL3自律システムに接続するように構成され、L3自律システムは、複数のクラウドサービスプロバイダネットワークと一つ以上の顧客ネットワークとの間に、エンドツーエンドL3経路を確立することによって、複数のクラウドサービスプロバイダネットワークと一つ以上の顧客ネットワークとを相互接続プラットフォームにより相互接続するように構成され、各エンドツーエンドL3経路は、複数のクラウドサービスプロバイダネットワークそれぞれをL3自律システムに接続する、複数の連結回路のうちの一つを含み、また一つ以上の顧客ネットワークそれぞれをL3自律システムに接続する一つ以上の連結回路のうちの一つも含み、L3自律システムは、複数のクラウドサービスプロバイダネットワークそれぞれをエンドツーエンドL3経路に沿って接続する複数の連結回路上で受信されるクラウドサービストラフィックを、一つ以上の顧客ネットワークそれぞれをL3自律システムに接続する一つ以上の連結回路に相互接続プラットフォームにより転送するように構成される。
本発明の一つ以上の実施形態の詳細は、添付図面及び以下の記述において説明する。本発明の他の特徴、目的、及び利点は、本明細書及び図面、並びに請求項より明らかである。
本明細書に記載の技術による、複数のクラウドエクスチェンジポイントを提供する大都市ベースのクラウドエクスチェンジを有するネットワークシステム2の概念図を示すブロック図である。 本明細書に記載の技術に従う、クラウドベースのサービス交換に動作環境を提供する、データセンターの上位レベル図を示すブロック図である。 本開示に記載の技術に従い、クラウドエクスチェンジプロバイダの顧客に対するプロビジョニングのために、複数のクラウドサービスプロバイダのクラウドサービスを集約し、一つ以上のクラウドサービスプロバイダへの複数の顧客のアクセスを集約する、クラウドエクスチェンジ用の例示のネットワークインフラを示すブロック図である。 本開示に記載の技術に従い、クラウドエクスチェンジプロバイダの顧客に対するプロビジョニングのために、複数のクラウドサービスプロバイダのクラウドサービスを集約し、一つ以上のクラウドサービスプロバイダへの複数の顧客のアクセスを集約する、クラウドエクスチェンジ用の例示のネットワークインフラを示すブロック図である。 本明細書に記載の技術に従う、クラウドエクスチェンジポイントのルータが、複数のクラウドサービスプロバイダから顧客ネットワークへと集約サービストラフィックをルーティングし転送するためのVPNルーティング及び転送インスタンスを用いて構成される、データセンターをベースとするクラウドエクスチェンジポイントの実施例を示すブロック図である。 本開示の技術に従う、クラウドエクスチェンジポイントの動作モードの一例を示すフローチャートである。 本開示の技術に従う、クラウドエクスチェンジポイントの動作モードの一例を示すフローチャートである。 本開示に記載の技術を適用するように構成されたルータの一例を示すブロック図である。 本明細書に記載の技術による、データセンターをベースとするクラウドエクスチェンジポイントの一例を示すものであり、この例ではクラウドエクスチェンジポイントは、ネットワークアドレス変換を適用するように構成され、且つ複数のクラウドサービスプロバイダネットワークから顧客ネットワークへと集約サービストラフィックをルーティングし転送するように構成されている。 本明細書に記載の技術による、データセンターをベースとするクラウドエクスチェンジポイントの一例を示すものであり、この例ではクラウドエクスチェンジポイントは、ネットワークアドレス変換を適用するように構成され、且つ複数のクラウドサービスプロバイダネットワークから顧客ネットワークへと集約サービストラフィックをルーティングし転送するように構成されている。 本開示に記載の技術による、クラウドサービスに対する顧客ネットワークの柔軟なサブスクリプションを示すブロック図である。
図及び本文の全体を通じて、同様の参照文字は同様の要素を表す。
本開示は、概して、複数のクラウドサービスプロバイダを複数のクラウドサービス顧客と相互接続するためのクラウドベースのサービス交換(「クラウドエクスチェンジ」)について記載する。クラウドエクスチェンジにより、クラウドの顧客は、結果として性能を向上させ、費用を削減し、接続のセキュリティ及びプライバシーを高め、クラウドコンピューティングをさらなる用途に活用できるように、公衆インターネットをバイパスしてクラウドサービスプロバイダ(CSP)に直接接続することが可能になる。複数のCSPは、顧客が、CSPによって提供される一つ以上のクラウドサービスに接続できるクラウドエクスチェンジにおいて、それぞれ少なくとも一つのアクセス可能なポートを有することから、クラウドエクスチェンジに参加する。
本明細書に記載する様々な実施例によれば、クラウドエクスチェンジにより、どの顧客のプライベートネットワークも、共有ポイントでいかなる他の顧客にも直接交差接続が可能となり、それによって、顧客ネットワーク間のネットワークトラフィックの直接交換が可能となる。顧客には、ネットワーク回線事業者(又はネットワークサービスプロバイダ)、企業、及び一つ以上のクラウドサービスプロバイダによって提供されるクラウドサービスのその他ユーザが含まれてよい。
図1は、本明細書に記載の技術による、複数のクラウドエクスチェンジポイントを提供する大都市ベースのクラウドエクスチェンジを有するネットワークシステム2の概念図を示すブロック図である。クラウドベースのサービス交換100(「クラウドエクスチェンジ100」)のクラウドベースのサービス交換ポイント128A〜128D(以下「クラウドエクスチェンジポイント」と記載し、総称して「クラウドエクスチェンジポイント128」と称する)の各々は、クラウドをベースとするサービスの顧客(「クラウドの顧客」)及びクラウドベースのサービスプロバイダ(「クラウドプロバイダ」)が、クラウドサービスをそれぞれ受け取り提供するために接続する、回復力があり独立したクラウドベースのサービス交換を提供する、地理的に同じ大都市圏(「大都市をベースとする」、例えば、ニューヨーク州ニューヨーク市、カリフォルニア州シリコンバレー、ワシントン州シアトル・タコマ、ミネソタ州ミネアポリス・セントポール、英国ロンドンなど)内に設置される異なるデータセンターを表してもよい。様々な実施例において、クラウドエクスチェンジ100は、より多くの又はより少ないクラウドエクスチェンジポイント128を含んでもよい。いくつかのインスタンスでは、クラウドエクスチェンジ100は、一つのみのクラウドエクスチェンジポイント128を含む。本明細書に使用する通り、「クラウドエクスチェンジ」又は「クラウドベースのサービス交換」への言及は、クラウドエクスチェンジポイントを指してもよい。クラウドエクスチェンジプロバイダは、複数の異なる大都市圏にクラウドエクスチェンジ100のインスタンスを配備してもよく、クラウドエクスチェンジ100の各インスタンスは、一つ以上のクラウドエクスチェンジポイント128を有する。
クラウドエクスチェンジポイント128の各々は、クラウドの顧客108A〜108D(総称して「クラウドの顧客108」)が、複数のクラウドサービスプロバイダ110A〜110N(総称して「クラウドサービスプロバイダ110」)からクラウドサービスを受け取る、ネットワークインフラ及び動作環境を含む。クラウドの顧客108は、クラウドエクスチェンジポイント128のうちの一つへのレイヤ3ピアリング及び物理的接続を経由して直接、又はネットワークサービスプロバイダ106A〜106B(総称して「NSP106」又は代替として「回線事業者106」)のうちの一つを経由して間接的に、クラウドサービスを受け取ってもよい。NSP106は、クラウドエクスチェンジポイント128のうちの一つ以上の内部に物理的存在を維持し、一つ又は複数の顧客108からのレイヤ3アクセスを集約することによって、「クラウドトランジット」を提供する。NSP106は、レイヤ3で、一つ以上のクラウドエクスチェンジポイント128と直接ピアリングし、それを行う際に、顧客108がクラウドエクスチェンジ100からクラウドサービスを取得できる、間接的なレイヤ3の接続性及びピアリングを、一つ以上の顧客108に提供してもよい。クラウドエクスチェンジポイント128の各々は、図1の実施例において、異なる自律システム番号(ASN)を付与される。例えば、クラウドエクスチェンジポイント128AがASN1を付与され、クラウドエクスチェンジポイント128BがASN2を付与される、などとなる。したがって、各クラウドエクスチェンジポイント128は、クラウドサービスプロバイダ110から顧客108へのパスベクタ型ルーティングプロトコル(例えば、BGP)経路における次のホップである。結果として、各クラウドエクスチェンジポイント128は、一つ以上の広域ネットワークリンク、並びに同時インターネットアクセス及びトランジットポリシーを有するトランジットネットワークではないにもかかわらず、一つ以上のクラウドサービスプロバイダ110から顧客へのサービストラフィックを交換し、集約し、ルーティングするために、外部BGP(eBGP)又はその他の外部ゲートウェイルーティングプロトコルによって、複数の異なる自律システムとピアリングしてもよい。言い換えると、クラウドエクスチェンジポイント128は、本来はクラウドサービスプロバイダ110及び顧客108が対となって維持するeBGPピアリング関係を内在化できる。代わりに、顧客108は、クラウドエクスチェンジポイント128と単一のeBGPピアリング関係を構成し、クラウドエクスチェンジによって、一つ以上のクラウドサービスプロバイダ110から複数のクラウドサービスを受け取ることができる。主にクラウドエクスチェンジポイントと顧客、NSP又はクラウドサービスプロバイダネットワークとの間のeBGP又はその他のレイヤ3ルーティングプロトコルのピアリングに関して、本明細書に記載するものの、クラウドエクスチェンジポイントは、静的構成によって、又はRouting Information Protocol(RIP)、Open Shortest Path First(OSPF)、Intermediate System‐to‐Intermediate System(IS‐IS)、若しくはその他のルート配信プロトコルによってなど、その他の手段でこれらのネットワークからのルートを学習してもよい。
上記の実施例の通り、顧客108Dは、クラウドエクスチェンジポイント128C、128Dによってレイヤ3のクラウドサービスに直接アクセスするように、クラウドエクスチェンジ100のクラウドエクスチェンジプロバイダと契約していると示される。このように、顧客108Dは、例えば、クラウドサービスプロバイダ110Aへの冗長なレイヤ3接続性を受け取る。対照的に顧客108Cは、クラウドエクスチェンジポイント128Cを経由してレイヤ3のクラウドサービスに直接アクセスし、またNSP106Bのトランジットネットワークを経由してレイヤ3のクラウドサービスにアクセスするよう、NSP106Bと契約しているように、クラウドエクスチェンジ100のクラウドエクスチェンジプロバイダと契約していると示される。顧客108Bは、NSP106A、106Bのそれぞれのトランジットネットワークを経由して、クラウドエクスチェンジポイント128A、128Bへの冗長なクラウドアクセスを有するように、複数のNSP106A、106Bと契約していると示される。上に記載する契約は、クラウドエクスチェンジポイント128のネットワークインフラにおいて、NSP106及びクラウドエクスチェンジポイント128のスイッチングデバイス内のL3ピアリング構成によって、並びに例えばレイヤ3の仮想回路といった、クラウドサービスプロバイダ110のネットワークをNSP106のネットワーク及び顧客108のネットワークに相互接続するように、クラウドエクスチェンジポイント128内に確立されるL3接続によって、インスタンスを作成され、全ては、クラウドエクスチェンジポイント128のうちの一つ以上の内部に接続性を提供する少なくとも一つのポートを有する。
図2は、本明細書に記載の技術に従う、クラウドベースのサービス交換200に動作環境を提供する、データセンター201の上位レベル図を示すブロック図である。クラウドベースのサービス交換200(「クラウドエクスチェンジ200」)によって、顧客ネットワーク204D、204E、及びいずれかのNSP106A〜106CのNSPネットワーク204A〜204C(総称して「『プライベート』又は『回線事業者』ネットワーク204」)、又は顧客107A、107Bを含むその他のクラウドの顧客のうちの対応する一つを、レイヤ3(L3)又はレイヤ2(L2)接続で、いかなる他の顧客ネットワーク及び/又はクラウドサービスプロバイダ110A〜110Nのうちのいずれかへ直接交差接続することが可能となり、それによって、顧客ネットワークとCSP110との間でクラウドサービストラフィックの交換が可能になる。データセンター201は、倉庫又は局在するデータセンター複合施設など、集中した地域内に全体が設置され、電力、ケーブル、セキュリティ、及びその他のサービスを、データセンター201内にそれぞれのネットワークを(例えば、コロケーションのために)設置する、及び/又は一つ以上の外部リンクによってデータセンター201に接続する、NSP、顧客、及びクラウドサービスプロバイダに提供してもよい。
ネットワークサービスプロバイダ106は各々、NSP106のネットワーク加入者が、クラウドエクスチェンジ200を経由してCSP110によって提供されるクラウドサービスにアクセスできる、トランジットネットワークと関連するネットワークサービスプロバイダを表してもよい。概して、CSP110の顧客は、ネットワーク回線事業者、大企業、マネージドサービスプロバイダ(MSP)だけでなく、クラウドエクスチェンジ200を経由してCSP110によって提供されるクラウドベースのサービスのような、Software‐as‐a‐Service(SaaS)、Platform-aaS(PaaS)、Infrastructure-aaS(IaaS)、Virtualization-aaS(VaaS)、及びdata Storage-aaS(dSaaS)の顧客も含んでもよい。
このように、クラウドエクスチェンジ200は、透過的且つ中立的に、CSP110及び顧客108と(NSP106を経由して間接的に又は直接)提携するプロセスを簡素化及び簡易化する。クラウドエクスチェンジ200の一例示的用途は、CSP110、NSP106、及び/又は顧客108が、データセンター内の相互接続に一つ以上のアクセス可能なポートを利用可能にするなどにより、既にネットワークプレゼンスを有してもよい、コロケーションの相互接続データセンターである。これによって、参加する回線事業者、顧客、及びCSPが、同じ施設において幅広い相互接続性の選択肢を有することが可能になる。データセンター101のクラウドエクスチェンジ200は、CSP110及び顧客/NSPが相互に接続する、L2/L3スイッチングファブリックを提供するネットワークインフラ122を含む。これによって、NSP/顧客は、クラウドエクスチェンジ200の相互接続プラットフォームを提示する、スイッチングネットワークであり基になるネットワークインフラ222への一度のみの接続で、多対多の相互接続を作成する選択肢を有することが可能になる。言い換えると、一つ以上のクラウドサービスプロバイダのうちの異なるクラウドサービスプロバイダ又は異なるクラウドサービスにアクセスするように、トランジットネットワーク上で別々の接続を確立しなくてはならないということの代わりに、クラウドエクスチェンジ200によって、顧客は、データセンター201内のネットワークインフラ222を使用して、複数のCSP及びクラウドサービスに相互接続することが可能になる。
クラウドエクスチェンジ200に接続して利用することによって、顧客は、複数のCSP110との複数の仮想接続を組み込み維持することと通常関連する、同じ出費を負担することなく、多くの地理的に異なる地域で、サービスを購入し多くのエンドユーザに接触できる。例えば、NSP106Aは、NSP106Bのネットワーク204Bを使用して、自身のサービスを拡大できる。クラウドエクスチェンジ200に接続することによって、NSP106は、その他の回線事業者に自身のネットワークサービスの販売を提供することによって、さらなる収入を生み出すことができてもよい。例えば、NSP106Cは、その他のNSPに、NSPネットワーク204Cを使用する機会を提供できる。
本明細書に記載のいくつかの実装例では、クラウドエクスチェンジ200は、ソフトウェアインタフェースの一群を公開する相互接続プラットフォーム203を含み、これらのソフトウェアインタフェースは、アプリケーションが、相互接続プラットフォーム203を呼び出すことができる方法、フィールド、及び/又はその他のソフトウェア基本要素を定義する点から、代替として、アプリケーションプログラミングインタフェース(API)214とも称され、いくつかの実施例では、それらを含んでもよい。ソフトウェアインタフェースによって、NSP206及び顧客108は、クラウドエクスチェンジ200の機能及び資産へのプログラム可能なアクセスが可能になる。相互接続プラットフォーム203は、代替として、本明細書に記載する技術に従い、顧客とクラウドサービスプロバイダとの間の接続性を確立する、コントローラ、プロビジョニングプラットフォーム、サービスオーケストレーションシステム、プロビジョニングシステム、などと称されてもよい。
買い手側では、基になる相互接続プラットフォームによって提示されるソフトウェアインタフェースは、クラウドエクスチェンジ200(例えば、顧客108及びNSP206)の顧客と関連するソフトウェア開発者に、相互接続プラットフォームへのアクセスを可能にして利用する、ソフトウェアアプリケーションを作成することを可能にする、拡張可能なフレームワークを提供し、相互接続プラットフォームによって、アプリケーションは、クラウドエクスチェンジ200が、顧客と、CSP110のうちのいずれかによって提供されるクラウドサービスとの間に接続性を確立するように要求してもよい。例えば、これら買い手側のソフトウェアインタフェース(すなわちAPI214の「買い手側API」)によって、NSP及び企業顧客用の顧客アプリケーションが、例えば、クラウドエクスチェンジにアクセスする承認を取得し、利用可能なクラウドサービスに関する情報を取得し、顧客のためにアクティブポート及び大都市圏の詳細を取得し、クラウドサービスプロバイダへのオンデマンドの仮想回路を作成し、基礎となる仮想回路を必要とする、購入したクラウドサービスに基づく、帯域幅の動的な選択を含め、クラウドサービスにアクセスするように、異なる帯域幅の仮想回路を作成し、仮想回路を削除し、アクティブな仮想回路の情報を取得し、クラウドエクスチェンジプロバイダと提携するCSPを取り巻く詳細を取得し、カスタマイズされた分析データを取得し、相互接続資産への提携相手のアクセスを検証することを可能にしてもよい。
クラウドサービスプロバイダ(売り手)側では、ソフトウェアインタフェースによって、クラウドプロバイダと関連するソフトウェア開発者が、クラウドプロバイダのクラウドサービスを管理し、顧客がクラウドプロバイダのクラウドサービスに接続できるようにすることを可能にしてもよい。例えば、これら売り手側のソフトウェアインタフェース(すなわちAPI214の「売リ手側API」)によって、クラウドサービスプロバイダアプリケーションが、クラウドエクスチェンジにアクセスする承認を取得し、利用可能なクラウドサービスに関する情報を取得し、プロバイダのためにアクティブポート及び大都市圏の詳細を取得し、プロバイダのために所与のデータセンターにおけるアクティブポートの詳細を取得し、クラウドサービスにアクセスするために、顧客によって作成される、異なる帯域幅の仮想回路を承認又は拒絶し、保留中の仮想回路の追加を取得して仮想回路の追加を確認し、保留中の仮想回路の削除を取得して仮想回路の削除を確認し、カスタマイズされた分析データを取得し、相互接続資産への提携相手のアクセスの正当性を検証することを可能にしてもよい。
本明細書にさらに記載する通り、API114は、顧客ネットワークとプロバイダネットワークを相互接続するために、マシンツーマシン通信を促進して、クラウドエクスチェンジにおいて仮想回路を動的にプロビジョニングすることを可能にする。このように、相互接続プラットフォーム203によって、クラウドサービスのプロビジョニングの態様を自動化することが可能である。例えば、ソフトウェアインタフェースは、クラウドエクスチェンジに参加する複数の異なるクラウドプロバイダとの相互接続を顧客が確立、削除、及び管理する、自動化されたシームレスな手段を提供してもよい。
いくつかの実施例では、クラウドエクスチェンジ200はAPIゲートウェイ212を備え、このAPIゲートウェイ212は、API214に従って定義されるソフトウェアインタフェースを公開する一つ以上のアプリケーションを実行する。アプリケーションは、API214のエンドポイントに相当するサービスを呼び出してもよく、このサービスは、オーケストレーションエンジン218のクラウドエクスチェンジプラットフォームサービスを自ら呼び出してもよい。APIゲートウェイ212は、一つ以上の仮想マシン上、及び/又は、データセンター201の一つ以上の現実のサーバ上で実行されてよい。
いくつかの実施例では、クラウドエクスチェンジはオーケストレーションエンジン218を含み、オーケストレーションエンジン218は、クラウドサービス管理に加えて、ネットワークインフラ222内における相互接続の各種側面の管理の目的で、基本となるソフトウェアサブシステム220を編成し、指揮し、統合する。例えば、オーケストレーションエンジン218は、ルール駆動型のワークフローエンジンを提供してもよく、このワークフローエンジンは、API214と、クラウドエクスチェンジ200の基礎となる相互接続プラットフォーム(サブシステム220とネットワークインフラ222を含む)との間で動作する。このようにして、オーケストレーションエンジン218を顧客の専有アプリケーションとAPI214が使用することにより、クラウドエクスチェンジ200の相互接続プラットフォーム203を用いた直接参加が可能になる。言い換えると、オーケストレーションエンジン218は、各種アプリケーションエンジンを有する「クラウドエクスチェンジプラットフォームサービス」を提供して、APIゲートウェイ212のサービス要求を処理する。
下記で詳述する通り、サブシステム220は、オーケストレーションエンジン218から呼び出し可能な「クラウドエクスチェンジサービス」を提供してよい。サブシステム220とオーケストレーションエンジン218の各々は、集中型又は分散型アプリケーションであってよく、一つ以上の仮想マシン上、及び/又はデータセンター201の現実のサーバ上で実行されてよい。エンドツーエンドレイヤ3経路のプロビジョニングを用いたクラウドエクスチェンジサービスを促進するため、サブシステム220は、ネットワークインフラ222のルーティング・スイッチングデバイス内でルート、VRF、VPN、ルートターゲットその他を構成する一つ以上のサブシステムを含んでよい。
図2の実施例では、ネットワークインフラ222は、クラウドエクスチェンジのスイッチングファブリックを表し、例えば、相互接続プラットフォーム203のAPI214を呼び出すことによって、仮想回路と動的に相互接続されてもよい複数のポートを含む。ポートの各々は、回線事業者106、顧客108、及びCSP110のうちの一つと関連する。相互接続プラットフォーム例のさらなる詳細は、2014年10月30日出願の米国特許仮出願番号第62,072,976号「INTERCONNECTION PLATFORM FOR REAL-TIME CONFIGURATION AND MANAGEMENT OF A CLOUD-BASED SERVICES EXCHANGE」に記載されており、その内容全体が参照により本発明に援用される。
図3A〜3Bは、本開示に記載の技術に従い、クラウドエクスチェンジプロバイダの顧客に対するプロビジョニングのために、複数のクラウドサービスプロバイダのクラウドサービスを集約し、一つ以上のクラウドサービスプロバイダへの複数の顧客のアクセスを集約する、クラウドエクスチェンジ用の例示のネットワークインフラを示すブロック図である。本実施例では、各々が異なる顧客と関連する、顧客ネットワーク308A〜308C(総称して「顧客ネットワーク308」)は、各々が異なるクラウドサービスプロバイダ110と関連する、一つ以上のクラウドサービスプロバイダネットワーク320から、集約されるクラウドサービスを受信するために、データセンター300内のクラウドエクスチェンジポイントにアクセスする。顧客ネットワーク308は各々、クラウドサービスプロバイダネットワーク320によって提供されるクラウドサービスを購入する、エンドポイントのデバイスを含む。例示のエンドポイントのデバイスは、サーバ、スマートフォン、テレビのセットトップボックス、ワークステーション、ノートパソコン/タブレットコンピュータ、テレビゲームシステム、遠隔会議システム、メディアプレーヤーなどを含む。
顧客ネットワーク308A〜308Bは、それぞれのプロバイダエッジ/自律システムの境界ルータ(PE/ASBR)310A〜310Bを含む。PE/ASBR310A、310Bの各々は、アクセスリンク316A〜316B(総称して「アクセスリンク316」)のうちの一つにわたって、PEルータ302A〜302B(「PEルータ302」又はより単純に「PE302」)のうちの一つとピアリングするように、外部ゲートウェイのルーティングプロトコルを実行してもよい。図示の実施例では、アクセスリンク316の各々は、顧客ネットワーク308のエッジルータと、クラウドエクスチェンジポイント303のエッジルータ(又は自律システムの境界ルータ)との間のトランジットリンクを表す。例えば、PE310A及びPE302Aは、アクセスリンク316A上のL3ルートを交換し、且つ顧客ネットワーク308Aとクラウドサービスプロバイダネットワーク320との間のL3データトラフィックを交換するように、例えば、外部BGPといった外部ゲートウェイプロトコルによって直接ピアリングしてもよい。アクセスリンク316は、いくつかの場合には、以下にさらに詳細に記載する通り、IP/MPLSファブリック301において構成されるIP‐VPN用の連結回路を表してもよく、代替として、連結回路と称してもよい。アクセスリンク316は各々、いくつかの場合には、顧客ネットワーク308の少なくとも一つのポートと、クラウドエクスチェンジポイント303の少なくとも一つのポートとの間の、トランジットネットワークが介在しない直接的な物理的接続を含んでもよい。アクセスリンク316は、VLAN若しくは積層されたVLAN(例えば、QinQ)、VxLAN、LSP、GREトンネル、又はその他の種類のトンネル上で動作してもよい。
L3の接続性に関して示し、主に記載しているものの、PEルータ302は、アクセスリンク316を介して、顧客ネットワーク308とクラウドサービスプロバイダネットワーク320との間に、L2の接続性を追加として提供してもよい。例えば、PEルータ302Aのポートは、顧客ネットワーク308Aに、アクセスリンク316Aを介するクラウドサービスプロバイダ320AへのL2の接続性を提供する、L2のインタフェースで構成されてもよく、この場合、クラウドサービスプロバイダ320Aのルータ312Aは、同様にL2のインタフェースで構成されているPEルータ304Aのポートに連結される。PEルータ302Aのポートは、顧客ネットワーク308Aに、アクセスリンク316Aを介するクラウドサービスプロバイダ320BへのL3の接続性を提供する、L3のインタフェースで追加として構成されてもよい。PE302Aは、顧客308Aに、クラウドエクスチェンジプロバイダによって、複数のクラウドサービスプロバイダ320への一対多接続を提供してもよいような、複数のL2及び/又はL3サブインタフェースで構成されてもよい。
顧客ネットワーク308とクラウドサービスプロバイダネットワーク320との間にL2相互接続を作成するために、いくつかの実施例では、IP/MPLSファブリック301は、PE302の顧客に対面するポートと、クラウドサービスプロバイダ320のCSPに対面するポートとの間で、L2トラフィックの橋渡しをするように、L2ブリッジドメイン(例えば、仮想プライベートLANサービス(VPLS)、E‐LINE、又はE‐LANなど、L2仮想プライベートネットワーク(L2VPN))で構成される。いくつかの場合、クラウドサービスプロバイダ320及び顧客308は、ブリッジドメインを使用してL2トラフィックの橋渡しをする、同じPEルータ302、304へのアクセスリンクを有してもよい。
顧客ネットワーク308とクラウドサービスプロバイダネットワーク320との間に、L3相互接続を作成するために、いくつかの実施例では、IP/MPLSファブリック301は、図4に関して下にさらに詳細に記載する通り、L3仮想ルーティング及び転送インスタンス(VRF)で構成される。
クラウドエクスチェンジポイント303のいくつかの実施例では、アクセスリンク316及び集約リンク322のいずれも、ネットワーク間インタフェース(NNI)を表してよい。データセンター300内のレイヤ2接続性を促進するためのNNIリンク及びNNIリンクのプロビジョニングのさらなる詳細は、2013年9月17日発行の米国特許第8,537,845号「Real time configuration and provisioning for a carrier Ethernet(登録商標) exchange」に記載されており、参照によりその全体が本発明に援用される。
本実施例では、顧客ネットワーク308Cは、自律システム番号を有する自律システムではない。顧客ネットワーク308Cは、企業、ネットワークサービスプロバイダ、又はクラウドエクスチェンジポイントのルーティングの範囲内にある、その他の顧客ネットワークを表してもよい。顧客ネットワークは、アクセスリンク316C上でPEルータ302Bとピアリングするように、外部ゲートウェイのルーティングプロトコルを実行してもよい、顧客のエッジ(CE)デバイス311を含む。様々な実施例では、PE310A〜310Bのうちのいずれも、代替としてCEデバイスであってもよく、そうでなければCEデバイスを表してもよい。
アクセスリンク316は物理的なリンクを含み、また、一つ以上の中間スイッチングデバイスを含んでもよい。PE/ASBR310A〜310B、CEデバイス311、及びPEルータ302A〜302Bは、アクセスリンク316を介して、L2/L3パケットを交換する。この点において、アクセスリンク316は、クラウドエクスチェンジポイント303を介するクラウドアクセス用の伝送リンクを構成する。クラウドエクスチェンジポイント303は、クラウドエクスチェンジポイント128のうちのいずれの実施例を表してもよい。データセンター300は、データセンター201の実施例を表してもよい。
クラウドエクスチェンジポイント303は、いくつかの実施例では、クラウドエクスチェンジポイント303、及びそこから任意の一つ以上のクラウドサービスプロバイダ320への顧客308のアクセスを集約する。図3A〜3Bは、例えば、それぞれの顧客ネットワーク308A〜308Bをクラウドエクスチェンジポイント303のPEルータ302Aに接続するアクセスリンク316A〜316Bと、顧客ネットワーク308CをPEルータ302Bに接続するアクセスリンク316Cとを示す。PEルータ302、304のうちの任意の一つ以上が、ASBRを備えてよい。PEルータ302、304及びIP/MPLSファブリック301は、アクセスリンク316のうちのいずれかを、クラウド集約リンク322のうちのいずれかに相互接続するように、本明細書に記載の技術に従って構成されてもよい。結果として、クラウドサービスプロバイダネットワーク320Aは、例えば、サービスを複数の顧客ネットワーク308に提供するために、単一のクラウド集約リンク(ここでは、アクセスリンク322A)を構成しておくだけでよい。すなわち、クラウドサービスプロバイダネットワーク320Aを運営するクラウドサービスプロバイダは、例えば、顧客ネットワーク308の各々にサービスを提供するために、クラウドサービスプロバイダネットワーク320Aから、PEルータ310、311の各々への別個のサービスリンクをプロビジョニングし構成する必要はない。クラウドエクスチェンジポイント303は、代わりに、レイヤ3のピアリング及びクラウドサービスのデリバリに対するネットワーク到達可能性を提供するように、クラウドサービスプロバイダネットワーク320Aのクラウド集約リンク322A及びPE312Aを、複数のクラウドアクセスリンク316に交差接続してもよい。
加えて、単一の顧客ネットワーク、例えば、顧客ネットワーク308Aは、クラウドサービスを提供する複数のクラウドサービスプロバイダネットワーク320から、クラウドエクスチェンジポイント303を介してサービスを取得するために、データセンター300内でクラウドエクスチェンジポイント303への単一のクラウドアクセスリンク(ここでは、アクセスリンク316A)を構成しておくだけでよい。すなわち、顧客又は顧客ネットワーク308Aを運営するネットワークサービスプロバイダは、例えば、複数のクラウドサービスプロバイダネットワーク320からサービスを取得するために、顧客ネットワーク308Aを異なるPEルータ312に接続する、別個のサービスリンクをプロビジョニングし構成する必要はない。クラウドエクスチェンジポイント303は、代わりに、レイヤ3のピアリングと、顧客ネットワーク308Aへのクラウドサービスのデリバリに対するネットワーク到達可能性とを提供するように、クラウドアクセスリンク316A(再び、一実施例として)を、複数のクラウド集約リンク322に交差接続してもよい。
クラウドサービスプロバイダネットワーク320は各々、一つ以上のクラウドサービスをユーザに提供するように構成されるサーバを含む。これらのサービスは、サービスタイプに従って分類されてもよく、例えば、アプリケーション/ソフトウェア、プラットフォーム、インフラ、仮想化、並びにサーバ及びデータ記憶部を含んでもよい。例示のクラウドサービスは、コンテンツ/メディアのデリバリ、クラウドベースの記憶、クラウドコンピューティング、オンラインゲーム、ITサービスなどを含んでもよい。
クラウドサービスプロバイダネットワーク320は、クラウドエクスチェンジポイント303のPEルータ304A〜304B(総称して「PEルータ304」)とルートを交換するように、外部ゲートウェイのルーティングプロトコル、例えば、eBGPを各々実行する、PEルータ312A〜312Dを含む。クラウドサービスプロバイダネットワーク320の各々は、パブリッククラウド、プライベートクラウド、又はハイブリッドクラウドを表してもよい。クラウドサービスプロバイダネットワーク320の各々は、付与される自律システム番号を有してもよく、又はクラウドエクスチェンジポイント303の自律システムの範囲の一部であってもよい。
図示の実施例では、インターネットプロトコル/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリック301は、PE302及びPE304を相互接続する。IP/MPLSファブリック301は、IPバックボーンを形成するように、IPパケットのIP/MPLSスイッチング及びルーティングを提供し、PE302、304を含む、一つ以上のスイッチング及びルーティングデバイスを含む。いくつかの実施例では、IP/MPLSファブリック301は、PEルータ間のトラフィックをルーティングし、及び/又はトラフィックを異なるIP‐VPNと関連付けるように、一つ以上の異なるトンネリングプロトコル(すなわち、MPLS以外)を実装してもよい。本明細書に記載する技術に従い、IP/MPLSファブリック301は、データセンターをベースとする「伝送」及びレイヤ3の交差接続を提供するように、顧客308のうちのいずれかを、複数のクラウドサービスプロバイダネットワーク320に接続する、IP仮想プライベートネットワーク(IP‐VPN)を実装する。サービスプロバイダをベースとするIPバックボーンネットワークが、レイヤ3のサービスプロバイダから顧客へサービストラフィックを伝送するように、限定された帯域幅での広域ネットワーク(WAN)接続を必要とするのに対して、本明細書に記載する通りのクラウドエクスチェンジポイント303は、サービストラフィックを「伝送」し、データセンターをベースとするIP/MPLSファブリック301によって提供されるデータセンター300の高帯域幅の構内環境内で、クラウドサービスプロバイダ320を顧客308に交差接続する。いくつかの実施例では、IP/MPLSファブリック301は、2006年2月、Internet Engineering Task Force (IETF) Network Working Group発行、Rosen & Rekhterの「BGP/MPLS IP Virtual Private Networks (VPNs)」、Request for Comments 4364に記載される技術を使用してIP‐VPNを実装し、その内容は、参照により全て本発明に援用される。いくつかの例示的構成において、顧客ネットワーク308及びクラウドサービスプロバイダネットワーク320は、それぞれのリンクを介して、IP/MPLSファブリック301の同じPEルータに接続してもよい。
アクセスリンク316及び集約リンク322は、接続された顧客ネットワーク308又はクラウドサービスプロバイダネットワーク320と交換するトラフィックを、PE302、304において構成され、IP/MPLSファブリック301上で動作するIP‐VPNに相当する、仮想ルーティング及び転送インスタンス(VRF)と関連付ける、連結回路を含んでもよい。例えば、PE302Aは、アクセスリンク316A上を動作する双方向のラベルスイッチパス(LSP)上のPE310Aと、IPパケットを交換してもよく、LSPは、PE302Aに構成されるVRF用の連結回路である。別の実施例として、PE304Aは、クラウド集約リンク322A上を動作する双方向のラベルスイッチパス(LSP)上のPE312Aと、IPパケットを交換してもよく、LSPは、PE304Aに構成されるVRF用の連結回路である。各VRFは、個別のルートによる異なるルーティング及び転送テーブルを含んでもよいか、又は表してもよい。
IP/MPLSファブリック301のPEルータ302、304は、クラウドサービス向けにそれぞれのハブアンドスポーク型の配置で構成されてもよく、PE304はクラウドサービスハブを実装し、PE302はハブのスポークとして構成される(様々なハブアンドスポーク型のインスタンス/配置のため)。ハブアンドスポーク型の配置によって、サービストラフィックが、異なるスポークPE間ではなく、ハブPEと、スポークPEのいずれかとの間を流れることが可能となることを保証する。このように、ハブアンドスポーク型VPNにより、顧客ネットワーク308とCSPネットワーク320を完全に分離することが可能になる。さらに下に記載する通り、データセンターをベースとするIP/MPLSファブリック301用及びサウスバウンドのサービストラフィック(すなわち、CSPから顧客へ)用のハブアンドスポーク型の配置において、PE302は、PE310から受信されるルートをPE304にアドバタイズし、それによってPE312にルートをアドバタイズする。ノースバウンドのサービストラフィック(すなわち、顧客からCSPへ)に対しては、PE304は、PE312から受信されるルートをPE302にアドバタイズし、それによってPE310にルートをアドバタイズする。本明細書で使用する場合、ハブ型VRFは、「アップ」ルートターゲット(RT)を有するルートをエクスポートし、スポーク型VRFは、「アップ」ルートターゲットを有するルートをインポートする。逆に、スポーク型VRFは、「ダウン」ルートターゲットを有するルートをエクスポートし、ハブ型VRFは、「ダウン」ルートターゲットを有するルートをインポートする。いくつかの実施例では、各VRFインスタンスは一意のルート区別子(RD)を有する。
クラウドエクスチェンジポイント303のいくつかの顧客に対して、クラウドエクスチェンジポイント303のプロバイダは、フルメッシュの配置を構成してもよく、それによって、1組のPE302、304の各々が、顧客用の異なる顧客のサイトネットワークに結合する。そのような場合には、IP/MPLSファブリック301は、ラックからラック又は冗長なトラフィック(東西又は水平トラフィックとしても知られる)に対して、レイヤ3のVPN(L3VPN)を実装する。L3VPNは、閉じられたユーザグループを有効化してもよく、それによって、各顧客サイトネットワークは、トラフィックを互いに送信できるが、L3VPNの外側へはトラフィックを送受信できない。
PEルータは、オーバーレイネットワークを使用せずに、ピアモデルに従って互いに結合してもよい。すなわち、PE310及びPE312は、ルートを交換するために互いに直接ピアリングするのではなく、むしろIP/MPLSファブリック301を介して間接的にルートを交換してもよい。図3Bの実施例において、クラウドエクスチェンジポイント303は、顧客ネットワーク308及びクラウドサービスプロバイダネットワーク322を、エンドツーエンドのIP経路と相互接続させるように、複数のレイヤ3の仮想回路330A〜330C(総称して「仮想回路330」)を実装するように構成される。クラウドサービスプロバイダ320及び顧客308の各々は、複数の仮想回路330のエンドポイントであってもよく、複数の仮想回路330は、IP/MPLSファブリック301のPE/PE又はPE/CEの1対と、CSP/顧客との間に一つ以上の連結回路を横断させる。仮想回路330は、顧客ネットワークをファブリック301に接続する連結回路と、クラウドサービスプロバイダネットワークをファブリック301に接続する連結回路との間の、IP/MPLSファブリック301を通るレイヤ3経路を表してよい。各仮想回路330は、PE302、304にエンドポイントを有する、少なくとも一つのトンネル(例えば、LSP及び/又は総称ルーティングカプセル化(GRE)トンネル)を含んでもよい。PE302、304は、互いに相互接続するフルメッシュ型トンネルを確立してもよい。
各仮想回路330は、フルメッシュ型又は一部メッシュ型の境界ゲートウェイプロトコルのピアリングセッション、本実施例の場合には、フルメッシュ型のマルチプロトコル内部境界ゲートウェイプロトコル(MP‐iBGP)のピアリングセッションを使用して、ルートを交換するPEルータ302、304を有する、IP/MPLSネットワーク301に構成される、異なるハブアンドスポーク型のネットワークを含んでもよい。MP‐iBGP又は単純にMP‐BGPは、ルータが、MPLSベースのVPNを実装するようにラベル付きルートを交換する、プロトコルの一実施例である。しかしながら、PE302、304は、その他の技術及び/又はプロトコルを使用してIP‐VPNを実装するように、ルートを交換してもよい。
仮想回路330Aの実施例では、クラウドサービスプロバイダネットワーク320AのPEルータ312Aは、PE304Aでのルーティングプロトコル(例えば、eBGP)のピアリング接続によって、クラウドサービスプロバイダネットワーク320A用のルートを、PE304Aに送信してもよい。PE304Aは、関連するVRFを有してもよく、スポークPEルータ302Aを含む、ハブアンドスポーク型のネットワークに、ルートを関連付ける。その後PE304Aは、ルートをPEルータ302Aにエクスポートするため、PEルータ304Aは、ハブアンドスポーク型のネットワークを識別するラベルと共に、PEルータ304Aを次のホップルータとして指定するルートを、エクスポートしてもよい。PEルータ302Aは、PE310Bでのルーティングプロトコルによる接続によって、PEルータ310Bにルートを送信する。PEルータ302Aは、クラウドエクスチェンジポイント303の(例えば、BGP自律システム経路(AS_PATH)属性に対する)自律システム番号を追加し、PEルータ302Aを次のホップルータとして指定した後に、ルートを送信してもよい。それゆえ、クラウドエクスチェンジポイント303は、データセンター内をベースとしてもよいものの、顧客308からクラウドサービスプロバイダ320(逆の場合も同様)への自律システムの経路における、自律システムの「ホップ」となる。PEルータ310Bは、クラウドサービスプロバイダネットワーク320Aへのレイヤ3での到達可能性を提供する、BGPルーティング情報ベース(RIB)など、ルーティングデータベースへのルートを設ける。このように、直接的な層でのピアリング接続を必要とする、顧客ネットワーク308へのクラウドサービスプロバイダネットワーク320がない場合には、クラウドエクスチェンジポイント303は、クラウドサービスプロバイダネットワーク320から顧客ネットワーク308へのルートを「漏出する」。
PEルータ310B、302A、304A、及び312Aは、顧客ネットワーク308Bによって創出されるルートを、PE312Aに転送するのと反対の方向で類似の動作を実施することで、クラウドサービスプロバイダネットワーク320Aから顧客ネットワーク308Bへの接続性を提供してもよい。仮想回路330Bの実施例では、PEルータ312B、304A、302A、及び310Bは、仮想回路330Bを確立するための上に記載したものと類似する方式で、顧客ネットワーク308B及びクラウドサービスプロバイダ320B用のルートを交換する。結果として、データセンター300内のクラウドエクスチェンジポイント303は、異なるクラウドサービスプロバイダネットワーク320A、320Bによって提供される複数のレイヤ3のクラウドサービスに対して、クラウド集約を実施し、クラウドエクスチェンジポイント303への単一のアクセスリンク316Bを有する顧客ネットワーク308Bに、複数の集約されたレイヤ3のクラウドサービスを送達するために、他の場合には、PE310BとPE312A、312Bの各々との間に確立されるであろう、ピアリング接続を内在化する。本明細書に記載する技術がなければ、完全に相互接続する顧客ネットワーク308及びクラウドサービスプロバイダネットワーク320は、クラウドサービスプロバイダネットワーク320の各々に対して、PE310の各々と、PE312のうちの少なくとも一つとの間に、3×3ピアリング接続を必要とするであろう。例えば、PE310Aは、PE312の各々を伴うレイヤ3のピアリング接続を必要とするであろう。本明細書に記載する技術によって、クラウドエクスチェンジポイント303は、レイヤ3のピアリングを内在化し、クラウドアクセスとクラウド集約インタフェースとの間で、データセンターをベースとする「伝送」を提供することによって、顧客ネットワーク308及びクラウドサービスプロバイダネットワーク320を、サイトのPEごとに(すなわち、PE310及びPE312の各々に対して)一つのピアリング接続で完全に相互接続してもよい。
IP/MPLSファブリック301が、BGP/MPLSのIP‐VPN、又はIPバックボーン内でのルート配信を制御するように、ルートターゲットを使用する、その他のIP‐VPNを実装する実施例において、PE304は、異なる非対称のルートターゲットを使用して、PE302からルートをインポートし、PE312から受信したルートをエクスポートするように構成されてもよい。同様に、PE302は、非対称のルートターゲットを使用して、PE304からルートをインポートし、PE310から受信したルートをエクスポートするように構成されてもよい。したがって、PE302、304は、顧客ネットワーク308のうちのいずれかのエクストラネットと、基本バックボーンL3VPNに連結する、クラウドサービスプロバイダネットワーク320のうちのいずれかと共に、IP/MPLSファブリック301の基本バックボーンL3VPNを各々含む、先進的なL3VPNを実装するように構成されてもよい。各先進的なL3VPNは、クラウドサービスプロバイダネットワーク320から一つ以上の顧客ネットワーク308、及びその反対の方向のクラウドサービスのデリバリネットワークを構成する。このように、クラウドエクスチェンジポイント303によって、何対かの顧客ネットワーク308と、所与の一対の間のいかなるクラウドサービス接続用のクラウドサービスプロバイダネットワーク320との間に、他の場合であれば確立されるであろう、レイヤ3ルーティングプロトコルのピアリング接続を内在化しながら、クラウドサービスプロバイダネットワーク320が、クラウドサービストラフィックを、いかなる顧客ネットワーク308とも交換することを可能にする。言い換えると、クラウドエクスチェンジポイント303によって、顧客ネットワーク308及びクラウドサービスプロバイダネットワーク320の各々が、データセンターをベースとするレイヤ3の交差接続への、単一の(又は冗長性若しくはその他の理由のために一つ以上の)レイヤ3ルーティングプロトコルのピアリング接続を確立することを可能にする。クラウドサービスプロバイダネットワーク320から顧客ネットワーク308へ及びその反対の方向のルートをフィルタリングすることによって、PE302、304は、仮想回路330の確立、及び顧客ネットワーク308とクラウドサービスプロバイダネットワーク320との間の関連するクラウドサービストラフィックの流れをデータセンター300内で制御する。MP‐iBGPメッシュ318に配信されるルートは、VPN−IPv4ルートであり、重複するアドレス空間を有する異なるサイトよりルートを区別する、ルート識別子と関連付けられてもよい。
図4は、本明細書に記載する技術に従い、クラウドエクスチェンジポイントのルータが、複数のクラウドサービスプロバイダネットワークから顧客ネットワークへ集約サービストラフィックをルーティング及び転送するために、VPNのルーティング及び転送インスタンスを用いて構成される、データセンターをベースとするクラウドエクスチェンジポイントの実施例を示すブロック図である。本実施例では、仮想回路330A〜330Bを確立するために、IP/MPLSファブリック301のPEルータ302A及び304Aは、VRFで構成される。PE302Aは、VRF402A及び404Aで構成される一方、PE304Aは、VRF402B及び404Bで構成される。VRF402Aは、VRF402Bによってエクスポートされるルートをインポートするように構成され、VRF402Bは、VRF402Aによってエクスポートされるルートをインポートするように構成される。構成は、VRF402AとVRF402Bとの間のインポート/エクスポート用の非対称のルートターゲットを含んでもよい。VRF404Aは、VRF402Bによってエクスポートされるルートをインポートするように構成され、VRF402Bは、VRF402Aによってエクスポートされるルートをインポートするように構成される。構成は、VRF402AとVRF402Bとの間のインポート/エクスポート用の非対称のルートターゲットを含んでもよい。顧客が、レイヤ3のサービスにアクセスするように、別個のVRFと各々関連する異なるCSPから、複数のレイヤ3のサービスにアクセスできる、この構成によって、CSPと交換されるそれぞれのトラフィックが分離される。いくつかの実施例では、PE302Aは、VRF402B及びVRF404Bの両方によってエクスポートされるルートをインポートするように、単一のVRFで構成されてもよい。図3A〜3Bに関して上で述べた通り、PE302、304はさらに、顧客308Bとクラウドサービスプロバイダ320との間で、レイヤ2のトラフィックの橋渡しをするように構成されてもよい。
本実施例では、PE304Aは、それぞれのクラウドサービスプロバイダネットワーク320A、320Bとルートを交換するように、BGP、又はそれぞれのPE312A、312Bを伴う、その他のルート配信プロトコルのピアリング接続406B、408Bを操作する。PE302Aは、顧客ネットワーク308Bとルートを交換するように、BGP、又はPE310Bを伴う、その他のルート配信プロトコルのピアリング接続410を操作する。いくつかの実施例では、図5に関して下記でさらに説明するように、PE302A、304Aは、サイトネットワーク用のルートで静的に構成されてもよい。
クラウドエクスチェンジポイント303に対する管理者は、データセンターをベースとする接続性又は少なくとも大都市をベースとする接続性を発展させることによって、エンドツーエンドのIP経路を潜在的に最適化しながら、PE312とPE310Bとの間のルートを漏出し、仮想回路330によって図中に示すエンドツーエンドのIP経路に対するレイヤ3の接続性を促進するために、PE302A、304AをVRF402A〜402B、404A〜404Bで構成してもよい。したがって、クラウドエクスチェンジポイント303は、クラウドサービスプロバイダネットワーク320のプライベート及び/又はパブリックルートを経由する、顧客ネットワーク308Bへのクラウドサービスプロバイダ専用アクセスを提供してもよい。ノースバウンド方向では、クラウドエクスチェンジポイント303は、顧客ネットワーク308のプライベート及び/又はパブリックルートを経由する、複数の顧客ネットワーク308へのクラウドサービスプロバイダ専用配信を提供してもよい。PE310BもPE302A、304Aのうちのいずれも、クラウドサービスプロバイダネットワーク320又は顧客ネットワーク308に到達するために、完全なインターネットのBGPルーティングテーブルにアクセスする必要はない。その上、PE302A、304Aは、物理IP、物理的なサービス、及びVRFのうちのいかなる一つ以上に基づいて、顧客/CSPのルート及び/又はサービストラフィックを集約するように構成されてもよい。
図5は、本開示の技術に従う、クラウドエクスチェンジポイントの動作モードの一例を示すフローチャートである。動作モード500は、図3A〜3B及び図4のクラウドエクスチェンジポイント303に関して説明しているが、本明細書に記載のどのクラウドエクスチェンジポイントの例で実施してもよい。
クラウドエクスチェンジポイント303は、データセンターをベースとするクラウドエクスチェンジポイントであり、一つ以上のPEルータ302、304を含む。クラウドエクスチェンジポイント303は構成データを取得する。この構成データは、クラウドサービスプロバイダネットワーク(320A)を採用しているクラウドサービスプロバイダが提供するクラウドサービスへの接続性を提供するIP−VPNに対して、一つ以上のVRF402A、402Bを定義したものである(502)。この構成データには、ハブアンドスポーク型又はその他のトポロジを確立するためのルートターゲットや、VRFの識別子、VPNルートのルート区別子、その他、VRFを定義するための構成データが含まれていてよい。いくつかの態様では、クラウドエクスチェンジポイント303の相互接続プラットフォーム(例えば、図2の相互接続プラットフォーム203)が、クラウドエクスチェンジポイント303のPEルータ302、304内で構成データを生成し、プロビジョニングする。PEルータ302Aは、クラウドサービス用にVRF402A、402Bにインストールされクラウドサービスプロバイダネットワーク320Aへの到達可能性を提供しているルートを、顧客ネットワーク308BのPEルータ310Bに送信することにより、顧客ネットワーク308BのIPエンドポイントがレイヤ3クラウドサービスにアクセスするのを可能にする(504)。いくつかの態様では、PEルータ302Bは、クラウドサービスプロバイダネットワーク320AのPEルータ312Aとのルーティングプロトコルピアリングセッションを介して、動的にルートを取得し、このルートをPE302Aにアドバタイズして、VRF402Aにインストールできるようにする。いくつかの態様では、クラウドエクスチェンジポイント303の相互接続プラットフォームがインタフェース(例えば、ウェブベース又はその他のAPIフレームワーク)を提供し、これにより、クラウドサービスプロバイダネットワーク320Aを管理するクラウドサービスプロバイダは、相互接続プラットフォームにルートを提供でき、相互接続プラットフォームは、ルートをPE302A及び/又はPE304Aにインストールして、最終的にVRF402A経由でPE310Bにアドバタイズできるようにする。続いてクラウドエクスチェンジポイント303は、レイヤ3サービストラフィックを、仮想回路330AのエンドツーエンドIP経路に沿って、顧客ネットワーク308Bからクラウドサービスプロバイダネットワーク320Aに切り替える(506)。
図6は、本開示の技術従う、クラウドエクスチェンジポイントの動作モードの一例を示すフローチャートである。動作モード530は、図3A〜3B及び図4のクラウドエクスチェンジポイント303に関して説明しているが、本明細書に記載のどのクラウドエクスチェンジポイントの例で実施してもよい。
クラウドエクスチェンジポイント303は、データセンターをベースとするクラウドエクスチェンジポイントであり、一つ以上のPEルータ302、304を含む。クラウドエクスチェンジポイント303は構成データを取得する。この構成データは、顧客ネットワーク308Bを採用している顧客への接続性を提供するIP−VPNに対して、一つ以上のVRF402A、402Bを定義したものである(532)。この構成データには、ハブアンドスポーク型又はその他のトポロジを確立するためのルートターゲットや、VRFの識別子、VPNルートのルート区別子、その他、VRFを定義するための構成データが含まれていてよい。いくつかの態様では、クラウドエクスチェンジポイント303の相互接続プラットフォーム(例えば、図2の相互接続プラットフォーム203)が、クラウドエクスチェンジポイント303のPEルータ302、304内で構成データを生成し、プロビジョニングする。PEルータ304Aは、クラウドサービス用にVRF402A、402Bにインストールされ顧客ネットワーク308Bへの到達可能性を提供しているルートを、クラウドサービスプロバイダネットワーク320AのPEルータ312Aに送信することにより、クラウドサービスプロバイダネットワーク320AのIPエンドポイントがレイヤ3クラウドサービスを顧客ネットワーク308Bに配信するのを可能にする(534)。いくつかの態様では、PEルータ302Aは、顧客ネットワーク308BのPEルータ310Bとのルーティングプロトコルピアリングセッションを介して、動的にルートを取得し、PEルータ310BがPE304Aにこのルートをアドバタイズして、VRF402Bにインストールできるようにする。いくつかの態様では、クラウドエクスチェンジポイント303の相互接続プラットフォームがインタフェース(例えば、ウェブベース又はその他のAPIフレームワーク)を提供し、これにより、顧客ネットワーク308Bを管理する顧客は、相互接続プラットフォームにルートを提供でき、相互接続プラットフォームは、ルートをPE302A及び/又はPE304Aにインストールして、最終的にVRF402B経由でPE312Aにアドバタイズできるようにする。続いてクラウドエクスチェンジポイント303は、レイヤ3サービストラフィックを、仮想回路330AのエンドツーエンドIP経路に沿って、クラウドサービスプロバイダネットワーク320Aから顧客ネットワーク308Bに切り替える(536)。
いくつかの実施例では、図4に示す通り、クラウドエクスチェンジポイント303は、クラウドサービスプロバイダネットワーク320Bにおける顧客308Bのルートのプロビジョニングに関して、VRF404A、404Bを使用して同様の動作530を行ってよい。このように、クラウドエクスチェンジポイント303は、仮想回路330A、330Bを用いたVRFに基づき、複数のクラウドサービスプロバイダから単一顧客ネットワークへの複数のクラウドサービスのクラウドサービストラフィックを集約してよい。
図7は、本開示に記載の技術を適用するように構成されたルータの一例を示すブロック図である。プロバイダエッジ(PE)ルータ600は、例えばPEルータ302、304を表す。加えて、本技術は特定のネットワークデバイス(例えばルータ)に関して説明されているが、本技術は、本明細書に記載の機能性を実行するように動作できる任意のネットワークデバイスで実現できる。PEルータ600の構成要素(コンポーネント)がIP/MPLSファブリックエンドポイント動作を適用して、本開示の技術に従うクラウドエクスチェンジポイント動作を促進する。PEルータ600は、本技術の任意のサブセットを適用してよい。さらに、これらのコンポーネントは例示的なものであり、PEルータ600は、任意の適切なコンポーネント構成を用いて本技術を適用してよい。
PEルータ600は、制御部602と、内部リンク622A〜622Bを介して制御部602に接続するインタフェースカード620A〜620B(「IFC620」)とを備える。制御部602は、ソフトウェア命令(例えば、ソフトウェアやコンピュータプログラムの定義に使われるソフトウェア命令)を実行する一つ以上のプロセッサ(図7では不図示)を備えてよく、このソフトウェア命令は、コンピュータで読み取り可能な記憶媒体(図7では同じく不図示)に記憶され、記憶媒体の例として、一つ以上のプロセッサに本明細書に記載の技術を実行させるための命令を記憶する、記憶装置(例えば、ディスクドライブ又は光ドライブ)、メモリ(例えば、フラッシュメモリ、ランダムアクセスメモリすなわちRAM)、その他の種類の揮発性又は不揮発性メモリを含む、コンピュータで読み取り可能な非一時的媒体が挙げられる。これに代替又は追加して、制御部102は、本明細書に記載の技術を実行するための専用ハードウェアを備えていてもよく、専用ハードウェアの例として、一つ以上の集積回路、一つ以上の特定用途向け集積回路(ASIC)、一つ以上の特定用途向け特殊プロセッサ(ASSP)、一つ以上のフィールドプログラマブルゲートアレイ(FPGA)、又はこれらの専用ハードウェアの例のうちの一つ以上の任意の組み合わせが挙げられる。
本実施例では、制御部602は論理的又は物理的な2つの「プレーン」に分かれ、第1のコントロールプレーン(ルーティングプレーン)604Aと、第2のデータプレーン(転送プレーン)604Bとを含む。すなわち、制御部602は、論理的に(例えば、同一のハードウェアコンポーネント一式上で実行される個別のソフトウェアインスタンスとして)、又は物理的に(例えば、ハードウェアにおいて静的に機能を実現するか、又はソフトウェアやコンピュータプログラムを動的に実行して機能を実現する個別の物理的専用ハードウェアコンポーネントとして)、2つの別個の機能(例えばルーティング機能と転送機能)を実現する。
制御部602のコントロールプレーン604Aは、PEルータ600のルーティング及びシグナリング機能を実行する。この点で、コントロールプレーン604Aは、MP−BGP610等のルーティングプロトコルを実装したルーティングプロトコル(RP)モジュール606を実行するための、制御部602のハードウェア又はハードウェアとソフトウェアの組み合わせを表し、このようなプロトコルにより、ルーティング情報を受信し、アドバタイズし、処理し、ルーティング情報ベース612に記憶してよい。RIB612は、一つ以上のVPNのトポロジを定義した情報を含み、この情報は、あるVRFに対応するルートターゲットと関連付けられている。すなわち、VRFとは、PEルータ600が動作するクラウドエクスチェンジポイントに対して確立された一つ以上のVPNへの、PEルータ600の参加を定義したものである。コントロールプレーン604Aは、RIB612内のルーティング情報で定義されているトポロジを解決して、様々なVPNを通る一つ以上のルートを選択又は決定できる。PEルータ600は、様々なインスタンスにおいて、様々なVPNのためのハブ型ルータ又はスポーク型ルータとして構成されてよい。すると、コントロールプレーン604Aは、上記ルートを用いてデータプレーン604Bを更新でき、データプレーン604Bは、これらのルートを転送情報616内に維持する。コントロールプレーン604Aは、デフォルトのルーティング及び転送インスタンスと、複数のVPNでルーティングし転送するための複数のVRFインスタンスを定義してもよい。
データプレーン604Bは、制御部602のハードウェア又はハードウェアとソフトウェアの組み合わせを表し、転送情報616に従って、インタフェースカード620から受信したネットワークトラフィックの高速転送を提供する。データプレーン604Bの転送コンポーネント617は、受信パケットのパケットキー情報を基に転送情報616のルックアップを行って、イングレスインタフェースとエグレスインタフェースを決定し、対応するパケットのカプセル化を決定する。転送コンポーネント617は、パケット転送エンジンを備えていてよい。
図示の実施例では、転送コンポーネント617は、ルートアップデートのインストール後、RPモジュール106からのルートアップデートを確認する。例えば、RPモジュール606は、転送情報616内でルートをプログラムするよう転送コンポーネント617に指示するルートアップデート624を発行する。転送コンポーネント617は、ルートをプログラムした後、ルートアップデート応答626を返送する。
管理インタフェース608はコントロールプレーン604B上で動作するプロセスであり、例えばクラウドエクスチェンジポイントの管理者又は相互接続プラットフォームがPEルータ600の構成データ614(「config.614」と図示)を修正できるようにするためのインタフェースを提供する。制御部602は、コンピュータで読み取り可能な記憶媒体に構成データ100を記憶する。管理インタフェース608は、管理者又は他の管理実体(例えば、図2の相互接続プラットフォーム203)が、テキストベースのコマンド、グラフィカルな対話、ウェブベースのポータル、アプリケーションプログラミングインタフェース(API)、又は別のインタフェースを使ってPEルータ600の構成を修正できるようにするインタフェースを提示してもよい。これに追加又は代替して、管理インタフェース608はエージェントを提示してもよく、このエージェントは、相互接続プラットフォーム203等の管理実体からシンプルネットワークマネジメントプロトコル(SNMP)コマンド又はNetconfコマンド又はRESTful API指令を受け取って、PEルータ600の構成及び管理情報を設定し取り出す。このように、自動化したやり方でPEルータ600を制御し、クラウドエクスチェンジポイントのPEルータ間にルート漏出を提供することにより、レイヤ3サービスのデリバリのため複数のクラウドサービスプロバイダネットワークを顧客とインテリジェントに相互接続できる。
図示の実施例では、管理実体が管理インタフェース608を呼び出し、レイヤ3ルートにアクセスする。このレイヤ3ルートは、顧客プロファイル670内の顧客及び/又はクラウドサービスプロバイダ(CSP)プロファイル672内のクラウドサービスプロバイダ用に構成されている。顧客プロファイル670には、クラウドエクスチェンジポイントプロバイダの複数の異なる顧客に関する一つ以上の顧客プロファイルが含まれている。顧客プロファイル670は、当該顧客に関連する顧客ネットワークの到達可能性情報と、クラウドエクスチェンジポイントに物理的に接続するための一つ以上の連結回路の構成情報を指定してよい。例えば、ある顧客の顧客プロファイル670は、関連の顧客ネットワークのCEルータ又はASBR/PEを次のホップとしてそれぞれ指定した一つ以上のレイヤ3ルートを指定してよく、顧客ネットワークの宛先サブネットを指定してもよい。管理インタフェース608は、新しく取得した顧客ネットワークの到達可能性情報をルートターゲットと共にMP−BGP660に投入してよく、これにより、RPモジュール606は、結果として顧客ネットワークへのレイヤ3到達可能性が提供されるように、ルートターゲットを伴う到達可能性情報を、クラウドエクスチェンジポイントの他のPEルータにアドバタイズしてよい。また、管理インタフェース608は、顧客プロファイルの連結回路情報を、当該顧客のためのVPNのVRFと関連付けてもよい。
CSPプロファイル672には、クラウドエクスチェンジポイントプロバイダの複数の異なるCSP顧客に関する一つ以上のクラウドサービスプロバイダプロファイルが含まれている。CSPプロファイル672は、当該顧客に関連するクラウドサービスプロバイダネットワークの到達可能性情報と、クラウドエクスチェンジポイントに物理的に接続するための一つ以上の連結回路の構成情報を指定してよい。例えば、あるCSPのCSPプロファイル672は、関連のCSPネットワークのCEルータ又はASBR/PEを次のホップとしてそれぞれ指定した一つ以上のレイヤ3ルートを指定してよく、CSPネットワークの宛先サブネットを指定してもよい。管理インタフェース608は、新しく取得したCSPネットワークの到達可能性情報とルートターゲットとをMP−BGP660に投入してよく、これにより、RPモジュール606は、結果としてCSPネットワークへのレイヤ3到達可能性が提供されるように、ルートターゲットを伴う到達可能性情報を、クラウドエクスチェンジポイントの他のPEルータにアドバタイズしてよい。また、管理インタフェース608は、CSPプロファイル672の連結回路情報を、当該CSPのためのVPNのVRFと関連付けてもよい。
レイヤ2/イーサネット(登録商標)エクスチェンジの実施例の詳細については、2012年9月13日出願の米国特許第8,537,845号「REAL TIME CONFIGURATION AND PROVISIONING FOR A CARRIER ETHERNET(登録商標) EXCHANGE」、及び2010年9月2日出願の米国実用特許出願第12/875,054号「REAL TIME CONFIGURATION AND PROVISIONING FOR A CARRIER ETHERNET(登録商標) EXCHANGE」に記載されており、この特許出願は、次の3つの米国特許出願の利益と優先権を主張している。1)2009年12月10日に出願され、参照によりその全体が本発明に援用される米国特許仮出願第61/285,371号「ETHERNET(登録商標) EXCHANGE」、2)2009年9月4日出願の米国特許仮出願第61/239,997号「PRIVATE NETWORK CONNECTIVITY PLATFORM」、3)2010年4月12日出願の米国特許仮出願第61/323,066号「ETHERNET(登録商標) EXCHANGE」。上記特許及び特許出願のいずれも、参照によりその全体が本発明に援用される。
図8Aと図8Bはそれぞれ、本明細書に記載の技術による、データセンターをベースとするクラウドエクスチェンジポイントの一実施例を示すものであり、このクラウドエクスチェンジポイントは、ネットワークアドレス変換を適用するように構成され、且つ複数のクラウドサービスプロバイダネットワークから顧客ネットワークへと集約サービストラフィックをルーティングし転送するように構成されている。図解しやすくする目的で、図8A及び図8Bでは、クラウドサービスプロバイダネットワーク320と顧客ネットワーク308は図示されていない。これらの実施例において、データセンターをベースとするクラウドエクスチェンジポイント303は、ネットワークアドレス変換(NAT)サービス718を適用することにより、クラウド集約リンク322を介してアクセス可能なクラウドサービスレイヤと、クラウドアクセスリンク316を介してアクセス可能なクラウドアクセスレイヤとの間で、部分的に、ネットワークアドレス分離を強制的に行う。
NATサービス718を適用するクラウドエクスチェンジポイント303のNATデバイスは、NAT(又はNAPT)(追加又は代替して、キャリアグレードNAT(「CG−NAT」又は「CGN」)を含んでもよい)を実施して、クラウドエクスチェンジポイント303のアドレス及びCSPルートを変換し、及び/又はクラウドエクスチェンジポイント303のアドレス及び顧客ルートを変換する。NATサービス718を適用するクラウドエクスチェンジポイント303のNATデバイス(本明細書では「NATサービス718デバイス」とも称する)が備えてよいものとして、一つ以上の専用NAT機器、現実のサーバ上で動作しネットワーク機能仮想化(NFV)を使ってNATを適用するように構成された一つ以上の仮想マシン、NATサービス718を適用するように構成され一つ以上のPE302、304に挿入された一つ以上のサービスカード、その他のボックス内又はボックス外のデバイスが挙げられる。
図8Aに示す、NATをL3クラウドサービストラフィックに適用するNATサービス718デバイスは、クラウドサービスプロバイダネットワーク320と顧客ネットワーク308との間のクラウドエクスチェンジポイント303を横断して、NATサービス718デバイスの「NAT内側」サイドでルーティング可能な顧客のL3アドレスと、NATサービス718デバイスの「NAT外側」サイドでルーティング可能なCSPのL3アドレスとの間で変換を行う。
図8Bは、NATサービス719デバイスのより詳細な例であり、図8AのNATサービス718の実装例を示す。図8AのNATサービス718と同様に、図8BのNATサービス719も、一つ以上のNATサービスデバイスで実装してよい。図8Bにおいて、NATサービス719はアドレスプール720と関連付けされ、アドレスプール720は、クラウドエクスチェンジポイント303自律システムのルートで構成され、NATサービス719は、ここからルートを引き出して自動的にプロビジョニングができ、またNAT目的で、各ピアリングセッション700、708A、708Bを介して受信した顧客及び/又はクラウドサービスプロバイダのルートと自動的にマッピングできる。アドレスプール720(又は「NATプール720」)における構成済みルートのネットワークアドレスは、パブリックアドレス、プライベートアドレス、又はその組み合わせのいずれであってもよく、IPv4ルート及び/又はIPv6ルートを表してよい。いくつかの実施例では、ネットワークアドレスのグローバルな一意性を提供する目的で、ネットワークアドレスはパブリックアドレスである。
アドレスマッピング722は、アドレスプール720から引き出すクラウドエクスチェンジポイント303のルートと、PE310、312のいずれかからクラウドエクスチェンジポイント303のルータが受信するルートとを関連付ける一つ以上のNATマッピング及び/又はNAPT(Network Address and Port Translation)を指定してよい。PE310、312のいずれかから変換のために受信され、エンドツーエンドのデリバリで使われるルートには、クラウドエクスチェンジプロバイダの企業/NSP顧客から得られる任意のIPアドレス/プレフィックスが含まれていてよく、このようなアドレスは、IPv4及び/又はIPv6のプライベートアドレス及び/又はパブリックアドレスを含み、クラウドエクスチェンジプロバイダが管理する一つ以上のクラウドエクスチェンジポイントのいずれかで受信されるアドレスである。
上記の通り、NATサービス719は、NATを実施することにより、顧客ネットワーク308B(図8A、8Bでは不図示)の顧客ルートと、集約したクラウドアクセスのためPE312A、312Bにアドバタイズされるクラウドエクスチェンジポイント303ルートを変換してよい。その結果、CSPネットワーク320(図8A、8Bでは不図示)は、顧客ルートの代わりに、アドレスプール720から引き出されたクラウドエクスチェンジポイント303のルートを受信する。このように、クラウドエクスチェンジポイント303は、CSPからの顧客ネットワーク情報をフィルタリングでき、CSPは、種々の顧客(企業及び/又はNSP)向けの複数の異なる自律システム(及び、数百もの数になり得る対応するASN)と関連付けられた(数百万もの数になり得る)顧客ルートを受信するのでなく、単一の自律システム(すなわち、クラウドエクスチェンジポイント303、及び各クラウドエクスチェンジポイントに一つのASN)に関連付けられたクラウドエクスチェンジポイント303ルートを受信する。さらに、クラウドエクスチェンジポイント303は自身のルートを顧客とCSP以外にはアドバタイズしないので、クラウドエクスチェンジポイント303は自身のルートをインターネットに公開しない。これにより、セキュリティを向上でき、クラウドエクスチェンジポイント303、及びクラウドエクスチェンジポイント303がピアリング関係を有する顧客/CSPに向けられたDoS又はその他の悪意ある活動を低減できる。加えて、上記の技術は、ローカルトラフィックを確実にローカルで(クラウドエクスチェンジポイント303内で)処理することにより、エンドツーエンドのクラウドサービスデリバリ処理を単純化でき、パフォーマンスを向上できる。
図示の実施例では、顧客ネットワーク308Bと関連付けされ、且つNAT対象であるサービストラフィックを引き込むため、NATサービス719は、イングレスサービスVRF712(「イングレス712」)及びエグレスサービスVRF714(「エグレス714」)と関連付けされている。イングレス712とエグレス714は、顧客ネットワーク308BとCSPネットワーク320A、320B間のクラウドサービストラフィックのための顧客サービスチェーンの一部を成す。顧客VRF710と関連する顧客ネットワーク308Bは、ピアリングセッション700を介して顧客PE310Bからルートを受信する。顧客VRF710は、クラウドエクスチェンジポイント303内に分散したイングレスサービスVRFとVPNフルメッシュ型関係を有する形で構成されてよい(ただし、図では一つのピアリングセッション702のみ示している)。
いくつかの実施例では、PE302Aは、VRF710に関して、ピアリングセッション700を介して受信した顧客ルートをNATサービス719に配信し、NATサービス719は、顧客ルートのプレフィックスを、アドレスプール720から引き出したクラウドエクスチェンジポイントルートのプレフィックスに動的にマッピングする。顧客ルートはイングレスサービスVRF712にインストールされる。NATサービス719は、このマッピングをアドレスマッピング722にインストールし、また、クラウドエクスチェンジポイントルートのプレフィックスとNATサービス719を次のホップとして指定するクラウドエクスチェンジポイントルートを、エグレスサービスVRF714にインストールする。このようにして、NATサービス719、より具体的にはエグレスサービスVRF714は、CSPネットワーク320から、顧客ネットワーク308Bに向けられているがエグレスサービスVRF714にインストールされたクラウドエクスチェンジポイントルートを行き先とする下流トラフィックを引き込む。イングレスサービスVRF712とエグレスサービスVRF714はピアリングセッション704を確立してよく、例えばiBGPを介してVRF712、714に互いにルートを漏出させるようにルートターゲットを用いて構成してよい。
エグレスサービスVRF714は、図4の例においてスポーク型VRFとして動作するPE302AのVRFと同様に、対応するハブ型VRFR730A、730Bに対するスポーク型VRFとして動作してよい。すなわち、エグレスサービスVRF714、及びVRF730A、730Bは、相互的ルートターゲットを用いて構成され、その結果、エグレスサービスVRF714は、エグレスサービスVRF714向けのインストール用のルートをVRF730A、730Bにアドバタイズし、他方、VRF730A、730Bは、対応するCSPネットワーク320A、320BのルートをエグレスサービスVRF714にアドバタイズする。CSPネットワーク320A、320Bのいずれかを行き先とするNAT処理済み上流サービストラフィックは、対応するハブ型VRF730A、730Bを通過する。このように、ピアリングセッション706A、706Bの各々を用いて、各CSPネットワーク320A、320Bのハブアンドスポーク型VPNを作成してよい。
PE302、304は、NATサービス719デバイスとの間でトンネルを確立してよい。ピアリングセッション702、706A、706Bを介して交換されるルートは、RFC4364に従って上記のように組み込まれたMPLS/BGP IP−VPNを実装するためのラベル付きルートを含んでよい。
クラウドエクスチェンジポイント303は、下記の通り、顧客ネットワーク308Aに向けたPE312Aからの下流サービストラフィックを転送し、NATサービス719を適用してよい。PE304Aは、集約リンク322A上でサービスパケットを受信する。このパケットは、アドレスプール720から引き出されるクラウドエクスチェンジポイント303アドレスである宛先アドレスを有する。集約リンク322Aと関連付けされたVRF730Aは、NATサービス719デバイス用のアドレスを指定した宛先アドレスに向けたルートを記憶し、PE304Aは、NATサービスを適用させるため、VRF730Aを使ってパケットをNATサービス719までトンネリングする。NATサービス719は、顧客ネットワーク308A向けルート用に動的にプロビジョニングされPE302Aから受信したアドレスマッピング722を使用して、NATを実行し、サービスパケットの宛先アドレスを顧客ネットワーク308Aの宛先アドレスに置き換える。NATサービス719デバイスは、イングレスサービスVRF712において、PE302Aまでのラベル付きルート(VRF710を識別するラベル)を決定し、修正済みサービスパケットをPE302Aまでトンネリングし、これにより、修正済みサービスパケットに付いたラベルからVRF710を識別できる。PE302Aは、修正済みサービスパケットをアクセスリンク316B経由でPE310Bに転送する。このように、クラウドエクスチェンジポイント303は、顧客にNATサービスを提供して、クラウドサービスレイヤから顧客を分離する。同様に、顧客ネットワークがクラウドエクスチェンジポイントにアクセスするためのクラウド又はネットワークアクセスレイヤからクラウドサービスプロバイダを分離するために、クラウドエクスチェンジポイント303は、NATを上流トラフィックに適用してよい。
図9は、本開示に記載の技術による、クラウドサービスに対する顧客ネットワークの柔軟なサブスクリプション(加入)を表すブロック図である。この例示クラウドエクスチェンジポイント303は、顧客のVRF810、イングレスVRF812、エグレスVRF814、及びCSPのVRF830で構成され、クラウドエクスチェンジポイント303のPEルータに対し、顧客サービスチェーン形成及びクラウドサービストラフィックのデリバリを促進するルートをアドバタイズさせる。図9が示す柔軟なサブスクリプションにおいて、どの顧客ネットワーク308も、任意のCSPネットワーク320に「加入」してクラウドサービストラフィックを受信でき、さらに、どの顧客ネットワーク308も、VRFベースのサービスチェーンに従ってクラウドエクスチェンジポイント303が提供するNATその他のネットワーク機能仮想化(NFV)サービスを受けることができる。
顧客ネットワーク308、CSPネットワーク320に連結したクラウドエクスチェンジポイント303のPEルータ(図9では不図示)はVRF810、830を用いて構成され、他方、NATサービスデバイス719等のサービス(例えば「ネットワーク機能仮想化」)ノードは、イングレスVRF812、エグレスVRF814を用いて構成される。例えば、顧客ネットワーク308Aは、CSPネットワーク320A、320Bに「加入」しており、例えば、このCSPネットワークからルートを受信し、このCSPネットワークへのL3到達可能性を有する。顧客ネットワーク308AとCSPネットワーク320Aの間のエンドツーエンドL3経路は、VRF実装サービスチェーン816Aを含み、これにより、図8Bに関して説明した通り、L3クラウドサービストラフィックにNATを適用させるため、L3クラウドサービストラフィックは、顧客ネットワーク308AとCSPネットワーク320A間のNATサービス719を横断する。これに対して、顧客ネットワーク308AとCSPネットワーク320Bの間のエンドツーエンドL3経路は、サービスチェーンを含まない。代わりに、顧客のVRF810Bは、CSPのVRF830Bから直接エクスポートされ「アップ」RTとマークされたルートをインポートし、CSPのVRF830Bは、顧客のVRF810Bからエクスポートされ「ダウン」RTとマークされたルートをインポートする。顧客ネットワーク308B、308C、308Dも、CSPネットワーク320Bに加入して、CSPネットワーク320Bとの間でL3クラウドサービストラフィックを交換する。このように、企業顧客は、NATサービスの有無によらず、複数の異なるCSPに加入できる。NATサービスは、イングレスすなわち「左」のVRF812及びエグレスすなわち「右」のVRF814を含めることにより、サービスチェーンを実現する。
VRF810の各々が、図8A、8Bに示すVRF710のインスタンス例を表すことができる。イングレスVRF812の各々が、図8A、8Bに示すVRF712のインスタンス例を表すことができる。エグレスVRF814の各々が、図8A、8Bに示すVRF714のインスタンス例を表すことができる。イングレスVRF830の各々が、図8A、8Bに示すVRF730のインスタンス例を表すことができる。
図9に示すマルチCSPネットワーク加入モデルによれば、CSPのVRF830は、一つ以上のスポーク型VRFに対するハブとして構成され、「アップ」RTとマークされたルートをエクスポートし、サービスチェーンが存在しない場合はスポーク型の顧客VRF810がこのルートをインポートする。スポーク型の顧客VRF810は、「ダウン」RTとマークされたルートをエクスポートし、サービスチェーンの存在しない場合はCSPのVRF830がこのルートをインポートする。
顧客ネットワーク308AとCSPネットワーク320A間のエンドツーエンドL3経路にサービスチェーン816Aが含まれる場合、エグレスVRF814BがCSPのVRF830AからインポートするCSPルートはネットワークアドレスであり、NATサービス719がこのアドレスを顧客ルートに変換し、次にイングレスVRF812Aは、顧客のVRF810Aがインポートできるように、この顧客ルートをエクスポートする。逆の方向では、イングレスVRF812Aが顧客のVRF810Aからインポートする顧客ルートはネットワークアドレスであり、このネットワークアドレスをNATサービス719がCSPルートに変換し、次にエグレスVRF814Bは、このCSPルートをCSPのVRF830Aにエクスポートする。このようにして、顧客ネットワーク308AとCSPネットワーク320Aは、ネットワークアドレス変換を用いて双方向L3クラウドサービストラフィックを交換できる。イングレスVRF812AとエグレスVRF814Aの間で、例えばiBGPセッションが動作することにより、ルートのアドバタイズが促進される。
顧客ネットワーク308AとCSPネットワーク320Aの間のエンドツーエンドL3経路を少なくとも部分的に実装するVRFの構成例を以下に示す。
以下の構成データでCSPのVRF830Aを構成することにより、エグレスVRF814Aとの間で集約ベースでルートを交換でき、且つCSPネットワーク320Aとの間でルートを交換できる。
RI-VRF-CSP001-001 {
description "CSP001 Routing Instance";
instance-type vrf;
interface xe-0/1/6.1;
route-distinguisher 10.8.8.2:4000;
vrf-import [ IMPORT-RT-RI-VRF-CSP001-001 IMPORT-TO-CSP001-001 ];
vrf-export [ EXPORT-RT-RI-VRF-CSP001-001 EXPORT-FROM-CSP001-001 DEFAULT_ACCEPT ];
routing-options {
auto-export;

protocols {
bgp {
group EXTERNAL-PEER {
type external;
peer-as 100;
neighbor 1.1.1.1 {
import IMPORT-BGP-PRIMARY;
family inet {
unicast {
prefix-limit {
maximum 500;



authentication-key "abcdefgh "; ## SECRET-DATA




IMPORT-TO-CSP001-001は「ダウン」RTであり、EXPORT-FROM-CSP001-001は「アップ」RTである。以下の構成データでCSPのVRF830Aを構成することにより、エグレスVRF814Aとの間で顧客固有ベースでルートを交換でき、且つCSPネットワーク320Aとの間でルートを交換できる。
RI-VRF-CSP003-001 {
description "CSP003 Routing Instance";
instance-type vrf;
interface xe-0/1/6.1;?
route-distinguisher 10.8.8.1:3000;
vrf-import [ IMPORT-RT-RI-VRF-CSP003-001 ];
vrf-export [ EXPORT-RT-RI-VRF-CSP003-001 DEFAULT_ACCEPT ];
routing-options {
auto-export;

protocols {
bgp {
group EXTERNAL-PEER {
type external;
peer-as 100;
neighbor 1.1.1.1 {
import IMPORT-BGP-PRIMARY;
family inet {
unicast {
prefix-limit {
maximum 500;



authentication-key "abcdefg"; ## SECRET-DATA




以下の構成データで顧客のVRF810Aを構成することにより、イングレスVRF812Aとの間で顧客固有ベースでルートを交換でき、且つ顧客ネットワーク308Aとの間でルートを交換できる。
RI-VRF-CUST0001-001 {
description "CUST0001 Routing Instance";
instance-type vrf;
interface xe-0/1/4.1;
route-distinguisher 10.8.8.2:3000;
vrf-import [ IMPORT-RT-RI-VRF-CUST0001-001];
vrf-export [ EXPORT-RT-RI-VRF-CUST0001-001 DEFAULT_ACCEPT ];
routing-options {
auto-export;

protocols {
bgp {
group EXTERNAL-PEER {
type external;
peer-as 200;
neighbor 1.1.1.1 {
import IMPORT-BGP-PRIMARY;
family inet {
unicast {
prefix-limit {
maximum 500;



authentication-key "abcdefg"; ## SECRET-DATA




イングレスVRF812Aを以下の構成データで構成することにより、下記の通り、iBGPを介して顧客のVRF810Aとの間及びエグレスVRF814Aとの間でルートを交換できる。
routing-instances {
RI-LVRF-CUST0001-001 {
description "RT-RI-VRF-CUST0001-001 Left Service VRF 001";
instance-type vrf;
interface lt-0/0/10.2;
interface ams0.2;
route-distinguisher 10.8.8.2:3000;
vrf-target target:65005:10000;
routing-options {
static {
route 1.4.1.1/32 next-hop ams0.2;

auto-export;

protocols {
bgp {
group INTERNAL {
type internal;
neighbor 1.3.1.1 {
hold-time 30;
import IMPORT-RI-LVRF-CUST0001-001-BGP;
export DENYALL;





policy-statement IMPORT-RI-LVRF-CUST0001-001-BGP {
then {
community delete ALL-RT;
next-hop 1.4.1.1;
accept;

ポリシーステートメント構成データは、イングレスVRF812Aの次のホップをNATサービス719に設定する。エグレスVRF814Aを以下の構成データで構成することにより、下記の通り、iBGPを介してCSPのVRF830Aとの間及びイングレスVRF812Aとの間でルートを交換できる。
RI-RVRF-CUST0001-001 {
description "RI-RVRF-CUST0001-001 Right Service VRF #001";
instance-type vrf;
interface lt-0/0/10.3;
interface ams0.3;
route-distinguisher 10.8.8.2:3000;
vrf-import [ ];
vrf-export [DEFAULT_ACCEPT ];
routing-options {
auto-export;

protocols {
bgp {
group INTERNAL {
type internal;
neighbor 1.3.1.0 {
hold-time 30;
import DENYALL;




NATサービスデバイス719を以下の構成データで構成することにより、iBGPセッションはNATエンジンをバイパスすることができる。
interfaces {
lt-0/0/10 {
unit 2 {
encapsulation ethernet;
peer-unit 3;
family inet {
address 1.3.1.0/31;


unit 3 {
encapsulation ethernet;
peer-unit 2;
family inet {
address 1.3.1.1/31;
address 1.4.1.1/31;


ams0 {
load-balancing-options {
member-interface mams-11/0/0;
...

services-options {
inactivity-non-tcp-timeout 10;

unit 2 {
family inet;
service-domain inside;

unit 3 {
family inet;
service-domain outside;
AMSインタフェース用のAMS構成データは、トラフィックを複数のマルチサービスカードにマッピングすることができる。NATサービスデバイス719用に設定された転送NATサービスを、以下の構成データを使って構成することができる。
service-set SERVICE-CUST0001-001 {
nat-rules RULE-CUST0001-001;
next-hop-service {
inside-service-interface ams0.2;
outside-service-interface ams0.3;


nat {
pool POOL-CUST0001-001 {
address 90.90.1.1/32;
port {
automatic;

snmp-trap-thresholds {
address-port low 25 high 75;


rule RULE-CUST0001-001 {
match-direction input;
term term1 {
then {
translated {
source-pool POOL-CUST0001-001;
translation-type {
napt-44;





pool POOL-CUST0001-001は、アドレスプール720のインスタンス例を表し得る。NATサービスデバイス719用に設定された逆NATサービスを、以下の構成データを使って構成することができる。
service-set SERVICE-CUST0001-002 {
nat-rules RULE-CUST0001-002;
next-hop-service {
inside-service-interface ams0.4;
outside-service-interface ams0.5;


nat {
pool POOL-CUST0001-002 {
address 90.90.1.1/32;
apply-groups CUST-NAT-POOL-TEMPLATE;

rule RULE-CUST0001-002 {
match-direction input;
term term1 {
from {
destination-address {
201.201.1.1/32;


then {
translated {
source-pool POOL-CUST0001-001;
translation-type {
napt-44;





destination-address 200.200.1.1/32は、AD又はパブリックサーバIP/サブネットを表し得る。
顧客は、NATサービスチェーンを伴わずにCSPネットワークに加入してもよい。顧客ネットワーク308DがCSP320B、320CそれぞれのVRF830B、830Cとルートを交換するための、顧客のVRF810Dの構成例を以下に示す。
RI-VRF-CUST0001-001 {
description "CUST0001 Routing Instance";
instance-type vrf;
interface xe-0/1/4.1;
route-distinguisher 10.8.8.2:3000;
vrf-import [ IMPORT-RT-RI-VRF-CUST0001-001 IMPORT-FROM-CSP002-001 IMPORT-FROM-CSP003-001];
vrf-export [ EXPORT-RT-RI-VRF-CUST0001-001 EXPORT-TO-CSP002-001 EXPORT-TO-CSP003-001 DEFAULT_ACCEPT ];
routing-options {
auto-export;
上記の例において、IMPORT-FROM-CSP001-001とIMPORT-FROM-CSP002-001は「アップ」RTを表し、EXPORT-TO-CSP001-001とEXPORT-TO-CSP002-001は「ダウン」RTを表す。サービスチェーン816Aを使用したNATを伴うCSPネットワーク320Aに加入するための、エグレスVRF814Aの構成例を以下に示す。
RI-RVRF-CUST0001-001 {
description "RI-RVRF-CUST0001-001 Right Service VRF #001";
instance-type vrf;
interface lt-0/0/10.3;
interface ams0.3;
route-distinguisher 10.8.8.2:6002;
vrf-import [ IMPORT-FROM-CSP001-001 ];
vrf-export [ EXPORT-TO-CSP001-001 DEFAULT_ACCEPT ];
上記の例において、IMPORT-FROM-CSP001-001は「アップ」RTを表し、EXPORT-TO-CSP001-001は「ダウン」RTを表す。
L2クラウドサービストラフィックに関して、PE302、304のいずれも、仮想スイッチとして動作するように構成してよい。仮想スイッチ構成のための構成データ例を以下に示す。
set routing-instances RI-VS-1 instance-type virtual-switch
set routing-instances RI-VS-1 route-distinguisher xxxxxxxxxxxxxxx
set routing-instances RI-VS-1 vrf-target target:xxxxxxxxxxxxxxxxxxxxxx
set routing-instances RI-VS-1 protocols evpn extended-vlan-list 100

set routing-instances RI-VS-1 bridge-domains BD-2130 domain-type bridge
set routing-instances RI-VS-1 bridge-domains BD-2130 vlan-id 100
set routing-instances RI-VS-1 bridge-domains BD-2130 interface xe-1/2/6.1 -------------------- Access enterprise site
set routing-instances RI-VS-1 bridge-domains BD-2130 interface ae2.45 -------------CSP site
set routing-instances RI-VS-1 bridge-domains BD-2130 bridge-options mac-table-size 2048
set routing-instances RI-VS-1 bridge-domains BD-2130 bridge-options mac-table-size packet-action drop
set routing-instances RI-VS-1 bridge-domains BD-2130 bridge-options interface-mac-limit 2048
set routing-instances RI-VS-1 bridge-domains BD-2130 bridge-options interface-mac-limit packet-action drop
本明細書に記載する技術は、ハードウェア、ソフトウェア、ファームウェア、又はそれらのいかなる組み合わせにおいて実装されてもよい。モジュール、ユニット、又は構成要素として記載する様々な特徴は、統合された論理デバイスにおいて共に、若しくは個別であるが相互運用可能な論理デバイスとして別個に、又はその他のハードウェアデバイスにおいて実装されてもよい。いくつかの場合では、電子回路の様々な特徴は、集積回路チップ又はチップセットなど、一つ以上の集積回路デバイスとして実装されてもよい。
ハードウェアの中に実装される場合には、本開示は、例えば、プロセッサ、又は集積回路チップ若しくはチップセットなどの集積回路デバイスといった装置を対象としてもよい。代替として又は追加として、ソフトウェア又はファームウェアにおいて実装される場合、技術は、実行されるとき、上に記載する方法のうちの一つ以上をプロセッサに実施させる命令を備える、コンピュータで読み取り可能なデータ記憶媒体によって、少なくとも一部を実現されてもよい。例えば、コンピュータで読み取り可能なデータ記憶媒体は、プロセッサによる実行の当該命令を記憶してもよい。
コンピュータで読み取り可能な媒体は、包装資材を含んでもよい、コンピュータプログラム製品の一部を形成してもよい。コンピュータで読み取り可能な媒体は、ランダムアクセスメモリ(RAM)、読み取り専用メモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、電気的に消去可能でプログラム可能な読み取り専用メモリ(EEPROM)、フラッシュメモリ、磁気又は光学データ記憶媒体、及び同種のものなど、コンピュータデータ記憶媒体を備えてもよい。いくつかの実施例では、製造品は、一つ以上のコンピュータで読み取り可能な記憶媒体を備えてもよい。
いくつかの実施例では、コンピュータで読み取り可能な記憶媒体は、非一時的な媒体を備えてもよい。用語「非一時的」は、記憶媒体が、搬送波又は伝播信号においては具体化されないことを示してもよい。ある実施例では、非一時的な記憶媒体は、経時変化し得るデータを(例えば、RAM又はキャッシュの中に)記憶してもよい。
コード又は命令は、一つ以上のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、又はその他の同等の集積若しくは個別の論理回路など、一つ以上のプロセッサを含む処理回路によって実行される、ソフトウェア及び/又はファームウェアであってもよい。したがって、本明細書で使用する通り、用語「プロセッサ」は、前述の構造のうちのいずれか、又は本明細書に記載する技術の実装に好適ないかなる他の構造を指してもよい。加えて、いくつかの態様では、本開示に記載の機能性は、ソフトウェアモジュール又はハードウェアモジュール内に提供されてもよい。
様々な実施形態について記載してきた。これらの及びその他の実施形態は、以下の実施例の範囲内である。
2 ネットワークシステム
100 クラウドエクスチェンジ
106 回線事業者、ネットワークサービスプロバイダ
108 クラウドの顧客
110 クラウドサービスプロバイダ
122 ネットワークインフラ
128 クラウドエクスチェンジポイント
200 クラウドエクスチェンジ
201 データセンター
203 相互接続プラットフォーム
204A NSPネットワーク
204B NSPネットワーク
204C NSPネットワーク
204D 顧客ネットワーク
204E 顧客ネットワーク
212 APIゲートウェイ
214 API
218 オーケストレーションエンジン
220 サブシステム
222 ネットワークインフラ
300 データセンター
301 インターネットプロトコル/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリック
302 PEルータ
303 クラウドエクスチェンジポイント
304 PEルータ
308 顧客ネットワーク
310 PEルータ
311 CEルータ
312 PEルータ
316 アクセスリンク
318 MP−iBGPメッシュ
320 クラウドサービスプロバイダネットワーク
322 クラウド集約リンク
330 仮想回路
402 VRF
406 ピアリング接続
408 ピアリング接続
410 ピアリング接続
500 動作モード
530 動作モード
600 PEルータ
602 制御部
604A コントロールプレーン
604B データプレーン
606 RPモジュール
608 管理インタフェース
612 RIB(ルーティング情報ベース)
613 プロセッサ
614 構成データ(Config)
616 転送情報
617 転送コンポーネント
620 インタフェースカード
622 内部リンク
624 ルートアップデート
626 ルートアップデート応答
660 MP−BGP
670 顧客プロファイル
672 CSPプロファイル
700 ピアリングセッション
704 ピアリングセッション
708 ピアリングセッション
710 VRF
712 イングレスサービスVRF
714 エグレスサービスVRF
718 ネットワークアドレス変換(NAT)サービス
719 ネットワークアドレス変換(NAT)サービス
720 アドレスプール
722 アドレスマッピング
730 VRF
810 顧客のVRF
812 イングレスVRF
814 エグレスVRF
816 サービスチェーン
830 CSPのVRF

Claims (29)

  1. データセンター内に設置される、レイヤ3(L3)自律システムであって、前記L3自律システムが、複数のクラウドサービスプロバイダネットワークの各々から、少なくとも一つのクラウドサービスのための、及び一つ以上の顧客ネットワークへの配信のためのクラウドサービストラフィックを受信するように構成される、レイヤ3(L3)自律システムと、
    前記データセンター内で、前記それぞれの複数のクラウドサービスプロバイダネットワークを、前記L3自律システムに接続するように構成される、複数の連結回路と、
    前記データセンター内で、前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続するように構成される、一つ以上の連結回路と、
    を備え、
    前記L3自律システムは、前記複数のクラウドサービスプロバイダネットワークと前記一つ以上の顧客ネットワークとの間に、エンドツーエンドL3経路を確立することによって、前記複数のクラウドサービスプロバイダネットワークと前記一つ以上の顧客ネットワークとを相互接続するように構成され、各エンドツーエンドL3経路は、前記複数のクラウドサービスプロバイダネットワークそれぞれを前記L3自律システムに接続する、前記複数の連結回路のうちの一つを含み、また前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する、前記一つ以上の連結回路のうちの一つも含み、
    前記L3自律システムは、前記複数のクラウドサービスプロバイダネットワークそれぞれを前記エンドツーエンドL3経路に沿って接続する前記複数の連結回路上で受信されるクラウドサービストラフィックを、前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する前記一つ以上の連結回路に転送するように構成される、
    クラウドベースのサービス交換ポイント。
  2. 前記L3自律システムは、ルーティングプロトコルへの自律システム経路内で前記L3自律システムを識別する自律システム番号を用いて構成される、
    請求項1に記載のクラウドベースのサービス交換ポイント。
  3. 前記L3自律システムは、集約されたクラウドサービストラフィックを形成するため、前記複数のクラウドサービスプロバイダネットワークのうちの第1のクラウドサービスプロバイダネットワークから生じる第1のクラウドサービストラフィックと、前記複数のクラウドサービスプロバイダネットワークのうちの第2のクラウドサービスプロバイダネットワークから生じる第2のクラウドサービストラフィックと、を集約するように構成され、
    前記L3自律システムは、前記集約されたクラウドサービストラフィックを前記一つ以上の顧客ネットワークのうちのいずれかの顧客ネットワークに送達するように構成される、
    請求項1に記載のクラウドベースのサービス交換ポイント。
  4. 前記L3自律システムは、集約されたクラウドサービストラフィックを形成するため、前記一つ以上の顧客ネットワークのうちの第1の顧客ネットワークから生じる第1のクラウドサービストラフィックと、前記一つ以上の顧客ネットワークのうちの第2の顧客ネットワークから生じる第2のクラウドサービストラフィックと、を集約するように構成され、
    前記L3自律システムは、前記集約されたクラウドサービストラフィックを前記複数のクラウドサービスプロバイダネットワークのうちのいずれかのクラウドサービスプロバイダネットワークに送達するように構成される、
    請求項1に記載のクラウドベースのサービス交換ポイント。
  5. 前記一つ以上の顧客ネットワークの各々は、ネットワークサービスプロバイダネットワークと企業ネットワークのうちの一つを含む、
    請求項1に記載のクラウドベースのサービス交換ポイント。
  6. 前記L3自律システムは、複数のトンネルによって複数のプロバイダエッジ(PE)ルータを相互接続するインターネットプロトコルネットワークを備え、
    前記エンドツーエンドL3経路の各々は、前記複数のトンネルのうちの一つを含む、
    請求項1に記載のクラウドベースのサービス交換ポイント。
  7. 前記IPネットワークは、IP/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリックを備え、
    前記複数のPEルータは、前記複数のクラウドサービスプロバイダネットワークのうちのいずれかのクラウドサービスプロバイダネットワークから提供される、前記少なくとも一つのクラウドサービスのうちのいずれかのクラウドサービスのための、仮想プライベートネットワークの一つ以上のルーティング及び転送インスタンス(VRF)を定義する構成データを取得するように構成される、
    請求項6に記載のクラウドベースのサービス交換ポイント。
  8. 前記IPネットワークは、IP/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリックを備え、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第1のPEルータであって、前記複数の連結回路のうち前記クラウドサービスプロバイダネットワークにも連結されている連結回路に連結された前記第1のPEルータは、前記少なくとも一つのクラウドサービスのうちのいずれかのクラウドサービスへのルートを指定するL3ルートをエクスポートするように構成され、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第2のPEルータであって、前記一つ以上の連結回路のうち前記一つ以上の顧客ネットワークのうちのいずれかの顧客ネットワークにも連結されている連結回路に連結された前記第2のPEルータは、前記クラウドサービスへの前記ルートを指定する前記L3ルートをインポートするように構成され、
    前記第1のPEルータは、前記クラウドサービスのためのクラウドサービストラフィックを前記L3ルートに従って前記第2のPEルータに転送するように構成される、
    請求項6に記載のクラウドベースのサービス交換ポイント。
  9. 前記クラウドサービスのためのハブアンドスポーク型仮想プライベートネットワークに対し、前記第1のPEルータはハブ型ルータであり、前記第2のPEルータはスポーク型ルータである、請求項8に記載のクラウドベースのサービス交換ポイント。
  10. 前記IPネットワークは、IP/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリックを備え、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第1のPEルータであって、前記複数の連結回路のうち前記顧客ネットワークにも連結されている連結回路に連結された前記第1のPEルータは、前記複数の顧客ネットワークのうちのいずれかの顧客ネットワークへのルートを指定するL3ルートをエクスポートするように構成され、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第2のPEルータであって、前記一つ以上の連結回路のうち前記クラウドサービスプロバイダにも連結されている連結回路に連結された前記第2のPEルータは、前記顧客ネットワークへの前記ルートを指定する前記L3ルートをインポートするように構成され、
    前記第1のPEルータは、前記クラウドサービスのためのクラウドサービストラフィックを前記L3ルートに従って前記第2のPEルータに転送するように構成される、
    請求項6に記載のクラウドベースのサービス交換ポイント。
  11. 前記クラウドサービスのためのハブアンドスポーク型仮想プライベートネットワークに対し、前記第1のPEルータはスポーク型ルータであり、前記第2のPEルータはハブ型ルータである、請求項10に記載のクラウドベースのサービス交換ポイント。
  12. 前記一つ以上の顧客ネットワークは、前記複数のクラウドサービスプロバイダネットワークに対するL3ルートを、前記クラウドベースのサービス交換ポイントのオペレータと、前記L3自律システムのうちの一つのみから受信する、
    請求項1に記載のクラウドベースのサービス交換ポイント。
  13. 前記L3自律システムは、前記クラウドサービストラフィックにネットワークアドレス変換(NAT)サービスを適用するように構成されたNATサービスデバイスを備え、
    前記クラウドサービストラフィックは、前記クラウドエクスチェンジポイントから前記複数のクラウドサービスプロバイダネットワークにアドバタイズされるL3アドレスである宛先L3アドレスを含み、
    前記NATサービスを前記クラウドサービストラフィックに適用するため、前記NATサービスデバイスは、前記クラウドサービストラフィックの前記宛先L3アドレスを修正して、前記一つ以上の顧客ネットワークから前記L3自律システムにアドバタイズされるL3アドレスである宛先L3アドレスを含む修正済みクラウドサービストラフィックを生成するように構成され、
    前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する前記一つ以上の連結回路に前記クラウドサービストラフィックを転送するため、前記L3自律システムは、前記修正済みクラウドサービストラフィックの前記宛先L3アドレスに基づき、前記一つ以上の顧客ネットワークのそれぞれを前記L3自律システムに接続する前記一つ以上の連結回路に、前記修正済みクラウドサービストラフィックを転送するように構成される、
    請求項12に記載のクラウドベースのサービス交換ポイント。
  14. 前記NATサービスデバイスは、前記クラウドエクスチェンジポイントから前記複数のクラウドサービスプロバイダネットワークにアドバタイズされる前記L3アドレスを含むアドレスプールを伴って構成され、
    前記NATサービスデバイスは、前記一つ以上の顧客ネットワークからアドバタイズされる前記L3アドレスの受信に応答して、前記一つ以上の顧客ネットワークからアドバタイズされる前記L3アドレスを、前記クラウドエクスチェンジポイントから前記複数のクラウドサービスプロバイダネットワークにアドバタイズされる前記L3アドレスに自動的にマッピングするように構成される、
    請求項13に記載のクラウドベースのサービス交換ポイント。
  15. データセンター内に設置される、クラウドベースのサービス交換ポイントのレイヤ3(L3)自律システムにより、複数のクラウドサービスプロバイダネットワークの各々から、少なくとも一つのクラウドサービスのための、及び一つ以上の顧客ネットワークへの配信のためのクラウドサービストラフィックを受信すること
    を含む方法であって、
    複数の連結回路が、前記データセンター内で、前記それぞれの複数のクラウドサービスプロバイダネットワークを前記L3自律システムに接続するように構成され、
    一つ以上の連結回路が、前記データセンター内で、前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続するように構成され、
    前記方法は、前記複数のクラウドサービスプロバイダネットワークと前記一つ以上の顧客ネットワークとの間に、エンドツーエンドL3経路を確立することによって、前記L3自律システムにより、前記複数のクラウドサービスプロバイダネットワークと前記一つ以上の顧客ネットワークとを相互接続すること
    を含み、
    各エンドツーエンドL3経路は、前記複数のクラウドサービスプロバイダネットワークそれぞれを前記L3自律システムに接続する、前記複数の連結回路のうちの一つを含み、また前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する、前記一つ以上の連結回路のうちの一つも含み、
    前記方法は、前記L3自律システムにより、前記複数のクラウドサービスプロバイダネットワークそれぞれを前記エンドツーエンドL3経路に沿って接続する前記複数の連結回路上で受信されるクラウドサービストラフィックを、前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する前記一つ以上の連結回路に転送すること
    を含む、方法。
  16. 前記L3自律システムは、ルーティングプロトコルへの自律システム経路内で前記L3自律システムを識別する自律システム番号を用いて構成される、
    請求項15に記載の方法。
  17. 集約されたクラウドサービストラフィックを形成するため、前記L3自律システムにより、前記複数のクラウドサービスプロバイダネットワークのうちの第1のクラウドサービスプロバイダネットワークから生じる第1のクラウドサービストラフィックと、前記複数のクラウドサービスプロバイダネットワークのうちの第2のクラウドサービスプロバイダネットワークから生じる第2のクラウドサービストラフィックと、を集約することと、
    前記L3自律システムにより、前記集約されたクラウドサービストラフィックを前記一つ以上の顧客ネットワークのうちのいずれかの顧客ネットワークに送達することと、
    をさらに含む、請求項15に記載の方法。
  18. 集約されたクラウドサービストラフィックを形成するため、前記L3自律システムにより、前記一つ以上の顧客ネットワークのうちの第1の顧客ネットワークから生じる第1のクラウドサービストラフィックと、前記一つ以上の顧客ネットワークのうちの第2の顧客ネットワークから生じる第2のクラウドサービストラフィックと、を集約することと、
    前記L3自律システムにより、前記集約されたクラウドサービストラフィックを前記複数のクラウドサービスプロバイダネットワークのうちのいずれかのクラウドサービスプロバイダネットワークに送達することと、
    をさらに含む、請求項15に記載の方法。
  19. 前記一つ以上の顧客ネットワークの各々は、ネットワークサービスプロバイダネットワークと企業ネットワークのうちの一つを含む、請求項15に記載の方法。
  20. 前記L3自律システムは、複数のトンネルによって複数のプロバイダエッジ(PE)ルータを相互接続するインターネットプロトコルネットワークを備え、
    前記エンドツーエンドL3経路の各々は、前記複数のトンネルのうちの一つを含む、
    請求項15に記載の方法。
  21. 前記IPネットワークは、IP/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリックを備え、
    前記複数のPEルータは、前記複数のクラウドサービスプロバイダネットワークのうちのいずれかのクラウドサービスプロバイダネットワークから提供される、前記少なくとも一つのクラウドサービスのうちのいずれかのクラウドサービスのための、仮想プライベートネットワークの一つ以上のルーティング及び転送インスタンス(VRF)を定義する構成データを取得する、
    請求項20に記載の方法。
  22. 前記IPネットワークは、IP/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリックを備え、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第1のPEルータであって、前記複数の連結回路のうち前記クラウドサービスプロバイダネットワークにも連結されている連結回路に連結された前記第1のPEルータは、前記少なくとも一つのクラウドサービスのうちのいずれかのクラウドサービスへのルートを指定するL3ルートをエクスポートし、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第2のPEルータであって、前記一つ以上の連結回路のうち前記一つ以上の顧客ネットワークのうちのいずれかの顧客ネットワークにも連結されている連結回路に連結された前記第2のPEルータは、前記クラウドサービスへの前記ルートを指定する前記L3ルートをインポートし、
    前記第1のPEルータは、前記クラウドサービスのためのクラウドサービストラフィックを前記L3ルートに従って前記第2のPEルータに転送する、
    請求項20に記載の方法。
  23. 前記クラウドサービスのためのハブアンドスポーク型仮想プライベートネットワークに対し、前記第1のPEルータはハブ型ルータであり、前記第2のPEルータはスポーク型ルータである、請求項22に記載の方法。
  24. 前記IPネットワークは、IP/マルチプロトコルラベルスイッチング(IP/MPLS)ファブリックを備え、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第1のPEルータであって、前記複数の連結回路のうち前記顧客ネットワークにも連結されている連結回路に連結された前記第1のPEルータは、前記複数の顧客ネットワークのうちのいずれかの顧客ネットワークへのルートを指定するL3ルートをエクスポートし、
    前記エンドツーエンドL3経路を確立するため、前記複数のPEルータのうちの第2のPEルータであって、前記一つ以上の連結回路のうち前記クラウドサービスプロバイダにも連結されている連結回路に連結された前記第2のPEルータは、前記顧客ネットワークへの前記ルートを指定する前記L3ルートをインポートし、
    前記第1のPEルータは、前記クラウドサービスのためのクラウドサービストラフィックを前記L3ルートに従って前記第2のPEルータに転送する、
    請求項20に記載の方法。
  25. 前記クラウドサービスのためのハブアンドスポーク型仮想プライベートネットワークに対し、前記第1のPEルータはスポーク型ルータであり、前記第2のPEルータはハブ型ルータである、請求項24に記載の方法。
  26. 前記L3自律システムは、前記クラウドサービストラフィックにネットワークアドレス変換(NAT)サービスを適用するNATサービスデバイスを備える、請求項20に記載の方法。
  27. 前記クラウドサービストラフィックは、前記クラウドエクスチェンジポイントから前記複数のクラウドサービスプロバイダネットワークにアドバタイズされるL3アドレスである宛先L3アドレスを含み、
    前記NATサービスを前記クラウドサービストラフィックに適用するため、前記NATサービスデバイスは、前記クラウドサービストラフィックの前記宛先L3アドレスを修正して、前記一つ以上の顧客ネットワークから前記L3自律システムにアドバタイズされるL3アドレスである宛先L3アドレスを含む修正済みクラウドサービストラフィックを生成し、
    前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する前記一つ以上の連結回路に前記クラウドサービストラフィックを転送するため、前記L3自律システムは、前記修正済みクラウドサービストラフィックの前記宛先L3アドレスに基づき、前記一つ以上の顧客ネットワークのそれぞれを前記L3自律システムに接続する前記一つ以上の連結回路に、前記修正済みクラウドサービストラフィックを転送する、
    請求項26に記載の方法。
  28. 前記NATサービスデバイスは、前記クラウドエクスチェンジポイントから前記複数のクラウドサービスプロバイダネットワークにアドバタイズされる前記L3アドレスを含むアドレスプールを伴って構成され、
    前記NATサービスデバイスは、前記一つ以上の顧客ネットワークからアドバタイズされる前記L3アドレスの受信に応答して、前記一つ以上の顧客ネットワークからアドバタイズされる前記L3アドレスを、前記クラウドエクスチェンジポイントから前記複数のクラウドサービスプロバイダネットワークにアドバタイズされる前記L3アドレスに自動的にマッピングする、
    請求項27に記載の方法。
  29. 相互接続プラットフォームと、
    データセンター内に設置されるレイヤ3(L3)自律システムと、
    を備えるクラウドベースのサービス交換ポイントであって、
    前記L3自律システムは、複数のクラウドサービスプロバイダネットワークの各々から、少なくとも一つのクラウドサービスのための、及び一つ以上の顧客ネットワークへの配信のためのクラウドサービストラフィックを受信するように構成され、
    前記クラウドベースのサービス交換ポイントは、
    前記データセンター内で、前記それぞれの複数のクラウドサービスプロバイダネットワークを、前記L3自律システムに接続するように構成される、複数の連結回路と、
    前記データセンター内で、前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続するように構成される、一つ以上の連結回路と、
    を備え、
    前記L3自律システムは、前記複数のクラウドサービスプロバイダネットワークと前記一つ以上の顧客ネットワークとの間に、エンドツーエンドL3経路を確立することによって、前記複数のクラウドサービスプロバイダネットワークと前記一つ以上の顧客ネットワークとを前記相互接続プラットフォームにより相互接続するように構成され、各エンドツーエンドL3経路は、前記複数のクラウドサービスプロバイダネットワークそれぞれを前記L3自律システムに接続する、前記複数の連結回路のうちの一つを含み、また前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する、前記一つ以上の連結回路のうちの一つも含み、
    前記L3自律システムは、前記複数のクラウドサービスプロバイダネットワークそれぞれを前記エンドツーエンドL3経路に沿って接続する前記複数の連結回路上で受信されるクラウドサービストラフィックを、前記一つ以上の顧客ネットワークそれぞれを前記L3自律システムに接続する前記一つ以上の連結回路に前記相互接続プラットフォームにより転送するように構成される、
    クラウドベースのサービス交換ポイント。
JP2016573978A 2015-04-17 2016-04-15 クラウドベースのサービス交換 Active JP6491241B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562149374P 2015-04-17 2015-04-17
US62/149,374 2015-04-17
US15/099,407 US9948552B2 (en) 2015-04-17 2016-04-14 Cloud-based services exchange
US15/099,407 2016-04-14
PCT/US2016/027721 WO2016168577A1 (en) 2015-04-17 2016-04-15 Cloud-based services exchange

Publications (2)

Publication Number Publication Date
JP2017524290A true JP2017524290A (ja) 2017-08-24
JP6491241B2 JP6491241B2 (ja) 2019-03-27

Family

ID=55910365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016573978A Active JP6491241B2 (ja) 2015-04-17 2016-04-15 クラウドベースのサービス交換

Country Status (9)

Country Link
US (2) US9948552B2 (ja)
EP (1) EP3155765B1 (ja)
JP (1) JP6491241B2 (ja)
CN (1) CN106464592B (ja)
AU (1) AU2016248307B2 (ja)
BR (1) BR112016029187A2 (ja)
CA (1) CA2951940C (ja)
SG (1) SG11201610056RA (ja)
WO (1) WO2016168577A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160005A1 (ja) * 2018-02-15 2019-08-22 日本電信電話株式会社 経路情報転送装置、経路情報転送方法および経路情報転送プログラム
JPWO2021059353A1 (ja) * 2019-09-24 2021-04-01
WO2021059352A1 (ja) * 2019-09-24 2021-04-01 エヌ・ティ・ティ・コミュニケーションズ株式会社 表示制御システム、表示方法、及びプログラム
JP2022043118A (ja) * 2017-10-02 2022-03-15 ヴィーエムウェア, インコーポレイテッド 複数のパブリッククラウドに跨る仮想ネットワークの生成
JP2022070804A (ja) * 2020-11-24 2022-05-13 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド プライベートネットワーク間の通信のための方法、装置、電子機器、記憶媒体およびコンピュータプログラム
JP2022545608A (ja) * 2019-08-27 2022-10-28 ヴィーエムウェア, インコーポレイテッド 仮想ネットワークを実施するためのリコメンデーションの提供
US11700196B2 (en) 2017-01-31 2023-07-11 Vmware, Inc. High performance software-defined core network
US11709710B2 (en) 2020-07-30 2023-07-25 Vmware, Inc. Memory allocator for I/O operations
US11716286B2 (en) 2019-12-12 2023-08-01 Vmware, Inc. Collecting and analyzing data regarding flows associated with DPI parameters
US11722925B2 (en) 2020-01-24 2023-08-08 Vmware, Inc. Performing service class aware load balancing to distribute packets of a flow among multiple network links
US11729065B2 (en) 2021-05-06 2023-08-15 Vmware, Inc. Methods for application defined virtual network service among multiple transport in SD-WAN
US11792127B2 (en) 2021-01-18 2023-10-17 Vmware, Inc. Network-aware load balancing
US11804988B2 (en) 2013-07-10 2023-10-31 Nicira, Inc. Method and system of overlay flow control
US11895194B2 (en) 2017-10-02 2024-02-06 VMware LLC Layer four optimization for a virtual network defined over public cloud
US11894949B2 (en) 2017-10-02 2024-02-06 VMware LLC Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SaaS provider
US11902086B2 (en) 2017-11-09 2024-02-13 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
US11909815B2 (en) 2022-06-06 2024-02-20 VMware LLC Routing based on geolocation costs
US11929903B2 (en) 2020-12-29 2024-03-12 VMware LLC Emulating packet flows to assess network links for SD-WAN
US11943146B2 (en) 2021-10-01 2024-03-26 VMware LLC Traffic prioritization in SD-WAN
US11979325B2 (en) 2021-01-28 2024-05-07 VMware LLC Dynamic SD-WAN hub cluster scaling with machine learning

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104823175B (zh) * 2012-12-03 2019-04-16 慧与发展有限责任合伙企业 云服务管理系统
US10749711B2 (en) 2013-07-10 2020-08-18 Nicira, Inc. Network-link method useful for a last-mile connectivity in an edge-gateway multipath system
US10230571B2 (en) 2014-10-30 2019-03-12 Equinix, Inc. Microservice-based application development framework
CN113190495A (zh) 2014-12-08 2021-07-30 安博科技有限公司 从远程网络区域进行内容检索的系统及方法
WO2016110785A1 (en) 2015-01-06 2016-07-14 Umbra Technologies Ltd. System and method for neutral application programming interface
EP3251301A4 (en) 2015-01-28 2018-10-10 Umbra Technologies Ltd. System and method for a global virtual network
EP4325804A2 (en) * 2015-04-07 2024-02-21 Umbra Technologies Ltd. Multi-perimeter firewall in the cloud
US10135789B2 (en) 2015-04-13 2018-11-20 Nicira, Inc. Method and system of establishing a virtual private network in a cloud service for branch networking
US10498652B2 (en) 2015-04-13 2019-12-03 Nicira, Inc. Method and system of application-aware routing with crowdsourcing
US10425382B2 (en) 2015-04-13 2019-09-24 Nicira, Inc. Method and system of a cloud-based multipath routing protocol
US9948552B2 (en) * 2015-04-17 2018-04-17 Equinix, Inc. Cloud-based services exchange
US10291726B2 (en) 2015-05-12 2019-05-14 Equinix, Inc. Network field unit for a cloud-based services exchange
EP3308504A4 (en) 2015-06-11 2019-01-02 Umbra Technologies Ltd. System and method for network tapestry multiprotocol integration
US9667657B2 (en) * 2015-08-04 2017-05-30 AO Kaspersky Lab System and method of utilizing a dedicated computer security service
US11070395B2 (en) * 2015-12-09 2021-07-20 Nokia Of America Corporation Customer premises LAN expansion
ES2931177T3 (es) 2015-12-11 2022-12-27 Umbra Tech Ltd Sistema y método para lanzamiento de información a través de un tapiz de red y granularidad de una marca
US9674108B1 (en) * 2015-12-30 2017-06-06 Accenture Global Solutions Limited Hub-and-spoke connection architecture
CN108353034B (zh) 2016-01-11 2020-08-11 环球互连及数据中心公司 用于数据中心基础设施监测的方法、系统和存储介质
US9866637B2 (en) 2016-01-11 2018-01-09 Equinix, Inc. Distributed edge processing of internet of things device data in co-location facilities
US10892942B2 (en) 2016-01-22 2021-01-12 Equinix, Inc. Container-based cloud exchange disaster recovery
US10367655B2 (en) * 2016-01-25 2019-07-30 Alibaba Group Holding Limited Network system and method for connecting a private network with a virtual private network
US10158727B1 (en) 2016-03-16 2018-12-18 Equinix, Inc. Service overlay model for a co-location facility
US10742721B1 (en) 2016-04-01 2020-08-11 Equinix, Inc. Inter-metro connectivity network connect
US10878483B1 (en) 2016-04-07 2020-12-29 Equinix, Inc. Method, system, and medium for asset-based permissions management for resellers of cloud exchange assets
US10523631B1 (en) 2016-04-14 2019-12-31 Equinix, Inc. Communities of interest in a cloud exchange
US10819630B1 (en) 2016-04-20 2020-10-27 Equinix, Inc. Layer three instances for a cloud-based services exchange
WO2017187263A1 (en) 2016-04-26 2017-11-02 Umbra Technologies Ltd. Sling-routing logic and load balancing
US10491462B1 (en) 2016-05-06 2019-11-26 Equinix, Inc. Port verification for customer interconnection in a data center
GB2566657B8 (en) 2016-06-30 2022-04-13 Sophos Ltd Proactive network security using a health heartbeat
US10756928B2 (en) * 2016-07-29 2020-08-25 At&T Intellectual Property I, L.P. Interconnection between enterprise network customers and network-based cloud service providers
US10341371B2 (en) 2016-08-31 2019-07-02 Nicira, Inc. Identifying and handling threats to data compute nodes in public cloud
US10397136B2 (en) 2016-08-27 2019-08-27 Nicira, Inc. Managed forwarding element executing in separate namespace of public cloud data compute node than workload application
US10965733B2 (en) * 2016-08-28 2021-03-30 Vmware, Inc. Efficient, automated distributed-search methods and systems
US11604665B2 (en) * 2016-08-28 2023-03-14 Vmware, Inc. Multi-tiered-application distribution to resource-provider hosts by an automated resource-exchange system
US10120734B1 (en) 2016-08-29 2018-11-06 Equinix, Inc. Application programming interface and services engine with application-level multi-tenancy
WO2018047167A1 (en) * 2016-09-07 2018-03-15 Cloud Of Things, Ltd System and method for configuration of a connected device connection
US10200311B2 (en) * 2016-09-08 2019-02-05 Cisco Technology, Inc. Computer network control for application instantiation
US10574558B1 (en) 2016-09-09 2020-02-25 Equinix, Inc. Limiting alarms in an asset monitoring system
US10567252B1 (en) 2016-12-28 2020-02-18 Equinix, Inc. Network connection service high availability evaluation for co-location facilities
US11057498B1 (en) 2016-12-30 2021-07-06 Equinix, Inc. Inter-data center data transfer using unmanned vehicles
US10250500B2 (en) * 2016-12-30 2019-04-02 Juniper Networks, Inc. Performing a service on a packet
US11121962B2 (en) 2017-01-31 2021-09-14 Vmware, Inc. High performance software-defined core network
US10992558B1 (en) 2017-11-06 2021-04-27 Vmware, Inc. Method and apparatus for distributed data network traffic optimization
US20200036624A1 (en) 2017-01-31 2020-01-30 The Mode Group High performance software-defined core network
US20180219765A1 (en) 2017-01-31 2018-08-02 Waltz Networks Method and Apparatus for Network Traffic Control Optimization
US11706127B2 (en) 2017-01-31 2023-07-18 Vmware, Inc. High performance software-defined core network
US11252079B2 (en) 2017-01-31 2022-02-15 Vmware, Inc. High performance software-defined core network
US10778528B2 (en) 2017-02-11 2020-09-15 Nicira, Inc. Method and system of connecting to a multipath hub in a cluster
US10523542B2 (en) 2017-03-20 2019-12-31 At&T Intellectual Property I, L.P. Systems and methods for testing integrated cloud interoperability, adjacent network compatibility and service chain connectivity
US10389596B2 (en) 2017-03-30 2019-08-20 Ca, Inc. Discovering application topologies
US10749841B2 (en) 2017-04-10 2020-08-18 At&T Intellectual Property I, L.P. Border gateway protocol multipath scaled network address translation system
EP3635915A1 (en) 2017-06-09 2020-04-15 Equinix, Inc. Near real-time messaging service for data center infrastructure monitoring data
WO2018232022A1 (en) * 2017-06-13 2018-12-20 Equinix, Inc. Service peering exchange
US10673702B2 (en) * 2017-06-19 2020-06-02 Cisco Technology, Inc. Validation of layer 3 using virtual routing forwarding containers in a network
US10523539B2 (en) 2017-06-22 2019-12-31 Nicira, Inc. Method and system of resiliency in cloud-delivered SD-WAN
US10491516B2 (en) 2017-08-24 2019-11-26 Nicira, Inc. Packet communication between logical networks and public cloud service providers native networks using a single network interface and a single routing table
US10567482B2 (en) 2017-08-24 2020-02-18 Nicira, Inc. Accessing endpoints in logical networks and public cloud service providers native networks using a single network interface and a single routing table
US10778579B2 (en) 2017-08-27 2020-09-15 Nicira, Inc. Performing in-line service in public cloud
CN109462534B (zh) * 2017-09-06 2021-04-16 中国银联股份有限公司 区域互联控制器、区域互联控制方法以及计算机存储介质
US10530632B1 (en) 2017-09-29 2020-01-07 Equinix, Inc. Inter-metro service chaining
US10999165B2 (en) 2017-10-02 2021-05-04 Vmware, Inc. Three tiers of SaaS providers for deploying compute and network infrastructure in the public cloud
US11089111B2 (en) 2017-10-02 2021-08-10 Vmware, Inc. Layer four optimization for a virtual network defined over public cloud
US10819556B1 (en) 2017-10-16 2020-10-27 Equinix, Inc. Data center agent for data center infrastructure monitoring data access and translation
US10601705B2 (en) 2017-12-04 2020-03-24 Nicira, Inc. Failover of centralized routers in public cloud logical networks
US10862753B2 (en) 2017-12-04 2020-12-08 Nicira, Inc. High availability for stateful services in public cloud logical networks
CN109995637B (zh) * 2018-01-02 2021-06-04 中国移动通信有限公司研究院 S-vxlan构建方法、数据转发方法及系统
US10567244B1 (en) 2018-02-09 2020-02-18 Equinix, Inc. Near real-time feed manager for data center infrastructure monitoring (DCIM) using custom tags for infrastructure assets
CN111742525B (zh) * 2018-02-19 2022-02-25 华为技术有限公司 多云vpc路由和注册
US11388272B2 (en) * 2018-03-30 2022-07-12 Intel Corporation Technologies for network packet processing between cloud and telecommunications networks
US11271950B2 (en) * 2018-04-04 2022-03-08 Sophos Limited Securing endpoints in a heterogenous enterprise network
US11616758B2 (en) 2018-04-04 2023-03-28 Sophos Limited Network device for securing endpoints in a heterogeneous enterprise network
WO2019195502A1 (en) * 2018-04-04 2019-10-10 Sophos Limited Securing endpoints in a heterogenous enterprise network
US10972431B2 (en) 2018-04-04 2021-04-06 Sophos Limited Device management based on groups of network adapters
US11140195B2 (en) 2018-04-04 2021-10-05 Sophos Limited Secure endpoint in a heterogenous enterprise network
US10862864B2 (en) 2018-04-04 2020-12-08 Sophos Limited Network device with transparent heartbeat processing
SE1850664A1 (en) * 2018-06-01 2019-12-02 Telia Co Ab Methods and apparatuses for providing a service having a service profile
US10880743B1 (en) 2018-06-05 2020-12-29 Equinix, Inc. Interconnection and activation for internet of things devices in multi-tenant data center facilities
US10771252B1 (en) 2018-06-12 2020-09-08 Equinix, Inc. Data center security services
US11343229B2 (en) 2018-06-28 2022-05-24 Vmware, Inc. Managed forwarding element detecting invalid packet addresses
US11463324B2 (en) 2018-07-09 2022-10-04 At&T Intellectual Property I, L.P. Systems and methods for supporting connectivity to multiple VRFs from a data link
US11159569B2 (en) * 2018-08-20 2021-10-26 Cisco Technology, Inc. Elastic policy scaling in multi-cloud fabrics
US11374794B2 (en) 2018-08-24 2022-06-28 Vmware, Inc. Transitive routing in public cloud
US11196591B2 (en) 2018-08-24 2021-12-07 Vmware, Inc. Centralized overlay gateway in public cloud
US10491466B1 (en) * 2018-08-24 2019-11-26 Vmware, Inc. Intelligent use of peering in public cloud
CN112913197B (zh) * 2018-10-30 2022-09-27 慧与发展有限责任合伙企业 用于云服务的软件定义广域网上行链路选择
US10826874B2 (en) * 2018-11-29 2020-11-03 Mastercard International Incorporated Direct production network access using private networks and encapsulation
US10893022B1 (en) 2018-12-20 2021-01-12 Equinix, Inc. Routing protocol security using a distributed ledger
US11115142B1 (en) 2018-12-21 2021-09-07 Equinix, Inc. Timing synchronization service and distribution system
US11197075B1 (en) 2018-12-27 2021-12-07 Equinix, Inc. Clock synchronization in a heterogeneous system
JP7081521B2 (ja) * 2019-02-06 2022-06-07 日本電信電話株式会社 通信システムおよび通信方法
DK3703314T3 (da) 2019-02-28 2021-02-01 Ovh Fremgangsmåde til indsættelse af en netværkskonfiguration i et datacenter med et point of presence
WO2020190256A1 (en) * 2019-03-15 2020-09-24 Hewlett-Packard Development Company, L.P. Functional tuning for cloud based applications and connected clients
US11206095B1 (en) 2019-03-22 2021-12-21 Equinix, Inc. Timing synchronization for clock systems with asymmetric path delay
US11586752B1 (en) 2019-04-09 2023-02-21 Equinix, Inc. Encryption key namespace for containerized workloads
US11368307B1 (en) 2019-05-15 2022-06-21 Equinix, Inc. Tamper-resistant, multiparty logging and log authenticity verification
US11095644B2 (en) 2019-06-04 2021-08-17 Bank Of America Corporation Monitoring security configurations of cloud-based services
US11489930B2 (en) * 2019-06-11 2022-11-01 At&T Intellectual Property I, L.P. Telecommunication network edge cloud interworking via edge exchange point
US11343247B1 (en) 2019-08-30 2022-05-24 Equinix, Inc. Local delegation of remote key management service
US11757928B2 (en) 2019-09-17 2023-09-12 Equinix, Inc. Distributed denial-of-service mitigation
US11695568B1 (en) 2019-10-01 2023-07-04 Equinix, Inc. Virtualized network functions verification using decentralized identifiers
US11502913B1 (en) 2019-10-15 2022-11-15 Equinix, Inc. Simulating time synchronization
US11044190B2 (en) 2019-10-28 2021-06-22 Vmware, Inc. Managing forwarding elements at edge nodes connected to a virtual network
US11593500B1 (en) 2019-11-15 2023-02-28 Equinix, Inc. Multi-zone secure artificial intelligence exchange and hub
US11777932B1 (en) 2019-11-22 2023-10-03 Equinix, Inc. Controlling access to internet of things devices using verifiable credentials
US11171843B2 (en) * 2019-11-29 2021-11-09 Amazon Technologies, Inc. Multi-carrier access to provider substrate extensions
US11418995B2 (en) 2019-11-29 2022-08-16 Amazon Technologies, Inc. Mobility of cloud compute instances hosted within communications service provider networks
US10979534B1 (en) * 2019-11-29 2021-04-13 Amazon Technologies, Inc. Latency-based placement of cloud compute instances within communications service provider networks
US11379213B1 (en) 2019-12-06 2022-07-05 Equinix, Inc. Decentralized identifiers for securing device registration and software updates
US11394640B2 (en) 2019-12-12 2022-07-19 Vmware, Inc. Collecting and analyzing data regarding flows associated with DPI parameters
US11507627B2 (en) 2019-12-19 2022-11-22 Sap Se Analytics content network for content delivery embedding
US11588731B1 (en) 2020-01-17 2023-02-21 Equinix, Inc. Cloud-to-cloud interface
US11777899B1 (en) 2020-01-24 2023-10-03 Equinix, Inc. Hierarchical distributed dynamic host configuration protocol system
US11520372B1 (en) 2020-02-12 2022-12-06 Equinix, Inc. Time synchronization using skew estimation
US11444828B2 (en) * 2020-02-12 2022-09-13 Ciena Corporation Identifying border gateway protocol (BGP) anomalies at scale
US11698916B1 (en) 2020-02-13 2023-07-11 Equinix, Inc. Tracing timestamps through immutable records
US11671429B1 (en) 2020-02-26 2023-06-06 Equinix, Inc. Authorization automation in procurement of interconnections within a data center
US11304115B2 (en) * 2020-03-18 2022-04-12 Equinix, Inc. Network defined edge routing for an application workload
AU2021244556B2 (en) 2020-03-24 2024-02-29 Equinix, Inc. Isolating time synchronization traffic using virtualization
US11520615B1 (en) 2020-03-31 2022-12-06 Equinix, Inc. Virtual network function virtual domain isolation
US11063738B1 (en) 2020-04-27 2021-07-13 Equinix, Inc. Time synchronization using a weighted regression analysis
AU2021273280A1 (en) * 2020-05-15 2023-01-19 Equinix, Inc. Virtual gateways in a cloud exchange
US11394606B2 (en) * 2020-05-26 2022-07-19 Cisco Technology, Inc. Auto-provisioning of SD-WAN hubs and spokes
US11611517B2 (en) 2020-05-29 2023-03-21 Equinix, Inc. Tenant-driven dynamic resource allocation for virtual network functions
US11245641B2 (en) 2020-07-02 2022-02-08 Vmware, Inc. Methods and apparatus for application aware hub clustering techniques for a hyper scale SD-WAN
US11552930B2 (en) 2020-08-31 2023-01-10 Equinix, Inc. Virtual domains within a shared device
CN112367433A (zh) * 2020-11-09 2021-02-12 苏州云网通信息科技有限公司 一种把多款PaaS呼叫平台集成的方法
US11575591B2 (en) 2020-11-17 2023-02-07 Vmware, Inc. Autonomous distributed forwarding plane traceability based anomaly detection in application traffic for hyper-scale SD-WAN
US11575600B2 (en) 2020-11-24 2023-02-07 Vmware, Inc. Tunnel-less SD-WAN
US11218424B1 (en) 2020-12-30 2022-01-04 Equinix, Inc. Remote port for network connectivity for non-colocated customers of a cloud exchange
US11916883B1 (en) * 2021-02-17 2024-02-27 Aviatrix Systems, Inc. System and method for segmenting transit capabilities within a multi-cloud architecture
US11943223B1 (en) 2021-02-17 2024-03-26 Aviatrix Systems, Inc. System and method for restricting communications between virtual private cloud networks through security domains
US11677717B2 (en) * 2021-03-22 2023-06-13 Cloudflare, Inc. Unified network service that connects multiple disparate private networks and end user client devices operating on separate networks
US11496556B1 (en) * 2021-04-26 2022-11-08 Cisco Technology, Inc. Service provider selection for application-driven routing
US11677660B2 (en) * 2021-04-30 2023-06-13 Equinix, Inc. Fallback service through a cloud exchange for network service provider connections
US11388086B1 (en) 2021-05-03 2022-07-12 Vmware, Inc. On demand routing mesh for dynamically adjusting SD-WAN edge forwarding node roles to facilitate routing through an SD-WAN
US11489720B1 (en) 2021-06-18 2022-11-01 Vmware, Inc. Method and apparatus to evaluate resource elements and public clouds for deploying tenant deployable elements based on harvested performance metrics
US11375005B1 (en) 2021-07-24 2022-06-28 Vmware, Inc. High availability solutions for a secure access service edge application
US11489808B1 (en) * 2021-08-03 2022-11-01 Oversec, Uab Providing a split-configuration virtual private network
US20230079209A1 (en) * 2021-09-09 2023-03-16 Juniper Networks, Inc. Containerized routing protocol process for virtual private networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120151057A1 (en) * 2010-12-03 2012-06-14 Level 3 Communications, Llc Virtualized connectivity in a cloud services environment
JP2014534782A (ja) * 2011-11-03 2014-12-18 華為技術有限公司Huawei Technologies Co.,Ltd. ホストが仮想プライベートネットワークに参加/離脱するための境界ゲートウェイプロトコルの拡張
JP2015505431A (ja) * 2011-12-02 2015-02-19 マイクロソフト コーポレーション オンプレミスネットワークの公衆クラウドとの接続
US20150092772A1 (en) * 2013-09-27 2015-04-02 Verizon Patent And Licensing Inc. System and method of cross-connection traffic routing

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7827607B2 (en) * 2002-11-27 2010-11-02 Symantec Corporation Enhanced client compliancy using database of security sensor data
GB2425681A (en) * 2005-04-27 2006-11-01 3Com Corporaton Access control by Dynamic Host Configuration Protocol snooping
JP4747118B2 (ja) * 2007-03-05 2011-08-17 富士通株式会社 ルータ、通信保証方法および通信保証プログラム
US8166187B2 (en) * 2009-01-28 2012-04-24 Cisco Technology, Inc. Distributed IP gateway based on sharing a MAC address and IP address concurrently between a first network switching device and a second network switching device
US8170033B1 (en) * 2009-04-06 2012-05-01 Juniper Networks, Inc. Virtual private local area network service (VPLS) flush mechanism for BGP-based VPLS networks
US8509249B2 (en) 2009-09-04 2013-08-13 Equinix, Inc. Process and system for an integrated carrier ethernet exchange
US9595013B2 (en) 2009-12-10 2017-03-14 Equinix, Inc. Delegated and restricted asset-based permissions management for co-location facilities
US9141410B2 (en) 2011-03-08 2015-09-22 Rackspace Us, Inc. Pluggable allocation in a cloud computing system
WO2012106919A1 (zh) 2011-07-22 2012-08-16 华为技术有限公司 一种三层虚拟专有网路由控制方法、装置及系统
US8681802B2 (en) 2011-08-15 2014-03-25 Cisco Technology, Inc. Proxy FHRP for anycast routing service
CN103580980B (zh) 2012-07-24 2019-05-24 中兴通讯股份有限公司 虚拟网络自动发现和自动配置的方法及其装置
US9563480B2 (en) 2012-08-21 2017-02-07 Rackspace Us, Inc. Multi-level cloud computing system
US20140201375A1 (en) 2013-01-11 2014-07-17 Anuta Networks, Inc. Method, apparatus and system pertaining to cloud computing
US9515947B1 (en) 2013-03-15 2016-12-06 EMC IP Holding Company LLC Method and system for providing a virtual network-aware storage array
US20150341377A1 (en) 2014-03-14 2015-11-26 Avni Networks Inc. Method and apparatus to provide real-time cloud security
US9503321B2 (en) 2014-03-21 2016-11-22 Nicira, Inc. Dynamic routing for logical routers
US9467385B2 (en) 2014-05-29 2016-10-11 Anue Systems, Inc. Cloud-based network tool optimizers for server cloud networks
US9577937B2 (en) 2014-07-23 2017-02-21 Cisco Technology, Inc. Ensuring dynamic traffic shaping fairness
US9491121B2 (en) 2014-07-24 2016-11-08 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Controllable virtual link aggregation internet protocol forwarding
US10230571B2 (en) 2014-10-30 2019-03-12 Equinix, Inc. Microservice-based application development framework
US9912613B2 (en) 2015-03-30 2018-03-06 International Business Machines Corporation Dynamic service orchestration within PaaS platforms
US20160308766A1 (en) 2015-04-16 2016-10-20 Ixia Unified Mapping Tables With Source/Destination Labels For Network Packet Forwarding Systems
US9948552B2 (en) 2015-04-17 2018-04-17 Equinix, Inc. Cloud-based services exchange
US10291726B2 (en) 2015-05-12 2019-05-14 Equinix, Inc. Network field unit for a cloud-based services exchange

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120151057A1 (en) * 2010-12-03 2012-06-14 Level 3 Communications, Llc Virtualized connectivity in a cloud services environment
JP2014534782A (ja) * 2011-11-03 2014-12-18 華為技術有限公司Huawei Technologies Co.,Ltd. ホストが仮想プライベートネットワークに参加/離脱するための境界ゲートウェイプロトコルの拡張
JP2015505431A (ja) * 2011-12-02 2015-02-19 マイクロソフト コーポレーション オンプレミスネットワークの公衆クラウドとの接続
US20150092772A1 (en) * 2013-09-27 2015-04-02 Verizon Patent And Licensing Inc. System and method of cross-connection traffic routing

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11804988B2 (en) 2013-07-10 2023-10-31 Nicira, Inc. Method and system of overlay flow control
US11700196B2 (en) 2017-01-31 2023-07-11 Vmware, Inc. High performance software-defined core network
US11894949B2 (en) 2017-10-02 2024-02-06 VMware LLC Identifying multiple nodes in a virtual network defined over a set of public clouds to connect to an external SaaS provider
US11855805B2 (en) 2017-10-02 2023-12-26 Vmware, Inc. Deploying firewall for virtual network defined over public cloud infrastructure
JP2022043118A (ja) * 2017-10-02 2022-03-15 ヴィーエムウェア, インコーポレイテッド 複数のパブリッククラウドに跨る仮想ネットワークの生成
US11895194B2 (en) 2017-10-02 2024-02-06 VMware LLC Layer four optimization for a virtual network defined over public cloud
JP7275237B2 (ja) 2017-10-02 2023-05-17 ヴィーエムウェア, インコーポレイテッド 複数のパブリッククラウドに跨る仮想ネットワークの生成
US11902086B2 (en) 2017-11-09 2024-02-13 Nicira, Inc. Method and system of a dynamic high-availability mode based on current wide area network connectivity
JP2019145877A (ja) * 2018-02-15 2019-08-29 日本電信電話株式会社 経路情報転送装置、経路情報転送方法および経路情報転送プログラム
WO2019160005A1 (ja) * 2018-02-15 2019-08-22 日本電信電話株式会社 経路情報転送装置、経路情報転送方法および経路情報転送プログラム
JP7417812B2 (ja) 2019-08-27 2024-01-19 ヴィーエムウェア エルエルシー 仮想ネットワークを実施するためのリコメンデーションの提供
JP2022545608A (ja) * 2019-08-27 2022-10-28 ヴィーエムウェア, インコーポレイテッド 仮想ネットワークを実施するためのリコメンデーションの提供
US11831414B2 (en) 2019-08-27 2023-11-28 Vmware, Inc. Providing recommendations for implementing virtual networks
JPWO2021059353A1 (ja) * 2019-09-24 2021-04-01
WO2021059353A1 (ja) * 2019-09-24 2021-04-01 エヌ・ティ・ティ・コミュニケーションズ株式会社 ネットワークシステム
JPWO2021059352A1 (ja) * 2019-09-24 2021-04-01
WO2021059352A1 (ja) * 2019-09-24 2021-04-01 エヌ・ティ・ティ・コミュニケーションズ株式会社 表示制御システム、表示方法、及びプログラム
US11716286B2 (en) 2019-12-12 2023-08-01 Vmware, Inc. Collecting and analyzing data regarding flows associated with DPI parameters
US11722925B2 (en) 2020-01-24 2023-08-08 Vmware, Inc. Performing service class aware load balancing to distribute packets of a flow among multiple network links
US11709710B2 (en) 2020-07-30 2023-07-25 Vmware, Inc. Memory allocator for I/O operations
JP2022070804A (ja) * 2020-11-24 2022-05-13 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド プライベートネットワーク間の通信のための方法、装置、電子機器、記憶媒体およびコンピュータプログラム
JP7349474B2 (ja) 2020-11-24 2023-09-22 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド プライベートネットワーク間の通信のための方法、装置、電子機器、記憶媒体およびコンピュータプログラム
US11929903B2 (en) 2020-12-29 2024-03-12 VMware LLC Emulating packet flows to assess network links for SD-WAN
US11792127B2 (en) 2021-01-18 2023-10-17 Vmware, Inc. Network-aware load balancing
US11979325B2 (en) 2021-01-28 2024-05-07 VMware LLC Dynamic SD-WAN hub cluster scaling with machine learning
US11729065B2 (en) 2021-05-06 2023-08-15 Vmware, Inc. Methods for application defined virtual network service among multiple transport in SD-WAN
US11943146B2 (en) 2021-10-01 2024-03-26 VMware LLC Traffic prioritization in SD-WAN
US11909815B2 (en) 2022-06-06 2024-02-20 VMware LLC Routing based on geolocation costs

Also Published As

Publication number Publication date
AU2016248307B2 (en) 2018-08-23
CA2951940A1 (en) 2016-10-20
AU2016248307A1 (en) 2016-12-22
CN106464592A (zh) 2017-02-22
WO2016168577A1 (en) 2016-10-20
BR112016029187A2 (pt) 2017-08-22
US9712435B2 (en) 2017-07-18
EP3155765A1 (en) 2017-04-19
CN106464592B (zh) 2019-12-10
SG11201610056RA (en) 2017-11-29
US20160308762A1 (en) 2016-10-20
US20170093702A1 (en) 2017-03-30
EP3155765B1 (en) 2018-07-11
JP6491241B2 (ja) 2019-03-27
CA2951940C (en) 2018-11-27
US9948552B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP6491241B2 (ja) クラウドベースのサービス交換
US11973686B1 (en) Virtual performance hub
US20210359948A1 (en) Virtual gateways in a cloud exchange
US8874709B2 (en) Automatic subnet creation in networks that support dynamic ethernet-local area network services for use by operation, administration, and maintenance
US9344350B2 (en) Virtual service topologies in virtual private networks
CN107547333B (zh) 用于实现组合虚拟专用网vpn的方法与装置
US10523631B1 (en) Communities of interest in a cloud exchange
US11218424B1 (en) Remote port for network connectivity for non-colocated customers of a cloud exchange
EP3151477B1 (en) Fast path content delivery over metro access networks
CN103326940A (zh) 在网络中转发报文的方法和运营商边缘设备
US9954761B2 (en) Dynamic detection of VPN sites
US11588731B1 (en) Cloud-to-cloud interface
WO2017011313A1 (en) Interconnect engine for interconnection facilities
US11757928B2 (en) Distributed denial-of-service mitigation
JP2015535408A (ja) 分散型インターネットアーキテクチャのための方法と装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6491241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250